
Semantic Contribution-Aware Adaptive Retrieval for Black-Box Models

Anonymous ACL submission

Abstract001

Retrieval-Augmented Generation (RAG) plays002
a critical role in mitigating hallucinations and003
improving factual accuracy for Large Language004
Models (LLMs). While dynamic retrieval tech-005
niques aim to determine retrieval timing and006
content based on model intrinsic needs, existing007
approaches struggle to generalize effectively in008
black-box model scenarios. To address this lim-009
itation, we propose the Semantic Contribution-010
Aware Adaptive Retrieval (SCAAR) frame-011
work. SCAAR iteratively leverages the seman-012
tic importance of words in upcoming sentences013
to dynamically adjust retrieval thresholds and014
filter information, retaining the top-P% most015
semantically significant words for constructing016
retrieval queries. We comprehensively evalu-017
ate SCAAR against baseline methods across018
four long-form, knowledge-intensive genera-019
tion datasets using three different models. Ex-020
tensive experiments also analyze the impact of021
various hyperparameters within the framework.022
Our results demonstrate SCAAR’s superior or023
competitive performance across all tasks, show-024
casing its ability to effectively detect model025
retrieval needs and construct efficient retrieval026
queries that help models find relevant knowl-027
edge for problem-solving in black-box scenar-028
ios. Code is released in our Github repository.029

1 Introduction030

Large Language Models (LLMs) demonstrate im-031

pressive capabilities in various natural language032

processing tasks such as question-answering (QA),033

abstractive summarization, and machine translation034

(Zhao et al., 2023). The emergence of prompt tun-035

ing and in-context learning (Brown et al., 2020;036

Zhou et al., 2022; Chan et al., 2022) facilitates037

LLMs to generate convincing and human-like re-038

sponses. This feature enables LLMs to be increas-039

ingly integrated into AI-powered intelligent assis-040

tants to support human reasoning and decision-041

making processes in everyday contexts (OpenAI,042

2022; Achiam et al., 2023). However, when con- 043

fronting time-dependent and complex reasoning 044

tasks, LLMs inevitably demonstrate reasoning in- 045

consistencies and factual inaccuracies during re- 046

sponse generation, which is referred to as the hal- 047

lucination of LLMs (Huang et al., 2023). 048

Retrieval-Augmented Generation (RAG) (Guu 049

et al., 2020; Lewis et al., 2020) effectively alle- 050

viates the hallucination issue by dynamically in- 051

corporating relevant knowledge into the context 052

during the reasoning process, thereby enhancing 053

the model’s reasoning ability (Ram et al., 2023). 054

The conventional RAG framework implements a 055

single retrieval operation upon receiving a ques- 056

tion and leverages the retrieved knowledge to assist 057

the response generation (Izacard et al., 2022; Luo 058

et al., 2023). While this approach demonstrates ef- 059

ficacy in simple QA tasks, it shows limited perfor- 060

mance in long-form generation and tasks requiring 061

multi-step reasoning. This limitation stems from 062

single-step retrieval, which only retrieves knowl- 063

edge relevant to the initial question, neglecting the 064

potential need for knowledge during the iterative 065

generation process. 066

Recent work focuses on the problem of when 067

and what to retrieve during the generation process 068

of LLMs. Self-RAG (Asai et al., 2023) learns to 069

output a special control token indicating the need 070

for retrieval during training, IRCoT (Trivedi et al., 071

2022) triggers retrieval at the end of each sentence, 072

and Toolformer (Schick et al., 2023) triggers re- 073

trieval when seeing named entities. Meanwhile, 074

adaptive retrieval, a more flexible methodology for 075

retrieval determination and query construction, has 076

received increasing attention. The advantage of 077

the adaptive retrieval lies in its ability to decide 078

whether to trigger retrieval and determine the query 079

for retrieval in accordance with the generation sta- 080

tus of the model. This ability facilitates the RAG 081

framework to avoid unnecessary retrieval overhead 082

and reduce the interference caused by wrong re- 083
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trievals, thus improving the quality of the query084

and the retrieved content. Recent work has ex-
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Figure 1: An illustration of our SCAAR framework via
baseline.

085

plored different implementations of adaptive re-086

trieval. FLARE (Jiang et al., 2023) uses the proba-087

bility of the generated tokens to determine whether088

to retrieve and uses the model’s current generation089

as the query, treating low-confidence tokens as hal-090

lucinations. DRAGIN (Su et al., 2024) proposes091

an attention-based dynamic retrieval determination092

criterion assigns different significance values to093

content words and stopwords when building the094

query for retrieval. SeaKR (Yao et al., 2024) pro-095

poses a retrieval determination criterion based on096

self-aware uncertainty. These methods effectively097

enhance RAG, but they rely on models’ hidden098

states and can’t work with black-box models. So099

we focus on threshold adaptive weighting schemes100

that work in black-box scenarios and retrieval prob-101

lem construction schemes based on these weights.102

In this work, we propose Semantic Contribution-103

Aware Adaptive Retrieval (SCAAR) as shown in104

Figure 1, which adopts an encoder model to com-105

pute the semantic contribution value of each token.106

The semantic contribution values are then lever-107

aged to dynamically adjust the retrieval threshold108

and filter low-importance words in the query for109

retrieval. We perform RAG on four knowledge-110

intensive datasets using SCAAR against white-111

box adaptive retrieval approaches, and static re-112

trieval approaches. Experimental results show that113

SCAAR achieves comparable performance with114

white-box adaptive retrieval approaches, which in-115

dicates that SCAAR can effectively capture the116

value of each token and determine “when to re-117

trieve” in black-box settings. On the other hand, the118

contribution-based query construction in SCAAR119

outperforms existing approaches, indicating that120

SCAAR can better determine “what to retrieve”.121

Our work makes following main contributions:122

• We present SCAAR, a semantic contribution-123

based adaptive retrieval framework for black-124

box models, which combines dynamic re-125

trieval and adaptive query construction to 126

accurately capture the model’s intent under 127

black-box settings. 128

• We empirically demonstrate that the SCAAR 129

framework achieves state-of-the-art perfor- 130

mance on four knowledge-intensive datasets 131

compared to baselines. 132

2 Related Work 133

2.1 Adaptive Retrieval 134

Conventional RAG frameworks generally deter- 135

mine to perform retrieval at a fixed time or based on 136

simple rules, for example, every question (Khan- 137

delwal et al., 2019), every N tokens (Borgeaud 138

et al., 2022; Ram et al., 2023) or every N sentences 139

(Shi et al., 2023). Such mechanisms not only in- 140

troduces additional overhead, but also frequently 141

fail to match the knowledge need of models, and 142

even weakens final performance with unnecessary 143

retrieved contents (Mallen et al., 2022). 144

Adaptive retrieval determines whether to retrieve 145

by dynamically sensing the potential quality issues 146

in the model generation process. Existing adaptive 147

retrieval approaches can be based on question dif- 148

ficulty assessment (Mallen et al., 2022; Li et al., 149

2023; Asai et al., 2023), uncertainty qualification 150

(Su et al., 2024; Yao et al., 2024; Jiang et al., 2023), 151

and retrieval result postprocessing (Wang et al., 152

2023; Xu et al., 2023; Yao et al., 2024), among 153

which the approaches based on uncertainty qualifi- 154

cation are most relevant to our work. 155

FLARE (Jiang et al., 2023) is the fundamental 156

work that effectively applies uncertainty qualifi- 157

cation to RAG. If the confidence of any token is 158

lower than the preset threshold, FLARE triggers 159

retrieval and uses the remaining tokens with confi- 160

dence above the threshold to compose a query for 161

retrieval. FLARE effectively explores the model 162

generation intention and requirement, but lacks 163

flexibility due to the fixed threshold. 164

DRAGIN (Su et al., 2024) dynamically sets a 165

threshold for each token based on its attention 166

score, where tokens with higher attention scores are 167

regarded as more significant so they are assigned 168

higher thresholds. However, this approach cannot 169

be generalized to black-box models. 170

Our mechanism aligns conceptually with DRA- 171

GIN in its objective to assign dynamic thresholds 172

to different tokens by incorporating a lightweight 173

language model to quantify token semantic signifi- 174
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cance as weighting factors of thresholds, introduc-175

ing minimal computational overhead but enhancing176

performance metrics in black-box scenarios.177

2.2 Retrieval for Black-Box Models178

Adaptive retrieval works generally focus on white-179

box models since the LLMs’ internal states are180

considered to be significant in hallucination detec-181

tion (Chen et al., 2024). However, some powerful182

models such as GPT-4 do not provide any infor-183

mation of the internal states, posing a challenge184

to perform RAG based on these models. Existing185

black-box approaches focus on the consistency be-186

tween multiple responses for the question to assist187

retrieval determination. The more consistent an-188

swers are, the more likely the model is to know189

the correct answer. Otherwise, the model tend to190

give hallucinated responses with high semantic di-191

versity. Fomicheva et al. (Fomicheva et al., 2020)192

employs Meteor score to quantify the consistency193

of multiple responses. Lin et al. (Lin et al., 2023)194

propose to use semantic sets and graph Laplacian195

eigenvalues to estimate the uncertainty and confi-196

dence from the Jaccard similarities over multiple197

generations. Manakul et al. (Manakul et al., 2023)198

considers the similarities adopted in the above two199

approaches. Farquhar et al. (Farquhar et al., 2024)200

constructs different queries for the specific idea201

generated by the LLM and determine the factuality202

of the idea by the consistency of the final results203

over different queries. These approaches facili-204

tate hallucination detection in black-box models205

and achieves effective performances, but still intro-206

duces much computational complexity due to the207

need for a large amount of extra generations.208

3 Methodology209

3.1 Formulation of Adaptive Retrieval210

Given a language model M and a user question q,211

the generated response of the language model can212

be denoted as y = M(q). Here, the response y213

can be regarded as a sequence of sentences, i.e.,214

y = [s1, s2, · · · , sn], where each sentence si can215

be regarded as a sequence of words, i.e., si =216

[wi,1, wi,2, · · · , wi,m].217

A knowledge base in an RAG framework can218

be denoted as a set of general Wikipedia or cus-219

tomized documents D = {di}|D|
i=1, where di is a220

single document. The RAG framework is able to221

retrieve the k documents most relevant to the user222

question q from the knowledge base D. The set of223

the retrieved k documents is referred to as the con- 224

text knowledge, denoted as C = {c1, c2, · · · , ck}, 225

where ci ∈ D. The context knowledge C, along 226

with the original user question q, is then input to the 227

language model M to perform augmented genera- 228

tion, which is denoted as y′ = M(C,q). Generally, 229

the generation quality of y′ is obviously better than 230

y if given relative retrieved context knowledge. 231

In contrast to conventional RAG solutions, adap- 232

tive retrieval approaches perform retrieval deter- 233

mination and query construction based on the in- 234

formation generated by the model itself. Retrieval 235

determination is the problem of determining when 236

to and when not to retrieve during the generation 237

process. Given a question, at timestep t of the re- 238

sponse generation process, the model is regarded as 239

having insufficient knowledge to answer the ques- 240

tion if it is not confident in its current generaiton. 241

One of the simplest way to determine whether the 242

model is confident is to compare the probability 243

of the currently generated token yt with a thresh- 244

old θ. If yt < θ, the RAG framework will deter- 245

mine to trigger retrieval at timestep t to supplement 246

the model’s insufficient knowledge. Query con- 247

struction is the problem of determining what to 248

retrieve when the retrieval is triggered, i.e., a query 249

qr should be constructed to retrieve the most rel- 250

evant knowledge from the knowledge base. The 251

query is generally constructed based on the origi- 252

nal question q and the already generated response 253

y<t = [y1, y2, · · · , yt−1] through a query construc- 254

tion function qry, denoted as qr = qry(q,y<t). 255

3.2 Semantic Contribution-Aware Retrieval 256

Determination 257

We propose a novel semantic contribution-aware 258

retrieval determination method to address the prob- 259

lem “when to retrieve” in an RAG framework. The 260

retrieval determination consists of 3 steps: (1) com- 261

pute the word contribution, (2) scale the original 262

threshold based on the computed contribution, (3) 263

compare the word probability with the threshold to 264

determine whether to retrieve. 265

Word Contribution Inspired by SAR (Duan 266

et al., 2024), we compute the contribution of a spe- 267

cific word using the leave-one-out method, which 268

involves comparing the semantic change before 269

and after removing the word. Unlike the conven- 270

tional SAR method, we consider word-level instead 271

of token-level contributions. Specifically, given a 272

question q and a specific sentence st from response 273
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y, we first remove word wt,i from st, obtaining274

a corrupted response sentence st\wt,i. Then, we275

compute the similarity between the complete con-276

text [q, st] and the corrupted context [q, st\wt,i]277

through an external cross-encoder model fx-enc278

(e.g., RoBERTa (Liu, 2019)), as shown in Eq. 1:279

r(wt,i;q, st) = fx-enc ([q, st], [q, st\wi]) . (1)280

The similarity denoted by r(wt,i;q, st) is regarded281

as the semantic contribution of word wt,i282

Threshold Scaling. The contribution283

r(wt,i;q, st) is a similarity value, which falls284

between 0 and 1 and cannot be used to scale285

up the threshold. Therefore, we normalize the286

contribution value along sentence st, as shown287

in Eq. 2, where a value lower or greater than288

1 indicates that the contribution of the word is289

under or above average. Then, we scale the290

threshold for the specific word by the exponential291

of the contribution value, as shown in Eq. 3,292

where θ(wt,i;q, st) denotes the original threshold293

(generally a constant value) of wt,i.294

r′(wt,i;q, st) =
|st| · r(wt,i;q, st)∑
wt,k∈st r(wt,i;q, st)

(2)295

θscaar(wt,i;q, st) = er(wt,i) · θ(wt,i;q, st) (3)296

Retrieval Determination. During generation,297

the probability of a word is computed as the prod-298

uct of the probabilities of all its tokens in Eq. 4:299

P (wt,i|Q,wt,<i) =
n∏

k=m

P (wt,k|Q,wt,<k), (4)300

where m,n are beginning and end of a word, Q301

is composed of C,s<t = [s1, s2, · · · , st−1] and302

wt,<i = [wt,1, wt,2, · · · , wt,i−1] denote previously303

generated content. However, this computation re-304

sults in lower probability values for words with305

more tokens. Therefore, we perform length normal-306

ization as shown in Eq. 5:307

P ′(wt,i|Q,wt,<i) = P (wt,i|Q,wt,<i)
1

|wt,i| , (5)308

Then, the normalized word probability is compared309

with the scaled word threshold. If the normalized310

probability of any word wt,i in the response sen-311

tence st is lower than the corresponding scaled312

threshold θscaar(wt,i;q, st), then the response sen-313

tence st should trigger retrieval.314

By introducing an external cross-encoder model315

for word contribution computation, our retrieval de-316

termination approach can be generalized to black- 317

box LLMs. The additional overhead introduced by 318

the cross-encoder model is slight since it is gener- 319

ally a lightweight model compared to the LLM. 320

3.3 Semantic Contribution-Aware Query 321

Construction 322

To address the problem “what to retrieve”, we pro- 323

pose a novel query construction approach based 324

on the computed word contribution through α- 325

percentile filtering policy. Given the question q, 326

during the generation process, if some word in 327

response sentence st triggers retrieval according 328

to our thresholding method, then we say st is a 329

hallucination sentence. Given the hallucination 330

sentence st = [wt,1, wt,2, · · · , wt,n], we sort the 331

words in the sentence by their semantic contribu- 332

tion from large to small and only keep the words 333

with top α% contribution values (i.e., words whose 334

contribution values are greater than the α-th per- 335

centile). The remaining words after α-percentile 336

filtering may still contain hallucination words, i.e., 337

words whose contribution values are below their 338

specific thresholds. Therefore, we further remove 339

the hallucination words and concatenate the ques- 340

tion q with the remaining words to obtain the final 341

query qr. The complete algorithm of semantic 342

contribution-aware query construction is shown in 343

Algorithm 1 As indicated by the input and the out- 344

put of the algorithm, we denote the query as a 345

function of the question and the response sentence, 346

i.e., qr = qryscaar(q, st).

Algorithm 1: Query construction
Data: Question q, hallucination response sentence st
Input: Percentage to keep α
Result: a constructed query qr

1 Sort st as s′t descendingly of word contributions;
2 Let rα be the α-percentile of contributions in s′t;
3 Initialize the query as the question: qr ← q;
4 for wt,i ∈ s′t do
5 rt,i ← r′(wt,i;q, st);
6 θt,i ← θscaar(wt,i;q, st);
7 if rt,i > θt,i and rt,i > rα then
8 qr ← concat(qr, wt,i);
9 end

10 end
11 return qr

347
The α-percentile filtering policy provides a rela- 348

tive criterion to remove low-semantic-contributory 349

words that may interfere with qualities of retrieval 350

results. Intuitively, when confronted with unevenly 351

distributed word semantics, the criterion based on 352

α-percentile can better control the query length 353
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and quality compared to absolute filtering crite-354

ria. Like retrieval determination, the remaining355

high-semantic-contributory words are determined356

as hallucinated or not by comparing their gener-357

ation probabilities with their adaptive thresholds,358

where higher-contributory words are assigned with359

higher thresholds, as shown in Eq. 3. This effec-360

tively addresses cases where the semantic contribu-361

tion distribution of the remains has a large variance.362

3.4 Generation Refinement363

The SCAAR framework adopts a refinement idea364

of generating refinement with retrieved knowledge,365

similar to most RAG frameworks. Given the re-366

sponse sentence st generated by the model M at367

the sentence-level timestep t, we perform retrieval368

determination based on the original question q and369

st to determine whether st triggers retrieval.370

If st does not trigger retrieval, we directly use it371

as the output of timestep t. If st triggers retrieval,372

we first perform query construction given ques-373

tion q and response sentence st to obtain the query374

qryscaar(q, st). Then, we use the query to retrieve375

the context knowledge Ct from knowledge base D,376

denoted by Eq. 6. Finally, we perform generation377

refinement through model M to generate a better378

response sentence s′t based on the context knowl-379

edge Ct, the original question q, and the outputs380

of previous timesteps s′<t, denoted by Eq. 7. Note381

that we use the knowledge Ct retrieved at the cur-382

rent timestep t instead of all historical knowledges383

C1, · · · , Ct. The refined response sentence s′t will384

replace the hallucination sentence st as the new385

output of timestep t.386

Ct ∼ D|query=qryscaar(q,st)
(6)387

s′t = M(Ct,q, s′<t) (7)388

4 Experiment389

In this section, we first demonstrated and com-390

pared the performance of the SCAAR method with391

other baselines on the evaluation data, and then392

analyzed the effectiveness of different components393

in SCAAR through ablation studies.394

4.1 Experiment Setup395

Baselines. We compared SCAAR with methods396

including non-retrieval method, fix-sentence RAG397

(FS-RAG) (Trivedi et al., 2022), which retrieves ev-398

ery sentence, alongside the adaptive retrieval meth-399

ods FLARE (Jiang et al., 2023) and DRAGIN (Su400

et al., 2024). The original FLARE perform retrieval 401

determination based on token-level probabilities. 402

We adapted it to word-level by computing a geo- 403

metric mean probability of all tokens in a word, in 404

line with other methods. Results of more methods 405

and different granularities are in Appendix C. 406

Datasets. We tested on four open-source datasets: 407

2WikiMultiHopQA (Ho et al., 2020), HotpotQA 408

(Yang et al., 2018), IIRC (Ferguson et al., 2020), 409

and StrategyQA (Geva et al., 2021). 410

Evaluation Metrics. We randomly selected 300 411

samples from each dataset for evaluation. We in- 412

corporated Chain-of-Thought (Wei et al., 2022) 413

and few-shot prompting (Brown et al., 2020) into 414

the prompt to guide the model’s reasoning pro- 415

cess and generate correct answers for evaluation. 416

The prompt we used is shown in Appendix A. 417

For StrategyQA, we evaluated the exact match 418

(EM) score since the answer is in “yes/no” for- 419

mat. For the other three datasets, we adopted both 420

EM and F1 scores as evaluation metrics since the 421

answers are phrases. Moreover, to evaluate the 422

retrieval efficiency, we measured the average im- 423

provement brought by each retrieval. Given the 424

average number of retrievals NR and the improve- 425

ment in F1 or EM score ∆S compared to the non- 426

RAG baseline, the retrieval efficiency is computed 427

as Seff = ∆S/NR. For StrategyQA, we evaluated 428

the efficiency in EM score improvement. For other 429

three datasets, we evaluated the efficiency in F1 430

score improvement. 431

Models. We utilized the instruct version of open- 432

source Llama-2-7B, Llama-2-13B (Touvron et al., 433

2023), and Llama-3.1-8B (Dubey et al., 2024) for 434

white-box evaluation. For SCAAR, these models 435

were encapsulated into an API designed to simulate 436

a black-box scenario. 437

Knowledge Base and Retriever. We used 438

Wikipedia (Karpukhin et al., 2020) as the exter- 439

nal knowledge base, splitting the text into blocks of 440

length 100 for retrieval. Each retrieval returns]ed 441

the top 3 documents most relevant to the question, 442

using BM25 (Robertson et al., 2009). 443

For more details, refer to the Appendix A. 444

4.2 Overall Result Analysis 445

We compared SCAAR with baselines on evalu- 446

ation data, as shown in Table 1, we found that: 447

(1)FS-RAG notably underperforms adaptive re- 448

trieval methods (FLARE, DRAIN, SCAAR) and 449

in some experiments even underperform the non- 450

retrieval approach (w/o RAG). This is because 451

5



Table 1: Overall results of SCAAR and baselines on four datasets.

2WikiMultiHopQA HotpotQA IIRC StrategyQA
EM F1 NR Seff EM F1 NR Seff EM F1 NR Seff EM NR Seff

Llama-2-13B
w/o RAG 0.1658 0.2779 - - 0.1623 0.2736 - - 0.1111 0.1454 - - 0.6710 - -
FS-RAG 0.3389 0.4701 3.48 5.52 0.2500 0.3724 2.73 3.62 0.2291 0.2813 4.03 3.38 0.6667 4.22 -0.10
FLARE 0.3910 0.4912 2.71 7.88 0.3244 0.4339 3.80 4.22 0.2484 0.3078 3.98 4.08 0.6749 5.57 0.07
DRAGIN 0.3400 0.4637 2.65 7.01 0.3415 0.4490 3.16 5.54 0.2385 0.2806 3.75 3.61 0.7069 4.59 0.78
SCAAR (Ours) 0.3918 0.4973 3.14 6.99 0.3333 0.4369 3.39 4.81 0.2490 0.3091 4.20 3.90 0.7090 5.56 0.68

Llama-2-7B
w/o RAG 0.2367 0.3099 - - 0.2033 0.3158 - - 0.1367 0.1665 - - 0.6455 - -
FS-RAG 0.2214 0.3106 2.48 0.03 0.1979 0.3014 1.74 -0.83 0.1483 0.1937 1.85 1.47 0.5933 3.49 -1.49
FLARE 0.2644 0.3509 2.31 1.78 0.2510 0.3628 2.34 2.01 0.2000 0.2358 1.82 3.81 0.6651 4.50 0.44
DRAGIN 0.2761 0.3751 2.86 2.28 0.2258 0.3310 1.69 0.90 0.1937 0.2431 1.95 3.92 0.6888 3.44 1.26
SCAAR (Ours) 0.2778 0.3677 2.36 2.45 0.2680 0.3762 1.69 3.57 0.1964 0.2361 1.92 3.63 0.6944 3.78 1.29
Llama-3-8B
w/o RAG 0.3211 0.3907 - - 0.2238 0.3354 - - 0.2089 0.2500 - - 0.7615 - -
FS-RAG 0.4034 0.4950 4.05 2.57 0.3581 0.4661 3.25 4.02 0.2734 0.3223 3.92 1.84 0.7912 4.86 0.61
FLARE 0.5000 0.5812 3.09 6.16 0.4181 0.5347 3.27 6.10 0.2929 0.3496 3.27 3.05 0.7963 4.44 0.78
DRAGIN 0.3605 0.4236 0.77 4.28 0.2630 0.3761 1.07 3.81 0.1886 0.2120 1.58 -2.40 0.8048 1.38 3.14
SCAAR (Ours) 0.5246 0.6026 2.70 7.84 0.4460 0.5570 3.40 6.52 0.3203 0.3694 3.31 3.60 0.7799 4.35 0.42

when these methods retrieve content that is similar452

to but irrelevant to the question, even if the model453

could inherently derive the correct answer, its over-454

reliance on context leads it to use this incorrect455

information in its reasoning and response. (2)DRA-456

GIN failed to surpass FS-RAG with Llama-3.1-8B.457

We contributed it to the fact that model assigns458

higher probabilities to tokens, leading to fewer trig-459

gered retrievals compared to other models. This460

reduction in retrieval frequency results in degraded461

performance. (3)The adaptive retrieval methods462

demonstrated significantly higher performance and463

retrieval efficiency compared to static methods,464

indicating that the adaptive retrieval determina-465

tion based on model confidence works effectively.466

(4)Our SCAAR approach outperforms FLARE and467

DRAGIN in most cases without accessing models’468

internal states. It proves that our retrieval deter-469

miniation and query construction approach based470

on semantic contribution, effectively perceive the471

model’s behavioral intentions and knowledge gaps,472

resulting in relevant retrievals.473

We further analyze the effectiveness of each474

pipeline in subsequent ablation studies.475

4.3 Initial Threshold Ablation476

As shown in Equation 3, the variation of the initial477

threshold will alter the dynamic threshold, thereby478

affecting the final performance. Existing work only479

reports results under the best initial threshold of480

corresponding approaches, ignoring comparison481

of all approaches under a same initial threshold.482

We evaluate the performance of FLARE, DRAGIN,483

and SCAAR at initial threshold of 0.9, 0.8, and484

0.7, respectively. We believe that an excessively 485

low initial threshold has little practical significance. 486

As shown in Figure 2a and 2b the difference in 487

initial threshold results in different generation per- 488

formance (F1 score) and retrieval efficiency (Seff), 489

and SCAAR consistently outperforms FLARE and 490

DRAGIN in both generation performance and re- 491

trieval efficiency under all threshold configurations. 492

4.4 Adpative Weight and Query Formulation 493

Two key components in SCAAR are the semantic- 494

contribution-weighting (SCW) method, which 495

determines the thresholds for each words, and 496

the Quantile-Filtered Query (QFQ) formulation 497

method, which works to construct queries for re- 498

trieval. To demonstrate the effectiveness of the 499

former, we replace it with ORIGIN and ATTN, 500

where ORIGIN means assigning a weight of "1" 501

to all words and ATTN means computing weights 502

of words based on attention scores. As for the lat- 503

ter, we replace it with Curr-Sent and Real-Words, 504

where Curr-Sent means directly using the high- 505

confidence words in current sentence as the query 506

and Real-Words means using the real words (i.e., 507

content words). We evaluate these two pipelines on 508

the aforementioned four datasets using the Llama- 509

2-7B model. As shown in Table 2, Under var- 510

ious weighting methods, our QFQ achieves the 511

best performance compared to Curr-Sent and Real- 512

Words in most cases. However, we cannot infer 513

which combination of adaptive weighting method 514

and query formulation method achieves best per- 515

formance (i.e., having the most underlined scores) 516

from Table 2, since 4 out of 9 combinations achieve 517

6



Table 2: Experiments on Llama-2-7B with different adaptive weighting and query formulation methods. The bold
values indicates the best query formulation method under the same weighting method, and the underlined values
indicates the best combination of weighting method and query formulation methods.

Weighting Query 2WikiMultiHopQA HotpotQA IIRC StrategyQA
EM F1 Seff EM F1 Seff EM F1 Seff EM Seff

ORIGIN Curr-Sent 0.2644 0.3509 1.78 0.2510 0.3628 2.01 0.2000 0.2358 3.81 0.6651 0.44
ORIGIN Real-Words 0.2534 0.3434 1.44 0.2696 0.3693 2.93 0.1952 0.2432 3.08 0.6632 0.43
ORIGIN QFQ (Ours) 0.2838 0.3707 2.48 0.2625 0.3544 1.73 0.2218 0.2576 4.35 0.6986 1.22
ATTN Curr-Sent 0.2795 0.3675 2.02 0.2198 0.3357 1.19 0.1918 0.2370 3.26 0.6429 -0.07
ATTN Real-Words 0.2761 0.3751 2.28 0.2258 0.3310 0.90 0.1937 0.2431 3.92 0.6118 -0.93
ATTN QFQ (Ours) 0.3014 0.3787 2.41 0.2313 0.3471 1.86 0.2082 0.2520 4.48 0.6485 0.08
SCW (Ours) Curr-Sent 0.2664 0.3562 1.93 0.2556 0.3505 2.05 0.1906 0.2234 3.11 0.6844 0.96
SCW (Ours) Real-Words 0.2525 0.3425 1.58 0.2609 0.3532 2.09 0.1713 0.2239 2.57 0.6655 0.41
SCW (Ours) QFQ (Ours) 0.2778 0.3677 2.45 0.2680 0.3762 3.57 0.1964 0.2361 3.63 0.6944 1.29
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Figure 2: Comparison under same initial thresholds and
Win count of adaptive weighting methods and query
formulation methods.

the best performance on at least one task.518

We further combine the two pipelines in pairs519

and perform detailed experiments over all 3 mod-520

els and 3 different thresholds (0.9, 0.8, 0.7) on521

4 datasets for each combination. We count the522

number of times each weighting method achieves523

the best performance and efficiency given the spe-524

cific query formulation method and report the re-525

sults in Figure 2c, where SCW achieves the highest526

win count in F1 and Seff scores. Similarly, results527

of query formulations given a specific weighting528

method in Figure 2d show QFQ achieves the high-529

est win count in F1 and Seff scores.530

To more intuitively analyze the difference be-531

tween ATTN and SCW, we visualize the word sig-532

nificance computed by the two methods. Given a533

specific question, the first sentence of the response534

Figure 3: Visualization of word significance for answer
of "Were Scott Derrickson and Ed Wood of the same
nationality?" in ATTN and SCW.

is “Scott Derrickson is an American film director.” 535

with 7 words. Figure 3 demonstrates the signifi- 536

cance score of each word computed by ATTN and 537

SCW, where SCW effectively captures “American” 538

and “film”, the two words that contributes most to 539

the semantics of the sentence. These two words are 540

indeed potential hallucinations since they describe 541

some factual and knowledgeable content, therefore 542

need to be assigned with a stricter threshold. 543

4.5 Percentile Ablation 544

In QFQ, we keep words with top α% contribution 545

values. To clarify the influence of α, we perform 546

ablation experiment on Llama-2-7B model with dif- 547

ferent α values and same weighting methods. Re- 548

sults in Figure 4 shows that for each dataset, at least 549

three α values outperform the Curr-Sent approach. 550

This improvement is particularly pronounced in 551

IIRC and HotpotQA, where the percentile filter- 552

ing approach consistently outperforms baselines. 553

However, for 2WikiMultiHopQA and StrategyQA, 554

the improvements are predominantly observed at 555

higher α values. We attribute this to the inherent 556

characteristics of IIRC and HotpotQA: they empha- 557

size the model’s accuracy in entity analysis, where 558

semantically significant terms tend to rank higher 559

in importance. Consequently, even with small α 560

7



Figure 4: EM scores under different filtering percentage.

values, the filter effectively eliminates extraneous561

information from current generations while main-562

taining focus on entity analysis. In contrast, the563

other two prioritize logical reasoning that incor-564

porates both entity-related information and world565

knowledge. In these cases, the terms carry substan-566

tial significance, and excessive filtering may lead567

to bias in retrieval objectives. These observations568

align with previous analysis in the QFQ section.569

4.6 Impact of Num of Documents570

To compare performance as the number of docu-571

ments changes, we vary the number of documents572

from 2 to 5 (performance remains largely stable573

when the number of documents exceeds 5). The574

results of Llama-2-7B on the 2WikimultihopQA575

are presented in Table 3. The best performance576

is achieved when the number of documents is set577

to 3. Across all experiments, the dynamic thresh-578

old scheme, DRAGIN and SCAAR outperform579

FLARE, thereby demonstrating the effectiveness580

of our approach. However, no clear trend is ob-581

served between the number of documents and per-582

formance on this dataset. Additional experimental583

results are provided in the Appendix E.584

Table 3: Performance of Llama-2-7B-chat on 2Wiki-
multihopQA.

method doc_num EM F1 NR Seff

FLARE
2 0.2391 0.3280 2.33 0.78
3 0.2644 0.3509 2.30 1.78
4 0.2383 0.3166 1.55 0.43
5 0.2375 0.3326 1.64 1.38

DRAGIN
2 0.2742 0.3657 2.40 2.33
3 0.2761 0.3751 2.85 2.28
4 0.2341 0.3387 1.77 1.63
5 0.2609 0.3505 1.55 2.61

SCAAR
2 0.2755 0.3627 2.49 2.12
3 0.2778 0.3677 2.36 2.45
4 0.2508 0.3239 1.54 0.91
5 0.2752 0.3626 1.46 3.75

Table 4: Performance on Llama2-7B-chat over four
datasets with DPR.

dataset method EM F1 Seff

2WikiQA
FLARE 0.2475 0.3105 0.03
DRAGIN 0.2575 0.3336 0.98
SCAAR 0.2450 0.3189 0.45

HotpotQA
FLARE 0.2068 0.2695 -2.94
DRAGIN 0.1773 0.2678 -3.15
SCAAR 0.2162 0.3245 0.56

IIRC
FLARE 0.1204 0.1373 -1.36
DRAGIN 0.1313 0.1663 -0.01
SCAAR 0.1370 0.1689 0.13

StrategyQA
FLARE 0.6469 0.6469 0.03
DRAGIN 0.6566 0.6566 0.31
SCAAR 0.6763 0.6763 0.65

4.7 Impact of Retriever 585

There are two types retrieval: lexical matching and 586

dense retrieval. We also employ the DPR model 587

(Karpukhin et al., 2020) as dense retriever and con- 588

duct tests on the Llama2-7B-chat model, compar- 589

ing the performance enhancements and retrieval 590

efficiencies. For more detail about the retriever, 591

please refer to Appendix D. Results as shown in 592

Table 4, indicate that the SCAAR scheme outper- 593

form the FLARE scheme across all four datasets 594

and, except for the 2Wikimultihop dataset, also sur- 595

pass the DRAGIN scheme demonstrating that our 596

scheme can consistently deliver effective results 597

with the DPR model. We observe that the perfor- 598

mance of the three dynamic retrieval schemes was 599

significantly lower than that of the BM25-based 600

retriever and the baseline methods even underper- 601

form the non-retrieval method on the hotpotqa and 602

iirc datasets. A similar phenomenon was noted in 603

DRAGIN’s experiments with SGPT. We hypothe- 604

size that the short length of up-coming sentences 605

resulting in encoding vectors that do not accurately 606

represent the semantics. 607

5 Conclusion 608

In this paper, we propose an adaptive RAG frame- 609

work tailored incorporating a dynamic weight ad- 610

justment mechanism based on semantic contribu- 611

tion and a percentile-filtered query construction 612

method for black-box scenarios. Extensive experi- 613

ments demonstrate the effectiveness of our frame- 614

work. Furthermore, ablation study results show the 615

contributions of individual pipeline components to 616

the enhanced performance. 617
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6 Limitations618

We acknowledge that there remains significant619

room for enhancement on the following direc-620

tions:Enhancing Semantic Weight Representative-621

ness: domain-specific fine-tuning of the encoder622

during application may strengthen the representa-623

tiveness of the weight coefficients; Learnable Quan-624

tile Filtering: our percentile filtering method relies625

on heuristic constants. We argue that training a clas-626

sifier for percentile prediction is a necessary step;627

Optimizing Dense Passage Retrieval: experiment628

results indicate that dpr still has substantial poten-629

tial for improvement. A key challenge in adaptive630

retrieval scenarios is capturing the semantics of631

up-coming sentences with limited word counts.632

7 Ethics Statement633

In our research and experimental endeavors, we634

adhere strictly to ethical guidelines to ensure that635

our development and application of artificial in-636

telligence technology are conducted responsibly.637

Throughout our research process, we have refrained638

from utilizing data that relies on personal informa-639

tion or manual annotations. Moreover, we have640

employed open-source models for our experiments641

without any additional training, thereby ensuring642

that we do not introduce bias or other harmful643

knowledge into them. In addition, we have made644

our code and data publicly available on the GitHub645

community. This allows the community to verify646

the performance of our proposed method and to647

further enhance and optimize it.648
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A More Details about Experiment Setup871

Datasets. We test on four knowledge-intensive872

datasets: 2WikiMultiHopQA (Ho et al., 2020), Hot-873

potQA (Yang et al., 2018), IIRC (Ferguson et al.,874

2020), and StrategyQA (Geva et al., 2021).875

2WikimultihopQA. A multi-hop question answer-876

ing dataset designed to advance complex reasoning877

tasks, especially multi-step reasoning tasks. The878

dataset contains about 20,000 questions that in-879

volve a large number of reasoning steps and infor-880

mation synthesis tasks. Each question has multiple881

candidate answers, and the model needs to select882

the correct answer from them.883

HotpotQA. A large multi-hop question answering884

dataset designed to advance the ability of machines885

to understand complex questions. The dataset con- 886

tains 113,000 questions, which are characterized 887

by the fact that it contains questions that require 888

multi-step reasoning and information across mul- 889

tiple documents to answer, requiring the model to 890

not only extract information from a single article, 891

but also conduct comprehensive analysis across 892

multiple documents. The answer to a question in 893

HotpotQA is usually a short entity (such as a per- 894

son’s name, a place name, etc.) or a concise fact. 895

IIRC. The IIRC dataset is a collection of incom- 896

plete information reading comprehension questions. 897

It comprises 13,441 questions based on 5,698 para- 898

graphs sourced from English Wikipedia. These 899

questions were crafted by crowdworkers who had 900

no access to any linked documents. As a result, the 901

contexts in which the questions and answers ap- 902

pear exhibit minimal lexical overlap. This unique 903

approach not only makes the dataset more reflec- 904

tive of real-world information-seeking scenarios 905

but also significantly increases the complexity of 906

the task. Many questions in the dataset are either 907

unanswerable or require discrete reasoning, pos- 908

ing substantial challenges for models attempting 909

to navigate and retrieve information from multiple 910

sources. 911

StrategyQA. A dataset comprises 2,780 meticu- 912

lously crafted samples, each encompassing a strate- 913

gic policy question, its detailed decomposition 914

steps, and a corresponding evidence paragraph. Uti- 915

lizing a robust crowdsourcing pipeline, the dataset 916

employs terminology guidance to inspire anno- 917

tators, enforces strict control over the annotator 918

group, and implements adversarial filtering to elim- 919

inate reasoning shortcuts. This comprehensive ap- 920

proach ensures the questions are both creative and 921

challenging, demanding implicit reasoning steps 922

that are not explicitly stated within the questions 923

themselves. 924

HotpotQA and 2WikiMultihopQA are multi-hop 925

reasoning datasets where models need to extract 926

information from multiple documents to answer 927

questions through basic analysis. IIRC is a con- 928

versational dataset that presents greater challenges 929

than HotpotQA and 2WikiMultihopQA, as models 930

must not only acquire document information but 931

also understand and execute instruction-based inter- 932

actions. StrategyQA aims to evaluate and enhance 933

models’ ability to solve problems requiring strate- 934

gic thinking and reasoning, where models must 935

combine textual information with common sense 936

and logical inference. 937
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Prompt Settings. The few-shots COT prompt we938

use in experiments are as shown:939

[1] Context 1940
[2] Context 2941
...942
[N] Context N943
Answer the question by reasoning step-by-step and response944
result with "So the answer is " format.945
Question: Q1946
Answer: A1947
...948
Question: Qn949
Answer: An950
Question: <<<the question to be evaluated>>>951
Answer:952

Knowledge Base and Retriever. We use953

Wikipedia (Karpukhin et al., 2020) as the exter-954

nal knowledge base, which contains various topics955

and information to support us to obtain the context956

knowledge relevant to test questions. There are957

21,015,324 passages in the database which is suffi-958

cient for assisting models to answer questions. We959

employ BM25 (Robertson et al., 2009), which as960

the retriever following FLARE and most existing961

works.962

Table 5: Average performance of word-level and token-
level thresholding with different models.

Model Word-Level Token-Level
EM F1 Seff EM F1 Seff

Llama-2-13B 0.3890 0.4599 3.54 0.3886 0.4579 3.65
Llama-2-7B 0.3242 0.3840 1.20 0.3203 0.3787 1.02
Llama-3-8B 0.4874 0.5559 3.47 0.4845 0.5539 3.41
Overall 0.4002 0.4666 2.73 0.3978 0.4635 2.69

B Comparison of single-round RAG and963

fix-length RAG964

In the experiment section, limited by page length,965

we mainly compare our method with other adap-966

tive methods, so we show all comparison results967

between adaptive methods and static methods here,968

including single-round RAG (Lewis et al., 2020)969

and fix-length RAG (Ram et al., 2023).970

In all cases, the static retrieval schemes’ final971

performance falls short of ours, and in most in-972

stances, it also lags behind the dynamic schemes’.973

It is noteworthy that, in some scenarios, the single-974

round scheme boasts the highest retrieval efficiency975

among all schemes. For example, on the HotpotQA976

dataset, the Llama2-13B-chat and Llama3.1-8B-977

chat models exhibit superior efficiency. We posit978

that this finding underscores the strong correlation979

between retrieval efficiency and both the model and980

the question scenario. Therefore, it is imperative981

to integrate an adaptive scheme that leverages the982

model’s internal knowledge with external knowl- 983

edge, such as question difficulty and type, as the 984

basis for triggering retrieval. Additionally, we ob- 985

serve that our retrieval efficiency index declines 986

as the reasoning length increases. Hence, devel- 987

oping a more comprehensive retrieval efficiency 988

evaluation index represents a promising direction 989

for future research. 990

C Comparison of Different Granularity 991

We analyze the impact of different configurations 992

in the SCAAR framework on performance through 993

ablation studies. SCAAR computes the semantic- 994

based adaptive weights at word-level to ensure se- 995

mentic integrity and generation efficiency. Intu- 996

itively, using the word-level probability may hinder 997

the distinctness of token proabbility to a certain ex- 998

tent. Specifically, if the initial threshold is 0.8, and 999

the probabilities of the two tokens that make up the 1000

word are 0.7 and 1.0 respectively. At token-level, it 1001

will trigger retrieval since the probability of the first 1002

token 0.7 is lower than the threshold 0.8. However, 1003

at word-level, it will not trigger retrieval since the 1004

word probability is the geometric mean of 0.8 and 1005

1.0, i.e., 0.83, which is greater than the threshold 1006

0.8. To clarify the impact of different thresholding 1007

granularities, we evaluate the performance of us- 1008

ing token-level and word-level thresholding under 1009

the vanilla RAG framework with a fixed threshold. 1010

The average performance over the aforementioned 1011

four datasets on different models is shown in Ta- 1012

ble 5, where overall indicates the average scores 1013

over all three models. The results shows that word- 1014

level thresholding slightly outperforms token-level 1015

thresholding in EM and F1 scores overl all model 1016

configurations. 1017

D DPR Model Settings 1018

In order to test our method in a dense passage re- 1019

trieval senarior, we choose the encoder released by 1020

Karpukhin et al.(Karpukhin et al., 2020). The ques- 1021

tion encoder and text encoder used in our experi- 1022

ments use the BERT-base (Kenton and Toutanova, 1023

2019) as backbones and are further trained on 1024

Natural Questions (NQ) dataset (Lee et al., 2019; 1025

Kwiatkowski et al., 2019). For a question, we ob- 1026

tain a dense embedding of the special token [CLS] 1027

which is obtained by applying a linear transfor- 1028

mation followed by a tanh activation function to 1029

the hidden state of the [CLS] token from the last 1030

layer. We used Faiss, a vector database, to load pre- 1031
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Table 6: Overall results of SCAAR and baselines on four datasets.

2WikiMultiHopQA HotpotQA IIRC StrategyQA
EM F1 NR Seff EM F1 NR Seff EM F1 NR Seff EM NR Seff

Llama-2-13B
w/o RAG 0.1658 0.2779 - - 0.1623 0.2736 - - 0.1111 0.1454 - - 0.6710 - -
SR-RAG 0.1971 0.3451 1.00 6.72 0.2838 0.4016 1.00 12.80 0.1711 0.2173 1.00 7.19 0.6750 1.00 0.40
FL-RAG 0.2535 0.3674 2.06 4.35 0.2947 0.4151 3.42 4.14 0.1711 0.2314 2.81 3.06 0.6643 5.34 -0.13
FS-RAG 0.3389 0.4701 3.48 5.52 0.2500 0.3724 2.73 3.62 0.2291 0.2813 4.03 3.38 0.6667 4.22 -0.10
FLARE 0.3910 0.4912 2.71 7.88 0.3244 0.4339 3.80 4.22 0.2484 0.3078 3.98 4.08 0.6749 5.57 0.07
DRAGIN 0.3400 0.4637 2.65 7.01 0.3415 0.4490 3.16 5.54 0.2385 0.2806 3.75 3.61 0.7069 4.59 0.78
SCAAR (Ours) 0.3918 0.4973 3.14 6.99 0.3333 0.4369 3.39 4.81 0.2490 0.3091 4.20 3.90 0.7090 5.56 0.68

Llama-2-7B
w/o RAG 0.2367 0.3099 - - 0.2033 0.3158 - - 0.1367 0.1665 - - 0.6455 - -
SR-RAG 0.1945 0.2920 1.00 -1.79 0.1466 0.2427 1.00 -7.31 0.1672 0.2250 1.00 5.85 0.6230 1.00 -2.25
FL-RAG 0.1620 0.2608 1.56 -3.15 0.1554 0.2573 1.18 -4.95 0.1418 0.1865 1.06 1.89 0.6421 1.61 -0.21
FS-RAG 0.2214 0.3106 2.48 0.03 0.1979 0.3014 1.74 -0.83 0.1483 0.1937 1.85 1.47 0.5933 3.49 -1.49
FLARE 0.2644 0.3509 2.31 1.78 0.2510 0.3628 2.34 2.01 0.2000 0.2358 1.82 3.81 0.6651 4.50 0.44
DRAGIN 0.2761 0.3751 2.86 2.28 0.2258 0.3310 1.69 0.90 0.1937 0.2431 1.95 3.92 0.6888 3.44 1.26
SCAAR (Ours) 0.2778 0.3677 2.36 2.45 0.2680 0.3762 1.69 3.57 0.1964 0.2361 1.92 3.63 0.6944 3.78 1.29
Llama-3-8B
w/o RAG 0.3211 0.3907 - - 0.2238 0.3354 - - 0.2089 0.2500 - - 0.7615 - -
SR-RAG 0.3115 0.4193 1.00 2.86 0.3345 0.4640 1.00 12.86 0.2641 0.3377 1.00 8.77 0.7249 1.00 -3.66
FL-RAG 0.3684 0.4679 1.94 3.97 0.3825 0.4903 1.95 7.94 0.2918 0.3337 2.20 3.81 0.7181 2.19 -1.98
FS-RAG 0.4034 0.4950 4.05 2.57 0.3581 0.4661 3.25 4.02 0.2734 0.3223 3.92 1.84 0.7912 4.86 0.61
FLARE 0.5000 0.5812 3.09 6.16 0.4181 0.5347 3.27 6.10 0.2929 0.3496 3.27 3.05 0.7963 4.44 0.78
DRAGIN 0.3605 0.4236 0.77 4.28 0.2630 0.3761 1.07 3.81 0.1886 0.2120 1.58 -2.40 0.8048 1.38 3.14
SCAAR (Ours) 0.5246 0.6026 2.70 7.84 0.4460 0.5570 3.40 6.52 0.3203 0.3694 3.31 3.60 0.7799 4.35 0.42

encoded external knowledge. Then, we utilized1032

full-precision indexing based on L2 (Euclidean dis-1033

tance) for matching. This approach is faster than1034

using cosine similarity for calculations, though it1035

may result in a slight loss of accuracy.1036

E Comparison of Different Num of1037

Documents1038

We conduct experiments on baseline methods and1039

SCAAR methods using different num of retrieved1040

documents. We pick [3, 5, 7] for Llama-3.1-8B and1041

Llama-2-13B, and pick [2,3,4,5,7] for Llama-2-7B.1042

Results are shown in Table 7, 8, 9 respectively.1043

We can draw several conclusions: (1)In all exper-1044

iments, the setting of doc_num=3 yields the best1045

results in most cases. Having too many or too few1046

retrieved documents may interfere with the model’s1047

reasoning ability and cause errors. (2)There is no1048

consistently obvious relationship between the num-1049

ber of documents and performance across all mod-1050

els. We believe this is due to the fixed retrieval1051

number scheme lacking post-retrieval assessment1052

of the quality of retrieved documents. This inspires1053

us to further verify the quality of retrieved doc-1054

uments or the answers generated before and af-1055

ter model retrieval. (3)In most experimental set-1056

tings, our SCAAR scheme can surpass DRAGIN1057

to achieve the best performance, further proving1058

that our scheme is not only suitable for black-box1059

scenarios but also has performance advantages in 1060

white-box scenarios. 1061
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Table 7: Ablation results of doc_num for comparison of different methods on Llama-2-13B, 4 datasets. We bold
the best result of each method under the dataset. When the results of different doc_num are the same, we bold the
result with fewer doc_num. We denote the best result on each dataset with an asterisk.

method doc_num 2WikiMultiHopQA HotpotQA IIRC StrategyQA
EM F1 NR Seff EM F1 NR Seff EM F1 NR Seff F1 NR Seff

w/o RAG 0 0.1658 0.2779 0 0.00 0.1623 0.2736 0 0.00 0.1111 0.1454 0 0.00 0.6710 0 0.00

FLARE
3 0.3910 0.4912 2.71 7.88* 0.3244 0.4339 3.80 4.22 0.2484 0.3078 3.98 4.08 0.6749 5.57 0.07
5 0.3664 0.4835 2.90 7.10 0.2984 0.4172 3.85 3.73 0.2744* 0.3356 4.25 4.47 0.6846 4.92 0.28
7 0.3664 0.4835 2.90 7.10 0.2984 0.4172 3.85 3.73 0.2744 0.3356 4.25 4.47 0.6846 4.92 0.28

DRAGIN
3 0.3400 0.4637 2.65 7.01 0.3415 0.4490 3.16 5.54 0.2385 0.2806 3.75 3.74 0.7069 4.59 0.78*
5 0.3200 0.4384 2.24 7.17 0.3088 0.4187 2.37 6.12* 0.2586 0.3131 3.73 4.50* 0.6937 5.12 0.44
7 0.3200 0.4384 2.24 7.17 0.3088 0.4187 2.37 6.12 0.2586 0.3131 3.73 4.50 0.6937 5.12 0.44

SCAAR
3 0.3918* 0.4973 3.14 6.99 0.3333 0.4369 3.39 4.81 0.2490 0.3091 4.20 3.90 0.7090* 5.56 0.68
5 0.3870 0.5037* 3.20 7.07 0.3674* 0.4639* 3.33 5.71 0.2612 0.3276 4.19 4.34 0.7024 5.04 0.62
7 0.3870 0.5037 3.20 7.07 0.3674 0.4639 3.33 5.71 0.2612 0.3276 4.19 4.34 0.7024 5.04 0.62

Table 8: Ablation results of doc_num for comparison of different methods on Llama-2-7B, 4 datasets. We bold
the best result of each method under the dataset. When the results of different doc_num are the same, we bold the
result with fewer doc_num. We denote the best result on each dataset with an asterisk.

method doc_num 2WikiMultiHopQA HotpotQA IIRC StrategyQA
EM F1 NR Seff EM F1 NR Seff EM F1 NR Seff F1 NR Seff

w/o RAG 0 0.2367 0.3099 0 0.00 0.2033 0.3158 0 0.00 0.1367 0.1665 0 0.00 0.6455 0 0.00

FLARE

2 0.2391 0.3280 2.33 0.78 0.2730 0.3736 1.94 2.98 0.1690 0.1979 2.29 1.37 0.6421 5.59 0.00
3 0.2644 0.3509 2.31 1.78 0.2510 0.3628 2.34 2.01 0.2000* 0.2358 1.82 3.05 0.6651 4.50 0.44
4 0.2383 0.3166 1.55 0.43 0.2886* 0.3780 1.53 4.07 0.1831 0.2193 1.80 2.94 0.6678 3.59 0.62
5 0.2375 0.3326 1.64 1.38 0.2635 0.3767 1.47 4.15 0.1684 0.2056 1.91 2.05 0.6531 4.83 0.16
7 0.2375 0.3326 1.56 1.46 0.2685 0.3709 1.34 4.12 0.1684 0.2056 1.91 2.05 0.6531 4.83 0.16

DRAGIN

2 0.2742 0.3657 2.40 2.33 0.2575 0.3603 1.75 2.54 0.1800 0.2185 2.46 2.11 0.6296 3.88 -0.04
3 0.2761 0.3751* 2.86 2.28 0.2258 0.3310 1.69 0.90 0.1937 0.2431 1.95 3.92* 0.6888 3.44 0.13
4 0.2341 0.3387 1.77 1.63 0.2609 0.3489 1.38 2.40 0.1911 0.2379 2.13 3.35 0.6576 4.01 0.03
5 0.2609 0.3505 1.56 2.61 0.2676 0.3545 1.37 2.82 0.1886 0.2375 2.38 2.99 0.6712 3.32 0.08
7 0.2609 0.3505 1.56 2.61 0.2676 0.3545 1.37 2.82 0.1886 0.2375 2.38 2.99 0.6712 3.32 0.08

SCAAR

2 0.2755 0.3627 2.48 2.12 0.2709 0.3652 1.76 2.81 0.1706 0.2066 2.19 1.83 0.6679 5.29 0.04
3 0.2778* 0.3677 2.36 2.45 0.2680 0.3762 1.69 3.57 0.1964 0.2361* 1.92 3.63 0.6944* 3.78 1.3*
4 0.2508 0.3239 1.54 0.91 0.2727 0.3814 1.40 4.68 0.1757 0.2246 1.91 3.05 0.6713 4.55 0.06
5 0.2752 0.3626 1.41 3.75* 0.2635 0.3525 1.38 2.66 0.1741 0.2126 1.89 2.43 0.6761 4.49 0.07
7 0.2752 0.3626 1.41 3.75 0.2852 0.3828* 1.23 5.43* 0.1741 0.2126 1.89 2.43 0.6761 4.49 0.07

Table 9: Ablation results of doc_num for comparison of different methods on Llama-3.1-8B, 4 datasets. We bold
the best result of each method under the dataset. When the results of different doc_num are the same, we bold the
result with fewer doc_num. We denote the best result on each dataset with an asterisk.

method doc_num 2WikiMultiHopQA HotpotQA IIRC StrategyQA
EM F1 NR Seff EM F1 NR Seff EM F1 NR Seff F1 NR Seff

w/o rag 0 0.3211 0.3907 0 0.00 0.2238 0.3354 0 0.00 0.2089 0.2500 0 0.00 0.7615 0 0.00

FLARE
3 0.5000 0.5812 3.09 6.16 0.4181 0.5347 3.27 6.10 0.2929 0.3496 3.27 3.05 0.7963 4.44 0.08
5 0.4680 0.5693 3.34 5.35 0.4225 0.5344 3.60 5.53 0.3536 0.3940 3.93 3.67 0.7951 5.06 0.07
7 0.4680 0.5693 3.34 5.35 0.4225 0.5344 1.78 11.19 0.3536 0.3940 3.93 3.67 0.7951 5.06 0.07

DRAGIN
3 0.3605 0.4236 0.77 4.28 0.2630 0.3761 1.07 3.81 0.1886 0.2120 1.58 -2.40 0.8048* 1.38 0.31
5 0.3311 0.4062 0.87 1.78 0.2571 0.3667 1.78 1.76 0.2359 0.2593 2.05 0.45 0.7759 2.08 0.69*
7 0.3311 0.4062 0.87 1.78 0.2571 0.3667 3.60 0.87 0.2359 0.2593 2.05 0.45 0.7759 2.08 0.69

SCAAR
3 0.5246* 0.6026* 2.70 7.84* 0.4460* 0.5570* 3.40 6.52* 0.3203 0.3694 3.31 3.60 0.7799 4.35 0.04
5 0.4880 0.5729 3.27 5.58 0.4240 0.5412 3.35 6.14 0.3759* 0.4279* 3.57 4.99* 0.7705 4.73 0.02
7 0.4880 0.5729 3.27 5.58 0.4456 0.5632 3.53 6.45 0.3759 0.4279 3.57 4.99 0.7705 4.73 0.02
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