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Abstract
Current video generation models excel at cre-001
ating short, realistic clips, but struggle with002
longer, multi-scene videos. We introduce003
DreamFactory, an LLM-based framework that004
tackles this challenge. DreamFactory lever-005
ages multi-agent collaboration principles and006
a Key Frames Iteration Design Method to en-007
sure consistency and style across long videos.008
It utilizes Chain of Thought (COT) to address009
uncertainties inherent in large language mod-010
els. DreamFactory generates long, stylisti-011
cally coherent, and complex videos. Evalu-012
ating these long-form videos presents a chal-013
lenge. We propose novel metrics such as Cross-014
Scene Face Distance Score and Cross-Scene015
Style Consistency Score. To further research016
in this area, we contribute the Multi-Scene017
Videos Dataset containing over 150 human-018
rated videos. DreamFactory paves the way for019
utilizing multi-agent systems in video genera-020
tion. We will make our framework and datasets021
public after paper acceptance.022

1 Introduction023

Video, integrating both visual and auditory024

modalities—the most direct sensory pathways025

through which humans perceive and comprehend026

the world—effectively conveys information with027

compelling persuasiveness and influence, progres-028

sively becoming a powerful tool and medium for029

communication [(Tang and Isaacs, 1992), (Owen030

and Wildman, 1992), (Armes, 2006), (Harris,031

2016), (Merkt et al., 2011)]. Traditional video pro-032

duction is an arduous and time-intensive process,033

particularly for capturing elusive real-life scenes.034

Owing to the rapid advancements in deep learning,035

AI-driven video generation techniques now facil-036

itate the acquisition of high-quality images and037

video segments with ease [ (pika), (Blattmann et al.,038

2023a), (openai, a), (Blattmann et al., 2023b), (run-039

way), (Gu et al., 2023)]. However, crafting practi-040

cal, multi-scene videos that meet real-world needs041

remains a formidable challenge. This includes en- 042

suring consistency in character portrayal, stylistic 043

coherence, and background across different scenes, 044

proficiently maneuvering professional linguistic 045

tools, and managing complex production steps be- 046

yond merely assembling brief video clips generated 047

by current technologies. Therefore, there is an ur- 048

gent need within the field of video generation for a 049

model capable of directly producing long-duration, 050

high-quality videos with high consistency, thus 051

enabling AI-generated video to gain widespread 052

acceptance and become a premier producer of 053

content for human culture and entertainment. 054

At the current stage, substantial advancements 055

in the video domain utilize diffusion-based genera- 056

tive models, achieving excellent visual outcomes 057

[ (Blattmann et al., 2023a), (runway), (openai, a)]. 058

Nonetheless, due to the intrinsic characteristics of 059

diffusion models, the videos produced are typically 060

short segments, usually limited to four seconds. 061

For generating longer videos, models like LSTM 062

and GANs are employed (Gupta et al., 2022), how- 063

ever, these models struggle to meet the demands 064

for high image quality and are restricted to synthe- 065

sizing videos of lower resolution. These state-of- 066

the-art approaches attempt to use a single model 067

to address all sub-challenges of video generation 068

end-to-end, encompassing attractive scriptwriting, 069

character definition, and artistic shot design. How- 070

ever, these tasks are typically collaborative and not 071

the sole responsibility of a single model. 072

In addressing complex tasks and challenges in 073

problem-solving and coding, researchers have be- 074

gun utilizing LLM multi-agent collaborative tech- 075

niques, modeled on human cooperative behaviors, 076

and have observed numerous potent agents. With 077

the integration of large models that include visual 078

capabilities, multi-agent collaborative technologies 079

have now developed an AI workflow capable of 080

tackling challenges in the image and video domain. 081

In this paper, we introduce multi-agent collabora- 082
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Figure 1: Keyframe data produced by DreamFactory.
It can be seen that the character’s facial features, visual
style, and even clothing are consistent.

tive techniques to the domain of video generation,083

developing a multi-scene long video generation084

framework named DreamFactory, which simulates085

an AI virtual film production team. Agents based086

on LLMs assume roles akin to directors, art di-087

rectors, screenwriters, and artists, collaboratively088

engaging in scriptwriting, storyboard creation, char-089

acter design, keyframe development, and video syn-090

thesis. We define the concept of keyframe in the091

long video generation field to maintain consistency092

across video segments. In DreamFactory, we draw093

on the successful CoT concept from the multi-agent094

reasoning process to devise a keyframe iteration095

method specific to video. To address the drift phe-096

nomenon in large language models, a Monitor role097

is introduced to ensure consistency between dif-098

ferent frames. DreamFactory also establishes an099

integrated image vector database to maintain the100

stability of the creative process. Based on the algo-101

rithms discussed, DreamFactory can automate the102

production of multi-scene videos of unrestricted103

length with consistent image continuity.104

To evaluate our framework, we employed state-105

of-the-art video generation models as tools, mea-106

suring video generation performance on the UTF-107

101 and HMDB51 datasets. Furthermore, given the108

novelty of our task, with few prior ventures into this109

area, we compared long videos generated by our110

framework against those produced using the orig-111

inal tools. We found that our model significantly112

outperformed the existing native models regard-113

ing evaluation mechanisms. Finally, we collected114

AI-generated short videos currently available on115

the internet and assessed them using mechanisms116

such as the Inception Score, alongside evaluations117

conducted by human judges. Our findings indicate118

that our videos surpass the average quality of those119

produced manually. Some examples generated by120

the framework are shown in Figure 1. 121

2 Related work 122

LLM-based Agents. In recent years, the capabili- 123

ties of large language models have been continually 124

enhanced, exemplified by advancements such as 125

GPT-4 (openai, b), Claude-3 (Claude), and LLama- 126

2 (meta), among others. Subsequently, exploration 127

into enhancing the abilities of these large language 128

models has emerged, introducing methodologies 129

such as CoT (Wei et al., 2022), ToT (Yao et al., 130

2024), ReACT (Yao et al., 2022), Reflexion (Shinn 131

et al., 2024), and various other approaches to facili- 132

tate iterative output and correction cycles. Within 133

this context, the notion of Multi-agents has sur- 134

faced, with early research efforts including no- 135

table works such as Camel (Li et al., 2024), Voy- 136

ager (Wang et al., 2023a), MetaGPT (Hong et al., 137

2023), ChatDev (Qian et al., 2023), and Auto- 138

GPT (Yang et al., 2023). Recently, powerful Multi- 139

agents frameworks have proliferated across diverse 140

domains, with prominent instances in fields such 141

as coding, including notable contributions such as 142

CodeAgent (Tang et al., 2024), CodeAct (Wang 143

et al., 2024), and Codepori (Rasheed et al., 2024). 144

Utilitarian tools such as Toolformer (Schick et al., 145

2024), HuggingGPT (Shen et al., 2024), Tool- 146

llm (Qin et al., 2023), and WebGPT (Nakano 147

et al., 2021) have also been employed. Other 148

noteworthy endeavors encompass projects like We- 149

bArena (Zhou et al., 2023), RET-LLM (Modarressi 150

et al., 2023), and OpenAGI (Ge et al., 2024), each 151

contributing to the advancement and proliferation 152

of Multi-agents paradigms. 153

Video synthesis. In the field of video genera- 154

tion, traditional methods primarily utilize Genera- 155

tive Adversarial Networks (GANs) for video cre- 156

ation, as demonstrated in the works of Tim Brooks 157

et al. (Brooks et al., 2022) and the foundational 158

contributions of Ian Goodfellow et al. (Goodfel- 159

low et al., 2014) However, in recent years, a sig- 160

nificant shift has occurred towards leveraging the 161

potent capabilities of diffusion processes, with pio- 162

neering research conducted by Jascha et al. (Esser 163

et al., 2023), and Song et al. (Song et al., 2020). 164

The forefront of this evolution is marked by the 165

development of Latent Video Diffusion Models. 166

This approach is exemplified in the seminal ef- 167

forts of Andreas Blattmann et al. (Blattmann et al., 168

2023b), Gu et al. (Gu et al., 2023),Guo et al. (Guo 169

et al., 2023), He et al. (He et al., 2022) and Wang 170
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et al. (Wang et al., 2023b). Currently, the most171

formidable advancements in this area are four main172

models: Pika (pika), Stable Video (Blattmann et al.,173

2023a), Runway (runway), and Sora (openai, a).174

3 DreamFactory175

Our DreamFactory framework utilizes multiple176

large language models (LLMs) to form a simulated177

animation company, taking on roles such as CEO,178

Director, and Creator. Given a story, they collabo-179

rate and create a video through social interaction180

and cooperation. This framework allows LLMs to181

simulate the real world by using small video gen-182

eration models as tools to accomplish a massive183

task. This section details the methodology behind184

our innovative DreamFactory framework. We first185

describe the defined role cards in Section 3.1 and186

discuss the pipeline in Section 3.2. Finally, we will187

discuss the keyframe iteration design method.188

3.1 Role Definition189

In the architecture of our simulation animation190

company DreamFactory, the following roles are191

included: CEO, movie director, film producer,192

Screenwriter, Filmmaker, and Reviewer.Within the193

DreamFactory framework, they function similarly194

to their real-world counterparts, taking on roles195

such as determining the movie’s style, writing196

scripts, and drawing.197

The definition prompts for their roles primarily198

consist of three main parts: Job, Task and Re-199

quirements. For instance, the definition prompt200

for a movie’s creator would include the following201

sentences: (a) You are the Movie Art Director.202

Now, we are both working at Dream Factory,... (b)203

Your job is to generate a picture according to the204

scenery given by the director...and (c) you must205

obey the real-world rules, like color unchanged...206

For tasks such as plot discussions, we also limit207

their discussions to not exceed a specific number208

of rounds (depending on the user’s settings and the209

company’s size definition). We have included the210

following prompt to ensure this: "You give me your211

thought and story, and we should brainstorm and212

critique each other’s idea. After discussing more213

than 5 ideas, any of us must actively terminate the214

discussion by picking up the best style and replying215

with a single word <INFO>, followed by our latest216

style decision, e.g., cartoon style."217

In Figure 3, panels (a) and (b) feature schematic218

illustrations of a character being defined and initi-219

ating role play. The complete architecture of the 220

entire company is fully introduced in Figure 8. For 221

each, we defined a role card, which contains: 1) 222

The role name is put on the left-upper corner of 223

each card; 2) The phases of the role involved are 224

put on the right-upper corner of each card; 3) On 225

each role card, we show the role-involved conversa- 226

tion and collaborative roles; 4) We show the inter- 227

mediate output of the role on the right-hand side of 228

the card; and 5) Finally, we put the corresponding 229

files or content out of conversations on the bottom 230

of the card. 231

3.2 DreamFactory Framework pipeline 232

In this section, we introduce the specific pipeline 233

of DreamFactory. Figure 2 illustrates the main 234

phases and indicates which agents engage in con- 235

versations. Before delving into our entire pipeline, 236

it’s essential to first outline its fundamental com- 237

ponents: phases and conversations. As depicted in 238

Figure 3 (c, a phase represents a complete stage 239

that takes some textual or pictorial content as in- 240

put. Agents, composed of GPT, engage in roleplay, 241

discussion, and collaboration for processing, ulti- 242

mately yielding some output. A conversation is 243

a basic unit of a phase, with typically more than 244

one round of conversation encompassed within a 245

phase. After a fixed number of conversations, a 246

phase is approaching its conclusion, at which point 247

DreamFactory will save certain interim conclu- 248

sions generated within this phase that we wish to 249

retain. For instance, in the Phase style decision, 250

the final conclusion will be preserved. Further- 251

more, during subsequent phases, DreamFactory 252

will provide the necessary precedents, such as in- 253

voking previous styles and scripts when designing 254

keyframes later on. 255

Recently, large language models were found to 256

have their capabilities limited by finite reasoning 257

abilities, akin to how overly complex situations 258

in real life can lead to carelessness and confusion. 259

Therefore, the main idea of this framework, in the 260

video domain, is to decompose the creation of long 261

videos into specific stages, allowing specific large 262

models to play designated roles and leverage their 263

powerful capabilities in analyzing specific prob- 264

lems. Like a real-life film production company, 265

DreamFactory adopts a classic workflow, starting 266

with scriptwriting followed by drawing. Overall, 267

the framework encompasses six primary stages: 268

Task Definition, Style Decision, Story Prompt- 269

ing, Script Design, and Key-frame Design . The 270
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Figure 2: An overview of the DreamFactory framework. The framework transposes the entire filmmaking process
into AI, forming an AI-driven video production team.

Figure 3: The Figure demonstrates how GPT begins
role-playing as a director and commences communica-
tion with other GPTs as a director would.

specific method for the final stage, keyframe iter-271

ative design, will be introduced in the following272

section; it is used to maintain the consistency and273

continuity of images generated at various stages. In274

the first four phases, our roles are conversational.275

In each phase, every agent shares a "phase276

prompt" that includes the following key points:277

our roles, our tasks, the conclusions we aim to278

draw, the form of our discussion, and some other279

requirements. Following this, each agent is further280

informed by its unique prompt about its role defini-281

tion, as discussed in section 3.1. We can refer to the282

notation in Guohao Li’s article[1] to define the col-283

laboration process of agents within DreamFactory. 284

We refer to the assistant system prompt/message by 285

Pa and that of the user by Pu. The system messages 286

are passed to the agents before the conversations 287

start. Let F1 and F2 denote two large-scale au- 288

toregressive language models. When the system 289

message is passed to those models respectively, we 290

can get A← FPA
1 , U ← FPU

2 which are referred 291

to as the assistant and user agents respectively. In 292

continuation, we assume that the text provided by 293

the user (instructor) at each instance is denoted as 294

It, and the response given by the assistant is de- 295

noted as At. The Output at time step t alternating 296

conversations between the two can be represented 297

as: Ot = ((I1, A1) , (I2, A2) , . . . , (It, At)). 298

Figure 4: An overview of the keyframe iterative design.
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Following the five critical phases mentioned299

above, five significant outputs will be achieved.300

In the prompt, each phase’s output Ot is required301

to follow <INFO> for summarization, which also302

allows us to systematically obtain and preserve,303

forming the Local memory information of the304

DreamFactory framework. This is also one of305

the primary purposes of proposing this framework,306

maintaining the consistency of critical information.307

Finally, after generating the tasks, styles, stories,308

scripts, and keyframe images, a long video with309

consistent style is obtained.310

3.3 Keyframe Iteration Design311

During the generation of long videos, the most312

challenging problem to address is that a video com-313

prises a long sequence of image collections. There-314

fore, when generating, the model needs to maintain315

a long-term, consistent memory to ensure that each316

frame produced by the model coherently composes317

a consistent video. This type of memory includes318

two kinds: short-term memory knowledge and319

long-term memory system.320

short-term memory knowledge is embedded321

within videos of a fixed scene. Between adjacent322

frames, the animation in each frame should be con-323

nected, the characters should be unified, and there324

should be no significant changes in color, style, etc.325

As of now, the latest video models perform very326

well in terms of short-term memory. Nonetheless,327

we have still added a Monitor to supervise whether328

our video model is performing sufficiently well.329

As illustrated in Figure 4, there is a review process330

after the generation of each frame. Therefore, to331

maintain short-term consistency, the supervisory332

mechanism we introduced has addressed this issue.333

long-term memory system, however, pose a334

challenge that troubles most current models and335

represents the most pressing issue in video genera-336

tion today. Particularly, within a GPT-based fully337

automated multi-agent framework, the inherent ran-338

domness and drift phenomena of large language339

models make this problem difficult to tackle. Long-340

term memory implies that across scene transitions,341

the model should be able to maintain the consis-342

tency of the drawing style, character continuity,343

and narrative flow. To uphold long-term memory,344

we have introduced the Keyframe Iteration Design345

method, which transforms long-term memory into346

short-term memory by guiding the generation of347

consecutive, consistent images, iterating and gen-348

erating forward with each step. Figure 4 demon-349

strates the process of each iteration. 350

Keyframe Iteration Design Method leverages 351

the inferential capabilities of large language mod- 352

els to transform long-term memory into iterations 353

of short-term memory to ensure consistency. The 354

first frame of the image is the beginning of the 355

entire video and establishes essential information 356

such as the style, painting technique, characters, 357

and background for the entire long video. There- 358

fore, we refer to the first frame as the Base. At the 359

beginning, we will generate a painter P , a director 360

D and a monitor M , represented by P ← FPP
1 , 361

D ← FPD
2 , M ← FPM

3 ,these models played by 362

visual large language models, will engage in a cycli- 363

cal process of generation and discussion until they 364

produce a crucial frame, which is the first keyframe, 365

referred to as the Base Frame. At this point, the 366

Monitor D, composed of a visual large language 367

model as well, will conduct a thorough analysis to 368

extract information, detailed description of features 369

such as style, background, and character traits that 370

should be preserved for an extended period. This 371

results in the Base Description, note as BD. S1 372

represents the script for the first frame. We have 373

Ot = Gen
(
pt, dt, S1

)
, where BD ←M(Ot). 374

In subsequent generations, when iterating the 375

keyframe for moment t, we will use the previously 376

input St as the description of the scene. To main- 377

tain continuity in the context of adjacent scenes, 378

we will employ the nurtured method to generate 379

the description for the moment t − 1, which we 380

also refer to as the contextual environment de- 381

noted as Ct − 1. At the same time, to maintain 382

long-distance memory, BD will also serve as an 383

input. By referencing the basic features of the 384

previous frame and the Base features, it can en- 385

sure that the necessary information is essentially 386

grasped in the next iteration, enabling the drawing 387

of continuous keyframes with the same style, con- 388

sistent characters, and uniform background. We 389

have Ot = Gen
(
pt, dt, St, Ct−1

)
. 390

Upon the previous generation of keyframes, 391

we can obtain the contextual environment and 392

proceed with the next round of generation. We 393

have Ct = M(Ot), pt+1 = P (St, Ct) , dt+1 = 394

D(St, Ct, pt+1). Ultimately, we achieve the gener- 395

ation of the keyframes for the moment t+ 1. 396

In practical application, controlling the details of 397

characters proves to be the most challenging aspect. 398

Therefore, under our carefully modified prompts, 399

with increased emphasis on parts that performed 400
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poorly in multiple experiments, the Keyframe Iter-401

ation Method can now generate a very consistent402

and practically valuable series of images.403

4 Experiments404

4.1 Traditional Video Quality Evaluati1on405

Evaluati1on Metrics - To validate the continuity406

of the keyframes and the quality of the videos pro-407

duced by the framework, we embedded various tool408

models (such as Runway, Diffusion, GPT) within409

the architecture to assess the quality of videos gen-410

erated by different tools. In our experiments, we411

principally employed the following evaluation met-412

rics: (1) Fréchet Inception Distance (FID) score:413

measures the similarity between generated images414

and real images. (2) Inception Score (IS): gauges415

the quality and diversity of generated images. (3)416

CLIP Score: evaluates the textual description accu-417

racy of generated images. (4) Fréchet Video Dis-418

tance (FVD) score: extension of the FID for videos,419

comparing the features distribution of real videos420

versus synthesized ones based on Fréchet distance421

and (5) Kernel Video Distance (KVD): utilizes ker-422

nel function to compare the features distribution of423

real videos versus synthesized ones.424

Our dataset, during the Regular phase, com-425

prised conventional prompts consisting of 70426

keywords and brief sentences randomly selected427

by experimental personnel from the COCO dataset.428

This was utilized to evaluate the generated image429

quality of the fundamental tool models and the430

degree of alignment between the images and the431

text. For the Script phase, scripts pertaining to432

70 randomly extracted tasks from our provided433

dataset were employed during the script-filling434

stage. This guided the model generation based on435

the relevant plot to assess the function of the "An-436

imation Department" within the DreamFactory437

framework. The DreamFactory label denotes the438

keyframe images produced by the framework that439

corresponds to the Script.440

Output Quality Statistics - The images gener-441

ated using models such as DALL·E and Diffusion442

are of high quality and have reached the state-of-443

the-art level in various indices. To quantitatively an-444

alyze the quality of the generated images, we input445

the images corresponding to the original prompts446

into GPT to get the GPT-Script and then used orig-447

inal prompts or the GPT-Script as prompts to gen-448

erate 1400 images, from which we calculated FID,449

IS, and CLIP Score. As for FVD and KVD, we450

selected 100 samples from our multi-scene video 451

dataset and manually extracted 10 keyframes for 452

each one, Which can be used to generate multi- 453

scale videos. 454

Data in Table 1 indicates that the quality of im- 455

ages generated using scripts is on average more 456

refined than those produced using everyday prompt 457

words. This may be attributable to the extent to 458

which GPT acts as a prompt, and contemporary 459

models are generally adept at processing longer 460

prompts. However, within the DreamFactory 461

framework, the application of keyframe iterative 462

design, in conjunction with storyboard creation, 463

detailed descriptions of characters, settings, light- 464

ing, and style determination, has led to a marked 465

improvement in the quality of image generation. 466

A similar enhancement is also evident in videos 467

which is shown in Table 2.

Models Composition FID IS CLIP Score
Dalle-e3 (Regular) 9.30 133.46 26.69
Diffusion (Regular) 9.15 158.23 26.58
Midjourney (Regular) 11.23 163.20 25.91
GPT3.5-Script+Dalle-e3 9.78 153.43 29.58
GPT3.5-Script+Diffusion 8.63 168.90 30.57
GPT3.5-Script+Midjourney 10.81 174.45 29.32
GPT4-Script+Dalle-e3 8.53 159.12 29.84
GPT4-Script+Diffusion 8.32 169.97 30.73
GPT4-Script+Midjourney 10.26 178.14 29.75
DreamFactory(GPT4)+Dalle-e3 6.57 160.94 30.76
DreamFactory(GPT4)+Diffusion 7.03 169.71 30.92
DreamFactory(GPT4)+Midjourney 7.15 178 30.39

Table 1: The statistical analysis of Text2Image task.
All models can generate higher-quality images after
prompts augmentation, but the quality of the images
generated by our framework stands out.

468

Models Composition FVD KVD
Runway (Regular) 1879 125
Stable Video (Regular) 3560 182
DreamFactory+Runway 732 62
DreamFactory+Stable Video 1376 113

Table 2: The statistical analysis of Image2Video task.
The improvement of our framework for generating
multi-scene long videos is remarkable.

4.2 Multi-scene Videos Evaluation Scores 469

Cross-Scene Face Distance Score - In the gen- 470

eration of sequential videos, addressing character 471

consistency is paramount. Discrepancies in the ap- 472

pearance of characters can lead not only to poor 473

visual perception but also to the audience’s inabil- 474

ity to understand the plot and content. Maintaining 475
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character consistency ensures the coherence of the476

storyline revolving around the characters and en-477

hances the visual appeal of the video. Especially, in478

the domain of long-duration videos, a video is typi-479

cally composed of multiple scenes. This represents480

an unprecedented area of research, where there481

is a pressing need for robust evaluation metrics482

to assess the consistency of characters appearing483

across complex, multi-scene videos. Against this484

backdrop, we experimentally introduce the concept485

of the Cross-Scene Face Distance Score(CSFD486

Score), aimed at validating the issue of character487

facial feature consistency across different scenes.488

In the computational process, each keyframe cor-489

responds to a face, and using the dlib library, the490

position of the face can be extracted. The face-491

recognition library can be used to calculate the sim-492

ilarity score. For the facial segment of each frame,493

we can compute its similarity with all subsequent494

frames and then take the average. By this method,495

we can accurately determine whether the faces in496

the video are consistent. The relevant schematic497

diagram and the pseudocode for the calculation are498

provided in Algorithm 1.499

Cross-Scene Style Consistency Score - In the500

production of long videos, maintaining stylis-501

tic consistency is equally important. A consis-502

tent style makes the video appear as a cohesive503

whole. Based on this concept, we have introduced504

the Cross-Scene Style Consistency Score(CSSC505

Score). However, to my knowledge, there currently506

isn’t a mature method to rapidly determine the style507

of a video, so at this stage, we will rely on the assis-508

tance of large language-visual models. Essentially,509

we divide the video into several categories, which510

include: anime, illustration, origami, oil paint-511

ing, realism, cyberpunk, and ink wash.512

The calculation method for the Cross-Scene513

Style Consistency Score is as follows: For each514

key frame, a divider played by a GPT-4V is used to515

determine the classification. Once all scenes have516

been clearly divided into categories, the proportion517

of the most numerous category to the total number518

of key frames is calculated. Figure 6 presents a519

partial output where the input is "an elderly person520

making a traditional Chinese lantern in real life".521

Scene 4 depicts an animated lantern created using522

Dalle, with GPT-4V serving as the discriminator. It523

is observable that among the four scenes, the first524

three are categorized under a realistic style, while525

the fourth scene is classified as anime style. Conse-526

quently, the maximum number of distinct styles is527

Figure 5: Schematic diagram and pseudocode for the
calculation of Cross-Scene Face Distance Score.

Algorithm 1 Calculate CSFD Score
1: total← 0
2: count← n*(n-1) / 2
3: for i← 1 to n do
4: for j ← i+ 1 to n do
5: similarity ← CFS(Fi, Fj)
6: total← total + similarity
7: end for
8: end for
9: averageScore← total/count

10: return averageScore

Models CSFD Score CSSC Score av-Clip Score
GPT4-Script+Dalle-e3 0.77 0.85 0.29
GPT4-Script+Diffusion 0.75 0.83 0.28
GPT4-Script+Midjourney 0.68 0.66 0.26
DreamFactory(GPT4)+Dalle-e3 0.89 0.97 0.31

Table 3: The statistical analysis of cross-scene score on
different models.

three, resulting in a cross-scene style consistency 528

score of 75%. The other relevant schematic dia- 529

gram and the pseudocode for the calculation are 530

provided in Algorithm 2. 531

Average Key-Frames CLIP Score - In the gen- 532

eration of long videos with multiple scenes, it is 533

crucial to assess the alignment of each scene’s 534

keyframes with the corresponding text. They have 535

incorporated a significant amount of additional in- 536

formation to ensure consistency, which could likely 537

lead to deviations from the text during generation. 538

This may result in the overall video not adhering to 539

the script. Therefore, in this section, we propose 540

the Average Key-Frames CLIP Score to ensure the 541

consistency of key frame scenes with the script. 542

7



Figure 6: Schematic diagram and pseudocode for the
calculation of Cross-Scene Style Consistency Score.

Algorithm 2 Calculate CSSC Score
1: n← number of key frames
2: categories ←

array initialized to 0 of size number of categories
3: for i← 1 to n do
4: category ← JUDGE(Fi)
5: categories[category] ←

categories[category] + 1
6: end for
7: maxCount← max(categories)
8: crossSceneStyleScore← maxCount

n × 100
9: return crossSceneStyleScore

The calculation method is straightforward: com-543

pute the CLIP score for each keyframe against the544

scene generated during scene prompting and take545

the average.546

Results - In table 3, our data selection comprised547

seventy character-centric entries from the Multi-548

Scene Videos Dataset, produced by DreamFactory549

+ GPT-4 + DALL-E 3. The baseline utilizes the550

DALL-E 3 model with script inputs from this seg-551

ment. Furthermore, evaluations were conducted on552

the aforementioned (1) cross-scene facial distance,553

(2) cross-scene style scores, and (3) average CLIP554

Score. These metrics were used to assess the con-555

sistency of facial features within our framework,556

the consistency of scene attributes, and the align-557

ment between prompts generated by our framework558

and the narrative, as well as imagery.559

In our Cross-Scene facial distance scoring ex-560

periment, we employed the face locations method 561

from the face-recognition library to locate 68 fa- 562

cial landmarks, thereby focusing the portrait pho- 563

tographs on the facial area. During the image en- 564

coding phase, we utilized the ViT model from the 565

openai-clip repository to input the facial region and 566

compute the vector representations. Subsequently, 567

a vector dot product operation was performed to 568

determine the final facial distance score. Owing 569

to the inherent similarity among the facial images, 570

all the scores were predominantly above 0.5. The 571

specific reference facial match-score pairs are ex- 572

hibited in Figure 7. In the analysis of both the 573

CSSC score and the average CLIP score, the same 574

set of seventy random samples was utilized as data. 575

The CSSC Score employed GPT-4 Version as the 576

stylistic analyst.

Figure 7: The distance between different faces when
using openai-clip as the encoder.

577

5 Conclusion 578

We introduce Dream Factory: a multi-agent-based 579

framework for generating long videos with multi- 580

ple scenes. Dream Factory incorporates the idea of 581

multi-agents into the field of video generation, pro- 582

ducing consistent, continuous, and engaging long 583

videos within the constraints of current comput- 584

ing power and model capabilities. Dream Factory 585

introduces a keyframe iteration method to ensure 586

alignment of style, characters, and scenes across 587

different frames and can be built on top of any im- 588

age or video generation tool. Furthermore, Dream 589

Factory proposes new metrics to validate its capa- 590

bilities by measuring the quality of generated con- 591

tent through cross-scene face and style consistency, 592

as well as text-to-visual alignment. The evalua- 593

tion of Dream Factory’s work includes scores from 594

over 20,000 real-life evaluations, culminating in 595

the Multi-Scene Videos Dataset, which will be 596

fully open source after acceptance. 597
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6 Limitations598

In this paper, we present a multi-agent video gener-599

ation framework capable of producing videos with600

high consistency across multiple scenes and plot-601

lines. However, we still face several limitations.602

Firstly, our current reliance on prompts to control603

agents means that the agents are not capable of604

highly creative tasks, such as devising plots with605

artistic merit. Such tasks require the accumulation606

of specific datasets for model fine-tuning. Sec-607

ondly, the editing of all video segments is centered608

around synthesized speech content, which results609

in a final product that may appear as a mere assem-610

bly of clips. This necessitates the introduction of a611

unique framework design to enhance the fluidity of612

the videos. Lastly, video generation still involves613

substantial resource consumption.614

7 Ethics Statements615

The development and deployment of DreamFac-616

tory, a multi-agent framework for long video gener-617

ation, raise several ethical considerations that must618

be addressed. The potential for the misuse of gen-619

erated videos, such as the creation of deepfakes or620

the propagation of misinformation, is a significant621

concern. To mitigate these risks, we commit to622

implementing robust safeguards, including water-623

marking generated content and collaborating with624

fact-checking organizations. Additionally, we will625

ensure transparency in our research and make our626

methods and datasets publicly available, subject627

to ethical use guidelines. We also recognize the628

importance of diversity and inclusion in the train-629

ing data to prevent biases in the generated content.630

Finally, we will engage with the broader commu-631

nity to establish ethical standards for the use of632

AI-generated video content, promoting responsible633

innovation and use of this technology.634
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A Appendix810

A.1 DreamFactory Responsibility allocation811

As shown in Figure 8, our DreamFactory frame-812

work utilizes multiple large language models813

(LLMs) to form a simulated animation company,814

taking on roles such as CEO, Director, and Creator.815

Given a story, they collaborate and create a video816

through social interaction and cooperation. This817

framework allows LLMs to simulate the real world818

by using small video generation models as tools to819

accomplish a massive task. As illustrated in Fig-820

ure 8, under their collaboration, it is possible to821

generate a series of consistent, stable, multi-scene822

long videos as the plot progresses.823

A.2 User Study824

Quantitative evaluation of human preference for825

video is a complex and difficult proposition, so we826

employed human evaluators to verify the quality827

of multi-scene videos generated by our framework.828

We collected 150 multi-scene short videos gener-829

ated by AI from the internet and compare them830

with videos from our framework. Through this831

approach, we aimed to assess whether our videos832

could achieve an advantage in human preferences833

compared to existing AI videos on the network.834

In our study, We adopt the Two-alternative835

Forced Choice (2AFC) protocol, as used in pre-836

vious works [(Blattmann et al., 2023a), (Blattmann837

et al., 2023b), (Bar-Tal et al., 2024)]. In this proto-838

col, each participant will be randomly shown a pair839

of videos with the same story, one is a short video840

collected on web platforms and the other is gen-841

erated by our framework. Participants were then842

asked to select the superior side on five metrics:843

role consistency, scene consistency, plot quality,844

storyboard fluency, and overall quality. We col-845

lected 1320 human scores for this study, utilizing846

schools, communities, and network platforms. As847

illustrated in Figure 9, our method was preferred848

better.849

A.3 Case Study850

Comprehensive Keyframe Count Statistics - The851

version currently provided to users is balanced be-852

tween cost and user experience, using the Short gen-853

eration mode, typically around ten scenes. The spe-854

cific number is related to the user’s task input. The855

length of videos generated using random prompts856

is shown in the figure 10.857
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Art Director

Scenes Design

Phases managed

Scene i : A solitary soldier 
ventures into the jungle, his 
silhouette shrinking into the 

dense thicket ahead. 

You are the Art Director.  Now, we are both working at 
Dream Factory and we share a common interest. Your main 
job is to design the scenes for every key frames to make 
the film more fluency

Scene i : Scene i  :

……
A man encounters a malevolent 
dragon in the forest, battles 
with it, and successfully tames 
the creature.

The man rides the dragon back 

……

Core Plot
For the story's flow, how many scenes do 
you think we should plan out? It needs to 
be detailed but not drag on."

Let‘s aim for around fifteen scenes. It gives 
us enough space to develop the plot and 
character.

We can cover the key moments, like the 
discovery, the battle, and the return, with 
enough depth in each.".

Exactly, and it allows for transitions that can 
show character growth and plot progression 
smoothly. It's settled then

Key phase prompt -  … Now, we are designing the Scene Series of the movie. ……

Scene Series 

Scene1 : The man cautiously 
steps through the dense forest, 
his eyes meeting the fierce gaze 
of the lurking dragon.

Scene2 : Amidst the towering 
trees, a fierce battle ensues, 
with the man narrowly dodging 
the dragon's fiery breath ……

Scenes Picturing

No, the soldier should be 

wearing armor, and the video 
should have a certain angle.

Scene i : A solitary soldier with 
aumor ventures into the jungle, 
his silhouette shrinking into the 

dense thicket ahead. 

Cool ! 
Go for the next one!

Scene i + 1  :
Scene i + 1 : Without warning, a 
colossal dragon bursts through 

the foliage, its roar echoing 
through the trees.

Cool ! 
Go for the next one!

Key phase prompt -  … Now, we are Picturing the Scene Series of the movie. ……

CEO

Style Decision

Phases managed

So, we're agreed that we're 
aiming for a more immersive 
realistic vibe for the movie

"So, our hero's village has 
been terrorized by this dragon 

for decades. It feels like his 
journey should start with him 
deciding to confront and kill 

the dragon, doesn't it?"

Right. His journey to kill the 
dragon becomes a path to 
healing his own past wounds. 

But there's a fine line 
there, isn't it?

We should avoid any dialogue 
that feels like it's only there to 
explain the plot.

Agreed. And what about 
dialects and accents ?

Sometimes, what characters 
don't say can be just as 
powerful.

Definitely. I'm excited to 
see where we can take this

Temporal Agreement :

Reality Style , 4K, 35mm 

Temporal Agreement :

Anime cartoon style

Final Agreement :       

Cyberpunk future style

Story Decision

You are Chief Executive Officer. Now, we are both working at Dream Factory 
and we share a common interest in collaborating to successfully complete a 
movie with ideas given by a new customer.

Script 1 :

I was thinking, what if, instead of 
killing the dragon, our hero ends 

up understanding it? There's a 
pivotal moment where he 

realizes the dragon isn't the 
monster he thouwght it was.

That's a brilliant twist. It's not 
about the battle but the bond 
that forms between them. 

Script 2 :

"So, they've formed this unlikely 
bond. The next logical step in 

their journey together would be 
the man learning to ride the 
dragon. It's a symbol of their 

trust and partnership

Together, they're 
unstoppable.

Script 3 :

Artist

Phases managed

You are the Art Director.  Now, we are both working at Dream Factory 
and we share a common interest. Your main job is to picture the scenes 
for every key frames.

Scenes Picturing Key phase prompt -  … Now, we are Picturing the Scene Series of the movie. ……

Scene i : 

The knight returns to 
his homeland astride 
the mighty dragon. 

Scene i + 1 :

And he spots enemy 
forces laying siege to 
his cherished realm.

Director

Background   Design

Phases managed

A warrior should be clad in 

mithril armor. 

You are Movie Director. Now, we are both working at Dream 
Factory. Your main responsibility includes arguing with CEO about 
the movie and making agreements come true.

I'm picturing the soldier's battle with the dragon 
unfolding in the polar regions, a stark landscape 
of ice and snow that really sets it apart from the 
typical fiery lair.

Design 1 :

How about long hair and a 

weather-beaten face？

Design 2 :

That's cool.
Now we need to design 
the dragon…

Design 3 :

Character  Design

In the aftermath of a catastrophic 
defeat, a lone soldier named 
Marcus retreats into the 
mysterious Enchanted Forest.

As Marcus navigates the dense 
foliage, he discovers an ancient 
dragon, wounded and hiding 
from hunters.

Despite his fear, Marcus tends to 
the dragon's injuries, recalling old 
tales of humans who bonded 
with these majestic creatures.

Over time, a friendship forms 
between man and dragon, built 
on mutual respect and a shared 
desire for peace.

……

story

The extreme cold adds a survival element to 
the story. But what if in this frigid wasteland, 
there‘s also a hidden world of magic.

The magic could be tied to ancient lore, 
something that empowers the soldier against 
the dragon. However, there's something about a 
medieval setting that seems more compelling.

True, the medieval backdrop has this 
timeless allure. Knights, castles, and 
dragons—it's classic. Maybe the magic 
originates from there, something lost to the 
modern eye but still alive in legend."

Key phase prompt -  … Now, we are designing the base backgound of the movie. ……

Key Frames Checking

No, the image is too bright, 
and the characters are too 
comical to resemble an 
emperor.

OK, that’s cool.

Go for the next one. 

Monitor , Film-maker and the other agents based on different task…

Figure 8: This figure presents the responsibility allocation chart for all employees within the DreamFactory
architecture. For each employee, the upper left corner displays their role and portrait, while the upper right corner
outlines the stages of participation and their roles. The essential parts of the prompt are depicted below.

Figure 9: Human evaluation comparison of videos gen-
erated by DreamFactory and internet AI videos.

Figure 10: The key frame numbers count Statistics of
DreamFactory.
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