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Fig. 1: Overview of DemoDiffusion. We show how generalist pre-trained diffusion policies can be used for following a
generic human demonstration showing a manipulation task during deployment. Our real-world manipulation results encompass
a wide diversity of manipulation tasks involving everyday objects.

Abstract—We propose DemoDiffusion, a simple and scalable
method for enabling robots to perform manipulation tasks in
natural environments by imitating a single human demonstration.
Our approach is based on two key insights. First, the hand motion
in a human demonstration provides a useful prior for the robot’s
end-effector trajectory, which we can convert into a rough open-
loop robot motion trajectory via kinematic re-targeting. Second,
while this re-targeted motion captures the overall structure of
the task, it may not align well with plausible robot actions in-
context. To address this, we leverage a pre-trained generalist
diffusion policy to modify the trajectory, ensuring it both follows
the human motion and remains within the distribution of
plausible robot actions. Our approach avoids the need for online
reinforcement learning or paired human-robot data, enabling
robust adaptation to new tasks and scenes with minimal manual
effort. Experiments in both simulation and real-world settings
show that DemoDiffusion outperforms both the base policy and
the re-targeted trajectory, enabling the robot to succeed even on
tasks where the pre-trained generalist policy fails entirely. Project
page: https://demodiffusion-anonymous.github.io/

I. INTRODUCTION

How do we build robot manipulation systems that can be
readily deployed in unstructured human environments? One
possible answer is to learn ‘generalist’ policies that are capable
of accomplishing any generic task (specified via some de-

scription language or image goal) in any environment. Indeed,
there is a general optimism about this paradigm, reflected in
several ongoing efforts to collect large-scale demonstration
datasets to train such policies. While these efforts have led
to impressive results in the form of unified policies capable
of performing diverse tasks [1, 2, 3, 4, 5], these policies
still struggle to perform meaningfully when deployed zero-
shot to novel environments or asked to perform unseen tasks.
Deployment thus often requires additional fine-tuning using
task-and-scene-specific robot demonstrations [1], but this is a
non-trivial overhead as collecting robot demonstrations in the
real world can be time-consuming and beyond the expertise
of a average user. In this work, we propose an alternate
deployment mechanism – leveraging a generalist policy to
perform a task via imitating a single human demonstration.

We are of course not the first to consider this goal of
allowing robots to imitate any given human demonstration.
One common approach [6, 7, 8, 9] is to instantiate this
as kinematic re-targeting task and compute open-loop robot
actions that maximize a manually defined similarity between
the achieved robot end-effector configuration and observed
human hand poses (matching locations of fingertips). However,
the human-robot embodiment mismatch makes it difficult for
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the re-targeted actions to achieve precisely the same effects as
the human ones, and the open-loop execution further makes
the approach brittle to noise and scene variations. Another line
of work for human imitation attempts to learn robot policies
through online reinforcement learning [10, 11, 12, 13, 14],
where the human demonstration helps define reward functions.
While this can overcome the embodiment gap, such test-time
online RL requires hours of online interaction and resets -
making it difficult to adopt such methods for generic real-
world manipulation tasks, especially in safety-critical scenar-
ios. We instead seek to develop an approach for demonstration
following that, akin to kinematic re-targeting, can be deployed
‘one-shot’ without any test-time training while still benefitting
from generic learning-based priors for more precise closed-
loop interaction.

Our approach builds on the insight that pre-trained diffusion
policies can act as priors for robot action. Inspired by prior
work in leveraging pre-trained diffusion models for image edit-
ing [15], we present DemoDiffusion–a formulation to utilize
diffusion policy trained on robot interaction data for synthe-
sizing coherent robot actions from a human demonstration.
Specifically, we first perform kinematic re-targeting by ex-
tracting human hand poses from the demonstration and obtain
an open-loop robot action trajectory. While this trajectory is
typically suboptimal due to embodiment differences and lack
of closed-loop feedback, it serves as an effective initialization
that can be improved via a diffusion policy. We do so by
injecting gaussian noise and appling the pre-trained diffusion
policy to iteratively denoise the trajectory conditioned on
robot observations, yielding a refined, executable sequence of
robot actions. DemoDiffusion thus enables the robot to use
the pre-trained policy as a prior and adapt the human-derived
trajectory to its own embodiment and environment in a closed-
loop manner.

In summary, we propose DemoDiffusion: a framework for
robotic manipulation that allows a robot to perform generic
tasks in natural environments by following a human demon-
stration with guidance from a pre-trained diffusion policy.
Importantly, our framework doesn’t require any robot demon-
stration of the target task in the target environment and
doesn’t require any online interaction or fine-tuning. Our
experiments across simulation and real-world environments
show that DemoDiffusion surpasses the performance of both,
the base policy and re-targeted trajectory, even allowing the
robot to perform tasks where pre-trained generalist policy
completely fails.

II. RELATED WORK

a) Generalist Manipulation Policies.: There has been a
growing trend in developing ‘generalist’ robotic policies that
can perform multiple tasks based on a specified goal in the
form of an image or a language instruction. Collecting large-
scale robot interaction datasets [16, 17] combined with behav-
ior cloning and vision-language pre-training [5, 2, 18, 1, 4, 3]
is the predominant recipe for training such multi-task policies.
However, since collecting large-scale robot interaction datasets

in natural settings like homes and offices is challenging due
to operational constraints, current best models still struggle
to perform manipulation tasks zero-shot and thus are not yet
deployable in-the-wild. Our work enables using such gener-
alist diffusion policies for following a human demonstration,
thereby being able to perform tasks that the pre-trained policy
might be unable to zero-shot.

b) Robotic Manipulation with Non-Robot Datasets.:
Instead of requiring large-scale robot interaction datasets, a
growing body of works have begun utilizing human videos
and large-scale web videos for robotics. A lot of these ap-
proaches have been enabled by recent advances in computer
vision for representation learning [19, 20, 21], predicting
tracks [22, 23], and reconstructing hand-object interactions
from monocular videos [24, 25, 26, 27, 27]. Earlier works
learned self-supervised visual representations from such non-
robotic datasets [28, 29, 30] that can serve as the visual
backbone of robotic policies [31, 32, 33, 34, 35, 36]. Recent
works in this paradigm predict manipulation-relevant cues
from web videos in the form of motion trajectories [37, 38]
and object affordances [39, 40] and combine these predictive
models with a limited amount of robot interaction data for
training policies via conditional behavior cloning. Our work is
orthogonal to these approaches in that instead of using human
videos for training, we require a single human demonstration
during deployment for guiding a pre-trained generalist policy
to perform a new task.

c) One-Shot Imitation from Robot Demonstration.: One-
shot imitation aims to enable robots to perform a new task
with guidance from a single demonstration. Prior works have
explored this in the context of a robot demonstration provided
at test time, via training demonstrateion-conditioned poli-
cies [41]. Recent works have developed learning-based visual
servoing systems [42] and algorithms for identifying object
invariances [43] to replicate the robot end-effector actions
from the demonstration onto novel configurations of objects.
However, requiring a robot demonstration for imitation is
restrictive for ubiquitous deployment as end-users might find it
challenging to tele-operate the robot to collect demonstrations
in natural human environments.

d) One-Shot Imitation from Human Demonstration.:
To imitate a human demonstration for robot manipulation,
a straightforward approach is kinematic re-targeting of the
human hand pose to the robot end-effector pose per time-
step, as demonstrated by some recent works [6, 7]. Although
simple to implement, the human-robot embodiment mismatch
typically introduces errors in the re-targeting and the open-
loop execution is brittle to object pose variations during de-
ployment. To remedy this, another line of works seek to learn
this re-targeting implicitly by training a closed-loop policy
from paired human-robot datasets [44, 45] enabling more
flexible deployments. Since such paired datasets are difficult
to collect, other works [10, 11, 46, 12] perform reinforcement
learning with reward functions derived from video comparison.
However, such methods require online interaction and resets,
limiting their practicality. We propose an alternate paradigm:



Fig. 2: Re-targeted human hand trajectory to closed-loop robot action sequence, for the task T : “close the laptop”.
The dotted line shows the trajectory of robot end-effector poses after kinematic re-targeting. The olive contour plot depicts the
distribution of trajectories from a pre-trained diffusion policy. Given a kinematic re-targeting, we first perturb it with Gaussian
noise and progressively remove the noise by simulating the reverse SDE with the diffusion policy. This process gradually
projects a potentially unfeasible but approximately correct re-targeting to the manifold of plausible robot actions that can
perform real-world manipulation, in this case closing the laptop without missing the edge.

given the human demonstration, we refine re-targeted human
behavior using a pre-trained robot policy, avoiding brittle
replays and enabling closed-loop control. This formulation
doesn’t rely on expensive paired human-robot data collection
and also doesn’t require cumbersome test-time fine-tuning via
interaction.

III. METHOD

We target the problem of one-shot visual imitation. Given
a human demonstration D depicting a manipulation task with
description T , we want a robot manipulator to perform the
same task. Unlike prior work that relies on test-time RL
training [10] or paired human-robot datasets [44], we wish to
enable such imitation ‘one-shot’ assuming access to a closed-
loop diffusion policy π̄θ(at|o≤t, T ) pre-trained on some broad
robot interaction dataset Drobot. Our assumption on the human
demonstration D is also very minimal: it can either be an
RGBD video or a multi-view video of a human doing a task,
such that 3D hand poses per-timestep can be reliably extracted
from it.

A. Overview

Our approach is based on two key insights. The first is that
the trajectory of the hand pose in the human demonstration
D provides useful information of the approximate trajectory
the robot end-effector should follow, and we can perform

kinematic re-targeting of the hand trajectory {ht}Tt=0 to an
open-loop robot end-effector trajectory {ât}Tt=0. The second
insight is that the kinematically re-targeted robot trajectory
has the correct form of motion, but these actions may not
be very precise in the distribution of plausible robot actions
given the current observation. A diffusion policy models this
likelihood, and we can use a pre-trained ‘generalist’ diffusion
policy π̄θ(at|o≤t, T ) to refine the retargeted robot actions in
a closed loop manner, thus inferring actions that, while still
similar to the human demonstration, are more likely under
the policy and better aligned with the robot embodiment (see
Fig. 2). We describe both these steps in detail below.

B. Kinematic Re-Targeting of Human Hand Trajectories to
Robot End-Effector Poses

Given a human demonstration D of a manipulation task T ,
our first step is to extract the 3D hand pose trajectory {ht}Tt=0.
Each hand pose ht ∈ R3×J corresponds to the 3D locations
of J keypoints (e.g., wrist and fingertips), which we estimate
using a pre-trained monocular hand pose estimator applied to
each video frame [47]. These keypoints encode the motion
of the human performing the task and form the basis for re-
targeting to a robotic end-effector.

To translate this human motion into a robot-executable
trajectory, we define a simple geometric mapping function



Fig. 3: Dexterous Grasping Results in simulation. On the left, we show a human demonstration followed by a rollout
with DemoDiffusion for dexterous grasping. On the right, we plot the average and standard deviation of success rates over
3 seeds for dexterous grasping, corresponding to different levels of the diffusion step s∗. Here, s∗/S = 0 corresponds to
kinematic retargeting and s∗/S = 1 corresponds to the robot policy.

Method Small Medium Large Average

Robot Policy 25.4 26.6 27.4 26.5
Kinematic Retargeting 2.6 0.7 1.5 1.6

DemoDiffusion 31.8 31.6 29.6 31.0

TABLE I: Simulated Dexterous Grasping Results. The numbers show the average and standard deviation of success rates
over 3 seeds. We use s∗/S = 0.2, where the robot policy uses S = 1000. DemoDiffusion consistently outperforms both
baselines, across all groups.

fretarget : R3×J → R6 that converts the human hand pose
ht into a robot configuration ât = fretarget(ht). The mapping
aligns the wrist pose of the human to the robot end-effector
pose. For a two-finger gripper, we use the distance between the
thumb and the remaining fingers of the hand mesh to infer a
binary robot grasp, and for a dexterous robotic hand we match
the robot hand’s fingertip positions to those of a human hand
using inverse kinematics.

This kinematic re-targeting procedure yields a full trajectory
{ât}Tt=0 in the robot’s configuration space, which can be
executed as an open-loop policy. However, due to differences
in morphology and embodiment between humans and robots,
the absence of environment feedback, and the inaccuracy of
the hand estimation module, this trajectory often leads to
suboptimal or unstable behavior during open-loop execution.
We thus treat this as the basis for searching for a plausible
robot action trajectory via denoising with a (pre-trained)
closed-loop diffusion policy.

C. Closed-Loop Denoising of Robot Actions with a Pre-
Trained Diffusion Policy

A diffusion policy π̄θ(at|o≤t, T ) [48, 49] pre-trained on
diverse offline robot interaction data reliably models the dis-
tribution of plausible robot actions at given previous observa-
tions o≤t. To predict actions at, diffusion policies start with
Gaussian noise ã

(S)
t ∼ N (0, I) and iteratively denoise it at

different diffusion steps s:

ã
(s−1)
t = π̄θ

(
ã
(s)
t ,o≤t

)
, s = S, S − 1 . . . , 0 (1)

We use this to modify the kinematically re-targeted tra-
jectory {ât}Tt=0 for obtaining robot actions that follow the
high-level motion in the human trajectory and still lie within
the distribution of plausible actions under π̄θ. To do this, we
modify this typical reverse diffusion process so that instead
of starting with pure noise ã

(S)
t at step S, we start from

an intermediate time-step s∗ such that 0 < s∗ < S. We
define {ã(s

∗)
t }Tt=0 to be a noisy version of the kinematically

re-targeted trajectory as follows:

ã
(s∗)
t =

√
αs∗ ât +

√
1− αs∗ϵt, ϵt ∼ N (0, σ2I) (2)

Here α corresponds to the diffusion schedule of the pre-
trained policy. This procedure, inspired by SDEdit [15] which
adopted a similar approach for image editing, relies on the
assumption that ât is an approximate version of the ideal tra-
jectory that should be executed by the robot, and it potentially
lies outside the distribution of feasible trajectories under the
pre-trained diffusion policy π̄θ. The diffusion policy π̄θ then
performs iterative denoising steps, conditioned on the robot’s
observations o≤t, to refine this noisy trajectory into feasible
robot actions, based on equation (2) above.

After s∗ denoising steps, the final output at = ã
(0)
t is

deployed on the robot. Importantly, this process is carried out



Fig. 4: Real-World Manipulation Tasks. Each column corresponds to the respective human demonstrations for the real-world
manipulation tasks, showing two frames from each demonstration. We also show the respective language task descriptions T
that go as input to the pre-trained diffusion policy.

Method Shut
Laptop

Close
Microwave

Drag
Basket

Wipe
Table

Iron
Curtain

Pick up
Bear Avg.

Pi-0 0 0 100 60 20 0 30
Kinematic Retargeting 0 20 60 0 0 40 20
DemoDiffusion 20 40 100 80 20 60 53

TABLE II: Quantitative Results for Real-World Robot Manipulation. Success rates (%) over 5 trials per task. Please refer
to the Appendix for more comprehensive quantitative comparisons.

in a closed-loop manner: the policy uses real-time observations
from the cameras in the scene to iteratively improve its
predictions, thereby compensating for embodiment mismatch
and external perturbations (e.g., object slippage or occlusion).
The key hyperparameter in this process for DemoDiffusion is
the diffusion step s∗ that trades off between the faithfulness to
the demonstration and the likelihood under the robot policy –
in the limit s∗ = S we recover a rollout from the base policy
π̄θ and in the limit s∗ = 0 we recover the kinematically re-
targeted trajectory {ât}Tt=0.

IV. EXPERIMENTS

We evaluate our approach on dexterous grasping in sim-
ulation and across diverse real-world tasks comprising of
prehensile and non-prehensile table-top manipulation. Through
experiments, we aim to understand the following research
questions:
• Can DemoDiffusion outperform pure kinematic re-targeting

from the human demonstration?
• Do the human demonstrations allow DemoDiffusion to per-

form new tasks where the pre-trained diffusion policy fails?
• How to effectively tradeoff between faithfulness to the

human demonstration and performing the task reliably, with
varying noise level s∗/S?

A. Dexterous Grasping in Simulation

To verify our intuition, we first consider a simulation
environment where the target task is restricted to picking up
a generic object with a 16-DOF four-fingered Allegro hand.
Specifically, we train a dexterous grasping policy across a
small set of generic objects in simulation, and test our method
on human hand grasping trajectories on a different set of

objects. This serves as the pre-trained diffusion model for this
experiment.

For training the robot policy, we collect total 985 grasping
trajectories of Allegro hand over 58 training objects[50] (ran-
domly sampled 26 and 32 objects from ShapeNet [51] and
PartNet [52], respectively), resulting in 22.2 success rate. We
use a variant of 3D Diffusion Policy [53], which takes 3D point
tracks of an object instead of point clouds. At test time, we
provide human grasping trajectories on a subset of Objvaerse
dataset [54], which are unseen during training. The test set
contains total 1220 objects, with 1 human grasping trajectory
per object, provided by GraspXL [50]. Note that there is no
error from hand estimation or initial configuration of object
in this setup. We use ground-truth human hand 3d keypoints,
and the object is located at the same location to that of human
demonstration.

a) Results.: As in GraspXL [50], we group the objects
based on their size, resulting in small, medium, and large
objects. We compare DemoDiffusion with two baselines. The
first is open-loop kinematic re-targeting obtained from the
human demonstration. The second is directly deploying the
robot policy we trained.

Table. I shows the main results. Our method outperforms
baselines, with more performance gain for small-sized objects.
We hypothesize this roots from that larger objects are easier
to grasp, supported by robot policy performance improving
for larger sized objects. This experiment shows that even in
a highly controlled setup where the robot environment is ini-
tialized identically to that of human demonstration, kinematic
retargeting cannot solve the task, while slightly refining with
a generalist grasping policy significantly improves the perfor-
mance. Using kinematic retargeting to initiate the denoising



Fig. 5: Qualitative comparisons for real-robot manipulation. We show rollouts from two tasks for DemoDiffusion and
the baselines. The respective strips show progression of rollouts from left to right including the start frame, an intermediate
frame, and the final frame. Frames are cropped for better visibility. Please refer to the supplementary material for detailed
visualizations.

t
Fig. 6: Workspace with 5 cameras. We use the four external
cameras for triangulation to obtain the global pose of the hand
mesh from a human demonstration. The pre-trained diffusion
policy uses the two cameras marked in purple.

process also helps the denoising process itself, outperforming
the robot policy. Additionally, DemoDiffusion achieves higher
inference speed, by the factor of S/s∗.

b) Ablation studies.: We analyze the influence of s∗

on DemoDiffusion in Fig. 3. Overall, we observe a consistent
trend of performance gain from s∗/S = 1 to s∗/S = 0.2,
showing that DemoDiffusion is robust to the choice of hyper-
parameter.

B. Real-World Manipulation

For the real-world experiments, we use a Franka Emika
Panda arm equipped with a two-finger gripper from Robotiq.
We use the pre-trained diffusion policy π̄θ(at|o≤t, T ) called
Pi-0 released by Physical Intelligence [1]. This policy takes
as input a language task specification T , and observations
from two cameras in the scene, and outputs per-timestep joint
velocity. This policy was trained on a large offline dataset
of tele-operated robot demonstrations, and is a generalist
policy that can perform a broad set of tasks. We do not
fine-tune or adapt this policy in any way and directly use
it for DemoDiffusion. We use an off-the-shelf monocular
hand reconstruction model, Hamer [47] to obtain per-timestep
hand mesh reconstructions from each of the external cameras
given a human demonstration in the scene. Our experiments
follow the protocol of a human first demonstrating an object
manipulation in the scene, followed by robot execution after
re-setting the scene.

a) Workspace.: Fig. 6 describes our real-robot manipu-
lation setup. The scene has 5 cameras including 4 Real-sense
external cameras and 1 Zed-mini wrist camera mounted on
the robot gripper. We calibrate the four external cameras and
use them for triangulating the 3D hand pose so that we can
obtain the position and orientation of a human hand in the
world coordinates, with origin at the base of the robot. The
pre-trained diffusion policy Pi-0 requires just two cameras
(marked in purple) and the policy does not use any calibration
information.



b) Tasks.: We perform evaluations for 6 different ma-
nipulation tasks, the langauge description and the human
demonstration for which are described in Fig. 4. Each of these
tasks require a different manipulation strategy involving either
prehensile or non-prehensile manipulation. We collect just a
single human demonstration per task but for robot execution,
we make organic variations in the location of objects in the
scene. Additionally, we add other objects in the scene as
visual distractors, in order to see whether DemoDiffusion can
generalize under such settings.

c) Baselines.: For the real-world experiments we com-
pare DemoDiffusion with two baselines. The first is open-loop
kinematic re-targeting obtained from the human demonstra-
tion. The second is directly deploying the Pi-0 model with
the language instruction for the respective task. Since Pi-0
operates in the join velocity space, for DemoDiffusion we first
convert the kinematically re-targeted trajectory to the joint
velocity space with IK and then add noise to the trajectory,
followed by denoising with Pi-0. We perform comparisons
of DemoDiffusion with noise level s∗/S = 0.1. Note that
in the limit of 0 noise added, we recover the first baseline,
kinematic re-targeting, and in the limit of maximum noise 1
we obtain the second baseline Pi-0.

d) Qualitative Visualizations.: In Fig. 5 we show rollouts
for two tasks across all the methods. We observe that Pi-0 is
only able to perform reaching behaviors but doesn’t follow
the required manipulation trajectory necessary to perform
these tasks. On the other hand, we observe that (open-loop)
kinematic re-targeting from the human demonstration has a
plausible motion of the robot end-effector, but it completely
misses grasping the iron, and loses contact with the laptop
halfway. Compared to these, our approach DemoDiffusion is
able to reach the respective object and also follow the approx-
imate motion of the re-targeted trajectory while remaining in
contact with the object in order to solve the tasks.

e) Quantitative Comparisons.: In Table II we com-
pare DemoDiffusion and the baselines across all the real-world
manipulation tasks. We observe that DemoDiffusion either
performs comparably or outperforms all the baselines in all the
tasks. Interestingly, even for tasks like closing the laptop where
both the baselines fail, DemoDiffusion is able to leverage the
best of both the baselines (that represent extremes of our
approach under the hyper-parameter s∗) in order to achieve
a non-zero success rate.

V. DISCUSSION

We presented DemoDiffusion, a simple approach to leverage
generalist diffusion models for imitating a human demonstra-
tion. By re-targeting hand motion from the human demon-
stration into an approximate robot end-effector trajectory and
modifying it through de-noising with a pre-trained diffusion
policy, DemoDiffusion enables the robot to produce actions
that are both aligned with the demonstrated intent and con-
textually plausible. Our method consistently outperforms both
the base diffusion policy and the raw re-targeted trajectory
across diverse tasks in simulation and the real world, without

requiring additional training, paired demonstrations, or reward
functions. We envision that this simple approach can serve
as a starting point for future efforts at human imitation
across generic scenarios and perhaps also yield an improved
exploration strategy for methods pursuing policy adaptation
with online RL.

LIMITATIONS

Our approach has several limitations. First, it assumes
that the robot should act similarly to the human in order
to successfully complete the task, which may not hold in
scenarios requiring different strategies due to embodiment or
environmental constraints. Second, while effective for one-shot
imitation, the method does not produce a reusable task policy
that can generalize across variations of the task. Third, the
quality of the re-targeted trajectory is crucial—accurate 3D
human motion capture is challenging and errors in retargeting
can impact downstream performance. Additionally, the method
implicitly assumes that the timing and speed of human and
robot actions are aligned; extending the approach to allow
for temporal alignment at test time is a promising direction.
Finally, for long-horizon tasks, the robot may gradually drift
away from the intended behavior, as the model’s ability to
stay close to the human demonstration weakens over extended
sequences.
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APPENDIX

A. Hardware Setup

We replicate DROID [55] setup for the hardware setup. Due
to hardware availability, we use RealSense D455 instead of
ZED 2 for the rear view camera.

B. Task Setup Description

The overview of scenes for each task at test time is
shown in Fig. 7. Overall, kinematic retargeting may fail due
to small misalignment of object placement, inaccurate 3D
hand keypoints, or camera extrinsics, etc. Pi-0 may fail if
it cannot identify the object to interact with and manipulate
other objects in the scene. It may also reach the target object
but fail to manipulate in the desired way. Note that previous
approaches [6, 7, 8, 9] use kinematic retargeting to transfer
human demonstration to the robot.

a) Drag the Basket to the Right.: The task is to drag the
basket to the right side of the table. The human demonstration
grasps the edge of the basket and pulls it to the right. The
episode is considered successful if the robot grasps the basket/
puts the gripper inside the basket and move it to the right side
of the table.

b) Pick Up the Teddy Bear.: The task is to pick up
the teddy bear located at the center of the table. The human
demonstration grasps the neck of the bear and picks it up. The
episode is considered successful if the robot picks up the bear
by the end of the episode.

c) Iron Curtain on the Table.: The task is to grasp the
ironing machine located at the center of the table and slide
it to the right side of the curtain. The episode is considered
successful if the robot grasps/pushes the ironing machine to
the right part of the curtain.

d) Wipe the Table with Tissues.: The task is to
pinch/poke the given tissue and wipe the table. The episode is
considered successful if the robot pinches/pokes the tissue and
performs one stroke to any side of the table without missing
it.

e) Close the Microwave.: The task is to close the mi-
crowave located at the corner of the table. The episode is
considered successful if the handle part touches the body part
of the microwave at the end of the episode.

f) Shut Down the Laptop.: The task is to close the
laptop located in front of the robot. The episode is considered
successful if the laptop is closed at the end of the episode.

C. Text Prompt.

We used the following text conditions for Pi-0 [1], which
are also used for DemoDiffusion.
Drag the Basket to the Right: move the basket to the right
Pick Up the Teddy Bear: pick up the teddy bear
Iron Curtain on the Table: move the ironing machine to the
right
Wipe the Table with Tissues: wipe the table
Close the Microwave: close the microwave
Shut Down the Laptop: close the laptop

TABLE III: Hyperparameters in Real-world.

Hyperparameter Value

Open Loop Horizon 8
Predict Action Horizon 10
Denoising Steps at Inference (Pi-0) 20

D. Hyperparameters

To show our method’s applicability across diverse setups,
we do not change the speed of the given human demonstration
when performing kinematic retargeting. At inference, we use
the following hyperparameters for Pi-0 and DemoDiffusion,
with only difference on the number of denoising steps,
as DemoDiffusion starts denoising from intermediate steps.
Specifically, we use the following hyperparameters. Depending
on the noise level s∗/S, DemoDiffusion uses 20 × s∗/S
denoising steps.

E. Additional Results

To test DemoDiffusion’s robustness to noise level s∗/S, we
additionally test DemoDiffusion with noise level s∗/S = 0.2
in the real world. The results are included in Table. IV.
DemoDiffusion shows overall similar performance across two
different noise levels, showing its applicability without much
effort for tuning the noise level.

F. Task Setup Description

In our simulation experiment, the task is to pick up the
object. The rollout is considered success when the object’s z
position is higher than 0.10 m at the end of the episode.

a) Training Data.: As we don’t have a generalist pre-
trained diffusion policy in simulation, we first train a diffusion
policy while constraining the target task to picking up generic
objects. Specifically, we collected total 985 grasping trajecto-
ries of Allegro hand over 58 objects in the RaiSim simulator
for training. The trajectories were generated by rolling out
the expert Allegro RL policy with random grasping directions.
The 58 objects are randomly sampled from ShapeNet [51] (26
objects) and PartNet [52] (32 objects). The training objects and
expert Allegro RL policy are provided by GraspXL[50].

b) Test Data.: At test time, we provide human grasping
trajectories for a different set of objects. As it is challenging
to provide human demonstration in simulation, we instead use
MANO [56] hand RL policy to collect human demonstrations.
The test set contains total 1220 objects, which is a subset
of Objvaerse dataset [54]. The objects are divided in three
groups based on its size: small scale s ∈ [3, 5]cm medium
scale m ∈ [5, 7]cm, and large scale l ∈ [7, 9]cm. As the
object meshes don’t contain material information, we assume
fixed density, resulting in diverse mass. We additionally use the
same friction coefficient for all objects. Again, test objects and
expert MANO [56] RL policy are provided by GraspXL[50].
Additionally, we do not change the speed of the given human
demonstration when performing kinematic retargeting.



Fig. 7: Real-World Manipulation Tasks at Test Time. Each image corresponds to an example of the scene for each task at test time. To test our method
in a natural setup, we add other objects in the scene as visual distractors. For each rollout, we use the same set of distractors across methods.

TABLE IV: Additional Quantitative Results for Real-World Robot Manipulation. Success rates (%) over 5 trials per task.
s∗/S = 0.1 corresponds to results included in the main text, and s∗/S = 0.2 corresponds to new results.

Method Shut
Laptop

Close
Microwave

Drag
Basket

Wipe
Table

Iron
Curtain

Pick up
Bear Avg.

Pi-0 0 0 100 60 20 0 30
Kinematic Retargeting 0 20 60 0 0 40 20
DemoDiffusionw(s∗/S = 0.1) 20 40 100 80 20 60 53
DemoDiffusion(s∗/S = 0.2) 60 40 100 100 0 20 53

G. Robot Policy Implementation Details

We train a hierarchical policy, where the high-level planner
predicts the robot’s future goal state, and the low-level con-
troller predicts the action given the desired future robot state.
Both policies were trained using a variant of 3D Diffusion
Policy [53], where we modify the point cloud encoder to
take point tracks, for a richer representation of the object.
Specifically, while the original point encoder takes object
points at each timestep, the modified encoder takes a sequence
of object points (object tracks) as input. High-level planner and
low-level controller use a subset of the following as input and
output. All rotations are represented in Euler angles.

a) Robot state: contains its wrist position in the world
frame, rotation in the world frame, and absolute hand joint
angles.

b) Object state: contains 3D points of its surface. For
a history of robot state, we assume 3D point tracks to be
given(i.e. each 3D point across timesteps corresponds to the

same point of the object).
c) Robot goal state: contains its wrist position in the

local frame(wrist frame at previous timestep), rotation in the
local frame, and relative hand joint angles to the previous
timestep.

d) Action: contains the desired robot’s wrist position
in the local frame(previous wrist frame), desired rotation in
the local frame, and desired relative hand joint angles to the
previous timestep. Note that the action and the robot’s goal
state are not the same. For instance, the desired hand joint
angles can penetrate the object surface, while the robot’s state
cannot. Such a difference creates contact force, enabling a
stable grasp.

e) High-level Planner: The high-level planner takes in
a history of robot states and object states, and predicts a se-
quence of robot goal states. At test-time, we use the kinematic
retargeting result as an initial estimate for the robot’s goal
state. We then apply DemoDiffusion to refine the robot goal



TABLE V: Hyperparameters in Simulation.

Hyperparameter Value

H 4
Nobs 2
Nact 1
Ngoal 2
Nlatency 0
Number of Object Points 1024
Train Timesteps 1000
Inference Timesteps 10
Episode Length 155
Wrist Position Pgain 100.0
Wrist Position Dgain 0.1
Wrist Rotation Pgain 100.0
Wrist Rotation Dgain 0.2
Finger Rotation Pgain 100.0
Finger Rotation Dgain 0.2

state, and feed it to the low-level controller.
f) Low-level Controller: The low-level controller takes

in a history of robot states and a sequence of robot goal
states, and predicts a sequence of robot actions. The goal state
encoder has the same architecture to robot state encoder. Once
it outputs the action, the action is used as a position target for
a PD controller provided in the RaiSim simulator.

H. Hyperparameters

For policy training, we use the default hyperparameters
provided in the 3D Diffusion Policy [53] with minimal mod-
ifications. For the simulation environment, we use the default
hyperparameters provided by GraspXL [50]. Specifically, we
use the following same parameters for both the high-level
planner and low-level controller.
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