
Infinite-Instruct: Synthesizing Scaling Code instruction Data with
Bidirectional Synthesis and Static Verification

Anonymous ACL submission

Abstract001

Traditional code instruction data synthesis002
methods suffer from limited diversity and poor003
logic. We introduce Infinite-Instruct, an auto-004
mated framework for synthesizing high-quality005
question-answer pairs, designed to enhance the006
code generation capabilities of large language007
models (LLMs). The framework focuses on im-008
proving the internal logic of synthesized prob-009
lems and the quality of synthesized code. First,010
"Reverse Construction" transforms code snip-011
pets into diverse programming problems. Then,012
through "Backfeeding Construction," keywords013
in programming problems are structured into014
a knowledge graph to reconstruct them into015
programming problems with stronger internal016
logic. Finally, a cross-lingual static code anal-017
ysis pipeline filters invalid samples to ensure018
data quality. Experiments show that on main-019
stream code generation benchmarks, our fine-020
tuned models achieve an average performance021
improvement of 21.70% on 7B-parameter mod-022
els and 36.95% on 32B-parameter models. Us-023
ing less than one-tenth of the instruction fine-024
tuning data, we achieved performance compa-025
rable to the Qwen-2.5-Coder-Instruct. Infinite-026
Instruct provides a scalable solution for LLM027
training in programming. We open-source028
the datasets used in the experiments, includ-029
ing both unfiltered versions and filtered ver-030
sions via static analysis. The data are available031
at https://anonymous.4open.science/r/032
Infinite-Instruct-dataset-DF90033

1 Introduction034

Recent advances in Large Language Models035

(LLMs) have revolutionized code generation ca-036

pabilities through instruction tuning(Zhang et al.,037

2023). The effectiveness of this paradigm fun-038

damentally depends on high-quality instruction-039

response pairs that enable models to compre-040

hend and execute diverse programming tasks(Chen041

et al., 2021). However, scaling the acquisition of042

such instruction data presents a significant bottle- 043

neck(Wang et al., 2024), as conventional manual 044

annotation methods are both resource-intensive and 045

constrained in their coverage. 046

Prior research has explored various approaches 047

to automatic instruction synthesis. Early attempts 048

leveraging Self-Instruct(Wang et al., 2022) demon- 049

strated the potential of utilizing existing LLMs in a 050

teacher-student framework for instruction synthe- 051

sis. Despite their initial success, these approaches 052

exhibited inherent limitations due to biases inher- 053

ited from both the foundation models and the lim- 054

ited seed examples(Yu et al., 2023). While subse- 055

quent developments like Evol-Instruct(Luo et al., 056

2023)(Taori et al., 2023) introduced more sophis- 057

ticated instruction evolution mechanisms, they re- 058

mained bounded by predetermined evolution rules. 059

OSS-Instruct(Wei et al., 2023) achieved a signif- 060

icant advancement by pioneering the utilization 061

of real-world code snippets as inspiration sources. 062

However, this approach lacked robust quality assur- 063

ance mechanisms and structural validation proto- 064

cols. 065

To address these limitations, we present Infinite- 066

Instruct, a novel bidirectional framework for code- 067

oriented data synthesis that extends the capabilities 068

of OSS-Instruct. The framework operates through 069

two complementary mechanisms: Reverse Con- 070

struction and Backfeeding Construction. The Re- 071

verse Construction component transforms diverse 072

code fragments into comprehensive programming 073

tasks by analyzing code structure and functionality. 074

The Backfeeding mechanism establishes vocabu- 075

laries of tasks, instructions, and knowledge points 076

through a complex knowledge graph architecture, 077

transforming phrases into programming tasks. This 078

bidirectional approach enables the framework to 079

infinitely utilize code fragments and maintained 080

vocabularies, continuously leveraging the model to 081

generate unlimited high-quality training data. 082

Our methodology incorporates four key inno- 083

1

https://anonymous.4open.science/r/Infinite-Instruct-dataset-DF90
https://anonymous.4open.science/r/Infinite-Instruct-dataset-DF90
https://anonymous.4open.science/r/Infinite-Instruct-dataset-DF90

vations with specific implementation details: (1)084

a bidirectional code-prompt evolution framework085

that combines structural code analysis with se-086

mantic understanding. (2) a knowledge-graph-087

enhanced backfeeding mechanism that creates a088

closed-loop optimization by extracting and refining089

keywords from synthetic prompts. (3) a compre-090

hensive seven-dimensional quality assessment pro-091

tocol implemented through a cross-language static092

code analysis pipeline, which effectively filters in-093

valid samples and ensures instruction validity. (4)094

systematic knowledge integration through struc-095

tured vocabulary tables that maintain consistent096

terminology and conceptual relationships.097

2 Related Work098

2.1 Advances in Automated Instruction099

Synthesis100

Automated instruction synthesis has made break-101

throughs in recent years, contributing to the de-102

velopment of open-source models, represented by103

Nemotron-4(Adler et al., 2024). (Wang et al., 2023)104

pioneered Self-Instruct, which synthesizes instruc-105

tion prompts by bootstrapping from a small seed set106

of human-written examples. This method allowed107

LLMs to generate both new instructions and corre-108

sponding instances, reducing dependence on man-109

ual annotation. However, Self-Instruct’s synthe-110

sized prompts often lacked complexity and diver-111

sity compared to expert-created instructions. (Xu112

et al., 2023) addressed this limitation with Evol-113

Instruct in their work WizardLM , introducing evo-114

lutionary synthesis method that systematically in-115

crease complexity through operations like adding116

constraints, deepening context, and increasing rea-117

soning steps. While Evol-Instruct successfully gen-118

erated more challenging prompts, it operated pri-119

marily in a direction from code snippets to prompts,120

evolving existing instructions without systemati-121

cally creating novel prompt types.122

For code domains, (Luo et al., 2023) developed123

WizardCoder, adapting evolutionary instruction124

synthesis specifically for programming tasks with125

code-specific constraints and debugging scenar-126

ios. (Wei et al., 2023) proposed OSS-INSTRUCT,127

which uniquely leverages open-source code snip-128

pets as inspiration for generating diverse coding129

problems, mitigating LLM bias through real-world130

code references. Despite these advances, exist-131

ing prompt synthesis approaches remain limited132

by their evolution patterns, insufficient coverage133

across knowledge domains, limited quality assur- 134

ance beyond basic validity checks, and lack of 135

closed-loop optimization mechanisms. 136

2.2 Static Code Analysis 137

Static code analysis is a method that identifies po- 138

tential issues without executing the program, with 139

linter systems being its powerful implementation. 140

These systems support multiple programming lan- 141

guages including JavaScript, Python, Ruby, C/C++, 142

and Java, detecting syntax errors, code smells, and 143

style deviations, while sometimes identifying per- 144

formance bottlenecks and security vulnerabilities. 145

In recent years, with the increasingly widespread 146

application of large language models (LLMs) in 147

code generation and comprehension, static code 148

analysis has evolved to evaluate and enhance the 149

quality of AI-generated code. For instance, the 150

Llama 3 series (Grattafiori et al., 2024) employs 151

parsers and linters to guarantee syntactic accuracy 152

in all generated code, detecting errors such as syn- 153

tax mistakes, use of uninitialized variables, non- 154

imported functions, code style issues, and typing 155

errors. Similarly, Qwen2.5-Coder (Hui et al., 2024) 156

incorporates abstract syntax tree parsing to filter 157

out code snippets containing parsing errors. It in- 158

dicates that LLMs for code generation are increas- 159

ingly integrating multilingual static code analysis 160

capabilities during their datas construction phase to 161

ensure code quality across multiple programming 162

languages. 163

3 Method 164

We propose Infinite-Instruct, a code-oriented bi- 165

directional instruction synthesis method that gen- 166

erates high-quality and diverse instruction data. 167

It revolves the inter-evolution between code and 168

problems, forming a closed-loop optimization gen- 169

eration system through the reverse construction 170

(“Code → Problem”) and the backfeeding construc- 171

tion (“Keyword → Problem”) .The complete data 172

synthesis process can be seen in Figure 1. 173

During Reverse Construction, we leverage a 174

large language model (LLM) to analyze numerous 175

code snippets and generate diverse programming 176

problems. These problems undergo complexity 177

adjustment and textual rewriting to ensure qual- 178

ity and variety. During BackFeeding Construction, 179

a knowledge graph is established to present the 180

semantic relationships among keywords extracted 181

from the synthesized problems. At last, the gener- 182

2

Figure 1: Automated Prompt Synthesis Technology Roadmap.

ated instruction data is evaluated and filtered by a183

seven-dimensional quality assessment framework.184

3.1 Reverse Construction: Deriving Problems185

from Code186

We extract multilingual code from Magicoder-OSS-187

Instruct-75K (Wei et al., 2023) as our seed reposi-188

tory, it reduces the need of data cleaning. We ran-189

domly extract code snippets of 5-20 lines multiple190

times, ensuring these snippets maintain functional191

completeness and independence after deduplica-192

tion.193

We design specialized prompt templates for dif-194

ferent types of problems (see A.1 for details). By195

analyzing the characteristics of each code snippet,196

we guide GPT-4o-0806 to consider possible appli-197

cation scenarios, identify valuable problem points,198

and improve question quality accordingly. To in-199

crease the difficulty of questions, we rewrite prob-200

lems from six directions, including adding con-201

straints, depth extension, concretization, reason-202

ing refinement, input enhancement, and innovative203

changes(see A.2). It formulates questions with204

richer constraints and contextual information that205

more closely resemble real-world application sce-206

narios.207

We also discover that synthesized questions usu-208

ally lack expression diversity (e.g., most code gen-209

eration questions begin with "Please help me write210

a..."). To address this issue, we rewrite the text211

by analyzing sentence logical relationships and re-212

structuring paragraph structures, making the ques- 213

tions more aligned with real users’ questioning 214

styles(refer to A.3). 215

Through this process, We synthesize approxi- 216

mately 30K problems. The advantage of this ap- 217

proach is that it breaks through the limitations of 218

predefined datasets and can generate more diverse 219

questions. At the same time, the generated ques- 220

tions are closely related to the code, ensuring their 221

solvability. 222

3.2 Backfeeding Construction: Closed-Loop 223

Optimization from Keywords to Problems 224

While generating programming problems based on 225

randomized code snippets yields diversity, it often 226

lacks logical structure and pedagogical focus. 227

We define three types of keywords for a pro- 228

gramming problem(tasks, instructions, and knowl- 229

edge points). Tasks and instructions are extracted 230

from "reverse" synthesis problems (refer to A.4), 231

and after deduplication, we construct a vocabu- 232

lary containing keywords from all three categories 233

and generate random combinations. Initial knowl- 234

edge points sourced from online programming tu- 235

torials (like "Runoob Tutorial") and official SQL 236

documentation (including MySQL, Hive, SQLite, 237

PostgreSQL, Oracle, etc.), supplements with sec- 238

ondary tags from the field of computer science. 239

Each programming language has approximately 240

10K words per dimension on average, with about 241

20K secondary tags collected from various fields 242

3

of computer science (such as algorithms, software243

engineering, etc.).244

To improve the effectiveness of the problems,245

we use the concept of knowledge graphs to con-246

struct prompts as follows: First, we extract enti-247

ties from the keywords and categorize them into248

tasks, instructions, and knowledge points, forming249

a list of nodes. Second, we analyze the relation-250

ships between these nodes and construct triples to251

represent the connections between them, then ex-252

tract keyword combinations with clear semantic253

associations and rigorous logical structures from254

these triples. We deduplicate the final keyword255

groups using cosine similarity (threshold 0.8) and256

use these groups to synthesize seven types of "back-257

feed" problems, including Code Generation, Code258

Understanding, Knowledge-based Question, Code259

Completion, Code Optimization, Debug, and Mod-260

ify Code as required. We use GPT-4o-0806 model261

as the engine to drive the entire process, ultimately262

synthesize approximately 20K instructions. The263

prompt template for "backfeed" problem synthesis264

can be found in A.5 and A.6.265

3.3 Prompt Filtering266

For both “Reverse” and “Backfeeding” construc-267

tion, we introduce seven quality metrics of Arena-268

Hard-Auto (Li et al., 2024) to filter out high-quality269

question, including the metrics of specificity, do-270

main knowledge, complexity, problem solving abil-271

ity, creativity, technical accuracy, and practical ap-272

plication. We use GPT-4o-0806 to evaluate the273

questions that the system generates. For each ques-274

tion, we conduct three assessments, and the final275

score is the average of the three assessments. We276

filter out data with scores less than 6 points. See277

A.7 for specific cue words. Finally, we filter out278

10K “reverse” data and 10K “backfeed” data.279

Three datasets are included in our analysis: Re-280

verse, Backfeed, and OSS-Instruct. Each dataset281

is assessed using a complexity score that ranges282

from 1 to 10.A detailed explanation of the scoring283

system can be found in A.8. To ensure consistency,284

10,000 samples are randomly selected from each285

dataset for evaluation. As shown in Figure 2, the286

results indicate:287

Backfeed: highest complexity (mean 6.83, me-288

dian 8.0), standard deviation 1.54, difficulty is more289

concentrated at high levels.290

OSS-Instruct: lowest complexity (mean 3.17,291

median 3.0), suggesting that open source instruc-292

tions are generally simpler and more straightfor-293

ward. 294

Reverse: moderate complexity (mean 5.85, me- 295

dian 6.0), largest standard deviation (1.95), a more 296

balanced distribution of instruction difficulty. 297

These differences are important guidelines for 298

training strategies: Backfeed is suitable for train- 299

ing advanced reasoning ability, OSS is suitable for 300

basic function training, and Reverse is suitable for 301

comprehensive training due to its balanced char- 302

acteristics. Taken together, the complexity differ- 303

ences of different datasets can provide guidance 304

for hybrid training strategies, choosing the appro- 305

priate ratio of dataset combinations according to 306

the needs of different application scenarios, such as 307

mixing Backfeed and Reverse to optimize model 308

performance. 309

3.4 Response Quality Enhancement Based on 310

Static Syntax Analysis 311

We generate corresponding responses using GPT- 312

4o-0816 for the above prompts. To ensure the qual- 313

ity of generated data, we employ language-specific 314

static analysis tools as shown in Table 1. Each tool 315

is configured with customized rule settings cate- 316

gorized into three levels: disabled, error, and info. 317

Disabled rules represent unnecessary checks based 318

on our experience (e.g., @typescript-eslint/quotes 319

in ESLint, which enforces consistent quote style). 320

Error-level rules identify critical issues according 321

to each linter’s severity classifications, while re- 322

maining checks are set to info level. When static 323

analysis detects error-level issues in generated code, 324

we remove the entire prompt-response pair from 325

our dataset rather than attempting to fix them auto- 326

matically. This strict filtering approach ensures that 327

only syntactically valid and high-quality code sam- 328

ples remain in our final dataset, while still accom- 329

modating acceptable stylistic variations flagged at 330

the info level. 331

Programming Language Static Analysis Tool
Python PyLint
JavaScript ESLint
Java Checkstyle
C/C++ Clang-Tidy
SQL SQLFluff

Table 1: Static analysis tools used for different program-
ming languages

Our screening identifies a substantial number 332

of responses with syntax errors—approximately 333

4

Figure 2: Complexity Score Comparison

10,000 out of 100,000 generated responses con-334

tained syntax issues, including incorrect indenta-335

tion, non-code content mixed within code blocks,336

and erroneous class instantiation methods (detailed337

cases are provided in Appendix B).338

4 Experiments339

4.1 Experimental Settings340

We select Qwen2.5-Coder-7B-Base and Qwen2.5-341

Coder-32B-Base models as baseline to investigate342

the effectiveness of our proposed dataset. We trans-343

fer the SFT data to the same type of schema, which344

is a one-prompt and one-response format. We set345

the loss mask parameter of prompt to 0.0 and the re-346

sponse loss mask to 1.0. When training, we use the347

Mariana (Zou et al., 2014) platform to implement348

the SFT training stage. Meanwhile,we make the349

training process parallelized on 4 machines,each350

equipped with 8 Nvidia A100-SXM-80GB GPUs.351

We set the global batchsize to a fixed integer 512,352

and run for 3 global epochs for each model to reach353

the endpoint. Also,we set the initial learning rate354

at 2× 10−5,and simultaneously we set the learning355

rate to decay in a cosine annealing manner.356

In the evaluation phase, we adapt a greedy gener-357

ation strategy, specifically setting the temperature358

to 0 and the Top-K value to 1, ensuring determinis-359

tic outputs during each evaluation. For each evalua-360

tion instance across all models, we perform exactly361

one sampling.362

We prepare multiple datasets as follows. The363

original Magicoder-OSS-Instruct-75K dataset (gen-364

erated by ChatGPT 3.5 turbo 1106) and its dis-365

tilled version using the newer GPT-4o-0806 model,366

Magicoder-OSS-Instruct-75K-GPT-4o (to elimi-367

nate performance differences caused by model368

upgrades).Reverse-100K, a dataset of 100,000 cod- 369

ing task instances that we create using our re- 370

verse construction method, and its filtered version 371

Reverse-90K that contains 90,000 instances after 372

static code analysis. Backfeed-100K, a 100,000- 373

instance coding dataset that we build through 374

our backfeeding method, and its filtered version 375

Backfeed-90K that contains 90,000 instances. 376

We select the following benchmarks to eval- 377

uate the coding ability of the models, MultiPL- 378

E HumanEval (Cassano et al., 2023), MBPP 379

(Austin et al., 2021),MBPP+ (Liu et al., 2023), 380

Aider,BigCodeBench (Zhuo et al., 2024), Live- 381

CodeBench (Jain et al., 2024). These benchmarks 382

include mostly all the mainstream programming 383

languages and cover a wide range of coding prob- 384

lems from easy to hard. 385

At the same time, in order to observe the impact 386

on general problem solving abilities while monitor- 387

ing changes in the model’s code capabilities, we 388

use Arena hard (Li et al., 2024). , a high-quality 389

and reliable benchmark to test our trained models. 390

4.2 Experimental Results and Analysis 391

4.2.1 Improvements in Code Generation 392

Capabilities 393

The experimental results reveal several key insights 394

regarding the effectiveness of different data con- 395

struction and enhancement strategies. 396

Effectiveness of the Reverse Construction. Ta- 397

ble 2 demonstrates that, for the 7B model, the Re- 398

verse Construction method significantly improves 399

performance across all benchmarks. Reverse 90K 400

achieves the highest score of 45.11 on the Aider 401

dataset, and both Reverse 90K and Reverse 100K 402

outperform the baseline OSS-75K, with average 403

improvements of 18.81% and 18.37%, respec- 404

5

Table 2: Experimental Results Based on Qwen2.5-Coder-7B-Base

Model MBPP MBPP plus MPL-E Human Aider BigCode Bench LiveCode Bench Arena Hard

OSS-75K 74.80 70.63 61.93 43.61 42.02 32.12 8.96
OSS-75K-GPT-4o 73.40 70.90 64.77 42.86 48.42 34.50 42.85
Reverse 100K 76.40 72.49 67.05 44.36 49.74 32.82 48.09
Reverse 90K 75.80 71.69 67.28 45.11 50.61 34.22 47.76
Backfeed 100K 71.60 67.99 55.24 42.11 50.61 35.34 47.70
Backfeed 90K 75.80 73.54 65.80 41.35 50.09 34.08 49.56
Rev+Back 200K 76.60 72.75 67.22 42.11 50.79 36.47 46.94
Rev+Back 180K 77.80 73.81 67.35 42.86 50.96 37.03 49.59

Qwen-2.5-Coder-7B-Instruct 83.50 71.7 76.5 55.6 41.0 18.2 -

Table 3: Experimental Results Based on Qwen2.5-Coder-32B-Base

Model MBPP MBPP plus MPL-E Human Aider BigCode Bench LiveCode Bench Arena Hard

OSS-75K 81.40 74.34 67.58 48.87 52.46 34.22 19.71
OSS-75K-GPT-4o 82.60 76.98 76.12 57.14 55.35 50.49 67.40
Reverse 100K 83.20 76.46 76.48 57.89 57.28 49.79 66.95
Reverse 90K 83.40 75.13 76.65 59.40 57.72 49.09 67.38
Backfeed 100K 80.80 76.98 76.08 57.89 56.93 51.19 68.23
Backfeed 90K 81.20 75.40 76.55 57.14 56.84 51.19 67.93
Rev+Back 200K 82.40 76.46 76.55 56.39 56.67 50.49 70.17
Rev+Back 180K 83.20 75.13 76.65 56.39 56.32 49.51 67.97

Qwen-2.5-Coder-32B-Instruct 90.2 75.1 79.4 60.9 49.6 31.4 -

Note: MPL-E Human = MultiPLE-E Humaneval. Rev+Back 200K = Reverse 100K + Backfeed 100K. Rev+Back 180K = Reverse 90K + Backfeed 90K. Bolded
numbers represent the highest scores of all models.

tively. Table 3 highlights similar trends for the405

32B model, where Reverse 90K achieves state-of-406

the-art results on MPL-E Human (76.65), Aider407

(59.40), BigCode Bench (57.72), and Arena Hard408

(67.38). The method delivers an average improve-409

ment of 36.64% over OSS-75K, further demon-410

strating its effectiveness in enhancing model per-411

formance across diverse evaluation datasets.412

Effectiveness of the Backfeeding Construc-413

tion. On the Qwen2.5-Coder-7B-Base model, as414

shown in Table 2, the Backfeed strategy shows415

notable improvements over the OSS-75K.For the416

Qwen2.5-Coder-32B-Base model, Backfeed 100K417

also demonstrates significant advantages, as seen418

in Table 3. It achieves state-of-the-art results on419

multiple datasets, including MBPP plus (76.98)420

and LiveCode Bench (51.19), as shown in Table 3.421

Notably, it outperforms the larger Qwen2.5-Coder-422

32B-Instruct model on BigCode Bench (56.93 vs.423

49.6) and achieves comparable performance on424

Aider (57.89 vs. 60.9), highlighting its efficiency425

and robustness even with smaller training datasets.426

These results demonstrate the scalability and ver-427

satility of Backfeed Construction across diverse428

evaluation scenarios. 429

Superior Performance of Combined Strate- 430

gies. The combination of Reverse 90K + Backfeed 431

90K performs best on the 7B model. Table 2 shows 432

that the combined strategy after static analysis sur- 433

passes Qwen2.5-Coder-7B-Instruct on MBPP plus, 434

BigCode Bench, LiveCode Bench, and Arena Hard, 435

making it the strongest performing model among 436

all. On other evaluation sets, the combined strat- 437

egy also demonstrates better scores than OSS-75K- 438

GPT-4o.This is sufficient to demonstrate that com- 439

bined strategies exhibit stable performance across 440

all tests, reducing the volatility associated with sin- 441

gle strategies. 442

Impact of Static Analysis Filtering. As can 443

be seen from Table 4 and Table 5,Datasets fil- 444

tered through syntax checking (linter) generally 445

perform better than their unfiltered versions. On 446

the 7B model, Backfeed 90K shows significantly 447

greater improvement than Backfeed 100K (19.30% 448

vs 8.75%). On the 32B model, the trends in per- 449

formance are similar(9.56% vs -1.54%).It demon- 450

strates the important influence of high-quality in- 451

struction data.Based on the statistics from the 452

6

Figure 3: Benchmark with MBPP

MBPP and MBPP+ evaluation datasets, data that453

has undergone static syntax checking tends to454

achieve higher scores than data that has not been455

checked. The specific performance improvement456

effects can be referred to in Figure 3 and Figure 4.457

Table 4: Average Performance Improvement Compared
to the original OSS-Instruct dataset

Model Based on Based on
Qwen2.5-coder-7B Qwen2.5-coder-32B

Reverse 100K 18.37% 33.66%
Reverse 90K 18.81% 36.64%
Backfeed 100K 8.75% 32.84%
Backfeed 90K 19.30% 36.95%
Rev+Back 200K 21.17% 36.82%
Rev+Back 180K 21.70% 34.95%

Table 5: Average Performance Improvement Compared
to OSS-75K-GPT-4o dataset

Model Based on Based on
Qwen2.5-coder-7B Qwen2.5-coder-32B

Reverse 100K 7.62% 1.48%
Reverse 90K 9.59% 2.71%
Backfeed 100K -1.54% 0.91%
Backfeed 90K 9.56% 2.59%
Rev+Back 200K 12.45% 2.62%
Rev+Back 180K 11.92% 2.18%

Note:
Rev+Back 200K = Reverse 100K + Backfeed 100K
Rev+Back 180K = Reverse 90K + Backfeed 90K
Bolded numbers represent the highest scores of all models.

4.2.2 Comparative Analysis with Benchmark458

Methods459

Enhanced Diversity. Our instruction data covers460

various code-related tasks, as shown in Figure 5.461

The diversities enable stable model performance462

Figure 4: Benchmark with MHPP

across different evaluation sets, especially in the 463

complex MultiPle-EHumaneval. 464

Figure 5: Percentage of topic types

Quality Improvement. Magicoder-OSS- 465

Instruct-75K-GPT-4o, shows improvements over 466

the original Magicoder-OSS-Instruct-75K dataset 467

in most benchmarks. It indicates that as the per- 468

formance of the LLM used to generate responses 469

improves, the quality of the dataset tends to also 470

increase. Datasets filtered through static analysis 471

(Reverse 90K and Backfeed 90K) further enhance 472

performance, indicating that code quality filtering 473

is crucial for training effectiveness. 474

Greater Efficiency. According to the official re- 475

port released by the Qwen team (Hui et al., 2024), 476

the Qwen2.5-coder-instruct model was fune-tuned 477

on Qwen2.5-coder-Base model with millions of 478

high-quality prompts. After that, they also em- 479

ployed mixed tuning and Direct Preference Opti- 480

7

mization (DPO) during post-training. In contrast481

to the millions of instruction samples and complex482

post-training methods utilized by the Qwen team,483

our approach achieve comparable or even supe-484

rior performance using at most 200K data samples.485

This outcome further validates the effectiveness486

of our data construction strategies. Our synthetic487

strategies perform exceptionally well on the 32B488

model, outperforming the Qwen2.5-coder-instruct489

model in multiple tests. In the MBPP+ test, the490

Backfeed 100K strategy enable the 32B model to491

reach 76.98, higher than Qwen2.5-coder-instruct’s492

75.1. On BigCodeBench and LiveCodebench, all493

synthetic data strategies achieve evaluation results494

superior to Qwen2.5-coder-instruct, and obtain495

very close performance on other tests.496

Model Scale Effects Experiments clearly show497

that the 32B model can better utilize high-quality498

synthetic data compared to the 7B model.On the499

32B model, the average improvements compare to500

OSS-Instruct-GPT-4o is smaller (1-3%), but this is501

still significant considering OSS-Instruct-GPT-4o502

already gets high-performance on benchmarks.The503

7B model is more sensitive to data quality, with504

appropriate strategy combinations bringing over505

10% improvement.506

5 Conclusion507

Existing data generation methods for training large508

language models (LLMs) in code generation are509

constrained by high costs and limited diversity, hin-510

dering scalability and effectiveness. To address511

this, we propose Infinite-Instruct, a framework512

that automates high-quality instruction data syn-513

thesis through Reverse Construction and Backfeed-514

ing Construction , while leveraging cross-language515

static analysis to ensure data quality by filtering516

invalid samples.Our experiments show that Infinite-517

Instruct achieves 21.70% performance gains on518

7B models and 34.95% on 32B models, with519

static analysis improving MBPP test accuracy from520

74.80% to 77.80% on 7B models. These results521

demonstrate the scalability of automated data gen-522

eration, the critical role of static analysis, and the523

ability to achieve state-of-the-art performance with524

less training data.525

6 Limitations526

Despite the significant advantages our method527

demonstrates in generating code SFT data, several528

noteworthy limitations remain:529

1. Simplistic Difficulty Adjustment Mechanism: 530

The current method relies primarily on ad- 531

justing the number of keywords to increase 532

problem complexity, which may lead to un- 533

predictable complexity outcomes. 534

2. Inherent Limitations of Static Analysis: Static 535

analysis techniques cannot comprehensively 536

capture all types of code issues, particularly 537

logical errors, algorithmic complexity prob- 538

lems, and architectural design flaws. These 539

limitations constrain the upper bound of code 540

quality improvement and may result in cer- 541

tain obscure yet serious problems being over- 542

looked during the screening process. 543

3. Imbalanced Multi-language Support: Al- 544

though our method supports multiple pro- 545

gramming languages, the depth of support 546

varies across different languages. Mainstream 547

languages (such as Python and JavaScript) 548

receive more comprehensive support, while 549

some niche yet important domain-specific lan- 550

guages have weaker support. 551

Future research will focus on four key directions: 552

enhancing chain of thoughts generation to construct 553

code question-answer pairs containing detailed rea- 554

soning steps; integrating dynamic and static analy- 555

sis to comprehensively assess code quality; devel- 556

oping an adaptive difficulty tuning mechanism to 557

match the needs of different proficiency models; 558

and enhancing cross-language knowledge transfer 559

for efficient multilingual data generation. These 560

explorations will improve the quality and efficiency 561

of code SFT data and lay a more solid foundation 562

for the application of large-scale language models 563

in the code domain. 564

References 565

Bo Adler, Niket Agarwal, Ashwath Aithal, Dong H Anh, 566
Pallab Bhattacharya, Annika Brundyn, Jared Casper, 567
Bryan Catanzaro, Sharon Clay, Jonathan Cohen, and 568
1 others. 2024. Nemotron-4 340b technical report. 569
Computing Research Repository, arXiv:2406.11704. 570

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten 571
Bosma, Henryk Michalewski, David Dohan, Ellen 572
Jiang, Carrie Cai, Michael Terry, Quoc Le, and 1 573
others. 2021. Program synthesis with large lan- 574
guage models. Computing Research Repository, 575
arXiv:2108.07732. 576

Federico Cassano, John Gouwar, Daniel Nguyen, Syd- 577
ney Nguyen, Luna Phipps-Costin, Donald Pinckney, 578

8

https://arxiv.org/abs/2406.11704

Ming-Ho Yee, Yangtian Zi, Carolyn Jane Anderson,579
Molly Q Feldman, and 1 others. 2023. Multipl-e: a580
scalable and polyglot approach to benchmarking neu-581
ral code generation. IEEE Transactions on Software582
Engineering, 49(7):3675–3691.583

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,584
Henrique Ponde De Oliveira Pinto, Jared Kaplan,585
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg586
Brockman, and 1 others. 2021. Evaluating large lan-587
guage models trained on code. Computing Research588
Repository, arXiv:2107.03374.589

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,590
Abhinav Pandey, Abhishek Kadian, Ahmad Al-591
Dahle, Aiesha Letman, Akhil Mathur, Alan Schel-592
ten, Alex Vaughan, and 1 others. 2024. The llama593
3 herd of models. Computing Research Repository,594
arXiv:2407.21783.595

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Day-596
iheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,597
Bowen Yu, Keming Lu, and 1 others. 2024. Qwen2.598
5-coder technical report. Computing Research Repos-599
itory, arXiv:2409.12186.600

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia601
Yan, Tianjun Zhang, Sida Wang, Armando Solar-602
Lezama, Koushik Sen, and Ion Stoica. 2024. Live-603
codebench: Holistic and contamination free evalua-604
tion of large language models for code. Computing605
Research Repository, arXiv:2403.07974.606

Tianle Li, Wei-Lin Chiang, Evan Frick, Lisa Dun-607
lap, Tianhao Wu, Banghua Zhu, Joseph E Gonza-608
lez, and Ion Stoica. 2024. From crowdsourced data609
to high-quality benchmarks: Arena-hard and bench-610
builder pipeline. Computing Research Repository,611
arXiv:2406.11939.612

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Ling-613
ming Zhang. 2023. Is your code generated by chatgpt614
really correct? rigorous evaluation of large language615
models for code generation. Advances in Neural616
Information Processing Systems, 36:21558–21572.617

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xi-618
ubo Geng, Wenxiang Hu, Chongyang Tao, Jing619
Ma, Qingwei Lin, and Daxin Jiang. 2023. Wiz-620
ardcoder: Empowering code large language models621
with evol-instruct. Computing Research Repository,622
arXiv:2306.08568.623

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann624
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,625
and Tatsunori B Hashimoto. 2023. Stanford alpaca:626
An instruction-following llama model.627

Ke Wang, Jiahui Zhu, Minjie Ren, Zeming Liu, Shi-628
wei Li, Zongye Zhang, Chenkai Zhang, Xiaoyu Wu,629
Qiqi Zhan, Qingjie Liu, and 1 others. 2024. A sur-630
vey on data synthesis and augmentation for large631
language models. Computing Research Repository,632
arXiv:2410.12896.633

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa 634
Liu, Noah A. Smith, Daniel Khashabi, and Hannaneh 635
Hajishirzi. 2023. Self-instruct: Aligning language 636
models with self-generated instructions. Computing 637
Research Repository, arXiv:2212.10560. 638

Yufei Wang, Jiayi Zheng, Can Xu, Xiubo Geng, Tao 639
Shen, Chongyang Tao, and Daxin Jiang. 2022. 640
Knowda: All-in-one knowledge mixture model for 641
data augmentation in low-resource nlp. Computing 642
Research Repository, arXiv:2206.10265. 643

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and 644
Lingming Zhang. 2023. Magicoder: Empowering 645
code generation with oss-instruct. Computing Re- 646
search Repository, arXiv:2312.02120. 647

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, 648
Pu Zhao, Jiazhan Feng, Chongyang Tao, and Daxin 649
Jiang. 2023. Wizardlm: Empowering large language 650
models to follow complex instructions. Computing 651
Research Repository, arXiv:2304.12244. 652

Yue Yu, Yuchen Zhuang, Jieyu Zhang, Yu Meng, 653
Alexander J Ratner, Ranjay Krishna, Jiaming Shen, 654
and Chao Zhang. 2023. Large language model as 655
attributed training data generator: A tale of diversity 656
and bias. Advances in Neural Information Processing 657
Systems, 36. 658

Shengyu Zhang, Linfeng Dong, Xiaoya Li, Sen Zhang, 659
Xiaofei Sun, Shuhe Wang, Jiwei Li, Runyi Hu, Tian- 660
wei Zhang, Fei Wu, and 1 others. 2023. Instruction 661
tuning for large language models: A survey. Com- 662
puting Research Repository, arXiv:2308.10792. 663

Terry Yue Zhuo, Minh Chien Vu, Jenny Chim, Han Hu, 664
Wenhao Yu, Ratnadira Widyasari, Imam Nur Bani 665
Yusuf, Haolan Zhan, Junda He, Indraneil Paul, and 1 666
others. 2024. Bigcodebench: Benchmarking code 667
generation with diverse function calls and com- 668
plex instructions. Computing Research Repository, 669
arXiv:2406.15877. 670

Yongqiang Zou, Xing Jin, Yi Li, Zhimao Guo, Eryu 671
Wang, and Bin Xiao. 2014. Mariana: tencent deep 672
learning platform and its applications. Proc. VLDB 673
Endow., 7(13). 674

A Prompts 675

A.1 Integrated Reverse Question Generation 676

Template 677

1 # Task 678
2 As a senior full -stack engineer , you 679

need to design a high -quality [680
PROBLEM_TYPE] programming problem. 681
You need to draw inspiration from 682
input random code snippets to create 683
problems that fit real -world 684

scenarios. 685
3 686
4 # Characteristics of [PROBLEM_TYPE] 687

Problems 688
5 ## From the problem requirements: 689

9

https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2410.12896
https://arxiv.org/abs/2410.12896
https://arxiv.org/abs/2410.12896
https://arxiv.org/abs/2410.12896
https://arxiv.org/abs/2410.12896
https://arxiv.org/abs/2212.10560
https://arxiv.org/abs/2212.10560
https://arxiv.org/abs/2212.10560
https://arxiv.org/abs/2304.12244
https://arxiv.org/abs/2304.12244
https://arxiv.org/abs/2304.12244
https://proceedings.neurips.cc/paper_files/paper/2023/hash/6ce3d330be09e35ffdfc7a4cc29b5e2a-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/6ce3d330be09e35ffdfc7a4cc29b5e2a-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/6ce3d330be09e35ffdfc7a4cc29b5e2a-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/6ce3d330be09e35ffdfc7a4cc29b5e2a-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/6ce3d330be09e35ffdfc7a4cc29b5e2a-Abstract-Conference.html
https://arxiv.org/abs/2308.10792
https://arxiv.org/abs/2308.10792
https://arxiv.org/abs/2308.10792

6 1. [PROBLEM_TYPE specific requirement690
description]691

7 2. [Common question patterns or keywords692
]693

8 3. [Assessment focus]694
9695

10 ## From the code requirements:696
11 1. [Whether code must be provided]697
12 2. [Code feature requirements]698
13 3. [Relationship requirements with699

original code snippet]700
14701
15 # Workflow702
16 1. Code Snippet Feature Analysis:703
17 Analyze the programming language used ,704

core functionality , implementation705
methods , technical characteristics706
and difficulty level , understand the707
code design thinking and708

application scenarios.709
18710
19 2. Inspiration Brainstorming:711
20 Based on code characteristics ,712

brainstorm [PROBLEM_TYPE related713
brainstorming focus].714

21715
22 3. Initial Problem Design:716
23 Design the initial problem framework717

based on previous analysis and718
thinking , combined with #719
Characteristics of [PROBLEM_TYPE]720
Problems. The problem framework721
includes problem description and [722
related code requirements].723

24724
25 4. Problem Review and Optimization:725
26 Review initial problems based on the726

following points:727
27 - [PROBLEM_TYPE specific review728

points]729
28 - Whether the code meets requirements730
29 - Whether the code is identical to731

the original code snippet , if so,732
it needs modification733

30 - Whether the problem difficulty/734
logic is appropriate735

31736
32 5. Problem Improvement and Revision:737
33 Modify and improve based on issues found738

in review , optimize problem739
description and code.740

34741
35 6. Formal Problem Output: Strictly742

output problems according to the743
format below:744

36 [Programming Language]: [Programming745
language that should be used for the746
answer]747

37 [Problem Description]: [Describe your748
created problem in easy -to-749
understand language]750

38751
39 # Output Format752
40 1. Code Snippet Feature Analysis:753
41 2. Inspiration Brainstorming:754
42 3. Initial Problem Design:755
43 4. Problem Review and Optimization:756
44 5. Problem Improvement and Revision:757
45 6. Formal Problem Output: Strictly758

output problems according to the759

format below: 760
46 [Programming Language]: [Programming 761

language that should be used for the 762
answer] 763

47 [Problem Description]: [Describe your 764
created problem in easy -to- 765
understand language] 766

48 767
49 # Notes 768
50 1. Do not provide any solution ideas or 769

hints in the problem. 770
51 2. Do not show any content in the 771

problem that might suggest answers. 772
52 3. Problems should be written in clear 773

and concise language that is easy to 774
understand. 775

53 4. Written problems need to draw 776
inspiration from input random code 777
snippets but ** cannot directly use 778
the input random code snippets **. 779

54 5. [PROBLEM_TYPE specific additional 780
notes] 781

When using the integrated template, replace the 782

placeholders with the specific requirements for 783

each problem type: 784

1. Code Generation 785

Characteristics from problem requirements: 786

• Problems must be solved by writing code 787

• Problems can have multiple solutions 788

• Keywords: implement, develop, build, write 789

Characteristics from code requirements: 790

• No code should be provided in the problem 791

Inspiration Brainstorming focus: 792

• Possible application scenarios and problem 793

directions 794

• Different implementation angles 795

• Valuable problem points 796

Problem Review additional points: 797

• Unreasonable: Directly using the input ran- 798

dom code snippet as the answer to the problem 799

• Not complex enough: Problem requirements 800

are too simple, lacking divergent thinking 801

Additional notes: 802

• Problems must demonstrate being solved 803

through code writing, but do not provide any 804

form of code examples 805

10

2. Code Understanding806

Characteristics from problem requirements:807

• Typically starts with verbs such as "Explain",808

"Analyze", "Describe", "Clarify", etc.809

• Sometimes requires explaining specific pro-810

gramming concepts or technical details811

• Some questions may include the code’s exe-812

cution output, asking to explain the reasoning813

behind the output814

Characteristics from code requirements:815

• Not allowed to be identical to the provided816

random code snippet817

• Followed by a complete code block, which818

ideally contains multiple complete functions819

Inspiration Brainstorming focus:820

• Potential application scenarios and problem821

directions822

• Different implementation perspectives823

• Valuable question points824

Problem Review additional points:825

• Does the initial question framework provide826

the code to be explained?827

• Whether the code to be explained is consistent828

with random code snippets829

• Is the logic of the code to be explained too830

simple?831

3. Knowledge-based Question832

Characteristics from problem requirements:833

• Use words like "explain", "analyze", "com-834

pare" to describe requirements835

• Organize related concepts into coherent ques-836

tions837

• Each test point should focus on concept un-838

derstanding839

Assessment Requirements:840

• Conceptual accuracy841

• Depth of principle understanding842

• Practical application scenarios843

• Pros and cons analysis 844

Inspiration Brainstorming focus: 845

• Identify one core concept as the test point 846

Problem Review additional points: 847

• Verify avoidance of code implementation ten- 848

dency 849

• Whether it forms complete knowledge context 850

4. Code Completion 851

Characteristics from problem requirements: 852

• Words such as "complete", "fill in", "perfect", 853

"supplement" will be used to describe the re- 854

quirements 855

• Focuses on examining the ability to under- 856

stand existing code structure and interfaces 857

• Maintains consistency by following code style 858

and optimizes code structure to improve exe- 859

cution efficiency 860

Characteristics from code requirements: 861

• Code must be provided where there are gaps 862

in the logic 863

• There should be gaps in the code for comple- 864

tion 865

Inspiration Brainstorming focus: 866

• Select a single and focused functional area 867

• Determine the difficulty level of the question 868

• Design the core algorithm or data structure 869

• Plan the location and scope of the code to be 870

completed 871

Problem Review additional points: 872

• Does the initial problem provide the code to 873

be completed? 874

• Are there gaps in the code of the initial prob- 875

lem? 876

• Is the code to be completed consistent with 877

the random code snippet? 878

• Is the logic of the code to be completed too 879

simple? 880

11

5. Code Optimization881

Characteristics from problem requirements:882

• The problem should have multiple possible883

optimization directions884

• Consider algorithm complexity, code struc-885

ture, and implementation details886

• Typically described using terms like "opti-887

mize", "improve", "refactor", etc.888

• The problem should be concise and compre-889

hensive890

Characteristics from code requirements:891

• Not allowed to be identical to the provided892

random code snippet893

• Should have clear efficiency, readability, or894

structural issues895

Inspiration Brainstorming focus:896

• Design an initial code framework897

• Identify multiple core optimization points to898

focus on899

Problem Review additional points:900

• Does it provide code to be optimized?901

• Is the code to be optimized identical to the902

provided random code snippet?903

• Is the code optimization logic too simple?904

Additional notes:905

• The final problem description output must in-906

clude the code907

6. Debug908

Characteristics from problem requirements:909

• The problem should contain multiple errors910

• Problem sentence patterns may include:911

– "The following code attempts to imple-912

ment..."913

– "An error occurs when running the fol-914

lowing code..."915

– "Please identify and fix the errors in the916

code..."917

Characteristics from code requirements:918

• The code may be incomplete or contain errors 919

• The code may include errors such as: 920

– Syntax errors 921

– Logical flaws 922

– Algorithm efficiency issues 923

– Boundary condition handling 924

– Incorrect use of data structure 925

• The code to be fixed should not be identical 926

to the provided random code snippet 927

Inspiration Brainstorming focus: 928

• Design multiple error insertion strategies 929

Problem Review additional points: 930

• Does it provide code to be fixed? 931

• Is the code to be fixed identical to the provided 932

random code snippet? 933

• Does the code to be fixed contain multiple 934

errors? 935

• Is the error logic too simple? 936

Additional notes: 937

• Do not allow the content of possible problems 938

to be solved 939

• Do not provide error point comments in the 940

code to be fixed 941

7. Modify Code as required 942

Characteristics from problem requirements: 943

• The problem should have multiple modifica- 944

tion requirements 945

• The problem typically uses verbs like "refac- 946

tor" or "modify" etc, followed by specific re- 947

quirements 948

Characteristics from code requirements: 949

• The code to be modified must be provided, 950

with clear functionality but space for optimiza- 951

tion 952

Inspiration Brainstorming focus: 953

• Design the core functionality of the initial 954

code 955

• Plan multiple specific aspects that need modi- 956

fication 957

12

Problem Review additional points:958

• Does it provide the code to be modified?959

• Is the code to be modified identical to the960

given random code snippet?961

• Is the logic of the code to be modified too962

simple?963

Additional notes:964

• Do not include modification comments in the965

code to be modified966

• The final problem description output must in-967

clude the code968

A.2 Complicate Prompt969

1 # Task970
2 You will act as a prompt complexity971

expert , rewriting given prompts into972
more challenging versions that pose973
greater challenges to AI systems974

like ChatGPT. The rewrite must975
maintain human comprehensibility and976
executability.977

3 # Complexity Methods (randomly select978
one)979

4 1. Constraint Addition - Introduce980
additional restrictions or981
requirements982

5 2. Depth Extension - Extend inquiry983
depth and expand scope984

6 3. Concrete Specification - Replace985
abstract concepts with more specific986
expressions987

7 4. Reasoning Refinement - Transform988
simple questions into forms989
requiring multi -step reasoning990

8 5. Input Enhancement - Add data or code991
in specific formats , using question992
forms993

9 6. Innovation Variation - Maintain994
domain and difficulty while creating995
more unique new prompts996

10 # Workflow997
11 1. Understanding Given Prompt: [Analyze998

theme , goals , difficulty ,999
constraints , and domain]1000

12 2. Code Identification and Extraction: [1001
Identify and fully extract all code1002
blocks from original prompt , skip1003
this step if original prompt1004
contains no code]1005

13 3. Selected Method: [Choose appropriate1006
complexity method based on1007
understanding]1008

14 4. Selection Rationale: [Explain method1009
selection rationale based on given1010
prompt and chosen method]1011

15 5. Complexity Results:1012
16 - Prompt Section: [Show complexified1013

text content]1014
17 - Code Section: [Insert extracted1015

code blocks at original positions1016
and formats , output "None" if1017

none]1018

18 - Completeness Verification: [Confirm 1019
all code blocks are correctly 1020

integrated] 1021
19 # Output Format 1022
20 1. Understanding Given Prompt: 1023
21 2. Code Block Extraction: 1024
22 3. Selected Method: 1025
23 4. Selection Rationale: 1026
24 5. Complexity Results: 1027
25 - Prompt Section: 1028
26 - Code Section: 1029
27 - Completeness Verification: 1030
28 # Important Constraints 1031
29 1. Code Completeness: 1032
30 - Fully preserve all code blocks , 1033

including language markers , 1034
indentation , line breaks , and 1035
comments 1036

31 - Maintain original positions of code 1037
blocks in complexity results 1038

32 - Prohibited from modifying code 1039
content and format 1040

33 2. Prompt Requirements: 1041
34 - New content limited to 10-20 words 1042
35 - Ensure readability and 1043

executability 1044
36 - Special marker words prohibited 1045
37 3. Task Boundaries: 1046
38 - Only complexify prompts , do not 1047

provide solution approaches 1048
39 - Use only one complexity method per 1049

time 1050

A.3 Text Rewrite Prompt 1051

1 # Task 1052
2 You are a text rewriting expert. Your 1053

task is to completely transform the 1054
** textual description ** in the 1055
original question while preserving 1056
all non -textual elements. 1057

3 All the output must be in English. 1058
4 1059
5 # Workflow 1060
6 1. Paragraph Structure Analysis: (1061

outline the abstract structure of 1062
paragraphs) 1063

7 2. Logical Flow Analysis: (identify the 1064
function of each sentence and their 1065
logical relationships) 1066

8 3. Paragraph Structure Brainstorming: (1067
brainstorm 3 different approaches to 1068
restructure paragraphs using 1069

rewriting methods) 1070
9 4. Sentence Structure Brainstorming: (1071

brainstorm 3 different approaches to 1072
reconstruct sentences while 1073

maintaining question integrity) 1074
10 5. Selected Approach: (specify which 1075

approaches from steps 3 and 4 you 'll 1076
use) 1077

11 6. Rewritten Question: (present the 1078
rewritten question while preserving 1079
all code , tables , and other non - 1080
textual elements) 1081

12 1082
13 # Output format 1083
14 1. Paragraph Structure Analysis: 1084
15 2. Logical Flow Analysis: 1085

13

16 3. Paragraph Structure Brainstorming:1086
17 4. Sentence Structure Brainstorming:1087
18 5. Selected Approach:1088
19 6. Rewritten Question:1089
201090
21 # Rewriting Methods1091
22 1. Alternative sentence ordering1092
23 2. Different syntactic structures (e.g.,1093

inversions , passives)1094
24 3. Various writing techniques (e.g.,1095

concise phrasing , strategic omission1096
)1097

25 4. Alternative paragraph organization (e1098
.g., purpose -first vs. background -1099
first)1100

261101
27 # Quality Standards1102
28 1. Avoid structural similarity - the1103

rewritten version should differ1104
significantly in paragraph and1105
sentence patterns1106

29 2. Present only the final question1107
without explanatory content1108

30 3. Maintain a neutral tone and1109
professional , concise style without1110
colloquialisms1111

31 4. Preserve all code , tables , and non -1112
textual elements exactly as they1113
appear1114

32 5. Exclude solution hints or guidance1115
33 6. Avoid content that might suggest1116

answers1117

A.4 Prompts for keyword extraction1118

A.4.1 Extract Task1119

1 # Task1120
2 Please deeply analyze the provided1121

programming problems , extract the [1122
Task] keywords from them , and1123
summarize them in concise keyword1124
form. You need to ensure the1125
accuracy of the keywords.Output must1126
be in English.1127

31128
4 # Definition of Task1129
5 **[Task]** is defined as categorizing1130

the main theme or operation of the1131
input content into a broad domain or1132
operation type for effective1133

handling and application.1134
61135
7 # Workflow1136
8 1. Input Reception: Receive and prepare1137

to analyze input content.1138
9 2. Content Understanding: Carefully read1139

the input content to grasp its main1140
theme or operation.1141

10 3. Domain Categorization: Categorize the1142
content into a broad domain or1143

operation type.1144
11 4. Keyword Extraction: Describe this1145

domain or operation type with a1146
concise keyword.1147

12 5. Keyword Validation: Ensure the chosen1148
keyword accurately reflects the1149

core of the content , avoiding overly1150
specific or detailed descriptions.1151

13 6. Result Formatting: Format and output 1152
the task type keyword according to 1153
the given output example. 1154

14 1155
15 # Output Format 1156
16 [Task]:[keyword] 1157
17 1158
18 # Examples Given 1159
19 Example 1: 1160
20 Input: 1161
21 {Given a string s containing just the 1162

characters '(', ')', '{', '}', '[', 1163
']', determine if the input string 1164
is valid. 1165

22 1166
23 An input string is valid if: 1167
24 1168
25 Open brackets must be closed by the same 1169

type of brackets. 1170
26 Open brackets must be closed in the 1171

correct order. 1172
27 Every close bracket has a corresponding 1173

open bracket of the same type.} 1174
28 1175
29 Output: 1176
30 [Task]:[String Validation] 1177
31 1178
32 Example 2: 1179
33 Input: 1180
34 {I have an employee payroll table with 1181

headers including employee ID, name , 1182
gender , age , department , daily wage 1183

, attendance days , and allowance. 1184
Please help me write a Python 1185
program to add a salary column to 1186
this table. (Salary = daily wage * 1187
attendance days + allowance)} 1188

35 1189
36 Output: 1190
37 [Task]:[Data Processing] 1191
38 1192
39 Example 3: 1193
40 Input: 1194
41 {An additive number is a string whose 1195

digits can form an additive sequence 1196
. 1197

42 A valid additive sequence must contain 1198
at least three numbers. Except for 1199
the first two numbers , each 1200
subsequent number in the sequence 1201
must be the sum of the two numbers 1202
before it. 1203

43 Given a string containing only digits 1204
'0'-'9', write a Java algorithm to 1205
determine if the given input is an 1206
additive number. Return true if it 1207
is, and false otherwise. 1208

44 Note: Numbers in the additive sequence 1209
cannot start with 0, except for the 1210
number 0 itself , so there won 't be 1211
cases like 1, 2, 03 or 1, 02, 3.} 1212

45 1213
46 Output: 1214
47 [Task]:[Sequence Validation] 1215

A.4.2 Extract Instruction 1216

1 # Task 1217
2 Please deeply analyze the provided 1218

programming problems , extract the [1219

14

Instruction] keywords from them , and1220
summarize them in concise keyword1221

form. You need to ensure the1222
accuracy of the keywords.Output must1223
be in English.1224

31225
4 # Definition of Instructions1226
5 1. [Instructions] are explicit1227

requirements or constraints1228
extracted from the input , used to1229
guide task execution , output format ,1230
or operation steps.1231

6 2. ** Instructions do not include1232
programming languages specified in1233
the problem **1234

71235
8 # Workflow1236
9 1. Input Reception: Receive complete1237

description of the programming1238
problem.1239

10 2. Problem Understanding: Read the1240
problem in detail to understand core1241
requirements and objectives.1242

11 3. Instruction Identification: Carefully1243
analyze the problem description to1244

identify explicit [Instruction]1245
content.1246

12 4. Instruction Extraction: Extract the1247
identified instructions from the1248
problem description.1249

13 5. Instruction Validation: Review the1250
extracted instructions according to1251
the definition of [Instructions],1252
you need to ensure your output1253
complies with the content in #1254
Definition of Instructions.1255

14 6. Result Formatting: Organize and1256
output the extracted instructions1257
according to the given output1258
example format.1259

151260
16 # Output Format1261
17 [Instructions]:[keyword1] [keyword2]...1262
181263
19 # Examples Given1264
20 Example 1:1265
21 Input:1266
22 {How to compare two lists in Python ?}1267
231268
24 Output:1269
25 [Instructions]:[]1270
261271
27 Example 2:1272
28 Input:1273
29 {Please implement in Java: A company1274

uses public telephone to transmit1275
data , the data is a four -digit1276
integer , which is encrypted during1277
transmission ,1278

30 The encryption rules are as follows: add1279
7 to each digit , then replace the1280

digit with the remainder of the sum1281
divided by 3, then swap the first1282
and second digits , and swap the1283
third and fourth digits .}1284

311285
32 Output:1286
33 [Instructions]:[Implement digit1287

encryption rules][Perform digit1288
swapping]1289

A.4.3 Extract Knowledge 1290

1 # Task 1291
2 Please deeply analyze the provided 1292

programming problems , extract the [1293
Knowledge Points] keywords from them 1294
, and summarize them in concise 1295
keyword form. You need to ensure the 1296
accuracy of the keywords.Output 1297

must be in English. 1298
3 1299
4 # Definition of Knowledge Points 1300
5 **[Knowledge Points]**: Core concepts , 1301

basic principles , or key operational 1302
steps necessary to solve specific 1303

programming problems , usually 1304
presented in the form of concise 1305
keywords. 1306

6 1307
7 # Workflow 1308
8 1. Input Reception: Receive and prepare 1309

to analyze specific programming 1310
problems. 1311

9 2. Problem Understanding: Read the 1312
problem thoroughly to grasp its core 1313
requirements and objectives. 1314

10 3. Core Concept Identification: Identify 1315
basic theoretical knowledge and key 1316
programming principles needed to 1317

solve the problem. 1318
11 4. Operation Step Extraction: Analyze 1319

main steps and necessary programming 1320
techniques for problem -solving. 1321

12 5. Knowledge Point Condensation: 1322
Transform identified concepts and 1323
steps into concise keywords. 1324

13 6. Key Point Validation: Review 1325
extracted knowledge points to ensure 1326
their necessity , completeness , and 1327

conciseness. 1328
14 7. Result Formatting: Format and output 1329

key points according to the given 1330
output example. 1331

15 1332
16 # Output Format 1333
17 [Knowledge Points]:[keyword1] [keyword2 1334

]... 1335
18 1336
19 # Examples Given 1337
20 Example 1: 1338
21 Input: 1339
22 {Please implement in Java: A company 1340

uses public telephone to transmit 1341
data , the data is a four -digit 1342
integer , which is encrypted during 1343
transmission , 1344

23 The encryption rules are as follows: add 1345
7 to each digit , then replace the 1346

digit with the remainder of the sum 1347
divided by 3, then swap the first 1348
and second digits , and swap the 1349
third and fourth digits .} 1350

24 1351
25 Output: 1352
26 [Knowledge Points]:[Modulo Operation][1353

Number Processing][Data Swapping] 1354
27 1355
28 Example 2: 1356
29 Input: 1357
30 {Given an integer n, return the number 1358

15

of strings of length n that consist1359
only of vowels (a, e, i, o, u) and1360
are lexicographically sorted. A1361
string s is lexicographically sorted1362
if for all valid i, s[i] is the1363

same as or comes before s[i+1] in1364
the alphabet .}1365

311366
32 Output:1367
33 [Knowledge Points]:[String Generation][1368

Vowels][Lexicographical Order][1369
Combination Counting]1370

341371
35 Example 3:1372
36 Input:1373
37 {Please provide a solution in Java code1374

for the following problem: There are1375
some spherical balloons taped onto1376

a flat wall that represents the XY1377
plane. The balloons are represented1378
as an integer array points where1379
points[i] = [xstart , xend] denotes a1380
balloon whose horizontal diameter1381

stretches between xstart and xend.1382
You do not know the exact y-1383
coordinates of the balloons.1384

38 An arrow can be shot up exactly1385
vertically from different points1386
along the x-axis. A balloon with1387
xstart and xend bursts by an arrow1388
shot at x if xstart x xend.1389
There is no limit to the number of1390
arrows that can be shot. An arrow1391
once shot keeps traveling up1392
infinitely.1393

39 Given an array points , return the1394
minimum number of arrows that must1395
be shot to burst all balloons .}1396

401397
41 Output:1398
42 [Knowledge Points]:[Array Operations][1399

Conditional Logic][Mathematical1400
Logic]1401

A.5 Keyword combination and filtering1402

A.5.1 Description of keyword types1403

1 # Task:1404
2 Extract information from user input and1405

structure it into `Node ` objects.1406
Only output structured text , no code1407
generation needed.Output must be in1408
English.1409

31410
4 # Entity Type Description:1411
5 Identify entities in the input and1412

classify them into the following1413
types:1414

6 - **Task **: High -level goals or topics1415
that typically require multiple1416
steps or operations to complete.1417
Tasks are ultimate goals , such as "1418
develop an e-commerce website" or "1419
design a database system ".1420

7 - ** Knowledge Point **: Computer science1421
knowledge required for tasks or1422
instructions , such as "HTML", "1423
Python" or "MySQL".1424

8 - ** Instruction **: Specific functions , 1425
effects or operations that need to 1426
be implemented in the task , usually 1427
low -level , concrete steps. 1428
Instructions are specific means to 1429
accomplish tasks , such as "query 1430
optimization" or "table structure 1431
design ". 1432

9 1433
10 # Node Extraction Rules: 1434
11 1. Preserve all identified **Task** and 1435

** Knowledge Point** entities. 1436
12 2. Only preserve ** important 1437

instructions ** directly related to 1438
the task 's core objectives , remove 1439
minor or unimportant instructions. 1440

13 3. Each `Node ` object should include: 1441
14 - Unique identifier (`id `) 1442
15 - Entity type (`type `) 1443
16 1444
17 # Output Format: 1445
18 - **Only output structured text** in the 1446

following format: 1447
19 Node(id=" entity name", type=" entity type 1448

") 1449
20 - **Do not generate code**, only output 1450

the `Node ` list in text form. 1451
21 1452
22 # Work Steps: 1453
23 1. Read through the input content , 1454

identify and classify entities. 1455
24 2. Analyze logical relationships between 1456

entities to determine their 1457
categories. 1458

25 3. Output extracted `Nodes ` in specified 1459
format. 1460

26 1461
27 # Notes: 1462
28 - ** Important instructions **: 1463

Instructions directly related to 1464
task core objectives. 1465

29 - ** Unimportant instructions **: 1466
Instructions with minor or secondary 1467
impact on task core objectives. 1468

30 - If there is no clear task topic in the 1469
input , analyze logical 1470

relationships between entities to 1471
infer appropriate task type. 1472

31 - Task type should be unique and clear. 1473
32 1474
33 # Example: 1475
34 1476
35 **Input **: 1477
36 [open website], [develop an e-commerce 1478

website], [HTML], [CSS], [JavaScript 1479
], [implement user registration], [1480
shopping cart functionality], [mouse 1481
operations] 1482

37 ** Expected Output **: 1483
38 Node(id="open website", type=" 1484

instruction ") 1485
39 Node(id=" develop an e-commerce website", 1486

type="task") 1487
40 Node(id="HTML", type=" knowledge point") 1488
41 Node(id="CSS", type=" knowledge point") 1489
42 Node(id=" JavaScript", type=" knowledge 1490

point") 1491
43 Node(id=" implement user registration", 1492

type=" instruction ") 1493
44 Node(id=" shopping cart functionality", 1494

16

type=" instruction ")1495
45 Node(id="mouse operations", type="1496

instruction ")1497

A.5.2 Relationship analyses1498

1 # Task:1499
2 Build relationship object triples from1500

input nodes.Output must be in1501
English.Here 's what needs to be done1502
:1503

31504
4 # Relationship Extraction:1505
5 - You should identify relationships1506

between Nodes extracted from the1507
input content.1508

6 - Create a relationship object for each1509
relationship.1510

7 - A relationship object should have a1511
subject (subj) and an object (obj),1512
which are Node objects representing1513
the entities involved in the1514
relationship.1515

8 - Each relationship should also have a1516
type (type) and , where applicable ,1517
other attributes (such as weight ,1518
direction , etc.).1519

91520
10 # Node Type and Relationship Type1521

Mapping:1522
11 - ** Instructions ** and ** Knowledge1523

Points ** may have a "displays"1524
relationship.1525

12 - **Tasks** and ** Instructions ** may1526
have a "requires" relationship.1527

13 - **Tasks** and ** Knowledge Points ** may1528
have a "contains" relationship.1529

14 - If there is no logical connection1530
between two nodes and they clearly1531
belong to completely different1532
domains , use an "unrelated"1533
relationship.1534

151535
16 # Relationship Building Process:1536
17 1. Parse and understand the id and type1537

from input nodes.1538
18 2. Think deeply about the inherent1539

connections between different nodes ,1540
combining computer knowledge.1541

19 3. Find relationships that exist between1542
different nodes.1543

20 4. Mark as "unrelated" if no1544
relationship exists between nodes1545
and they clearly belong to1546
completely different domains.1547

211548
22 # Work Steps:1549
23 - Read through the provided content.1550
24 - Identify relationships between input1551

Nodes.1552
25 - Provide extracted relationships in1553

specified format.1554
261555
27 # Output Format:1556
28 - Extracted relationships should be1557

formatted as instances of the1558
provided relationship class.1559

29 - Ensure extracted data conforms to the1560
class definition structure.1561

30 - Your output format should be: subject 1562
(subj) + type + object (obj). 1563

31 1564
32 # Examples: 1565
33 1566
34 ## Example 1: 1567
35 Node: 1568
36 Node(id="data visualization analysis", 1569

type='instruction ') 1570
37 Node(id='HTML line chart ', type=' 1571

knowledge point ') 1572
38 Node(id='business analysis report ', type 1573

='task ') 1574
39 1575
40 Expected Output: 1576
41 data visualization analysis displays 1577

HTML line chart 1578
42 business analysis report requires data 1579

visualization analysis 1580
43 business analysis report contains HTML 1581

line chart 1582
44 1583
45 ## Example 2: 1584
46 Node: 1585
47 Node(id=" physical acceleration", type=' 1586

task ') 1587
48 Node(id=" navigation bar", type=' 1588

instruction ') 1589
49 1590
50 Expected Output: 1591
51 physical acceleration unrelated 1592

navigation bar 1593
52 1594
53 ## Example 3: 1595
54 Node: 1596
55 Node(id="user login", type='task ') 1597
56 Node(id=" password verification", type=' 1598

instruction ') 1599
57 Node(id=" security", type='knowledge 1600

point ') 1601
58 1602
59 Expected Output: 1603
60 user login requires password 1604

verification 1605
61 password verification contains security 1606
62 1607
63 ## Example 4: 1608
64 Node: 1609
65 Node(id=" artificial intelligence", type 1610

='task ') 1611
66 Node(id=" psychology", type='knowledge 1612

point ') 1613
67 Node(id=" ethics", type='knowledge point 1614

') 1615
68 1616
69 Expected Output: 1617
70 artificial intelligence contains 1618

psychology 1619
71 artificial intelligence contains ethics 1620
72 1621
73 ## Example 5: 1622
74 Node: 1623
75 Node(id=" quantum computing", type='task 1624

') 1625
76 Node(id=" artificial intelligence", type 1626

='task ') 1627
77 Node(id=" blockchain", type='knowledge 1628

point ') 1629
78 Node(id=" cryptography", type='knowledge 1630

point ') 1631

17

791632
80 Expected Output:1633
81 quantum computing contains cryptography1634
82 artificial intelligence contains1635

blockchain1636
83 quantum computing unrelated artificial1637

intelligence1638
84 artificial intelligence unrelated1639

cryptography1640
851641
86 # Complex Relationship Handling:1642
87 - If multiple relationships exist1643

between nodes , list each1644
relationship separately.1645

88 - If nested relationships exist (where1646
the subject or object in a1647
relationship is itself a1648
relationship), clearly mark them.1649

89 - If temporal relationships exist1650
between nodes (such as "Task A" must1651
be completed before "Task B"), note1652
this in the relationship type.1653

901654
91 # Error Handling:1655
92 - If input node format is incorrect ,1656

return error message: "Input node1657
format incorrect ".1658

93 - If unable to determine relationships1659
between nodes , return: "Unable to1660
determine relationship ".1661

A.5.3 Associative phrase construction1662

1 # Task Description:1663
2 Extract reasonable word combinations1664

from user -input triples (subject +1665
type + object). Reasonable word1666
combinations refer to task -relevant1667
keywords , phrases , or sentences that1668
clearly express the core logic and1669

relationships of the task.Output1670
must be in English.1671

31672
4 # Word Type Definitions:1673
5 1. **Task **: Categorized into broad1674

domains or operation types based on1675
the main theme or operation of the1676
input. For example , "create game" is1677
a task.1678

6 2. ** Instruction **: Explicit1679
requirements or constraints1680
extracted from the input , used to1681
guide task execution , output format ,1682
or operation steps. For example , "1683

function to detect cookie value" is1684
an instruction.1685

7 3. ** Knowledge Point **: Core concepts ,1686
basic principles , or key operational1687
steps needed to solve specific1688

programming problems. For example , "1689
using HTML , CSS , JavaScript" is a1690
knowledge point.1691

81692
9 # Rules for Extracting Reasonable1693

Associated Word Combinations:1694
10 1. ** Remove Irrelevant Words **: Delete1695

words that have no semantic or1696
logical relationship with other1697
words (including tasks).1698

11 2. ** Analyze Relationships **: Analyze 1699
the subject -object relationships 1700
between remaining words , clarifying 1701
their logical connections. 1702

12 3. **Task Logic **: Organize 1703
relationships between words 1704
following the logic of "Task + 1705
Knowledge Point + Instruction", 1706
ensuring clear primary and secondary 1707
relationships. 1708

13 1709
14 # Output Format: 1710
15 - Extracted reasonable word combinations 1711

should be formatted as instances of 1712
the provided reasonable word 1713

combination class. 1714
16 - Ensure extracted data conforms to the 1715

class definition structure. 1716
17 - Your output should be arranged 1717

according to the task logic or 1718
primary -secondary relationships 1719
between words. 1720

18 1721
19 # Working Steps: 1722
20 1. **Read Input **: Carefully read input 1723

content , understand its core theme 1724
and logic. 1725

21 2. ** Determine Primary -Secondary 1726
Relationships **: Clarify primary - 1727
secondary relationships between 1728
input words , distinguish tasks , 1729
knowledge points , and instructions. 1730

22 3. ** Remove Irrelevant Words **: Delete 1731
words that have no semantic or 1732
logical relationship with other 1733
words. 1734

23 4. ** Organize Logic **: Organize 1735
relationships between words 1736
following the "Task + Knowledge 1737
Point + Instruction" logic. 1738

24 5. ** Format Output **: Output extracted 1739
reasonable word combinations 1740
according to specified format. 1741

25 1742
26 # Notes: 1743
27 1. ** Semantic Association **: Ensure 1744

extracted word combinations have 1745
clear semantic associations. 1746

28 2. **Clear Logic **: Output content 1747
should have clear logic and distinct 1748
primary -secondary relationships. 1749

29 3. ** Standard Format **: Output strictly 1750
according to specified format , 1751
ensuring consistent data structure. 1752

30 1753
31 # Examples: 1754
32 1755
33 ## Example 1: 1756
34 create game contains create interface 1757
35 create game needs function to detect 1758

cookie value 1759
36 create game needs record time 1760
37 create game needs ensure clear code 1761

structure 1762
38 create game based on using HTML , CSS , 1763

JavaScript 1764
39 create interface needs function to 1765

detect cookie value 1766
40 create interface needs record time 1767
41 create interface needs ensure clear code 1768

18

structure1769
42 create interface based on using HTML ,1770

CSS , JavaScript1771
43 create interface unrelated to physical1772

acceleration1773
441774
45 Expected output:1775
46 create game , using HTML , CSS , JavaScript1776

, create interface , function to1777
detect cookie value , record time ,1778
ensure clear code structure1779

471780
48 ## Example 2:1781
49 programming parameter definition1782

unrelated to print character1783
50 programming parameter definition1784

unrelated to default primary key1785
field1786

51 handle missing values unrelated to print1787
character1788

52 handle missing values unrelated to1789
default primary key field1790

53 train test set unrelated to print1791
character1792

54 train test set unrelated to default1793
primary key field1794

55 investigate outliers unrelated to print1795
character1796

56 investigate outliers unrelated to1797
default primary key field1798

57 data analysis unrelated to print1799
character1800

58 data analysis unrelated to default1801
primary key field1802

59 problem solving unrelated to print1803
character1804

60 problem solving unrelated to default1805
primary key field1806

61 data splitting unrelated to print1807
character1808

62 data splitting unrelated to default1809
primary key field1810

631811
64 Expected output:1812
65 No relevance1813

A.6 Integrated Backfeeding Question1814

Generation Template1815

1 # Role1816
2 As an examiner specialized in designing1817

[QUESTION_TYPE] programming1818
questions , your task is to create a1819
high -quality question based on1820
keywords provided by users. These1821
questions should [QUESTION_PURPOSE].1822
Output must be in English.1823

31824
4 # Characteristics of [QUESTION_TYPE]1825

Questions1826
5 ## From question requirements:1827
6 1. [QUESTION_TYPE specific requirement1828

description]1829
7 2. [Common question patterns or keywords1830

]1831
8 3. [Assessment focus]1832
91833

10 ## From code requirements:1834

11 1. [Whether code must be provided - 1835
specific requirements] 1836

12 2. [Code feature requirements] 1837
13 1838
14 # Output Example 1839
15 1. Consider logical relationships 1840

between keywords: [List meanings of 1841
keywords and their logical 1842
relationships] 1843

16 2. Understand question characteristics: 1844
[Analyze characteristics of [1845
QUESTION_TYPE] questions , provide 1846
elements you think must be included] 1847

17 3. Consider how to organize keywords 1848
into questions: [Through 1849
brainstorming , think divergently 1850
about how keywords can work together 1851
to form a programming question] 1852

18 4. Output initial question: [Combine 1853
above thoughts to propose initial 1854
question] 1855

19 5. Review initial question: [Identify 1856
unreasonable or specific areas for 1857
improvement in initial question and 1858
propose modification examples] 1859

20 6. Propose new question: [Fix question 1860
based on modification suggestions] 1861

21 7. Repeat above steps , review and modify 1862
again until question meets 1863

requirements 1864
22 8. Final question output: [Output final 1865

question without any guiding words (1866
like "Question :") or any symbols] 1867

23 1868
24 # Question Standards 1869
25 1. Can hide emphasis on which 1870

programming language to use , letting 1871
students derive related knowledge 1872

themselves 1873
26 2. Please strictly follow the format in 1874

Output Example to give your 1875
thinking process for each step , but 1876
don 't directly output the content in 1877
[], and the last step must be the 1878

final question output 1879
27 3. Don 't provide any solution ideas or 1880

hints 1881
28 4. Don 't show any content that might 1882

suggest answers 1883
29 5. [QUESTION_TYPE specific additional 1884

standards] 1885

A.7 Prompt Filtering 1886

1 # Task 1887
2 Your task is to evaluate how input 1888

prompts enhance the capabilities of 1889
advanced AI assistants. For each 1890
input prompt , analyze it according 1891
to the following 7 criteria. 1892

3 1893
4 # Standards 1894
5 1. Specificity: Does the prompt request 1895

specific , clear outputs without 1896
ambiguity? This allows AI to 1897
demonstrate its ability to follow 1898
instructions and generate precise , 1899
targeted responses. 1900

6 2. Domain Knowledge: Does the prompt 1901
test AI 's knowledge and 1902

19

understanding in specific domain(s)?1903
The prompt must require strong1904

prior knowledge or mastery of domain1905
-specific concepts , theories , or1906
principles.1907

7 3. Complexity: Does the prompt contain1908
multiple components , variables , or1909
depth and nuance? This evaluates AI'1910
s ability to handle complex ,1911
multifaceted problems beyond simple1912
queries.1913

8 4. Problem -Solving: Does the prompt1914
require active problem -solving:1915
analyzing and clearly defining1916
problems , then systematically1917
developing and implementing1918
solutions? Note that active problem -1919
solving goes beyond reciting facts1920
or following fixed instruction sets.1921

9 5. Creativity: Does the prompt require1922
creative approaches or solutions?1923
This tests AI 's ability to generate1924
novel ideas tailored to the specific1925
needs of the request or current1926

problem.1927
10 6. Technical Accuracy: Does the prompt1928

require answers with high technical1929
accuracy , correctness , and precision1930
? This evaluates the reliability and1931
truthfulness of AI outputs.1932

11 7. Real -World Application: Does the1933
prompt relate to real -world1934
applications? This tests AI's1935
ability to provide practical1936
information that can be implemented1937
in real -life scenarios.1938

121939
13 # Output Example1940
14 Evaluation Process: (Ensure explanation1941

before determining if input meets1942
each criterion)1943

15 Standards Met: (List standard numbers1944
met in Python array format , e.g.,1945
[1, 2, 4, 6, 7])1946

A.8 Instruction Complexity Assessment1947

1 You are an expert at evaluating the1948
difficulty of programming questions.1949
Your responsibility is to assess1950

various types of questions ,1951
including QA, multiple -choice ,1952
debugging tasks , code explanations ,1953
and more. Your goal is to assign a1954
difficulty score ranging from 1 (1955
easiest) to 10 (most difficult).1956

2 Note that you are tasked with evaluating1957
user -submitted programming1958

questions rather than answering them1959
31960
4 Steps:1961
5 Think and Understand: First , read and1962

think carefully to ensure that you1963
fully comprehend the q u e s t i o n s1964
intent. Focus on what the question1965
is asking and what skills or1966
knowledge are required to solve it.1967

6 Analysis: Based on your understanding ,1968
use the scoring criteria to assess1969

the difficulty of the question. 1970
Consider factors such as the 1971
complexity of the task , the level of 1972
programming experience required , 1973

and whether specialized knowledge is 1974
needed. 1975

7 Score: Assign a score between 1 and 10, 1976
reflecting the difficulty based on 1977
your analysis. 1978

8 1979
9 Scoring Criteria: 1980

10 1 points - Very Easy 1981
11 - Basic questions that programming 1982

beginners can easily answer. 1983
12 - No specialized knowledge or prior 1984

programming experience is required. 1985
13 - Typical tasks include: 1986
14 - Simple syntax corrections (e.g., 1987

missing semicolons or 1988
parentheses). 1989

15 - Basic input/output operations (e.g 1990
., printing "Hello World" or 1991
reading user input). 1992

16 - Basic variable assignments or 1993
arithmetic operations (e.g., 1994
assigning a value to a variable 1995
or adding two numbers). 1996

17 - Fixing a simple typo in a piece of 1997
code. 1998

18 - Simple logical conditions (e.g., 1999
writing an if-else statement). 2000

19 - Basic loops (e.g., a for -loop to 2001
iterate over an array). 2002

20 2003
21 2 points - Basic Programming Task 2004
22 - Suited for beginners who have 2005

undergone a short learning period. 2006
23 - Typical tasks include: 2007
24 - Arrays and basic list 2008

manipulations (e.g., accessing 2009
array elements , adding elements) 2010
. 2011

25 - Elementary software configuration 2012
tasks (e.g., installing a 2013
library , setting up an IDE , 2014
configuring environment 2015
variables). 2016

26 - Writing basic functions that take 2017
input and return output. 2018

27 - Basic debugging , such as finding 2019
and fixing simple runtime errors 2020
. 2021

28 - Basic file I/O (e.g., reading from 2022
and writing to a file). 2023

29 - Writing functions that involve 2024
loops , conditionals , and data 2025
manipulation. 2026

30 2027
31 3 points - Common Programming Task 2028
32 - Suitable for users with some 2029

programming experience. 2030
33 - Typical tasks include: 2031
34 - Basic use of common data 2032

structures like lists or 2033
dictionaries. 2034

35 - Simple algorithms like sorting (e. 2035
g., bubble sort) and linear 2036
search. 2037

36 - Software development tasks like 2038
basic database operations (e.g., 2039

20

inserting or querying data from2040
a database).2041

37 - Implementing basic math functions2042
(e.g., finding the greatest2043
common divisor).2044

38 - Basic error handling (e.g., using2045
try -catch blocks).2046

39 - Introduction to object -oriented2047
programming (e.g., creating2048
classes and objects).2049

402050
41 4 points - Entry -Level2051
42 - Suitable for developers just starting2052

out in software development.2053
43 - Typical tasks include:2054
44 - Data structures like linked lists ,2055

hash tables , stack and queue (e2056
.g., implementing a singly2057
linked list).2058

45 - Algorithms like binary search ,2059
insertion sort.2060

46 - Simple server -side programming (e.2061
g., writing a basic HTTP server)2062
.2063

47 - Designing and implementing basic2064
APIs.2065

48 - Debugging and testing small2066
codebases (e.g., writing unit2067
tests).2068

492069
50 5 points - Lower Intermediate2070
51 - Suited for developers with 1-2 years2071

of experience.2072
52 - Typical tasks include:2073
53 - Complex algorithms (e.g.,2074

improving the time complexity of2075
sorting from O(n) to O(n log2076

n)).2077
54 - Complex data structures (e.g.,2078

binary tree , heap).2079
55 - Object -oriented programming with2080

inheritance , polymorphism , and2081
encapsulation (e.g., designing a2082
class hierarchy).2083

56 - Basic functional programming2084
concepts (e.g., lambda2085
expressions , higher -order2086
functions).2087

57 - Code debugging and performance2088
optimization (e.g., optimizing a2089
recursive function).2090

58 - Development of small -scale systems2091
, such as building a RESTful API2092
or optimizing a database query.2093

59 - Implementing simple design2094
patterns (e.g., Singleton ,2095
Factory).2096

60 - Using version control systems like2097
Git for basic collaboration2098

tasks.2099
612100
62 6 points - Intermediate2101
63 - Suitable for developers with 3-4 years2102

of experience.2103
64 - Typical tasks include:2104
65 - Involvement with multi -module2105

projects , such as writing2106
modular and reusable code across2107
different components.2108

66 - More complex data algorithms like2109

greedy and backtracking. 2110
67 - Performance optimizations (e.g., 2111

improving the time complexity of 2112
algorithms). 2113

68 - Designing and implementing 2114
moderately complex API 2115
interfaces (e.g., handling 2116
authentication and rate limiting 2117
). 2118

69 - Service integration (e.g., 2119
integrating a third -party API 2120
into a project). 2121

70 - Developing small -to-medium -sized 2122
system modules (e.g., creating a 2123
caching layer for an 2124

application). 2125
71 - Concurrency control in programming 2126

(e.g., handling race conditions 2127
in multi -threaded environments) 2128

. 2129
72 2130
73 7 points - Upper Intermediate 2131
74 - Suitable for developers with 5-6 years 2132

of experience. 2133
75 - Typical tasks include: 2134
76 - Complex system designs , requiring 2135

architectural understanding of 2136
multi -tier applications. 2137

77 - Working with more complex data 2138
structures like balanced trees (2139
e.g., AVL trees) and graphs (e.g 2140
., BFS , DFS) and algorithms (e.g 2141
. dynamic programming). 2142

78 - Tackling advanced multithreading 2143
and synchronization issues (e.g 2144
., handling deadlock in 2145
concurrent programming). 2146

79 - Distributed system design and 2147
implementation (e.g., designing 2148
a distributed file storage 2149
system). 2150

80 - Building and optimizing high - 2151
concurrency models (e.g., 2152
designing a system to handle 2153
millions of simultaneous 2154
requests). 2155

81 - Designing and implementing 2156
advanced networked applications 2157
(e.g., web crawlers). 2158

82 2159
83 8 points - Advanced 2160
84 - Suitable for developers with 7-10 2161

years of experience. 2162
85 - Typical tasks include: 2163
86 - Advanced dynamic programming 2164

problems (e.g., solving longest 2165
common subsequence problems). 2166

87 - Complex graph algorithms (e.g., 2167
implementing D i j k s t r a s or A* 2168
algorithms). 2169

88 - Working with complex technical 2170
stacks that span multiple 2171
platforms and languages. 2172

89 - Solving distributed system 2173
challenges (e.g., ensuring data 2174
consistency across a distributed 2175
database). 2176

90 - Advanced performance optimization 2177
tasks (e.g., reducing latency in 2178
real -time systems). 2179

21

91 - Complex concurrency models and2180
synchronization across multiple2181
threads or processes.2182

92 - System performance tuning at scale2183
(e.g., profiling and optimizing2184
system performance for millions2185
of users).2186

93 - Cross -domain integrations (e.g.,2187
integrating machine learning2188
models into production -level2189
systems).2190

942191
95 9 points - Expert Level2192
96 - Suitable for developers with over 102193

years of experience.2194
97 - Typical tasks include:2195
98 - Designing and implementing domain -2196

specific languages (DSLs).2197
99 - Developing low -level hardware2198

drivers (e.g., writing a device2199
driver in C).2200

100 - Real -time system design (e.g.,2201
building systems for high -2202
frequency trading platforms).2203

101 - Working with highly specialized2204
technologies (e.g., cryptography2205
, embedded systems).2206

102 - Building complex , large -scale2207
distributed systems that require2208
deep expertise (e.g., designing2209
a global load balancer for a2210

cloud platform).2211
103 - Handling complex issues in system2212

architecture (e.g., data2213
sharding and replication across2214
geographically distributed2215
servers).2216

1042217
105 10 points - Academic Research and2218

Innovation2219
106 - Reserved for top -tier experts ,2220

typically in academia or cutting -2221
edge research. These task usually2222
requires deep expertise in system2223
architecture and understanding of2224
limitations in computing , as well as2225
potentially coming up with an2226

innovative or theoretical solution2227
that goes beyond conventional2228
programming.2229

107 - Typical tasks include:2230
108 - Designing brand new algorithms (e.2231

g., quantum computing algorithms2232
).2233

109 - Creating breakthrough solutions.2234
110 - Solving complex challenges that2235

require original , creative2236
thinking and often involve2237
interdisciplinary knowledge (e.g2238
., combining AI with robotics to2239
solve novel problems).2240

111 - Research and development in2241
bleeding -edge fields.2242

112 - Leading complex projects that2243
require significant technical2244
and academic expertise (e.g.,2245
creating a new programming2246
paradigm).2247

1132248
114 ** Instruction Following **2249

115 - Please adhere strictly to the 2250
provided output format in the few 2251
-shot examples. 2252

116 - Your response should consist of 2253
three essential sections: 2254
Thinking Steps , Analysis , Json 2255
Output. 2256

B Static Analysis Examples 2257

B.1 Python 2258

Prompt 2259

1 Extend the given function to support 2260
multiple regular expression patterns 2261
. Each pattern may involve various 2262
named groups , and multiple string 2263
lists should be processed. Each 2264
string across these lists must be 2265
parsed twice using different 2266
configurations. Successful matches 2267
should have their results compiled 2268
into dictionaries. Address handling 2269
of edge cases , specifically focusing 2270
on empty strings and non -matches , 2271

while verifying processing between 2272
different lists and pattern sets. 2273

Response 2274

1 Certainly! Let 's extend a given function 2275
to support parsing multiple lists 2276

of strings using multiple regular 2277
expression patterns. Each pattern 2278
will use named groups , and we will 2279
process each string twice using 2280
different configurations. Successful 2281
matches will be compiled into 2282

dictionaries. We will also address 2283
handling of edge cases like empty 2284
strings and non -matches. 2285

2 2286
3 Here 's a Python implementation: 2287
4 ```Python 2288
5 import re 2289
6 from typing import List , Dict , Any 2290
7 2291
8 def parse_strings_with_patterns(patterns 2292

: List[str], string_lists: List[List 2293
[str]]) -> List[Dict[str , Any]]: 2294

9 # Compile all regex patterns 2295
beforehand for efficiency 2296

10 compiled_patterns = [re.compile(2297
pattern) for pattern in patterns 2298
] 2299

11 2300
12 # Storage for the parsed results 2301
13 results = [] 2302
14 2303
15 # Iterate over each list of strings 2304
16 for strings in string_lists: 2305
17 # Process each string 2306
18 for s in strings: 2307
19 # Skip empty strings 2308
20 if not s: 2309
21 continue 2310
22 2311
23 # Prepare a dictionary to 2312

hold results for this 2313
particular string 2314

22

24 string_results = {'string ':2315
s, 'matches ': []}2316

252317
26 # Parse each string using2318

each pattern twice with2319
different configurations2320

27 for pattern in2321
compiled_patterns:2322

28 # First attempt: direct2323
match2324

29 direct_match = pattern.2325
match(s)2326

30 if direct_match:2327
31 # Save matched2328

groups2329
32 string_results['2330

matches ']. append2331
({2332

33 'config ': '2333
direct_match2334
',2335

34 'groups ':2336
direct_match2337
.groupdict ()2338

35 })2339
362340
37 # Second attempt: match2341

all2342
38 all_matches = pattern.2343

findall(s)2344
39 if all_matches:2345
40 # The result format2346

of findall2347
differs , we2348
handle2349
conversion here2350

41 if isinstance(2351
all_matches [0],2352
tuple):2353

42 for match in2354
all_matches:2355

43 string_results2356
['2357
matches2358
'].2359
append ({2360

44 'config2361
': '2362
findall2363
',2364

45 'groups2365
': {2366
k: v2367
for2368
k,2369

v in2370
zip2371

(2372
pattern2373
.2374
groupindex2375
.2376
keys2377
(),2378
match2379
)}2380

46 })2381
47 else:2382
48 string_results['2383

matches '].2384

append ({ 2385
49 'config ': ' 2386

findall 2387
', 2388

50 'groups ': { 2389
list(2390
pattern. 2391
groupindex 2392
.keys()) 2393
[0]: 2394
match} 2395
for 2396
match in 2397

2398
all_matches 2399

2400
51 }) 2401
52 2402
53 # Handle non -matches 2403
54 if not string_results[' 2404

matches ']: 2405
55 string_results['matches 2406

']. append ({ 2407
56 'config ': 'nomatch ', 2408
57 'groups ': None 2409
58 }) 2410
59 2411
60 # Append the result for this 2412

string 2413
61 results.append(2414

string_results) 2415
62 2416
63 return results 2417
64 2418
65 # Example usage 2419
66 patterns = [2420
67 r'(?P<word >\w+)', 2421
68 r'(?P<number >\d+)', 2422
69] 2423
70 2424
71 string_lists = [2425
72 [" Hello123", "Test456", ""], 2426
73 [" NoMatch", "789"] 2427
74] 2428
75 2429
76 results = parse_strings_with_patterns(2430

patterns , string_lists) 2431
77 for result in results: 2432
78 print(result) 2433
79 ``` 2434
80 ### Explanation: 2435
81 2436
82 1. ** Multiple Patterns **: We accept a 2437

list of patterns. Each pattern is 2438
expected to have named groups. 2439

83 2440
84 2. ** Multiple String Lists **: We accept 2441

multiple lists , each containing 2442
strings to be parsed. 2443

85 2444
86 3. ** Compiling Patterns **: All patterns 2445

are compiled up front for better 2446
performance. 2447

87 2448
88 4. ** Processing Each String **: For each 2449

string in the lists: 2450
89 - Skip empty strings. 2451
90 - Attempt to match using each 2452

compiled pattern twice: 2453
91 - Direct match using `pattern.match 2454

23

()`.2455
92 - Find all matches using `pattern.2456

findall ()` which returns tuples2457
for multiple groups.2458

93 - Extract named groups for successful2459
matches and append them to the2460

results.2461
942462
95 5. ** Handling Edge Cases **:2463
96 - Empty strings are skipped.2464
97 - If no matches are found for a2465

string , an entry is added with `2466
config ` set to `nomatch `.2467

982468
99 6. ** Compiling Results **: All successful2469

matches and non -matches are2470
collected in a structured format2471
into a dictionary list that2472
maintains all relevant information2473
for further processing or analysis.2474

1002475
101 This extended function systematically2476

processes a potentially complex set2477
of inputs and configurations ,2478
providing a robust solution for2479
varied parsing needs.2480

Static analysis result2481

1 {2482
2 "issues ": [2483
3 {2484
4 "rule_name ": "E0001:syntax -error",2485
5 "message ": "Parsing failed: '2486

invalid syntax (current file ,2487
line 46) '",2488

6 "position ": {" start_line ": 51, "2489
end_line ": 51},2490

7 "severity ": "error",2491
8 "content ": "2492

'2493
groups ': {list(pattern.2494
groupindex.keys())[0]: match}2495
for match in all_matches",2496

9 "language ": "Python"2497
10 }2498
11],2499
12 "status ": "fail"2500
13 }2501

B.2 C/C++2502

Prompt2503

1 Create a thread -safe task manager class2504
in C++. This class should be able to2505
:2506

22507
3 - Add new tasks with associated priority2508

levels , while limiting the number2509
of tasks running concurrently.2510

4 - Mark tasks as completed , ensuring that2511
tasks with dependencies only2512

proceed once dependencies are2513
completed.2514

5 - Reset the completion status of all2515
tasks.2516

6 - Guarantee multi -threaded safety and2517
manage task execution in accordance2518
with priority and dependency2519
requirements.2520

Response 2521

1 To create a thread -safe task manager in 2522
C++, we will use several components 2523
from the C++ Standard Library , 2524
including `std::mutex `, `std:: 2525
condition_variable `, and `std:: 2526
thread `. We will use a priority 2527
queue to manage task priorities and 2528
a mechanism to track task 2529
dependencies. This example will 2530
focus on providing core 2531
functionalities and thread safety , 2532
but it 's important to know that 2533
fleshing it out for production use 2534
might require additional error 2535
checking and optimization. 2536

2 2537
3 Here 's a basic implementation: 2538
4 ```cpp 2539
5 #include <iostream > 2540
6 #include <queue > 2541
7 #include <unordered_map > 2542
8 #include <unordered_set > 2543
9 #include <vector > 2544

10 #include <thread > 2545
11 #include <mutex > 2546
12 #include <condition_variable > 2547
13 #include <functional > 2548
14 #include <atomic > 2549
15 2550
16 // Task structure 2551
17 struct Task { 2552
18 int id; 2553
19 int priority; 2554
20 std::function <void()> execute; 2555
21 std::vector <int > dependencies; 2556
22 2557
23 Task(int id, int priority , std:: 2558

function <void()> f, std::vector < 2559
int > deps = {}) 2560

24 : id(id), priority(priority), 2561
execute(std::move(f)), 2562
dependencies(std::move(deps) 2563
) {} 2564

25 }; 2565
26 2566
27 // Comparator for priority queue (higher 2567

priority runs first) 2568
28 struct TaskCompare { 2569
29 bool operator ()(const Task& t1, 2570

const Task& t2) { 2571
30 return t1.priority < t2.priority 2572

; 2573
31 } 2574
32 }; 2575
33 2576
34 class TaskManager { 2577
35 public: 2578
36 TaskManager(int maxConcurrentTasks) 2579
37 : maxConcurrentTasks(2580

maxConcurrentTasks), 2581
activeTasks (0) {} 2582

38 2583
39 void addTask(int id, int priority , 2584

std::function <void()> 2585
taskFunction , std::vector <int > 2586
dependencies = {}) { 2587

40 std:: unique_lock <std::mutex > 2588
lock(mutex); 2589

24

41 tasks[id] = Task(id, priority ,2590
std::move(taskFunction), std2591
::move(dependencies));2592

42 if (dependencies.empty()) {2593
43 taskQueue.push(tasks[id]);2594
44 cv.notify_one ();2595
45 }2596
46 }2597
472598
48 void markTaskCompleted(int id) {2599
49 std:: unique_lock <std::mutex >2600

lock(mutex);2601
50 completedTasks.insert(id);2602
51 for (auto& it : tasks) {2603
52 Task& task = it.second;2604
53 if (! completedTasks.count(2605

task.id) && !2606
waitingTasks.count(task.2607
id)) {2608

54 auto& deps = task.2609
dependencies;2610

55 if (std:: all_of(deps.2611
begin(), deps.end(),2612
[this](int dep) {2613

return2614
completedTasks.count2615
(dep); })) {2616

56 taskQueue.push(task)2617
;2618

57 waitingTasks.erase(2619
task.id);2620

58 cv.notify_one ();2621
59 }2622
60 }2623
61 }2624
62 }2625
632626
64 void resetCompletion () {2627
65 std:: unique_lock <std::mutex >2628

lock(mutex);2629
66 completedTasks.clear();2630
67 while (! taskQueue.empty())2631

taskQueue.pop();2632
68 waitingTasks.clear();2633
69 for (auto& it : tasks) {2634
70 if (it.second.dependencies.2635

empty()) {2636
71 taskQueue.push(it.second2637

);2638
72 } else {2639
73 waitingTasks.insert(it.2640

second.id);2641
74 }2642
75 }2643
76 cv.notify_all ();2644
77 }2645
782646
79 void run() {2647
80 std::vector <std::thread > threads2648

;2649
81 for (int i = 0; i <2650

maxConcurrentTasks; ++i) {2651
82 threads.emplace_back (&2652

TaskManager ::2653
workerThread , this);2654

83 }2655
84 for (auto& thread : threads) {2656
85 thread.join();2657
86 }2658
87 }2659

88 2660
89 private: 2661
90 int maxConcurrentTasks; 2662
91 std::atomic <int > activeTasks; 2663
92 std:: unordered_map <int , Task > tasks; 2664
93 std:: unordered_set <int > 2665

completedTasks; 2666
94 std:: unordered_set <int > waitingTasks 2667

; 2668
95 std:: priority_queue <Task , std:: 2669

vector <Task >, TaskCompare > 2670
taskQueue; 2671

96 std::mutex mutex; 2672
97 std:: condition_variable cv; 2673
98 2674
99 void workerThread () { 2675

100 while (true) { 2676
101 Task task(0, 0, []{}, {}); 2677
102 { 2678
103 std:: unique_lock <std:: 2679

mutex > lock(mutex); 2680
104 cv.wait(lock , [this] { 2681

return !taskQueue. 2682
empty() || 2683
activeTasks > 0; }); 2684

105 2685
106 if (taskQueue.empty()) { 2686
107 break; 2687
108 } 2688
109 2689
110 task = taskQueue.top(); 2690
111 taskQueue.pop(); 2691
112 ++ activeTasks; 2692
113 } 2693
114 2694
115 // Execute the task 2695
116 task.execute (); 2696
117 markTaskCompleted(task.id); 2697
118 2698
119 { 2699
120 std:: unique_lock <std:: 2700

mutex > lock(mutex); 2701
121 --activeTasks; 2702
122 cv.notify_all (); 2703
123 } 2704
124 } 2705
125 } 2706
126 }; 2707
127 2708
128 int main() { 2709
129 TaskManager tm(3); // Allow 3 tasks 2710

to run concurrently 2711
130 2712
131 tm.addTask(1, 10, [] { std::cout << 2713

"Running Task 1\n"; }); 2714
132 tm.addTask(2, 20, [] { std::cout << 2715

"Running Task 2\n"; }); 2716
133 tm.addTask(3, 15, [] { std::cout << 2717

"Running Task 3\n"; }); 2718
134 tm.addTask(4, 30, [] { std::cout << 2719

"Running Task 4\n"; }, {1, 2}); 2720
135 tm.addTask(5, 25, [] { std::cout << 2721

"Running Task 5\n"; }, {3}); 2722
136 2723
137 // Run tasks , observing priorities 2724

and dependencies 2725
138 tm.run(); 2726
139 2727
140 return 0; 2728
141 } 2729

25

142 ```2730
1432731
144 This implementation includes:2732
1452733
146 - **Task Structure **: Defines properties2734

of a task , including its ID,2735
priority , execution function , and2736
dependencies.2737

147 - **Task Manager Class **: Manages tasks ,2738
constraints , and execution using a2739

priority queue , mutex , and condition2740
variables.2741

148 - **Add Task Method **: Adds tasks ,2742
specifying priorities and optional2743
dependencies.2744

149 - **Mark Task Completed Method **: Marks2745
tasks as completed and checks if2746
dependent tasks can proceed.2747

150 - **Reset Method **: Resets all tasks '2748
completion status and restarts2749
execution.2750

151 - ** Worker Threads **: Manage concurrent2751
execution of tasks while observing2752
their priorities and dependencies.2753

1522754
153 This setup allows for scalable and2755

efficient task management in a2756
multithreaded context , accommodating2757
dependency resolution and priority -2758

based execution. More features and2759
error -handling might be necessary2760
for a production system.2761

Static analysis result2762

1 {2763
2 "issues ": [2764
3 {2765
4 "rule_name ": "error",2766
5 "message ": "'all_of ' is not a2767

member of 'std '\n if (std::2768
all_of(deps.begin(), deps.end2769
(), [this](int dep) { return2770
completedTasks.count(dep); }))2771
{\n ^~~~~~" ,2772

6 "position ": {2773
7 "start_line ": 56,2774
8 "end_line ": 562775
9 },2776

10 "severity ": "error",2777
11 "content ": " if (std:: all_of(deps.2778

begin(), deps.end(), [this](2779
int dep) { return2780
completedTasks.count(dep); }))2781
{",2782

12 "language ": "C++"2783
13 },2784
14 {2785
15 "rule_name ": "error",2786
16 "message ": "no matching function2787

for call to 'Task::Task() '\n2788
second(std::forward <_Args2 >(2789
std::get <_Indexes2 >(__tuple2))2790
...)\n ^",2791

17 "position ": {2792
18 "start_line ": 1673,2793
19 "end_line ": 16732794
20 },2795
21 "file_path ": "/usr/include/c++/8/2796

tuple",2797
22 "severity ": "error",2798

23 "language ": "C++" 2799
24 } 2800
25], 2801
26 "status ": "fail" 2802
27 } 2803

B.3 Java 2804

Prompt 2805

1 Design a Java class tasked with 2806
executing and managing multiple 2807
tasks concurrently. Leverage the 2808
Builder pattern to configure the 2809
system , ensuring safe threading and 2810
efficient resource use. Support for 2811
executing SQL queries on specified 2812
databases should be included. The 2813
class must handle dependencies 2814
through priority levels , include 2815
comprehensive exception handling , 2816
and provide features for scheduling 2817
and canceling tasks. Additionally , 2818
define metrics to assess performance 2819
and consider the need for 2820

distributed task execution to 2821
address dynamic management 2822
challenges in real -world scenarios. 2823

Response 2824

1 Creating a Java class that executes and 2825
manages multiple tasks concurrently 2826
using the builder pattern involves a 2827
structured approach to design not 2828

only for functionality but also for 2829
extensibility and maintainability. 2830
Here 's a conceptual design of the 2831
class , including the necessary 2832
details such as exception handling , 2833
task dependencies , scheduling , and 2834
metrics for performance assessment. 2835

2 ```Java 2836
3 import java.sql.Connection; 2837
4 import java.sql.DriverManager; 2838
5 import java.sql.ResultSet; 2839
6 import java.sql.Statement; 2840
7 import java.sql.SQLException; 2841
8 import java.util.ArrayList; 2842
9 import java.util.List; 2843

10 import java.util.PriorityQueue; 2844
11 import java.util.concurrent.Callable; 2845
12 import java.util.concurrent.Executors; 2846
13 import java.util.concurrent. 2847

ScheduledExecutorService; 2848
14 import java.util.concurrent.Future; 2849
15 import java.util.concurrent.TimeUnit; 2850
16 2851
17 // Define a Task class 2852
18 class Task implements Comparable <Task > { 2853
19 private final int priority; 2854
20 private final Callable <?> callable; 2855
21 private final String description; 2856
22 2857
23 public Task(int priority , Callable 2858

<?> callable , String description 2859
) { 2860

24 this.priority = priority; 2861
25 this.callable = callable; 2862
26 this.description = description; 2863

26

27 }2864
282865
29 public int getPriority () {2866
30 return priority;2867
31 }2868
322869
33 public Callable <?> getCallable () {2870
34 return callable;2871
35 }2872
362873
37 public String getDescription () {2874
38 return description;2875
39 }2876
402877
41 @Override2878
42 public int compareTo(Task o) {2879
43 return Integer.compare(o.2880

getPriority (), this.priority2881
);2882

44 }2883
45 }2884
462885
47 // Task manager class2886
48 public class TaskManager {2887
49 private final2888

ScheduledExecutorService2889
executorService;2890

50 private final PriorityQueue <Task >2891
taskQueue;2892

51 private final List <Future <?>>2893
activeTasks;2894

52 private final List <Exception >2895
exceptions;2896

532897
54 // Private constructor2898
55 private TaskManager(2899

ScheduledExecutorService2900
executorService , PriorityQueue <2901
Task > taskQueue) {2902

56 this.executorService =2903
executorService;2904

57 this.taskQueue = taskQueue;2905
58 this.activeTasks = new ArrayList2906

<>();2907
59 this.exceptions = new ArrayList2908

<>();2909
60 }2910
612911
62 public static class Builder {2912
63 private int numThreads;2913
64 private final PriorityQueue <Task2914

> taskQueue = new2915
PriorityQueue <>();2916

652917
66 public Builder setNumThreads(int2918

numThreads) {2919
67 this.numThreads = numThreads2920

;2921
68 return this;2922
69 }2923
702924
71 public Builder addTask(Task task2925

) {2926
72 taskQueue.add(task);2927
73 return this;2928
74 }2929
752930
76 public TaskManager build() {2931
77 ScheduledExecutorService2932

executorService =2933

Executors. 2934
newScheduledThreadPool(2935
numThreads); 2936

78 return new TaskManager(2937
executorService , 2938
taskQueue); 2939

79 } 2940
80 } 2941
81 2942
82 public void execute () throws 2943

InterruptedException { 2944
83 while (! taskQueue.isEmpty ()) { 2945
84 Task task = taskQueue.poll() 2946

; // get highest 2947
priority 2948

85 Future <?> future = 2949
executorService.submit 2950
(() -> { 2951

86 try { 2952
87 return task. 2953

getCallable (). 2954
call(); 2955

88 } catch (Exception e) { 2956
89 exceptions.add(e); 2957
90 // Log or handle 2958

exception 2959
91 } 2960
92 }); 2961
93 activeTasks.add(future); 2962
94 } 2963
95 executorService.shutdown (); 2964
96 executorService.awaitTermination 2965

(Long.MAX_VALUE , TimeUnit. 2966
NANOSECONDS); 2967

97 } 2968
98 2969
99 public void scheduleTask(Task task , 2970

long delay , TimeUnit timeUnit) { 2971
100 executorService.schedule (() -> { 2972
101 try { 2973
102 task.getCallable ().call 2974

(); 2975
103 } catch (Exception e) { 2976
104 exceptions.add(e); 2977
105 } 2978
106 }, delay , timeUnit); 2979
107 } 2980
108 2981
109 public void cancelAllTasks () { 2982
110 for (Future <?> task : 2983

activeTasks) { 2984
111 task.cancel(true); 2985
112 } 2986
113 } 2987
114 2988
115 public List <Exception > getExceptions 2989

() { 2990
116 return exceptions; 2991
117 } 2992
118 2993
119 // SQL Task Support 2994
120 public static Callable <ResultSet > 2995

createSQLTask(String query , 2996
String url , String user , String 2997
password) { 2998

121 return () -> { 2999
122 try (Connection connection = 3000

DriverManager. 3001
getConnection(url , user , 3002
password); 3003

27

123 Statement statement =3004
connection.3005
createStatement ())3006
{3007

124 return statement.3008
executeQuery(query);3009

125 } catch (SQLException e) {3010
126 throw new3011

RuntimeException ("3012
SQL Task Failed", e)3013
;3014

127 }3015
128 };3016
129 }3017
1303018
131 // Metrics to assess performance3019
132 public static class Metrics {3020
133 private final long startTime;3021
134 private long endTime;3022
135 private int totalTasks;3023
136 private int completedTasks;3024
1373025
138 public Metrics () {3026
139 this.startTime = System.3027

currentTimeMillis ();3028
140 }3029
1413030
142 public void taskCompleted () {3031
143 completedTasks ++;3032
144 }3033
1453034
146 public void setTotalTasks(int3035

totalTasks) {3036
147 this.totalTasks = totalTasks3037

;3038
148 }3039
1493040
150 public void end() {3041
151 this.endTime = System.3042

currentTimeMillis ();3043
152 }3044
1533045
154 public long getTotalTime () {3046
155 return endTime - startTime;3047
156 }3048
1573049
158 public int getCompletedTasks () {3050
159 return completedTasks;3051
160 }3052
1613053
162 public int getTotalTasks () {3054
163 return totalTasks;3055
164 }3056
1653057
166 public double getCompletionRate3058

() {3059
167 return (double)3060

completedTasks /3061
totalTasks * 100;3062

168 }3063
169 }3064
1703065
171 // Considerations for Distributed3066

Task Execution:3067
172 // To expand this design to a3068

distributed system , additional3069
components and mechanisms should3070
be3071

173 // integrated , like:3072
174 // - Distributed Task Queues (e.g.,3073

using message brokers like 3074
Kafka , RabbitMQ). 3075

175 // - Database for task tracking , 3076
retries , and fault tolerance. 3077

176 // - Task execution engines that 3078
can scale beyond what is 3079
available in one JVM , 3080

177 // potentially leveraging cloud 3081
services like AWS Lambda for 3082
serverless execution. 3083

178 } 3084
179 ``` 3085
180 3086
181 ### Key Points: 3087
182 3088
183 1. ** Concurrency Management **: Uses ` 3089

ScheduledExecutorService ` to handle 3090
concurrent task execution and 3091
scheduling. 3092

184 3093
185 2. **Task Queuing with Priority **: 3094

Utilizes a `PriorityQueue ` to manage 3095
tasks based on priority levels. 3096

186 3097
187 3. ** Builder Pattern **: Allows flexible 3098

configuration of `TaskManager ` with 3099
a specified number of threads and 3100
tasks. 3101

188 3102
189 4. **SQL Execution **: Implements a 3103

method to create SQL tasks with a 3104
specified query and database 3105
connection details. 3106

190 3107
191 5. ** Exception Handling **: Robust 3108

approach to capturing and managing 3109
exceptions during task execution. 3110

192 3111
193 6. ** Performance Metrics **: Provides a 3112

mechanism to measure execution time , 3113
completion rate , and count of 3114

completed tasks. 3115
194 3116
195 7. **Task Scheduling and Cancellation **: 3117

Offers functionalities to schedule 3118
tasks with delays and cancel running 3119
tasks. 3120

196 3121
197 8. ** Distributed Execution 3122

Considerations **: While the current 3123
design is for a single JVM , it 3124
mentions the necessities for scaling 3125
towards distributed execution 3126

environments. 3127

Static analysis result 3128

1 { 3129
2 "issues ": [3130
3 { 3131
4 "rule_name ": "error", 3132
5 "message ": "no suitable method 3133

found for submit (() ->{ try 3134
[...]; } })\n Future <?> future 3135
= executorService.submit (() -> 3136
{\n ^\n method ExecutorService 3137
.<T#1>submit(Callable <T#1>) is 3138
not applicable\n (cannot infer 3139
type -variable(s) T#1\n (3140
argument mismatch; bad return 3141
type in lambda expression\n 3142

28

missing return value))\n method3143
ExecutorService.<T#2>submit(3144

Runnable ,T#2) is not applicable3145
\n (cannot infer type -variable(3146
s) T#2\n (actual and formal3147
argument lists differ in length3148
))\n method ExecutorService.3149
submit(Runnable) is not3150
applicable\n (argument mismatch3151
; bad return type in lambda3152
expression\n unexpected return3153
value)\n where T#1,T#2 are type3154
-variables :\n T#1 extends3155
Object declared in method <T#1>3156
submit(Callable <T#1>)\n T#23157
extends Object declared in3158
method <T#2>submit(Runnable ,T3159
#2)\n2 errors",3160

6 "position ": {3161
7 "start_line ": 86,3162
8 "end_line ": 863163
9 },3164

10 "severity ": "error",3165
11 "content ": " Future <?> future =3166

executorService.submit (() ->3167
{",3168

12 "language ": "Java"3169
13 }3170
14],3171
15 "status ": "fail"3172
16 }3173

B.4 JavaScript3174

Prompt3175

1 When enhancing the `isCompletelyDefined `3176
function , ensure it evaluates3177

nested functions within objects.3178
Special attention should be given to3179
recursive structures. Return a3180

boolean true when the functional3181
properties are validated properly.3182

Response3183

1 Enhancing the `isCompletelyDefined `3184
function to evaluate nested3185
functions within objects can be done3186
by recursively traversing the3187

object , checking each property for3188
undefined values , and ensuring that3189
all functions are valid and properly3190
defined. Special attention to3191

recursive structures necessitates3192
keeping track of objects we've3193
already encountered to prevent3194
infinite loops.3195

23196
3 Here is a potential implementation in3197

JavaScript:3198
43199
5 ```javascript3200
6 function isCompletelyDefined(obj ,3201

visited = new WeakSet ()) {3202
7 // Check for null or non -object3203

values3204
8 if (obj === null || typeof obj !== '3205

object ') {3206
9 return true;3207

10 } 3208
11 3209
12 // Use a WeakSet to track visited 3210

objects to handle recursive 3211
structures 3212

13 if (visited.has(obj)) { 3213
14 return true; // Avoid infinite 3214

loops 3215
15 } 3216
16 visited.add(obj); 3217
17 3218
18 // Iterate over all properties of 3219

the object 3220
19 for (let key in obj) { 3221
20 if (obj.hasOwnProperty(key)) { 3222
21 const value = obj[key]; 3223
22 3224
23 if (value === undefined) { 3225
24 // If a property is 3226

explicitly undefined 3227
, return false 3228

25 return false; 3229
26 } 3230
27 else if (typeof value === ' 3231

function ') { 3232
28 // If the property is a 3233

function , assume it ' 3234
s valid if it 's 3235
defined 3236

29 // You may add more 3237
complex checks here 3238
if necessary 3239

30 try { 3240
31 value(); 3241
32 } catch (e) { 3242
33 return false; // If 3243

function 3244
execution 3245
results in error 3246
, consider it 3247
invalid 3248

34 } 3249
35 } 3250
36 else if (typeof value === ' 3251

object ') { 3252
37 // For nested objects , 3253

recursively call 3254
isCompletelyDefined 3255

38 if (! isCompletelyDefined 3256
(value , visited)) { 3257

39 return false; 3258
40 } 3259
41 } 3260
42 } 3261
43 } 3262
44 3263
45 return true; 3264
46 } 3265
47 ``` 3266
48 3267
49 ### Key Considerations: 3268
50 - ** Recursive Traversal **: The function 3269

recursively checks each property of 3270
the object. If a property is an 3271
object , it ensures those properties 3272
are also completely defined. 3273

51 - ** Handling of Functions **: It 's 3274
assumed that as long as a function 3275
can be called without causing errors 3276
, it 's properly defined. If a 3277

29

function property needs more complex3278
validation , you can update the3279

logic inside the function check.3280
52 - ** WeakSet for Visited Objects **: To3281

handle recursive structures safely ,3282
the function uses a `WeakSet ` to3283
keep track of visited objects ,3284
preventing an infinite loop on3285
recursive references , such as3286
circular linked lists or structures.3287

53 - **Error Handling **: Functions are3288
simply called to check if they can3289
execute without error , providing a3290
basic form of validation. Depending3291
on your context , you may want to3292
further enhance this part.3293

543294
55 This implementation ensures the3295

structure is evaluated in-depth ,3296
focuses on comprehensive validation ,3297
and maintains efficiency for large3298

objects.3299

Static analysis result3300

1 {3301
2 "issues ": [3302
3 {3303
4 "rule_name ": "no-prototype -3304

builtins",3305
5 "message ": "Do not access Object.3306

prototype method '3307
hasOwnProperty ' from target3308
object.",3309

6 "position ": {3310
7 "start_line ": 20,3311
8 "end_line ": 203312
9 },3313

10 "severity ": "error",3314
11 "content ": " if (obj.3315

hasOwnProperty(key)) {",3316
12 "language ": "JavaScript"3317
13 }3318
14],3319
15 "status ": "fail"3320
16 }3321

B.5 SQL3322

Prompt3323

1 Design a comprehensive system for topic3324
management and display in a3325
community forum. Implement3326
functionalities to retrieve user -3327
created topics using efficient3328
database management techniques. Join3329
necessary tables to compile complex3330
data , such as user profiles , while3331

applying context -aware filters , like3332
temporal scopes or regional3333

differences. Present the resulting3334
data as a list of dictionaries , each3335
featuring 'title ', 'creator_name ',3336

'creation_date ', and optionally '3337
region '. Ensure dynamic pagination3338
to manage extensive topic volumes3339
efficiently , prioritizing descending3340
order by creation date and evaluate3341
resource usage implications.3342

Response 3343

1 Designing a comprehensive system for 3344
topic management and display in a 3345
community forum involves a 3346
combination of database design , 3347
efficient query construction , and 3348
dynamic data presentation. Here 's a 3349
proposed design and implementation 3350
strategy: 3351

2 3352
3 ### ** System Overview ** 3353
4 3354
5 1. ** Database Design :** 3355
6 - ** Tables :** 3356
7 - **Users :** Stores user 3357

information. 3358
8 - Columns: `user_id `, `name `, ` 3359

email `, `region ` 3360
9 - ** Topics :** Stores topics created 3361

by users. 3362
10 - Columns: `topic_id `, `user_id `, 3363

`title `, `creation_date `, ` 3364
content ` 3365

11 - ** Regions :** (Optional) Stores 3366
information about regions. 3367

12 - Columns: `region_id `, ` 3368
region_name ` 3369

13 3370
14 2. ** Relations :** 3371
15 - A **User** can create multiple ** 3372

Topics ** (one -to-many 3373
relationship). 3374

16 - A **User** belongs to one ** Region 3375
** (optional , many -to-one 3376
relationship). 3377

17 3378
18 ### ** Functionality Implementation ** 3379
19 3380
20 #### **Data Retrieval :** 3381
21 3382
22 1. ** Database Connection :** 3383
23 - Use a robust database management 3384

system like PostgreSQL or MySQL. 3385
24 - Implement connection pooling to 3386

manage multiple concurrent 3387
accesses efficiently. 3388

25 3389
26 2. **Query Construction :** 3390
27 - Utilize SQL to retrieve topic data 3391

with necessary joins and filters. 3392
28 - Example Query: 3393
29 ```sql 3394
30 SELECT 3395
31 t.title , 3396
32 u.name as creator_name , 3397
33 t.creation_date , 3398
34 u.region 3399
35 FROM 3400
36 Topics t 3401
37 JOIN 3402
38 Users u ON t.user_id = u.user_id 3403
39 ORDER BY 3404
40 t.creation_date DESC 3405
41 LIMIT 3406
42 %s OFFSET %s; 3407
43 ``` 3408
44 - Use placeholders for pagination (` 3409

LIMIT %s OFFSET %s`). 3410
45 3411

30

46 3. **Context -Aware Filtering :**3412
47 - ** Temporal Scope :** Add a date3413

range condition (`WHERE t.3414
creation_date BETWEEN %s AND %s`)3415
.3416

48 - ** Regional Differences :**3417
49 - Filter by region if specified (`3418

WHERE u.region = %s`).3419
503420
51 4. ** Dynamic Pagination :**3421
52 - Implement pagination by calculating3422

`LIMIT ` and `OFFSET ` based on3423
page number and page size.3424

53 - Provide API endpoints with3425
parameters for `page ` and `3426
page_size `.3427

543428
55 ### ** Response Structure :**3429
563430
57 - **Data Format :**3431
58 - Return data as a list of3432

dictionaries.3433
59 - Example:3434
60 ```python3435
61 [3436
62 {3437
63 "title": "How to Learn Python",3438
64 "creator_name ": "Alice",3439
65 "creation_date ": "2023 -10 -01" ,3440
66 "region ": "North America" #3441

Optional3442
67 },3443
68 {3444
69 "title": "Javascript Tips",3445
70 "creator_name ": "Bob",3446
71 "creation_date ": "2023 -10 -02" ,3447
72 "region ": "Europe" # Optional3448
73 }3449
74]3450
75 ```3451
763452
77 ### ** Efficiency and Resource Management3453

:**3454
783455
79 1. ** Indexing :**3456
80 - Index `creation_date ` for faster3457

order operations.3458
81 - Index foreign keys (`user_id `) for3459

quicker join operations.3460
823461
83 2. ** Connection Pooling :**3462
84 - Use a connection pool library to3463

manage database connections3464
efficiently.3465

85 - Libraries like SQLAlchemy (Python)3466
provide robust connection pooling3467
options.3468

863469
87 3. ** Caching Strategy :**3470
88 - Implement caching for repetitive3471

queries using tools like Redis or3472
Memcached.3473

89 - Consider caching popular queries (e3474
.g., when paginating through the3475
latest topics).3476

903477
91 4. **Load Testing :**3478
92 - Conduct load testing to ensure that3479

the system can handle extensive3480
volumes without performance3481

degradation. 3482
93 - Tools like JMeter or Locust can 3483

simulate concurrent users. 3484
94 3485
95 5. ** Monitoring :** 3486
96 - Monitor database performance using 3487

built -in tools or third -party 3488
solutions. 3489

97 - Analyze query execution times and 3490
plan optimizations accordingly. 3491

98 3492
99 This design balances efficient data 3493

retrieval , context -aware filtering , 3494
and effective resource management , 3495
ensuring a scalable and responsive 3496
community forum system. 3497

Static analysis result 3498

1 { 3499
2 "issues ": [3500
3 { 3501
4 "rule_name ": "PRS:", 3502
5 "message ": "Line 12, Position 1: 3503

Found unparsable section: ' 3504
LIMIT \\n %s OFFSET %s'", 3505

6 "position ": { 3506
7 "start_line ": 41, 3507
8 "end_line ": 42 3508
9 }, 3509

10 "severity ": "error", 3510
11 "content ": "LIMIT \n %s OFFSET %s 3511

;", 3512
12 "language ": "SQL" 3513
13 } 3514
14], 3515
15 "status ": "fail" 3516
16 } 3517

31

	Introduction
	Related Work
	Advances in Automated Instruction Synthesis
	Static Code Analysis

	Method
	Reverse Construction: Deriving Problems from Code
	Backfeeding Construction: Closed-Loop Optimization from Keywords to Problems
	Prompt Filtering
	Response Quality Enhancement Based on Static Syntax Analysis

	Experiments
	Experimental Settings
	Experimental Results and Analysis
	Improvements in Code Generation Capabilities
	Comparative Analysis with Benchmark Methods

	Conclusion
	Limitations
	Prompts
	Integrated Reverse Question Generation Template
	Complicate Prompt
	Text Rewrite Prompt
	Prompts for keyword extraction
	Extract Task
	Extract Instruction
	Extract Knowledge

	Keyword combination and filtering
	Description of keyword types
	Relationship analyses
	Associative phrase construction

	Integrated Backfeeding Question Generation Template
	Prompt Filtering
	Instruction Complexity Assessment

	Static Analysis Examples
	Python
	C/C++
	Java
	JavaScript
	SQL

