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Abstract
Events refer to specific occurrences, incidents,001
or happenings that take place under a particular002
background. Event reasoning aims to reason003
according to certain relations. The cutting-edge004
techniques for event reasoning play crucial and005
fundamental abilities underlying various nat-006
ural language processing applications. Large007
language models (LLMs) have made signifi-008
cant advancements in event reasoning owing009
to their wealth of knowledge and reasoning010
capabilities. However, open-source LLMs cur-011
rently in use do not consistently demonstrate012
exceptional proficiency in managing event rea-013
soning. This discrepancy arises from insuf-014
ficient learning of knowledge of event rela-015
tions and incomplete reasoning paradigms. In016
this paper, we propose WIZARDEVENT, the017
hybrid event-aware instruction tuning leading018
to better event reasoning abilities. Specifi-019
cally, we first represent the events and relation020
of the event relational knowledge in a novel021
structure. We then mine the knowledge from022
raw text. Second, we introduce the prototypi-023
cal event reasoning paradigms which include024
four reasoning formats. Lastly, we wrap our025
constructed event relational knowledge with026
our reasoning paradigms to create the instruc-027
tion tuning dataset. We fine-tune to obtain028
WIZARDEVENT using this enriched dataset,029
significantly improving their event reasoning.030
The performance of WIZARDEVENT is rig-031
orously evaluated through a series of exten-032
sive experiments across 10 event reasoning033
tasks. We also annotate a new dataset for034
event relational knowledge evaluation. The035
results from these evaluations demonstrate036
that WIZARDEVENT substantially outperforms037
other instruction-tuned models, indicating the038
success of our approach in enhancing LLMs’039
proficiency in event reasoning.040

1 Introduction041

Events are instances or occurrences that form the042

basic semantic building units in natural language.043

Event Reasoning (ER) is the ability to process 044

and analyze the complex interconnections between 045

events. This involves training models to under- 046

stand the dynamics of event progression in the real 047

world (Tao et al., 2023a). As a fundamental com- 048

petency within Large Language Models (LLMs), 049

ER supports a multitude of Natural Language Pro- 050

cessing (NLP) tasks, including recommendation 051

engines (Yang et al., 2020), interactive question- 052

answer systems (Souza Costa et al., 2020), and AI 053

Agents (Liu et al., 2023). Therefore, ER is essen- 054

tial for the advancement of LLMs. 055

Unlocking the full potential of ER hinges on 056

the mastery of various reasoning abilities and 057

event relational knowledge which reflects the logic 058

of events and their relations. Humans excel in 059

ER due to their extensive acquisition of such re- 060

lational knowledge and proficient reasoning of 061

comprehensive paradigms. In contrast, the pro- 062

ficiency of current open-source LLMs for ER is 063

lacking (Tao et al., 2023a). There are primarily 064

two reasons. First, the skill set of present-day 065

open-source LLMs is predominantly stimulated 066

by instruction-tuning (Taori et al., 2023; Chiang 067

et al., 2023; Xu et al., 2023). However, datasets 068

used for instruction-tuning often contain sparse 069

critical event relational knowledge, resulting in an 070

underdeveloped understanding of this essential in- 071

formation. Second, the realm of ER encompasses 072

a variety of reasoning patterns, which includes 073

both speculating events (Du et al., 2022; Sap et al., 074

2019) and complex inter-event relationship reason- 075

ing (Ning et al., 2018; Caselli and Vossen, 2017). 076

Current methods of generating instructions face 077

challenges in capturing this broad spectrum of rea- 078

soning paradigms (Wang et al., 2022b). It also 079

incurs unbalanced abilities of different relations 080

and paradigms. 081

In an effort to overcome the challenges outlined, 082

we introduce WIZARDEVENT , which is obtained 083

through our innovative Event-oriented Instruction 084

1



Tuning approach. To counteract the scarcity of085

event relational knowledge in training data, we086

design a novel formulation to represent the event087

relational knowledge. Furthermore, we present a088

technique for mining event relational knowledge089

from unprocessed datasets. Second, we aim to090

thoroughly encompass the various paradigms of091

ER by introducing what we term the hybrid event092

reasoning. We design four reasoning formats that093

collectively establish the foundational competen-094

cies necessary for effective ER. Lastly, we craft095

templates for each reasoning format and the corre-096

sponding inter-relations. These templates are sub-097

sequently integrated within our instruction tuning098

process, paired with the ER paradigms. Utiliz-099

ing the resulting dataset, we fine-tune open-source100

LLMs, thereby enhancing their abilities to execute101

ER informed by event relational knowledge.102

We conduct extensive experiments to testify103

to the effectiveness of WIZARDEVENT. We104

first evaluate the performance of WIZARDEVENT105

across 10 tasks of ER. We then annotate a new106

dataset for the evaluation of event relational knowl-107

edge. Results of automatic and human evalua-108

tions show that WIZARDEVENT outperforms other109

instruction-tuned models.110

We summarize our contributions:111

• We propose to enhance the basic ER ability112

for developing better LLMs. We present a113

novel formulation of event relational knowl-114

edge and introduce a method to construct it.115

• We design the hybrid event reasoning. We116

then encapsulate event relational knowledge117

into the training dataset with the proposed118

paradigm. We then finetune open-source119

LLMs to obtain our model. The novel event-120

oriented formulation and reasoning paradigm121

may also shed light on other event-oriented122

methods.123

• We conduct extensive experiments on 10 test124

sets for testing the abilities of ER and an an-125

notated test set for event relational knowl-126

edge. Results show the effectiveness of127

WIZARDEVENT.128

2 WIZARDEVENT Methodology129

2.1 Overview130

Our primary aim is to achieve an enhanced com-131

prehension of event relational knowledge and var-132

ious reasoning formats. An overview of the133

WIZARDEVENT training and evaluation process 134

is illustrated in Figure 1. To accomplish this ob- 135

jective, we begin by introducing our formulation 136

of event relational knowledge in Section 2.2. We 137

also design a method to mine the knowledge from 138

the raw dataset in Section 2.2. Then we propose 139

the hybrid event reasoning paradigm which con- 140

sists of four types of reasoning formats in Sec- 141

tion 2.3. Last, we constructed instruction-tuning 142

dataset with our event relational knowledge and 143

reasoning paradigm. 144

2.2 Event Relational Knowledge 145

Formulation Existing LLMs fall short in learn- 146

ing event relational knowledge since it is sparse in 147

finetuning datasets. These models tend to stimulate 148

the abilities of event reasoning insufficiently and 149

imbalancedly. In an endeavor to mitigate the limi- 150

tation, we enhance the models with event relational 151

knowledge. We initially introduce the formulation 152

of event relational knowledge, which encompasses 153

events and their inter-relations. 154

Given the K, a set of event relational knowledge, 155

any item in it is represented as K = (C, Eh,R, E t), 156

K ∈ K. Eh is the head event, E t is the tail event, 157

and R is the relation between them. C is the 158

context describing the background information of 159

both events. K entails rich semantic information 160

of events. K is also rich in event relational and 161

structural knowledge since it captures event inter- 162

relations. Besides, K captures the necessary in- 163

formation for the events by including the context. 164

Contextual information is important for an accu- 165

rate understanding of events, as in the absence of 166

contextual information, the understanding of the 167

event is often prone to ambiguity. In summary, us- 168

ing K to capture different aspects of events may 169

reduce the risk of event misunderstanding and en- 170

hance the conceptions of structure and semantics 171

of the events, thereby improving the accuracy of 172

achieving event reasoning. 173

Construction This section details the construc- 174

tion of K, extracted from BookCorpus (Zhu et al., 175

2015). Initially, tail events E t are located by iden- 176

tifying connectives indicative of relations, simi- 177

lar to the approach in Zhou et al. (2022a) using 178

PDTB (Prasad et al., 2008). A child node with a 179

VERB part-of-speech tag from these connectives is 180

considered a tail event trigger. This VERB triggers 181

a dependency tree traversal, capturing a verb-rooted 182

subset of words forming E t. 183
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Event Relational Knowledge

WizardEvent

Raw Dataset (𝒞,ℰ! , ℛ, ℇ")Construction Typification

ℇ" = Open(𝒞,ℰ! , ℛ) ℇ" = Close 𝒞, ℰ!, ℛ	 	𝔻)

ℛ = R𝑒𝑙(ℰ!, ℰ", 𝒞) Verify(ℰ!, ℰ", ℛ, 𝒞)

The Hybrid Event Reasoning

ℛ
Cause       Effect         After      
Before    isCond hasCond

Simultaneously

Training DatasetInstruction Wrapping

Figure 1: Overview of training process and evaluation of WIZARDEVENT. The training process encompasses
Event-Oriented Instruction Tuning and Construction of event relational knowledge.

The extraction of the head event Eh, relation R,184

and contextual information C for K follows. Ex-185

tracting Eh proves more complex due to the indirect186

linkage between its trigger and the relational con-187

nective. Instead of linguistic rules, an end-to-end188

relation parser like ASER’s (Zhang et al., 2020) is189

used to analyze the text containing E t and extract190

Eh and the connecting relations 1. The parser out-191

puts the relation R. We focus on a predefined set192

of relations:193
R ∈ SR = {Cause, Effect, After,

Before, isCond, hasCond,

Simultaneously}.
194

We concatenate sentences before the sentence195

of Eh as the context C. Thus far, we have accom-196

plished the construction of K.197

Typification After the construction, K could be198

atypical event relational knowledge. However, K199

should be salient patterns. Therefore, we conduct a200

further typification process.201

For each K ∈ K, we extract the verbs of the202

head and tail events via dependency parsing. We203

obtain the pattern (vh,R, vt) of K. We count the204

frequencies of all patterns for all K ∈ K. For each205

top frequent pattern, we sample 5 K of it. Then we206

collect our final salient event relational knowledge.207

2.3 The Hybrid Event Reasoning208

With event relational knowledge, existing LLMs209

are still limited in learning various event reasoning210

formats. To overcome this deficiency, we induce211

hybrid event reasoning paradigm. We focus on four212

1Only Eh preceding the tail event are considered.

types of event reasoning formats covering practical 213

needs. We introduce them in the following. 214

Open Event Reasoning This is the most com- 215

mon ability that requires the model to generate tail 216

event E t based on head event Eh, and context C 217

according to relation R: 218

E t = Open(Eh,R, C). (1) 219

Through learning to generate events, the model’s 220

comprehension of the event semantics is stimulated, 221

enabling it to accomplish the event reasoning tasks 222

in a manner more aligned with human understand- 223

ing. Moreover, the model learns to draw proper 224

information from the context to answer the event 225

reasoning questions more precisely. 226

Close Event Reasoning Models should be able 227

to discriminate the wrong events. Similar to DPO 228

training (Rafailov et al., 2023), to enhance the 229

model’s event discrimination ability, we incorpo- 230

rate close event reasoning: 231

E t = Close(Eh,R, C| D). (2) 232

D is the set of the candidate events including 233

ground-truth tail event E t and several negative 234

candidates. Thus, close event reasoning is a 235

multiple-choice formulation. This learning pro- 236

cess further reinforced the model’s comprehension 237

of events and their interrelationships, enhancing 238

the model’s discriminative capabilities of event re- 239

lational knowledge . 240

Relation Reasoning Determining the relations 241

between events is another basic ability that has 242

significant applications. We include it into our 243
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### Instructions:
Give me 5 instructions which are questions of the
question type based on all input data.

### Question type:
[𝒯]

### Input data:
[context]: the context information.
[event1]: the first event.
[event2]: the second event.

### Requirements:
1. The instructions should strictly be the question type
asked.
2. If [context] in input data, ensure the instructions
must include the placeholder name [context]. If
[event1] in input data, ensure the instructions must
include placeholder name [event1]. If [event2] in input
data, ensure the instructions must include placeholder
name [event2].
3. The instructions should be diversified.

Generate:

### Generation Examples:
Cause – Close
Choose the event that is the direct cause of [event1] in
the provided [context].
After - Open
In the scenario described by [context], what is the
subsequent event after [event1]?
Before – Rel
Based on the [context], what is the sequence of
occurrences between [event1] and [event2]?
isCond – Verify
Within the [context] provided, is [event2] an essential
condition that must be met for [event1] to occur?

Figure 2: The above is the prompt for template gen-
eration. Question type T describes the relation and
paradigm of the instruction we plan to generate. [con-
text] is the placeholder for context information. [event1]
and [event2] are placeholders for the head and tail events.
The below is the generated template examples.

paradigm as:244

R = Rel(Eh, E t, C). (3)245

It requires the model to reason relations between246

two events given the context. This reasoning for-247

mat further strengthens the model’s event relational248

knowledge with improved relation understanding.249

Event Fact Verification Given event relational250

fact (Eh,R, E t, C), we require the model to deter-251

mine whether the fact is true or not. This is also a252

wildly-used ability:253

Verify(Eh, E t,R, C). (4)254

This paradigm not only enhances the event under-255

standing but also the relation between two events.256

Training with these reasoning formats can effec-257

tively improve the event reasoning performances258

leading to better downstream applications.259

Close Open Rel Verify

Cause 1,293 1,269 823 814
Effect 1,338 1,344 835 833
None 0 0 3,713 3,839
After 2,598 2,609 1,712 1,687
Before 2,644 2,649 1,671 1,678
Simul 996 987 690 663
IsCond 989 1,024 668 624
HasCond 1,007 1,025 695 674

Total 10,865 10,907 10,807 10,812

Table 1: Instruction tuning dataset statistics. Simul is
short for simultaneously.

2.4 Instruction-Tuning Dataset 260

We then incorporate our constructed event rela- 261

tional knowledge into instruction tuning datasets 262

with our reasoning paradigm. 263

We derive instruction templates by querying 264

GPT4. Our method encompasses |SR| relations, 265

coupled with four reasoning formats. Furthermore, 266

we account for situations in which context C might 267

be absent. Consequently, we require total amounts 268

to |SR| × 4× 2 variations of instruction templates. 269

For each kind, we ask GPT4 to list 20 prompts with 270

the query. The prompt and the generation examples 271

are shown in Figure 2. More examples are in the 272

Appendix C. 273

After that, for each K, we sample a reasoning 274

format. We then wrap the K with a certain tem- 275

plate according to the relation and the reasoning 276

format. We replace the placeholder [event1] and 277

[event2] with head event Eh and tail event E t, and 278

the placeholder [context] by context C (if exists). 279

For Close, Rel, and Verify reasoning, we need 280

negative candidates. We follow Zhou et al. (2022a) 281

to retrieve the negative events to create candidate 282

event set D. We build a pool of events from the 283

whole corpus and then retrieve the negative events 284

using three heuristic rules. Specifically, given tail 285

event E t, we build its negative events, in light of 286

lexicon-based, PoS-based, or in-domain retrieval. 287

For Close, we sample two events from all negative 288

events and form candidate event set D with gold 289

tail event E t. For Rel and Verify, we sample 1 event 290

from D to form a new data with label None. 291

We balance the amount of different tasks and 292

relation data and report the instruction tuning set 293

statistics in Table 1. To maintain the general abil- 294

ity, we also mix with a general instruction tuning 295

dataset GPT4Alpaca (Peng et al., 2023). Then we 296

finetune the backbone LLM with the construct in- 297

struction tuning dataset to obtain WIZARDEVENT. 298
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MODEL
ACC F1

ECARE COPA MCTACO SocialIQA SCT MATRES ESL TRACIE ESTER CQA

CLOSE SOURCE MODELS

GPT3.5 80.30 94.00 92.25 71.03 95.03 44.98 61.41 59.00 23.88 19.95

OPEN SOURCE MODELS

Alpaca-7B (Taori et al., 2023) 69.42 68.00 84.41 54.40 86.16 4.23 45.83 59.41 20.64 19.35
WizardLM-7B (Xu et al., 2023) 64.96 68.00 80.28 46.21 82.31 34.70 32.97 53.07 17.61 12.00
Vicuna-7B (Chiang et al., 2023) 53.38 68.00 51.51 32.91 52.70 50.42 69.02 0.00 20.59 12.46
Baichuan2-7B (Yang et al., 2023a) 75.19 68.00 87.32 62.90 86.37 33.98 62.68 47.38 15.48 11.79
Llama2-7B 73.31 83.00 83.40 55.89 78.41 38.45 52.17 63.64 18.61 10.59
Llama2-7B-ALP 65.90 74.00 82.19 49.03 87.28 49.21 57.43 38.92 14.90 11.84
WIZARDEVENT (Ours) 80.11 94.00 89.84 62.23 92.68 51.39 76.09 66.67 28.48 34.85
WIZARDEVENT-13B (Ours) 81.85 94.00 87.22 64.89 92.36 56.83 68.30 66.67 36.36 45.09

Table 2: Main results on event reasoning. Bold number stands for best performances among all 7B models. Blue
blank stands for outperforming GPT-3.5.

3 Experiments299

3.1 Datasets300

We incorporate ECARE (Du et al., 2022),301

MCTACO (Zhou et al., 2019), SocialIQA (Sap302

et al., 2019), SCT (Mostafazadeh et al., 2016),303

MATRES (Ning et al., 2018), ESL (Caselli and304

Vossen, 2017), TRACIE (Zhou et al., 2020),305

ESTER (Han et al., 2021), and CQA (Bondarenko306

et al., 2022) for test. These datasets can be used to307

assess the abilities of causal, temporal, intentional308

event reasoning, and event prediction respectively.309

3.2 Baselines310

We include Llama1 based Alpaca-7B (Taori et al.,311

2023). WizardLM-7B (Xu et al., 2023), Vicuna-312

7B (Chiang et al., 2023), Llama2-7B-chat (Touvron313

et al., 2023) are based on Llama2. We also include314

Baichuan2 (Yang et al., 2023a) and GPT3.5 as our315

baselines. For open-source models, we use the chat316

version of the open-source models for evaluation317

and use the model names for short. Llama2-ALP318

is Llama2-base only finetuned on GPT4Alpaca.319

3.3 Implementation Settings320

WIZARDEVENT undergoes fine-tuning using aca-321

demic resources. Precisely, we utilize 4 × NVIDIA322

A800 80G GPUs to train both 7B and 13B Llama2-323

base for 3 epochs. We use the DeepSpeed train-324

ing framework2, and ZERO-2 strategy (no offload)325

along with mixed-precision training (bf16). We use326

a standard AdamW optimizer and a linear warmup327

scheduler. The initial learning rate for AdamW328

is set to 2e−5, and the ratio for warmup is set to329

0.03. The maximum sequence length for the model330

training is 512, and the batch size is configured as331

2https://www.deepspeed.ai

64 per device. The entire fine-tuning process is 332

completed within 4 hours. 333

We use Spacy3 for all linguistic extraction. 334

In our pilot experiments, we test multiple input 335

prompts for each model to search for the optimum 336

prompt for evaluation tasks. We observe minimal 337

fluctuations in the results despite prompt variations. 338

To mitigate the impact of other variables, we ensure 339

consistency by employing the same prompt for all 340

models when they undertake the same task. We 341

turn the Close, Rel, and Verify into multiple-choice 342

questions and require the model to answer by the 343

label of choice. All prompts for evaluation can be 344

found in the Appendix B. 345

3.4 Evaluation Metrics 346

We follow Tao et al. (2023a) to evaluate all models 347

on automatic metrics. For ECARE, COPA, MCTACO, 348

SocialIQA, SCT, MATRES, ESL we use accuracy. 349

For TRACIE, ESTER, and CQA we use F1-score. For 350

tasks of multiple-choice style, some models won’t 351

directly generate the label as the answer. We adopt 352

a decoding protocol to parse the output answers 353

and obtain the final prediction for all models. We 354

find this protocol effective. We show this protocol 355

in Appendix A. 356

3.5 Main Results 357

We show the main results in Table 2. We find 358

both 7B and 13B WIZARDEVENT significantly 359

outperform Llama2-7B-ALP. In COPA, TRACIE, and 360

CQA, WIZARDEVENT improves larger than 20 per- 361

cent. The results suggest our method effectively 362

increases the event reasoning abilities. Enhanc- 363

ing event relational knowledge improves reasoning 364

3https://spacy.io
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Model ECARE COPA MCTACO SocialIQA SCT MATRES ESL TRACIE ESTER CQA AVG

REASONING PARADIGM EVALUATION

Ours 80.11 94.00 89.84 62.23 92.68 51.39 76.09 66.67 28.48 34.85 67.63
- Close 74.34 88.00 91.25 61.36 90.91 49.94 79.89 59.03 24.18 26.39 64.52−3.10

- Open 78.05 86.00 88.03 61.67 91.07 42.32 66.85 66.67 16.03 11.50 60.81−6.81

- Rel 78.71 91.00 81.99 58.90 91.66 50.42 66.67 66.67 29.59 35.48 65.10−2.52

- Verify 79.08 91.00 88.03 62.33 89.26 50.79 70.47 62.32 27.90 35.99 65.71−1.91

TRAINING CURRICULUMS

Serial 76.69 92.00 83.20 55.83 85.09 22.85 78.44 66.67 27.74 45.25 63.37−4.25

Pipeline 78.94 91.00 90.04 61.87 91.50 50.42 73.91 61.27 26.11 32.94 65.80−1.83

Table 3: Evaluation of reasoning paradigm and exploration of training curriculums. AVG stands for the average
scores of all datasets. Red numbers are the decrease scores.

abilities on various relations and reasoning formats.365

Compared with other instruction-tuning meth-366

ods, WIZARDEVENT achieves the best perfor-367

mances. It indicating our method can effectively368

mitigate the sparsity of event relational knowledge369

and reasoning formats in general instruction-tuning370

datasets. WIZARDEVENT even excels GPT3.5 in371

6 among all 10 test sets which further demonstrates372

the effectiveness of WIZARDEVENT.373

We also find WIZARDEVENT performs particu-374

larly well on event relation extraction test sets such375

as ESL, MATRES, and fact verification test sets as376

TRACIE. This indicates that WIZARDEVENT effec-377

tively solves the imbalance of abilities on various378

reasoning formats.379

3.6 Paradigm Evaluation380

In this section, we evaluate the proposed reasoning381

paradigm. We conduct ablation experiments. We382

testify WIZARDEVENT four times each with one383

reasoning format ablated. We show the results in384

Table 3. As the average scores on all datasets, we385

find all reasoning formats work. Ablating any rea-386

soning format would incur a drop in performances.387

The results demonstrate the effectiveness of our388

prototypical event reasoning abilities.389

Among all reasoning formats, we find the390

Open reasoning format works most where391

WIZARDEVENT would drop average 6.81 scores392

on average. It could be the most basic ability for393

event reasoning. We also find there are sometimes394

exceptions where ablating some reasoning format395

increases performances on a few datasets. We be-396

lieve that it may be attributed to different learning397

progress and curriculums of different abilities. We398

would probe it more in Section 3.10.399

3.7 Generalization of LLMs 400

In this section, we evaluate the generalization 401

of WIZARDEVENT on other backbone models. 402

We conduct two experiments with backbone re- 403

placement to Qwen-7B (Bai et al., 2023) and 404

Mistral-7B (Jiang et al., 2023). We compare 405

WIZARDEVENT on different backbones to their 406

models on only GPT4Alpaca. The results are 407

shown in Table 4. We find WIZARDEVENT ex- 408

cels GPT4Alpaca on all backbones. The results 409

indicate the generalization of our methods. Fur- 410

ther, findings are consistent on different backbones. 411

WIZARDEVENT can effectively boost relation ex- 412

traction and verification datasets. 413

3.8 Event Relational Knowledge Evaluation 414

In this section, we evaluate whether our motivation 415

holds that WIZARDEVENT can enhance the event 416

relational knowledge of LLMs. However, it is hard 417

to evaluate since there are no available datasets. 418

To fulfill this goal, we annotate a novel test set 419

to evaluate the event relational knowledge. Our 420

dataset mainly testifies to Close and Rel reasoning 421

formats. The construction process is: 422

Schema Graph Construction. We utilize 423

the Event-Event Concept Knowledge Graph 424

(EECKG) (Wang et al., 2022a), which is derived 425

from ConceptNet through a combination of rule- 426

based reasoning and crowdsourcing. Since we 427

aim to evaluate event relational knowledge, we 428

ensure events we use are abstract event types by 429

filtering out concrete events. This is done by in- 430

cluding nodes of fewer than two words and em- 431

ploying GPT4 to assess the abstractness of events. 432

We then eliminate high-frequency events to avoid 433

overly generic nodes. We split EECKG into 434

smaller components, each representing a scenario 435

of related events, by random walk on EECKG. 436
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Model ECARE COPA MCTACO SocialIQA SCT MATRES ESL TRACIE ESTER CQA

Llama2+ALP 65.9 74.00 82.19 49.03 87.28 49.21 57.43 38.92 14.90 11.84
Ours (Llama2) 80.1114.21 94.0020.00 89.847.65 62.2313.20 92.685.40 51.392.18 76.0918.66 66.6727.75 28.4813.58 34.8523.01

Qwen+ALP 76.17 90.00 88.83 64.74 94.71 43.17 37.68 49.14 10.84 10.90
Ours (Qwen) 80.34.13 88.00−2.00 91.452.62 67.402.66 93.85−0.86 55.7412.57 54.7117.03 66.6717.53 27.4916.65 34.0823.18

Mistral+ALP 69.75 80.00 82.80 48.82 86.26 10.64 51.45 65.64 10.18 8.36
Ours (Mistral) 76.456.70 91.0011.00 84.001.20 54.815.99 85.62−0.64 50.4239.78 68.1216.67 66.671.03 16.045.86 20.2111.85

Table 4: Generalization of LLMs. ALP stands for finetuned on GPT4Alpaca. Green numbers indicate improvements
while red numbers stand for dropped performances.

Model CLOSE REL

Llama2+ALP 32.62 40.28
WIZARDEVENT (Llama2) 43.1910.57 41.321.04

Qwen+ALP 43.73 33.53
WIZARDEVENT (Qwen) 44.620.89 39.285.75

Mistral+ALP 33.51 37.25
WIZARDEVENT (Mistral) 50.1816.67 42.044.79

Table 5: Event relational knowledge evaluation. Green
numbers indicate improvements.

Convert the components into DAGs by removing437

cycles and creating backward components with re-438

versed edges and relations. We totally consider 6439

relations: Cause, Before, HasSubevent, Effect,440

After, and IsSubevent4.441

Task Construction. For each component, we sam-442

ple two abstract events to form questions. We443

calculate their relation according to their connect-444

ing path. For the Close task, we use GPT4 to445

generate 15 negative candidate events for each446

question. For the Rel reasoning task, we regard447

two events as input and relation as the answer.448

Human Anotation. We recruit human annota-449

tors to fix and further filter the questions we con-450

structed as the final answers.451

We finally construct 558 Close reasoning data452

and 835 Rel reasoning data. As in the previous sec-453

tion, we train WIZARDEVENT on different back-454

bones and compare them to GPT4Alpaca. We re-455

port the results on our event relational knowledge456

dataset in Table 5. We find WIZARDEVENT is457

indeed able to enhance the event relational knowl-458

edge on various LLMs. WIZARDEVENT improves459

on all backbones and reasoning paradigms which460

demonstrates our motivation holds. We show the461

evaluation prompts in Appendix B.462

4HasSubevent and IsSubevent are not in our training
relations. We use them for held-out relation evaluation.

3.9 Data Scaling 463

We conduct experiments on various numbers of 464

training data. We vary the number from 1k to full. 465

We show the results in Figure 3. We find the overall 466

performance increases with the scaling of data. We 467

discover a pattern that appeared across multiple 468

test sets. That is, the model will first achieve better 469

results at 3k data, then drop slightly at 5k, and 470

finally continue to rise. We think it also results 471

from different training curriculums of abilities. 472

3.10 Training curriculums 473

In this part, we probe how the training curric- 474

ula affect WIZARDEVENT. Our WIZARDEVENT 475

is trained with uniformly shuffling our data and 476

GPT4Alpaca. We explore two extra training cur- 477

riculums: 478

Serial. We first train GPT4Alpaca to endow the 479

model with the general abilities for 3 epochs. 480

Then train it with our data for another 3 epochs. 481

Pipline. We split GPT4Alpaca into 4 chunks and 482

denote the ith chunk as ALPi. We train in the 483

pipeline order as [Open, ALP1, Close, ALP2, Rel, 484

ALP3, Verify, ALP4, ...]. We train until 3 epochs. 485

Results are in Table 3. We find both training 486

curriculums drop. The drop of Serial may indicate 487

that abilities of event reasoning are fundamental 488

which don’t deeply rely upon other basic abilities. 489

Pipline also falls behind the uniform mix of all data 490

showing a challenging problem in designing better 491

training curriculums. We leave it for future work. 492

4 Related Work 493

Event Reasoning Event relational reasoning in- 494

fers events of certain inter-relations. Du et al. 495

(2022) aims to select the accurate cause or effect 496

event from candidates. Zhou et al. (2019) serves 497

as a dataset for event temporal reasoning. Existing 498
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Figure 3: Performances of WIZARDEVENT with data
scaling.

works present a scenario of counterfactual reason-499

ing (Qin et al., 2019, 2020). In addition to single-500

event relation reasoning, existing works also reason501

events according to diversified event relations (Po-502

ria et al., 2021; Han et al., 2021; Yang et al., 2022).503

Tao et al. (2023b) further unifies datasets of sev-504

eral event-inter relations to transfer event relational505

knowledge to unseen tasks.506

Predicting events necessitates the model to an-507

ticipate forthcoming occurrences grounded in the508

present context (Zhao, 2021). Mostafazadeh et al.509

(2016) employs a multiple-choice framework to510

predict future events by encompassing a diverse511

range of common-sense connections among events.512

Guan et al. (2019) establish a dataset oriented to-513

wards capturing event logic, enabling the genera-514

tive prediction of future incidents.515

Tao et al. (2023a) present the Event Semantic516

Processing including the event understanding, rea-517

soning, and prediction of event semantics.518

Instruction Tuning Instruction tuning refers to519

the process of fine-tuning a large language model520

based on specific instructions or guidance provided521

during training. Chung et al. (2022) finetunes on T5522

with a scaling number of datasets which achieves523

strong few-shot performance even compared to524

much larger models. Taori et al. (2023) is trained525

by fine-tuning the LLaMA (Touvron et al., 2023)526

model using a dataset consisting instructions gen-527

erated by text-davinci-003. Chiang et al. (2023)528

is an open-source chatbot created by fine-tuning529

LLaMA using user-shared conversations gathered530

from ShareGPT. Xu et al. (2023) extends the previ-531

ous model by evolve-instruct algorithms to improve 532

the model. Conover et al. (2023) leverages data on 533

the Databricks platform. 534

In another line of research, instruction tuning is 535

used to make a language model more focused and 536

specialized in certain abilities or domains. Zhang 537

et al. (2023a) trains a medical conversation model 538

with different sources of datasets with instructions. 539

Cui et al. (2023) propose a legal LLM named Chat- 540

Law by legal domain dataset and mitigate halluci- 541

nation of the model. Zhang et al. (2023b) train an 542

LLM specialized for information extraction with 543

data adapted from a knowledge graph. Yang et al. 544

(2023b) design an automatic data curation pipeline 545

and in building financial open-source LLM. Tang 546

et al. (2023) propose a dataset to improve the tool 547

manipulating ability of LLMs. Our work lies in 548

this ability enhancement line of research. 549

Event-Aware Continuous Pretraining Consid- 550

ering both the pre-training and fine-tuning strate- 551

gies, researchers are dedicated to improving event 552

processing through fine-tuning techniques that in- 553

corporate events. In their study, Yu et al. (2020) 554

inject intricate commonsense knowledge about 555

events into pre-trained language models. Similarly, 556

Zhou et al. (2022a,b) enhance language models 557

by focusing on event-related tasks through event 558

masking prediction and generation. However, these 559

works struggle to effectively perform zero-shot rea- 560

soning. Our work is mainly different from theirs. 561

We are methods of instruction tuning. Our focus is 562

to stimulate the various abilities of event reasoning 563

with the deliberate dataset. 564

5 Conclusion 565

In this study, we introduce Event-Oriented Instruc- 566

tion Tuning to enhance event reasoning capabil- 567

ities and train our model WIZARDEVENT. We 568

enhance the event relational knowledge and rea- 569

soning abilities of various formats. We first rep- 570

resent the event relational knowledge. Building 571

upon this, we mine the knowledge through our 572

method. We secondly introduce our hybrid event 573

reasoning paradigm. Last, we create an instruction- 574

tuning dataset based on the knowledge and rea- 575

soning paradigm. We fine-tune Llama2 to get our 576

WIZARDEVENT model. We conduct experiments 577

on 10 test sets and a new test set for event relational 578

knowledge. Experiments show the effectiveness of 579

our method. 580
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Limitations581

In this paper, we explore the training curriculum582

and find the uniform mix of data is the best. It has583

great potential to design better training curriculums584

and further investigate the dependencies of these585

abilities. We leave it to future work.586
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A Decoding Protocol 812

We show our decoding protocol for extracting an- 813

swers of CLOSE tasks as follows:

pattern = "the(?: correct)? (?:option|answer)
should be[\s:]+([ABCDEFGH])"

if Output starts with an alphabetical number then
Set prediction as the alphabetical number

else if re.match(pattern, Output) then
Extract the prediction follow the pattern.

else
prediction=argmax

c∈D
(WordOverlap(c,

Ouput)

814

B Event Reasoning Evaluation Prompts 815

We show prompts for evaluation on all tasks for all 816

models in Figure 4 and Figure 5. 817

C Examples of Instruction Templates 818

We showcase examples of instruction templates in 819

Figure 6 to 9. 820
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(a) ECARE (b) COPA

(c) MCTACO (d) SocialIQA

(e) SCT (f) MATRES

Figure 4: Evaluation prompts on ECARE, COPA, MCTACO, SocialIQA, SCT and MATRES for all models.
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(a) ESL (b) TRACIE

(c) ESTER (d) CQA

(e) CLOSE of event knowledge evaluation. (f) REL of event knowledge evaluation.

Figure 5: Evaluation prompts on ESL, TRACIE, ESTER, CQA, CLOSE and REL of event knowledge evaluation for all
models.

13



Figure 6: Examples of instruction templates for Close Event Reasoning generated by GPT4.
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Figure 7: Examples of instruction templates for Open Event Reasoning generated by GPT4.
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Figure 8: Examples of instruction templates for Relation Reasoning generated by GPT4.
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Figure 9: Examples of instruction templates for Fact Verification generated by GPT4.
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