
Under review as a conference paper at ICLR 2022

CONTRASTIVE EMBEDDINGS FOR NEURAL ARCHI-
TECTURES

Anonymous authors
Paper under double-blind review

ABSTRACT

The performance of algorithms for neural architecture search strongly depends on
the parametrization of the search space. We use contrastive learning to identify
networks across different initializations based on their data Jacobians and their
number of parameters, and automatically produce the first architecture embed-
dings independent from the parametrization of the search space. Using our con-
trastive embeddings, we show that traditional black-box optimization algorithms,
without modification, can reach state-of-the-art performance in Neural Architec-
ture Search. As our method provides a unified embedding space, we successfully
perform transfer learning between search spaces. Finally, we show the evolution
of embeddings during training, motivating future studies into using embeddings at
different training stages to gain a deeper understanding of the networks in a search
space.

1 INTRODUCTION

Traditionally, the design of state-of-the-art neural network architectures is informed by domain
knowledge and requires a large amount of manual work to find the best hyperparameters. How-
ever, automated architecture search methods have recently achieved state-of-the-art results on tasks
such as image classification, object detection, semantic segmentation and speech recognition (Ren
et al., 2020).

While a significant amount of work has gone into improving the algorithms used for architecture
search, there has been only limited work on constructing the space in which these algorithms operate.
There exists a vast number of different ways in which the architectures in a search space can be
encoded, and the effects of these choices will affect the performance of the search algorithms.

Previous embedding methods such as (Yan et al., 2020) have focused on preserving the edit distance
between the computational graph of the architectures in the embedding space. Mellor et al. (2020)
have showed that statistics computed on architectures at initialization, before training, can be used to
infer which will perform better after training. Motivated by this, our intent is to automatically learn
such statistics at initialization and generate an embedding space based on them, so that the resulting
embedding space preserves fundamental properties of the architectures.

To achieve our goal, we leverage contrastive learning, that has gathered interest in the computer
vision community, and produced various state-of-the-art results (He et al., 2020; Chen et al., 2020;
Caron et al., 2020; Grill et al., 2020; Zbontar et al., 2021). In contrastive learning, the model learns
an informative embedding space through a self-supervised pre-training phase: from the images in
a batch, pairs are generated through random transformations, and the model is trained to generate
similar (dissimilar) embeddings for similar (dissimilar) images.

In this work, we combine contrastive learning with the theory presented by Wang et al. (2016) on
the Jacobians of networks at initialization, in order to find an embedding space suitable for Neural
Architecture Search. The embedding space that we generate is invariant to the search space of origin,
allowing us to accomplish transfer learning between different search spaces.
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1.1 MOTIVATIONS AND CONTRIBUTIONS

We design a method to produce architecture embeddings using Contrastive Learning and informa-
tion available from their initial state. Our technique is capable of generating embeddings that are
independent from the parametrization of the search space, and evolve during training. We leverage
these contrastive embeddings in Neural Architecture Search using traditional black-box optimiza-
tion algorithms. Moreover, since they provide a unified embedding space across search spaces, we
exploit them to perform transfer learning between search spaces.

Parametrization-independent embeddings NAS methods promise to outperform random
search, however the encoding of the architectures must show some structure for the search algo-
rithm to exploit. These encodings are typically produced by condensing all the parameters used
to generate an architecture into a single vector. The method used to generate architectures from a
search space thereby implicitly parametrizes it. The parametrization of the search space affects the
performance of a NAS algorithm, as noted by e.g. White et al. (2020); Ying et al. (2019); Wang et al.
(2019). However, when performing architecture search, it is not feasible to test multiple different
parametrizations of the search space and evaluate which one performs better: once we have started
to evaluate networks in a search space, there is no reason to discard previous evaluations. While the
current generation of NAS alleviates the need for experts in the design of architectures, now expert
knowledge is needed to build and parametrize a search space compatible with the chosen search
algorithm, implying that it is exceedingly difficult to outperform a simple random search.
We present in Sec. 4 the first method to create networks embeddings without relying on their
parametrization in any search space, through the combination of modern contrastive learning and
the theory of data Jacobian matrices for neural architecture search.

Evolution of the embeddings during training In Section 4.4, we show how the embeddings vary
during training, noting that the training procedure tends to connect areas with similar final test ac-
curacy together. We hypothesize that this information could enable even more efficient architecture
search methods in the future.

Leveraging traditional black-box algorithms Existing methods to generate architecture embed-
dings rely on metrics from their computational graphs to identify similar architectures, either by
explicitly trying to preserve the edit distance in the embedding space, or by leveraging more sophisti-
cated methods from graph representation learning. Our method leverages the information contained
in the Data Jacobian Matrix of networks at initialization to train a contrastive model. As such, it can
produce embeddings that more meaningfully capture the structure of the search space. As a result,
traditional black-box algorithms perform well for architecture search, as shown for NAS-Bench-201
(Dong & Yang, 2020) in Section 5.1.

Transfer learning between search spaces Our method provides a unified embedding space, since
it does not depend on the parametrization of networks in any search space. We exploit this feature to
perform for the first time transfer learning between the two search spaces. In practice, we perform
it between the size and the topology spaces in NATS-Bench (Dong et al., 2020) in Section 5.3.

2 RELATED WORK

Neural Architecture Search Previous works have attempted to improve network embeddings:
Klyuchnikov et al. (2020) use graph2vec (Narayanan et al., 2017) to find embeddings such that
networks with the same computational graph share the same embeddings, and similarly Yan et al.
(2020) produce embeddings that are invariant to graph isomorphisms. However, the method differs
in that this work trains a variational graph isomorphic autoencoder to produce the embeddings. They
show that their architecture embeddings arch2vec perform better on downstream architecture search
than supervised alternatives, additionally the embeddings that they produce approximately preserves
the edit distance of the DAGs in a continuous space. Wei et al. (2020) uses a contrastive loss to find
a low dimensional metric space where the graph edit distances of the original parametrization is
approximately preserved. In the absence of dense sampling, all of these works rely on the prior
that the edit distance is a good predictor for relative performance. In contrast, our method, learns to
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find an embedding space based on intrinsic properties of the architectures. It can therefore discover
properties about the architectures which are not present in their graph representation.

Data Jacobian Methods based on the Jacobians with respect to the input of trained networks
have been shown to provide valuable information for knowledge transfer and distillation (Czarnecki
et al., 2017; Srinivas & Fleuret, 2018), as well as analysis and regularization of networks (Wang
et al., 2016).

Neural Tangent Kernel The Jacobian of the network with respect to the parameters is computed
for inference with neural tangent kernels (NTK) (Jacot et al., 2018). Using NTK as a proxy for NAS
(Park et al., 2020) underperforms the neural network Gaussian process (NNGP) kernel. The NNGP
provides an inexpensive signal for predicting if an architecture exceeds median performance, but it
is worse than training for a few epochs in predicting the order of the top performing architectures.

Contrastive learning Different techniques have been developed in contrastive learning. He et al.
(2020) train a network with a contrastive loss against a memory bank of negative samples produced
by a slowly moving average version of itself. Chen et al. (2020) remove the memory bank and just
consider negative samples from within the same minibatch. Grill et al. (2020) remove the negative
samples completely but stabilize the training by encoding the positive samples using a momen-
tum encoder. Zbontar et al. (2021) use the correlation matrix between the features of the different
augmentations and maximize the similarity of the same feature while minimizing the redundancy
between features.

3 BACKGROUND

3.1 TRADITIONAL ARCHITECTURE EMBEDDINGS

A decision tree is created either implicitly or explicitly to sample networks from a search space. To
encode an architecture, one records all choices as the decision tree is traversed into a vector, which is
then used as the embedding of the architecture. Without any additional knowledge, a NAS algorithm
will assume that all choices in the decision tree have an equal importance on the characteristics of
an architecture. One commonly used encoding scheme consists of choosing the operations on nodes
along with a binary adjacency matrix connecting them.

3.2 DATA JACOBIAN

Extended Data Jacobian matrices are used by Wang et al. (2016) to analyze trained neural networks.
We ground our work in their theoretical setting, and introduce the relevant concepts below.

Multi Layer Perceptrons with ReLU activations are locally equivalent to a linear model: the ReLU
after a linear layer can be combined into a single linear layer, where each row in the matrix is
replaced by zeros if the output pre-activation is negative.

ReLU(Wx) = Ŵx, Ŵij =

{
Wij if (Wx)j ≥ 0

0 otherwise

Since matrix multiplication is closed, within a neighborhood where the signs of all neurons pre-
activation is constant, the full network can be replaced by a single matrix. This property can be
extended to any model whose layers can be rewritten as linear layers, including convolutional layers
and average pooling layers. Max pooling layers also retain this property, and can be treated similarly
to ReLU.

Therefore, in a local neighbourhood close to x, the full information of a network, f , is contained
within its Data Jacobian Matrix (DJM).

DJM(x) =
∂f(x)

∂x
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and within that neighbourhood

f(x) = DJM(x)x

We can evaluate the Data Jacobian Matrix at many different points x to gather information about
multiple different neighbourhoods. If we assume the network to have a single output, its DJM is
a vector, and we can then stack the DJMs at different points to form the Extended Data Jacobian
Matrix (EDJM). If a network has multiple outputs we can sum them to get a single output, which
we use to calculate the EDJM.

Wang et al. (2016) use the singular values of the EDJM to compute a score, and empirically show
that the score is correlated with the depth of the network, and its model capacity.

3.3 CONTRASTIVE LEARNING

Contrastive learning is a self-supervised method that finds an informative embedding space of the
input data useful for downstream tasks. Central to contrastive learning is the concept of a view of an
object: two different views of the same object are only superficially different, and we should be able
to train a network to see past these differences and identify the same underlying object. To this end,
a network is trained to map different views of the same object close to each other in the embedding
space and, conversely, views of different objects should be far apart from each other.

4 CONTRASTIVE EMBEDDINGS FOR NEURAL ARCHITECTURES

We leverage intrinsic properties of the networks to encode them without depending on their
parametrization. We must rely on properties of the architectures at initialization, since it is not com-
putationally feasible to train the architectures to obtain their embeddings. At variance with previous
work, we develop a method to find such properties automatically, using contrastive learning.

To this effect, we train a network that takes an architecture at initialization as input and produces an
embedding at the output. It is desirable that the network has the following two properties:

• Different initializations of the same architecture should yield similar embeddings.

• Different architectures should yield different embeddings.

We can therefore frame our embedding problem as a contrastive learning task: different initializa-
tions of the same network will correspond to different views of the same sample in the contrastive
learning framework.

4.1 OUR METHOD

We compute the Extended Data Jacobian Matrix (EDJM) of architectures at initialization, we rescale
each weight matrix by a random and log-uniform scalar in the range ( 7

8 ,
8
7 ) and we use a low-rank

projection of it as input to our contrastive network, to limit memory requirements. We will refer to
the projected version of the EDJM as the Extended Projected Data Jacobian Matrix (EPDJM).

EPDJM(X)i = φX

(
∂ ‖f(Xi)‖1

∂Xi

)
(1)

where φX denotes a projection onto the top-k principal components.

X = [U1 U2]

[
Σ1 0
0 Σ2

]
V T , φX(x) = U1Σ1x (2)

The contrastive network is then applied to the EPDJM, and trained using Barlow Twins (Zbontar
et al., 2021). Once the Contrastive Network is trained, we can obtain an embeddings of any architec-
ture in the search space, as shown in Figure 1. The embeddings produced by the contrastive network
is high dimensional and non-uniform which may be detrimental for some downstream methods. In
order to solve both of these problems, we seek to find a low dimensional space where the distances
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Figure 1: Illustration of our method for obtaining the network embeddings. We sample architectures
from the search space, and form a batch of views with different random initializations. We compute
the data Jacobians, project them, and feed them to the contrastive network. The contrastive model
learns to generate similar embeddings for networks with similar performance.

between the embeddings is approximately conserved and the volume associated with each architec-
ture is approximately uniform. Formally, we would like to find a low-dimensional embedding that
minimizes the Gromov-Wasserstein distance (Mémoli, 2011):

arg min
π∈Π

∫
X2×Y 2

|dx(x, x′)− dy(y, y′)|2dπ(x, y)dπ(x′, y′) (3)

Where dx(·) is the distance in the high dimensional embedding space, dy(·) is the distance in the low
dimensional space, and Π is the set of mass-conserving transport plans between the measures. Since
the target measure is continuous, we have a semi-discrete Gromov-Wasserstein optimal transport
problem to which we are not aware of any numerical solvers.

Instead we approximate it with the following two step processs.

arg min
y

∑
i,j

|dx(xi, xj)− dy(yi, yj)|2 (4)

arg min
π∈Π

∫
Y×Y

dy(y, y′)2dπ(y, y′) (5)

We solve the first problem with gradient descent. The second is a semi-discrete Wasserstein opti-
mal transport problem, which we solve with multi-scale averaged gradient descent, as described in
Leclaire & Rabin (2019). Informally, the first step finds a low-dimensional space where the distances
between the embeddings are approximately preserved, whereas the second step makes sure that the
volume associated with each architecture is uniform. We use the cosine distance in the source space
and the Euclidean distance in the low dimensional target space.

For simplicity, for the downstream methods we use the centroids of the resulting Laguerre cells for
the final embeddings. To facilitate interpretability we use a two-dimensional embedding space.

Finally, we notice that the resulting embedding space does not accurately capture the number of
parameters of the architectures which is an important predictor of the final accuracy (Hestness et al.
(2017); Kaplan et al. (2020)), therefore we compliment our embeddings with a third dimension
containing the logarithm of the number of parameters of the architecture.

4.2 IMPLEMENTATION

Since the input to the EDPJMs are two dimensional and contains structure both in the Jacobian
dimension and the data-point dimension, we chose to use an MLPMixer architecture (Tolstikhin
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et al., 2021) for the contrastive network, which alternates between applying transformations over the
different dimensions.

For the contrastive learning, we use Barlow Twins (Zbontar et al., 2021) with a batch size of 512,
and λ = 5 · 10−3 as suggested in the original paper. We project the Jacobians down to a 256-
dimensional space. To accelerate the contrastive learning, we precompute the projected Jacobians
using four different initializations for each architecture. The computation of the projected Jacobians
takes less than 2 hours for NasBench201 on a single GPU (NVIDIA RTX 2080Ti). The embedding
size is set to 512, and we use a single layer feedforward network for the projection head.

4.3 ANALYSIS OF THE EMBEDDINGS

We plot the t-SNE projections (Van der Maaten & Hinton, 2008) at different stages of our method
in Figure 2 to analyze the influence of the contrastive learning on the embeddings. We note that the
EPDJM alone carries some meaning in the t-SNE space. The contrastive embeddings at initialization
of the network already exhibit more evident structure. The embeddings after the contrastive learning
phase contain little noise and clearly separate architectures based on performance. Finally after
using the projection based on optimal transport we have a two-dimensional embedding space where
all architectures are near-uniformly laid out in the unit square.

Further, we predict the performance of the unseen networks in the search space using Random
Forests (Breiman, 2001) with the default hyperparameters, to analyse the predictive power of the
embeddings. The results for NAS-Bench-201 (Dong & Yang, 2020) are shown in Figure 3 and
Table 1, and indicate that the contrastive embeddings are highly predictive of the performance of the
architectures in this search space.

Table 1: Metrics computed on predicted accuracies for the three benchmarks in NAS-Bench-201.
This provides a condensed view of Figure 3

CORRELATION KENDALL-τ

CIFAR-10 0.94 0.73
CIFAR-100 0.93 0.73
IMAGENET16-128 0.90 0.68

(a) EPDJM (b) Untrained embeddings (c) Trained embeddings (d) Final 2D embeddings

Figure 2: t-SNE projections of different statistics of the architectures in NAS-Bench-201.

4.4 EMBEDDINGS DURING OPTIMIZATION

Once the contrastive network is trained, it can produce embedding for architectures at various points
during their training. We show the evolution of the embeddings of 20 architectures during the 50 first
epochs of training in Figure 4: the embeddings vary during the training procedure, potentially en-
abling future methods to learn more information about the search space for each evaluated network.
In particular, the training procedure tends to connect areas with similar final test accuracy.
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(a) CIFAR-10 (b) CIFAR-100 (c) ImageNet16-120

Figure 3: Predicted accuracy against actual accuracy. The predictions are produced by Random
Forest Regression applied on our embeddings of 1000 randomly selected architectures in NAS-
Bench-201 (Dong & Yang, 2020).

Figure 4: t-SNE projections of movement in embedding space during training of 20 architectures
in the NAS-Bench-201 benchmark. The lines show the trajectories in the embedding space during
training of an architecture.

5 ARCHITECTURE SEARCH

We evaluate our contrastive embeddings on the task of architecture search. We use two popular
gradient-free optimization algorithms for the search phase, Differential Evolution, DE, (Storn &
Price, 1997) and Tree Parzen Estimators, TPE (Bergstra et al., 2011). While there are countless
other search algorithms, we argue that both of these algorithms should work well given a good
embedding space. For both algorithms, we use the default hyper-parameters and perform no hyper-
parameter tuning. We compare our embeddings, CENA, with Arch2Vec produced by Yan et al.
(2020). Additionally, we compare with REINFORCE Williams (1992) using a traditional adjacency
matrix encoding.

5.1 NAS-BENCH-201

We show the results on the NAS-Bench-201 benchmark (Dong & Yang, 2020) in Figure 5. For both
downstream methods, TPE and DE, our contrastive embeddings significantly outperform the corre-
sponding method using Arch2Vec. Additionally, TPE with our embeddings consistently outperforms
REINFORCE using a categorical distribution over the possible operations at each node.

5.2 NAS-BENCH-101

The search space in Nas-Bench-101 is large and computing the data Jacobian matrices for all archi-
tectures would take a considerable amount of time. We compute the contrastive embeddings for a
subset of 1

25 of all architectures which results in 16945 architectures. We consider the same subset
when using arch2vec noting that using the full search space does not improve the performance.
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(a) 201: CIFAR-10 (b) 201: CIFAR-100

(c) 201: ImageNet16-120 (d) 101: CIFAR-10

Figure 5: Search results on NAS-Bench-201 (Dong & Yang, 2020) and NAS-Bench-101 (Ying et al.,
2019)

We show the results of the search on the benchmark (Ying et al., 2019) in Figure 5d. Again, for
both downstream methods our embeddings reach a lower regret at the end of the training. However,
our REINFORCE implementation using a categorical distribution over the operations on the nodes
as well the elements of the adjacency matrix, consistently outperforms all other methods on this
benchmark.

5.3 TRANSFER LEARNING

A unique feature of our contrastive embeddings is that they do not depend on any information about
the search space used to generated architectures, allowing us to merge the embedding spaces of
multiple search spaces into a single one. With such unified embedding space, we perform transfer
learning from one search space to another.

NATS-Bench (Dong et al., 2020) consists of two different search spaces: a first one (topology) where
the topology of architectures is evaluated, and a second (size) where the number of filters in different
convolutional layers is evaluated. We use random forests (Breiman, 2001) to predict the accuracy in
one search space based on the other, and we display the results in Figure 6.

To evaluate the performance on the transfer learning task we compute the Pearson correlation co-
efficient as well as the Kendall rank correlation, shown in Table 2. For both size→topology and
topology→size, we see a significant correlation between predicted accuracies and the actual accura-
cies without ever having evaluated a single network from the target search space.

6 CONCLUSION AND OUTLOOKS

We have developed an end-to-end method to produce embeddings for architectures, using infor-
mation available from their initial state and contrastive learning, eliminating the need for manual
tuning of the search space parametrization. Our analysis of the embeddings clearly shows the ad-
vantage introduced by every stage of our pipeline, and our results on Neural Architecture Search
using contrastive embeddings are promising.

More precisely, by visualizing the t-SNE at different stages of our pipeline, we have shown that
the embeddings produced by our technique discover the structure of the search space. We also
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(a) size→ size (b) size→ topology

(c) topology→ size (d) topology→ topology

Figure 6: The transferability of features is evaluated using the two different search spaces that are
provided by NATS-Bench: size and topology (Dong et al., 2020). A random forests model is trained
on 5000 samples from one benchmark and evaluated on the other. The notation size→topology
for example means that the model is trained on the size benchmark and evaluated on the topology
one. For both size→topology and topology→size we see a significant correlation between the the
predicted accuracies and the actual accuracies without ever having evaluated a single network from
the target search space.

Table 2: Metrics computed on predicted accuracies obtained from the transfer learning. A random
forest model is trained on a source search space and evaluated on the target search space. The metrics
are reported as mean ± standard deviation aggregated over ten runs. The results from the first run
can be seen in Figure 6.

SOURCE→TARGET CORRELATION KENDALL-τ

SIZE→SIZE 0.84 ± 0.007 0.66 ± 0.007
SIZE→TOPOLOGY 0.60 ± 0.010 0.51 ± 0.014

TOPOLOGY→SIZE 0.75 ± 0.008 0.51 ± 0.010
TOPOLOGY→TOPOLOGY 0.95 ± 0.003 0.74 ± 0.003

demonstrated how the embedding space evolves throughout training epochs, connecting regions of
the search space with similar final performance, opening the possibility of future work to learn addi-
tional information by analyzing these trajectories. Moreover, we evaluated the performance of tra-
ditional black-box optimization algorithms using our embeddings on the task of neural architecture
search and show that our embeddings perform better on the evaluated benchmarks than previously
suggested embedding methods.

Finally, since the embeddings are independent of the search space, our technique provides a unified
embedding space and enables the possibility to learn universal properties of the networks. We veri-
fied this by performing for the first time transfer learning across search spaces in neural architecture
search.
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