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Abstract

Recent studies in reinforcement learning (RL) have made significant progress by
leveraging function approximation to alleviate the sample complexity hurdle for
better performance. Despite the success, existing provably efficient algorithms
typically rely on the accessibility of immediate feedback upon taking actions. The
failure to account for the impact of delay in observations can significantly degrade
the performance of real-world systems due to the regret blow-up. In this work,
we tackle the challenge of delayed feedback in RL with linear function approx-
imation by employing posterior sampling, which has been shown to empirically
outperform the popular UCB algorithms in a wide range of regimes. We first intro-
duce Delayed-PSVI, an optimistic value-based algorithm that effectively explores
the value function space via noise perturbation with posterior sampling. We pro-
vide the first analysis for posterior sampling algorithms with delayed feedback in
RL and show our algorithm achieves Õ(

√
d3H3T + d2H2E[τ ]) worst-case regret

in the presence of unknown stochastic delays. Here E[τ ] is the expected delay.
To further improve its computational efficiency and to expand its applicability
in high-dimensional RL problems, we incorporate a gradient-based approximate
sampling scheme via Langevin dynamics for Delayed-LPSVI, which maintains
the same order-optimal regret guarantee with Õ(dHK) computational cost. Em-
pirical evaluations are performed to demonstrate the statistical and computational
efficacy of our algorithms.

1 Introduction

Reinforcement Learning (RL) is the main workhorse for sequential decision-making problems where
an agent needs to balance the trade-off between exploitation and exploration in the unknown environ-
ment. The flexible and powerful function approximation endowed by deep neural networks greatly
contributes to the empirical success of RL in domains such as Large Language Models (LLMs)
[50, 59], robotics [51], and AI for Science [37]. In general, collecting real-world training data from
such practical systems can be expensive, which requires algorithms to be both sample efficient and
computationally efficient. Recently, there have been growing efforts towards studying provably effi-
cient RL algorithms in settings ranging from tabular Markov Decision Processes (MDPs) [29, 45, 69]
to large-scale RL with function approximation [13, 35]. However, these algorithms typically rely
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on the availability of immediate observations of states, actions and rewards in learning no-regret
policies. Unfortunately, such an assumption is rarely satisfied in real-world domains, where delayed
feedback is ubiquitous and fundamental. In recommender systems and online advertisement, for
instance, responses from users (e.g. click, purchase) may not be immediately observable, which
can take hours or days. In healthcare and clinical trials, medical feedback from patients on the ef-
fectiveness of treatments can only be determined at a deferred time frame. More examples exist
in platforms that involve human interaction and evaluation, including human-robot collaboration in
teleoperating systems and multi-agent systems [15, 39], aligning LLMs with human values [50, 63],
and fine-tuning generative AI models using RL with human feedback (RLHF) [11, 41].

Despite the practical importance of addressing delays in decision-making problems, theoretical un-
derstanding of delayed feedback in RL remains limited. Recent parallel works study exploration
under delayed feedback via upper confidence bound (UCB) algorithms [8] in tabular RL [29, 45],
adversarial MDPs [36, 40], and RL with low policy-switching scheme [68] (see Table 1). Never-
theless, posterior sampling (PS) analysis that handles delayed feedback remains untackled in both
bandit and RL literature. We aim to bridge the gap in this work.

PS is a randomized Bayesian algorithm that extends Thompson sampling (TS) [57] to RL, which
selects an action according to its posterior probability of being the best. This philosophy inspires
a number of promising exploration strategies that explicitly or implicitly adopt PS to explore [52],
including bootstrapped DQN [42, 47] and RLSVI [49]. Compared to the popular UCB algorithms, it
bears greater robustness in the presence of delays [14], and provides exceptional computational effi-
ciency with competitive empirical performance [14, 65]. The fact that posteriors are often intractable
in practice necessitates the use of approximate Bayesian inference such as ensemble sampling, vari-
ational inference (VI) and Markov Chain Monte Carlo (MCMC) [20, 38, 47].

In this paper, we provide the first analysis for the class of PS algorithms that handles delayed feed-
back in RL frameworks, in which the trajectory information is randomly delayed according to some
unknown distribution. We highlight that delayed feedback model imposes new challenges that do
not arise in standard RL settings. Algorithmically, it requires the computation of new posterior
variance due to the weaker concentration arising from delays. Theoretically, it complicates the fre-
quentist analysis of PS algorithms in several ways: (a) the lack of timely update in posterior learning
can cause distribution shift, especially in the case of approximate sampling; (b) delays need to be
carefully disentangled to quantify the penalty in regret decomposition and it prohibits the direct ap-
plication of previous analysis; (c) balance between concentration and anti-concentration needs to be
handled deliberately to achieve sub-linear regret.

To tackle these challenges, we introduce two novel value-based algorithms for linear MDPs under
unknown stochastic delayed feedback. Developed upon Bayesian linear modeling with a multi-
round ensembling mechanism (M ≈ Polylog(H,K, d, δ) round), our algorithms achieve a sub-
linear worst-case regret without requiring the knowledge of delay, thereby addressing the question
raised in [60] that “No frequentist analysis exists for posterior sampling with delayed feedback”.
Empirical studies show that our algorithms outperform UCB-based methods in terms of both statis-
tical accuracy and computational efficiency when delays are well-behaved or even long-tailed. We
summarize our main contributions as follows.

• We propose the Delayed Posterior Sampling Value Iteration (Delayed-PSVI, Algorithm 1)
for linear MDPs. It achieves a high-probability worst-case regret of Õ(

√
d3H3T +

d2H2E[τ ])2, where E[τ ] is the expected delay.

• We leverage Langevin Monte Carlo (LMC) for approximate inference and introduce De-
layed Langevin Posterior Sampling Value Iteration (Delayed-LPSVI, Algorithm 2), which
maintains the same order-optimal worst-case regret of Õ(

√
d3H3T + d2H2E[τ ]). To the

best of our knowledge, this is the first analysis that provably incorporates LMC in linear
MDPs and jointly considers the impact of delays.

• Both algorithms achieve the optimal dependence on the parameters d and T in leading
terms under the class of PS algorithms, and recover the best-available frequentist regret
of Õ(

√
d3H3T ) [31, 72] as in non-delayed linear MDPs when E[τ ] = 0. In particular,

Delayed-LPSVI reduces the computational complexity of Delayed-PSVI from Õ(d3HK)

2It provides a stronger guarantee as opposed to the weaker worst-case expected regret and Bayesian regret.
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to Õ(dHK), expanding the applicability in complex high-dimensional RL tasks while po-
tentially providing a more flexible form of approximation.

Algorithms Setting Exploration Worst-case Regret Computation

[28] Linear Bandits UCB Õ(d
√
T + d3/2E[τ ]) Confidence set optimization

[29] Tabular MDPs UCB Õ(
√
SAH3T + S2AH3E[τ ]) Active update

[68] Linear MDPs UCB Õ(
√
d3H3T + dH2E[τ ]) Multi-batch reduction

[40] Adversarial MDPs UCB Õ(H2S
√
AK +H3/2

√
S
∑K

k=1 τk) Confidence set optimization

Delayed-PSVI (Thm 1) Linear MDPs PS Õ(
√
d3H3T + d2H2E[τ ]) O((d3 +Md)HK)

Delayed-LPSVI (Thm 2) Linear MDPs PS Õ(
√
d3H3T + d2H2E[τ ]) O((N + d)MHK)

Delayed-PSLB (Cor 2) Linear Bandits PS Õ(
√
d3T + d2E[τ ]) O((N + d)MK)

UCB Lower bound [27] Linear MDPs UCB Ω(dH
√
T ) —–

PS Lower bound [24] Linear Bandits PS Ω(
√
d3T ) —–

Table 1: Summary of regret bounds in linear bandits and episodic MDPs under stochastic delay. We denote
by T the time horizon, K the number of episodes, H the episode length, d the dimension of feature space,
M the number of sampling rounds, and N the total iterations in running LMC. Our choice of M and N has
order of Polylog(H,K, d, δ), ensuring both Delayed-PSVI and Delayed-LPSVI are computationally efficient
and statistically sample-efficient. We remark that the gap in the frequentist regret between PS and best UCB-
based methods is unavoidable by a factor of

√
d [24]. Thus, our dependencies on d and T are optimal for the

class of PS algorithms. Our results fulfill the caveat [60] that no worst-case analysis exists for PS with delay.

1.1 Related Work.

Delayed feedback. In bandit literature, delay is extensively studied in both stochastic [22, 56, 60,
77] and adversarial settings [32, 58, 78] for UCB-based methods. In comparison, while delay draws
much attention in empirical RL studies [12, 17, 18], there is a lack of theoretical understanding until
very recently. Parallel works focus on UCB-based methods in various RL settings [16, 28, 36, 40,
45, 68]. To provide the first analysis for PS algorithms in this context, we consider stochastic delays
under linear function approximation without requiring any policy-switch scheme as in [68].

Posterior sampling. To encourage efficient exploration, PS is adopted in value-based methods to
inject randomness in empirical Bellman update via Gaussian noise. From the Bayesian perspective,
it is equivalent to maintaining an approximate Gaussian posterior for parameterized value function.
Its sample complexity is studied in tabular settings [48, 49, 53], with the sharp worst-case regret of
Õ(H2S

√
AT ) [5]. Under linear function approximation, frequentist regret of Õ(

√
d3H3T ) [31, 72]

and Bayesian regret of Õ(d
√
H3T ) [19] are established. However, in complex problem domains that

require higher computational efficiency and more refined surrogates, approximate inference is the
remedy. Toward this end, we resort to a gradient-based MCMC method.

Langevin Monte Carlo. LMC is a class of MCMC methods tailored for large-scale online learning
with strong convergence guarantee by utilizing the first-order gradient information [64]. It has been
successfully applied to stochastic bandits [43], linear bandits [65] and tabular RL [38], In this work,
we extend its usage in linear MDPs and demonstrate its convergent property under delay.

RL with Function Approximation. Function approximation is widely adopted to empower RL for
large-scale applications. Fruitful results have been established for regret minimization in two types
of MDPs under linear function approximation: linear mixture MDPs [9, 67], and linear MDPs [35,
66]. In linear mixture MDPs where transition kernel is parameterized as a linear combination of base
models, provably efficient algorithms are discussed [13, 75, 76] and [75] provides the corresponding
lower bound of Ω(dH

√
T ). In contrast, linear MDPs enjoy a linear structure in value functions by

assuming a low-rank representation for both transitions and reward function, where algorithms are
shown to enjoy polynomial sample complexity [27, 35, 62, 73]. When it comes to general function
approximation, theoretical guarantees are developed based on measures of eluder dimension [54, 61]
and Bellman rank [33]. In this work, we focus on delayed feedback in linear MDPs.

2 Preliminaries

We study the finite-horizon episodic MDP (S,A, H,P, r), which is time-inhomogeneous, and de-
note by S, A the state and action spaces respectively, H the episode length, P = {Ph}Hh=1 the

3



transition dynamics, and r = {rh}Hh=1 reward function. At each step h ∈ [H], Ph : S × A → ∆S
specifies the probabilities of transitioning from the current state-action pair into the next state, and
rh : S×A → [0, 1] emits a bounded reward. We adopt the prior protocol of linear MDPs as follows.

Definition 1 (Linear MDPs [35, 66]). Suppose there exists a known feature map ϕ : S × A → Rd

that encodes each state-action pair into a d-dimensional feature vector. An MDP is a linear MDP3

if for any time step h ∈ [H], ∀(s, a) ∈ S ×A, both the transition dynamics P and reward function
r are linear in ϕ:

Ph(·|s, a) = ϕ(s, a)Tµh(·), rh(s, a) = ϕ(s, a)Tθh, (1)

where µh : S → Rd contains d unknown probability measures over S, and θh ∈ Rd. Furthermore,
we assume that ∀(s, a) ∈ S × A, ∥ϕ(s, a)∥ ≤ 1, and ∀h ∈ [H], ∥θh∥ ≤

√
d,
∥∥∫

S dµh(s
′)
∥∥ ≤ √d,

where ∥·∥ denotes the Euclidean norm.

A non-stationary policy π = {πh}Hh=1 assigns the action to take at step h in state sh ∈ S. Accord-
ingly, we define the value functions of a policy π as the expected rewards received under π:

Qπ
h(s, a) = Eπ

[∑H

h′=h
rh′ |sh = s, ah = a

]
, V π

h (s) = Eπ

[∑H

h′=h
rh′ |sh = s

]
.

We further denote by π∗ the optimal policy whose value functions are defined as V ∗
h (s) :=

V π∗

h (s) = supπ V
π
h (s) and Q∗

h(s, a) := Qπ∗

h (s, a) = supπ Q
π
h(s, a). Under Definition 1, the

action-value functions are always linear in the feature map, and there exists some w∗
h such that Q∗

h =
ϕTw∗

h (Lemma A.1). For ease of notation, ,∀(s, a), denote [PhV
π
h+1](s, a) = Es′∼Ph(·|s,a)[V (s′)].

By Bellman equation and Bellman optimality equation,

Qπ
h(s, a) = (rh + PhV

π
h+1)(s, a), V π

h (s) = Qπ
h(s, πh(s)),

Q∗
h(s, a) = (rh + PhV

∗
h+1)(s, a), V ∗

h (s) = maxa(rh + PhV
∗
h+1)(s, a).

The goal of the agent is to maximize the cumulative episodic rewards or equivalently, minimize
the regret that quantifies the difference between the value of the optimal policy π∗ and that of the
executed policies. Formally, the worse-case regret over K episodes is given as:

R(T ) =

K∑
k=1

V ∗
1 (s

k
1)− V πk

1 (sk1). (2)

Remark 1. Different types of regret are used in literature to measure the performance of PS al-
gorithms. Bayesian regret Ew∗∼p0(·)E[R(T )|w∗] is often considered when assuming a prior p0(w)
over the true parameter w∗. Frequentist regret E[R(T )] is considered when w∗ is fixed, where the
expectation is taken over all the randomness over data and algorithm. As explained in Appendix A.2,
the worst-case regret that we study is stronger than the frequentist regret.

2.1 Delayed Feedback Model

In this work, we consider stochastic delays across episodes. More specifically, the trajectory (i.e.,
sequence of states, actions and rewards) generated in each episode is not immediately observable in
the presence of delay. The formal definition is given as follows.

Definition 2 (Episodic Delayed Feedback). In each episode k ∈ [K], the execution of a fixed
policy πk generates a trajectory {skh, akh, rkh, skh+1}h∈[H]. Such trajectory information is called the
feedback of episode k. Let τk represent the random delay between the rollout completion of episode
k and the time point at which its feedback becomes observable.

Remark 2. Various types of delays have been independently studied in the literature, including
delays in states [4, 12, 16], delays in rewards [25, 45, 60], delays in actions[56], and delays in
trajectories [29, 68]. We focus on the last scheme which facilitates the delayed analysis of value-
based methods in episodic linear MDPs.

3Linear MDPs recover tabular MDPs by taking d = |S||A|, where feature map is a one-one mapping for
each state-action pair.
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Algorithm 1: Delayed Posterior Sampling Value Iteration (Delayed-PSVI)
Input: priors p0(wk

h)← N (0, λI), scaling factor ν, multi-round paramter M , hyper parameters λ
and σ2.

1 Initialization: ∀k, h, Q̃k
H+1(·, ·), ṼH+1(·, ·), Ṽh(·, ·)← 0, Dh ← ∅.

2 for episode k = 1, . . . ,K do
3 Sample initial state sk1
4 for time step h = H, . . . , 1 do
5 yh ← [y1

h, . . . , y
k−1
h ], with yτ

h ← 1τ,k−1 · [rτh + Ṽh+1(s
τ
h+1)]

6 Φh ← [ϕ1, ϕ2, . . . , ϕk−1] with ϕτ = 1τ,k−1 · ϕ(sτh, aτ
h)

7 Ωk
h ← σ−2ΦhΦ

T
h + λI , ŵk

h ← σ−2(Ωk
h)

−1Φhyh
T

8 p(wk
h | Dh,yh)← N (ŵk

h, ν
2 · (Ωk

h)
−1)

9 for m = 1, . . . , M do
10 Sample w̃k,m

h ∼ p(wk
h | Dh,yh)

11 Q̃k,m
h (·, ·)← ϕ(·, ·)Tw̃k,m

h

12 Update Q̃k
h(·, ·)← maxm Q̃k,m

h

13 Ṽh(·, ·)← maxa min{Q̃k
h(·, a), H − h+ 1}

14 Update πk
h(·)← argmaxa∈A min{Q̃k

h(·, a), H − h+ 1}
15 for time step h = 1, . . . , H do
16 Choose action ak

h = πk
h(s

k
h)

17 Collect trajectory observations Dh ← Dh ∪ {(skh, ak
h, r

k
h, s

k
h+1)}

/* Feedback generated in episode k cannot be immediately observed in the presence of delay */

Episodic delays do not disrupt the policy rollout within an episode, but alter the utilization of infor-
mation in subsequent episodes. More precisely, the feedback of episode k remains inaccessible for
the following τk − 1 episodes, becoming observable only at the onset of the (k+ τk)-th episode. To
track whether the feedback generated at episode k is revealed at episode k′, we utilize the indicator
1k,k′ := 1{k + τk ≤ k′} (where 1 denotes “yes” and 0 denotes “no”). We follow the standard
assumption in literature in [28, 68] to assume delays are sub-exponential. It is crucial to note that
this assumption primarily serves the purpose of theoretical analysis and is not a prerequisite for
the effective functioning of our algorithms in practical settings. Without loss of generality, we dis-
cuss the performance bound under general random delays in Section 4 and empirically study the
performance against different types of delays in Section 5.
Assumption 1 (Sub-exponential Episodic Delay). The episodic delays {τk}Kk=1 are non-negative,
integer-valued, independent and identically distributed (v, b)-subexponential random variables:

τk
i.i.d.∼ fτ (·) with fτ (·) being the probability mass function, and E[τ ] being the expected value.

For all k ∈ [K], the moment generating function of τk satisfies:

E [exp (γ (τk − E [τ ]))] ≤ exp

(
1

2
v2γ2

)
,

where v and b are non-negative, and |γ| ≤ 1/b.

3 Delayed Posterior Sampling Value Iteration

In this section, we introduce a novel optimistic value-based algorithm, namely, Delayed Posterior
Sampling Value Iteration (Delayed-PSVI), which efficiently explores the value function space in
linear MDPs by embracing several critical components: posterior sampling that injects random noise
when performing the least-square value iteration, optimism via multi-round sampling to achieve the
optimal worst-case regret and delayed feedback model that encodes episodic trajectory delays.

Noisy value iteration via posterior sampling. At the beginning of each episode, we apply PS
to sample an estimated value function from the posterior, which is maintained using the observed
feedback D over the previous episodes. Specifically, at each time step, the Q-function is parameter-
ized by some w ∈ Γ such that Q̃(s, a) = ϕ(s, a)Tw is an approximation of the corresponding true
optimal Q-function Q∗(s, a). Let p0(w) be the prior of w, and p(y|w,D) be the likelihood of the
observation y, then the posterior of w satisfies:

p(w|D,y) ∝ exp(−L(w,y,D))p0(w),

5



where L(·) is the log-likelihood. Unlike the case of model-based RL (MBRL), where PS is utilized to
maintain an exact posterior over the environment model, we aim to adopt PS to perform noisy value-
iteration by injecting randomness for efficient exploration of the value function space. Specifically,
at each step h ∈ [H], we consider Gaussian-noise perturbation in Delayed-PSVI by setting prior as
p0(wh) = N (0, λId), and log-likelihood (with Dh = {sτh, aτh, rτh, sτh+1}

τ∈[k−1]
h∈[H] ) as

L(wh,yh,Dh) =
∑k−1

τ=1
(ϕ(sτh, a

τ
h)

Twh − yτh)
2, (3)

where yh = [y1h, . . . , y
k−1
h ] with yτh = rτh(s

τ
h, a

τ
h) + Ṽh+1(s

τ
h+1). Then for all step h ∈ [H] of

episode k, the posterior of wk
h follows a Gaussian distribution,

p(wk
h|Dh,yh) ∝ N

(
(Ωk

h)
−1Φhy

T
h , (Ω

k
h)

−1
)
,

where Ωk
h := ΦhΦ

T
h + λId and Φh = [ϕ(s1h, a

1
h), ϕ(s

2
h, a

2
h), . . . , ϕ(s

k−1
h , ak−1

h )]. Adding the scal-
ing factors σ2 and ν2 yields the Line 10 of Algorithm 1. It is important to note that while the
induced likelihood exp(−L(wk

h,y
k
h,Dk

h)) from (3) is Gaussian, we do not assume yτh = rτh(s
τ
h, a

τ
h)

+Ṽh+1(s
τ
h+1) follows a Gaussian distribution. Instead, the above likelihood model can be used for

non-Gaussian problems as we need not sample from the exact Bayesian posterior model [2, 74].

On the other hand, the ŵk
h computed in Line 9 of Algorithm 1 together with the greedy choice

Ṽ (·) ≈ maxa Q̃(·, a) (Line 15) approximates the solution of Bellman optimality equation via the
least-square ridge regression: ŵk

h = argminw
∑k−1

τ=1(ϕ(s
τ
h, a

τ
h)

Tw− (r+max Q̄k
h))

2+λId.4 Con-
sequently, Line 5-10 essentially performs the Posterior Sampling Value Iteration.

Optimism via multi-round sampling scheme. Unlike the Bayesian regret or the worst-case ex-
pected regret, the high-probability worst-case regret in (2) needs to control the sub-optimal gap with
arbitrarily high probability of at least 1 − δ. However, sampling once at each time step only pro-
vides a constant-probability optimistic estimation, which breaks the high probability requirement.
In addition, the estimation error incurred by sampling (i.e. constant-probability pessimistic esti-
mation) at each timestep will propagate to the previous time steps during the backward posterior
sampling value iteration. This phenomenon does not appear in the 1-horizon bandit problem due
to a saturated-arm analysis [2, 6]. To remedy this issue, we design a multi-round sampling scheme
that generates M estimates {Q̃m}m∈[M ] for Q-fuction through M i.i.d. sampling procedures, and
constructs an optimistic estimate by setting Q̃ = maxm Q̃m. Notably, our choice of M has order
Polylog(H,K, d, δ), and thus makes our algorithm sample-efficient without increasing the overall
complexity dependence. As shown in Line 11-14 of Algorithm 1, this scheme guarantees the op-
timistic estimates Q̃ ≥ Q∗ can be achieved as desired. Lastly, ensemble sampling methods enjoy
empirical success and popularity in RL [21, 23, 31], including double q-learning [26] and boot-
strapped DQN [42, 47]. We are among the first few works to explain its theoretical effectiveness.

Episodic delayed feedback model. Recall that by Definition 2, when delay τk takes place, the
feedback {sth, ath, rth, sth+1}h∈[H] of episode k cannot be observed until the beginning of the k+ τk-
th episode. Accordingly, the delayed version of the fully observed yτ ,Ωk

h now becomes,

yτh ← 1τ,k−1·[rτh(sτh, aτh)+Ṽh+1(s
τ
h+1)], Φh ← [11,k−1·ϕ(s1h, a1h), . . . ,1k−1,k−1·ϕ(sk−1

h , ak−1
h )].

As a result, episodic delays are considered during the posterior updates in subsequent episodes. This
completes the design of Delayed-PSVI as presented in Algorithm 1. In the remainder of this section,
we present the main theoretical guarantees of Delayed-PSVI and the proof sketch of Theorem 1.
Theorem 1. Suppose delays satisfy Assumption 1. In any episodic linear MDP with time horizon
T = KH , where K is the total number of episodes, for any 0 < δ < 1, let λ = 1, σ2 = 1,
M = log(4HK/δ)/ log(64/63) and ν = Cδ/4 ≈ Õ(

√
dMH2) (Cδ/4 in Lemma B.10). Then with

probability at least 1 − δ, there exists some absolute constants c, c′, c′′ > 0 such that the regret of
Delayed-PSVI (Algorithm 1) satisfies:

R(T ) ≤ c
√
d3H3Tι+ c′d2H2E[τ ]ι+ c′′ι.

Here ι is a Polylog term of H, d,K, δ.

4Here Q̄ := min{Q̃(·, a), H − h+ 1} is the truncated version.
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On the complexity bound. Theorem 1 provides the first analysis for PS algorithms under delay
and answers the conjecture from [60]. Our result recovers the best-available frequentist regret of
Õ(
√
d3H3T ) for PS algorithms when there is no delay (E[τ ] = 0). According to [24], the worst-

case regret of linear Thompson sampling is lower bounded by Ω(
√
d3T ), and this implies our regret

dependencies on parameter d and T are optimal under the class of PS algorithms.5 The order
√
H3

in our regret is
√
H-suboptimal to the optimal dependence in [27]. As an initial study for pos-

terior sampling with delayed feedback, improving the horizon dependence is beyond our pursuit
and we leave it for future work. Moreover, the presence of delay incurs an additive regret term
Õ(d2H2E[τ ]). As T grows, the impact of delay will not dominate the overall regret. Furthermore,
our high-probability regret bound directly implies the following worst-case expected regret.

Corollary 1. Under the setting of Theorem 1, the expected regret of Delayed-PSVI is bounded by

E[R(T )] ≤ O(
√
d3H3Tι) +O(d2H2E[τ ]ι) +O(ι)

Here ι is a Polylog of H, d,K. The expectation is taken over the randomness in data and algorithm.

Proof of Corollary 1 is included in Appendix A.2. Additionally, we present the following corollary
in linear bandits, whose main regret Õ

√
d3T is optimal for PS algorithms.

Corollary 2 (Delayed Posterior Sampling for Linear Bandits). For the linear bandit with yt =
xT
t θ∗ + ηt, where xt ∈ Dt ⊆ Rd and ηt be a mean-zero noise with B-subgaussian. Let T be the

total number of steps. Under Assumption 1, for any 0 < δ < 1, with probability at least 1 − δ, the
regret of Delayed-PSLB satisfies:

R(T ) ≤ O(
√
d3Tι) +O(d2E[τ ]ι) +O(ι).

Here ι is a Polylog term of d,K, δ.

3.1 Sketch of the analysis

Due to the space limit, we outline the key steps in our analysis and defer the complete proof of
Theorem 1 in Appendix B. To bound the worst-case regret in (2), first note that

R(T ) =

K∑
k=1

V ∗
1 (s

k
1)− Ṽ k

1 (sk1)︸ ︷︷ ︸
∆k

opt

+ Ṽ k
1 (sk1)− V πk

1 (sk1)︸ ︷︷ ︸
∆k

est

.

Our goal is to attain an optimistic estimation so that ∆k
opt ≤ 0 while controlling the estimation

error ∆k
est. For optimistic PS algorithms, Gaussian anti-concentration is the main tool [6, 7, 65] to

achieve optimism with constant probability. However, the probability of optimism will diminish as
the algorithm back-propagates with respect to time. In contrast, we maintain m ∈ [M ] independent
ensembles Qm so that roughly speaking, P(Qm ≥ Q∗) ≥ 1

64 for all valid m. For any 0 < δ < 1,
with the choice M = log(1/m)/ log(64/63), the optimistic estimator Q = maxm Qm satisfies
P(Q ≥ Q∗) ≥ 1− δ (Lemma B.6). We can then proceed to prove ∆k

opt ≤ 0.

To control ∆k
est, one key challenge is to bound the error term

∑K
k=1

∥∥ϕ (
sk, ak

)∥∥
(Ωk)−1 . Due

to the presence of delays, we cannot directly apply the Elliptical Potential Lemma as in the
non-delayed settings. Therefore, we decompose (Ωk)−1 into (Σk)−1 + Mk, where Σk :=∑k−1

τ=1 ϕ (sτh, a
τ
h)ϕ (sτh, a

τ
h)

T
+ λI is the full information matrix, and show

K∑
k=1

∥∥ϕ(sk, ak)∥∥
Mk

≲ max
k∈[K]

τk

K∑
k=1

∥∥ϕ(sk, ak)∥∥2
(Σk)−1 .

By doing so,
∑K

k=1

∥∥ϕ(sk, ak)∥∥2
(Σk)−1 can be upper bounded by Õ(d log(K)) via the Elliptical

Potential Lemma and maxk∈[K] τk can be upper bounded by Õ(E[τ ]) via the sub-exponential tail
bound. Combing all these steps completes the proof.

5Note for non-sampling based on algorithms, e.g. UCB, the regret can attain Õ(
√
d2T ) [1].
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Algorithm 2: Delayed Langevin Posterior Sampling Value Iteration (Delayed-LPSVI)
Input: w0, ηk, Nk, γ and rounds M , λ. Delayed loss Lk

h as (5).
1 Initialization: ∀k ∈ [K], h ∈ [H], Q̃k

H+1(·, ·)← 0, Ṽ k
H+1(·, ·)← 0, Ṽ 0

h (·, ·)← 0
2 for episode k = 1, . . . ,K do
3 Sample initial state sk1
4 for time step h = H, . . . , 1 do
5 for m = 1, . . . , M do
6 w̃k,m

h ← LMC(Lk
h, w0, ηk, Nk, γ) //LMC is given by Algorithm 3

7 Q̃k,m
h (·, ·)← ϕ(·)Tw̃k,m

h

8 Update Q̃k
h(·, ·)← maxm Q̃k,m

h

9 Ṽ k
h (·, ·)← maxa min{Q̃k

h(·, a), H − h+ 1}
10 Update policy πk

h(·)← argmaxa∈A min{Q̃k
h(·, a), H − h+ 1}

11 for time step h = 1, . . . , H do
12 Choose action ak

h = πk
h(s

k
h)

13 Collect trajectory observations Dh ← Dh ∪ {(skh, ak
h, r

k
h, s

k
h+1)}

/* Feedback generated in episode k cannot be immediately observed in the presence of delay */

4 Delayed Posterior Sampling via Langevin Dynamics

Delayed-PSVI performs noisy value iteration for linear MDPs by injecting randomness for explo-
ration via Gaussian noise. From the Bayesian perspective, it constructs a Laplace approximation
to obtain a Gaussian posterior given the observed data. However, sampling from a Gaussian distri-
bution with a general covariance matrix Ωk

h can be computationally expensive in high-dimensional
RL tasks. Specifically, Line 10 of Algorithm 1 is conducted via w̃ := ŵ + ν · Ω−1/2ζ, where
ζ ∼ N (0, Id). The complexity of computing the matrix inverse involved (e.g. via Cholesky decom-
position) is at least O(d3), which is prohibitively high for large d. More importantly, in complex
problem domains, a flexible form of non-Gaussian noise perturbation may be desirable.

To tackle these challenges, we incorporate a gradient-based approximate sampling scheme via
Langevin dynamics for PS algorithms, namely, LMC, and introduce the Delayed-Langevin Poste-
rior Sampling Value Iteration (Delayed-LPSVI) in Algorithm 2. The update rule of LMC essentially
performs the following noisy gradient update:

wt ← wt−1 − η∇L(wt−1) +
√
2ηγϵt,

where ϵt
i.i.d.∼ N (0, Id). It is based on the Euler-Murayama discretization of the Langevin stochastic

differential equation (SDE):

dw(t) = −∇L(w(t))dt+
√
2β−1 dB(t), (4)

where B(t) ∈ Rd is a Brownian motion, β > 0 and t > 0. Under certain regularity conditions on
the drift term ∇L(w(t)) in (4), it can be shown that the Langevin dynamics converges to a unique
stationary distribution π(dw) ∝ exp (−βL(w))dw. As a result, LMC is capable of generating
samples from arbitrarily complex distributions which can be intractble without closed form. With
sufficient number of iterations, the posterior of wt is in proportional to exp(−

√
1/γL(w)).

In our problem, we specify L to be the following delayed loss function

Lk
h(w) :=

k−1∑
τ=1

1τ,k−1 (⟨ϕ(sτh, aτh), w⟩ − ȳτh)
2
+ λ∥w∥22, (5)

where ȳτh := rτh+Ṽ k
h+1(s

τ
h+1). Compared to Delayed-PSVI, Algorithm 2 does not require the matrix

inversion computation. Below we present the worst-case regret of Delayed-LPSVI and discuss the
key insights in our analysis. The full proof is deferred to Appendix C.
Theorem 2. Suppose delays satisfy Assumption 1. In any episodic linear MDP with time hori-
zon T = KH , where K is the total number of episodes and H is the fixed episode length,
for any 0 < δ < 1, let λ = 1, Nk = max{log( 32H

2(K+λ)dk
γλ + 1)/[2 log(1/(1 − 1

2κh
))],

log 2
2 log(1/(1− 1

2κh
))
, log( 4HK3√

λ/dK
)/ log(1/(1 − 1

2κh
))}, ηk = 1

4λmax(Ωk
h)

, γ = 16C2
δ/4 ≈ Õ(dMH2),
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w0 = 0 and M = log(4HK/δ)/ log(64/63). Then with probability at least 1− δ, there exists some
absolute constants c, c′, c′′ > 0 such that the regret of Algorithm 2 satisfies:

R(T ) ≤ c
√
d3H3Tι+ c′d2H2E[τ ]ι+ c′′ι.

Here ι is a Polylog term of H, d,K, δ and Cδ is defined in Lemma C.9.

Algorithm 3: Langevin Monte Carlo
LMC(L, w0, η,N, γ)
1 for t = 1 . . . N − 1 do
2 Draw ϵt ∼ N (0, Id)
3 wt ← wt−1 − η∇L(wt−1) +

√
2ηγϵt

4 Output: wN

Neglecting the constants and Polylog fac-
tors, Delayed-LPSVI maintains the same or-
der regret of Õ(

√
d3H3T + d2H2E[τ ]) as

Delayed-PSVI while significantly improving
the computational efficiency. Precisely, LMC
requires O(N) complexity to perform gradi-
ent steps in Line 6 of Algorithm 2 and an ex-
tra O(d) operations to compute Q̃k,m

h in Line
7. Thus, the total computation complexity of LMC is O((N + d)MHK). On the other hand,
sampling without LMC (Line5-8 in Algorithm 1) requires O(d3) operations, and the multi-round
sampling (Line9-11) incurs O(dM) additional operations, which implies for a total computation
complexity of O((d3 + dM)HK). As the choice of N in Algorithm 2 has logarithmic order, and
M = log(4HK/δ)/ log(64/63), the overall complexity of Delayed-LPSVI is Õ(dHK), whereas
the overall computational complexity of Delayed-PSVI is Õ(d3HK). Notably, Delayed-LPSVI
reduces the computational overhead of Delayed-PSVI by Õ(d2).

On the analysis. The key step in the proof of Theorem 2 is to show the convergence guarantee of
LMC. Indeed, by recursion, one can show

wN = AN
h,kw0 +

(
I −AN

h,k

)
ŵk

h +
√
2ηγ

N−1∑
l=0

Al
h,kϵN−l,

where Ah,k := I − 2ηkΩ
k
h. For any w0, it implies wN follows the Gaussian distribution

N
(
A

Nk
h,kw0 +

(
I −A

Nk
h,k

)
ŵk

h,Θ
k
h

)
. With the choice of ηk = 1

4λmax(Ωk
h)

, Ah,k ≺ Id and γ
2
(1 − (1 −

1
2κh

)2Nk )
(
Ωk

h

)−1 ≺ Θk
h ≺ γ

(
Ωk

h

)−1, which is the key to connect Θk
h with (Ωk

h)
−1 (Lemma C.2), the

main analysis for Delayed-PSVI goes through by utilizing this connection.

On arbitrary delayed feedback. The current study considers the stochastic delays that are sub-
exponential Assumption 1. What if delay has an arbitrary distribution (e.g. Cauchy distribution has
unbounded mean)? Indeed, the regret can be (roughly) bounded by Õ( 1q

√
d3H3T + dH2dτ (q)) for

dτ (q) to be the q-th quantile of delay τ . We do not focus on this setting since there is a 1/q blow-up
in the main regret that many distributions (e.g. sub-exponential) do not need to sacrifice. We include
the discussion in Appendix A.3.

5 Experiments

To validate whether our posterior sampling algorithms are competitive or outperform the non-
sampling-based algorithms in the delayed setting, in this section, we examine their empirical perfor-
mance in two simulated RL environments with different delayed feedback distributions. In particu-
lar, we consider a linear MDP environment following [44, 46], and a variant of the popular River-
Swim [55]. In both environments, we benchmark Delayed-PSVI (Algorithm 1), Delayed-LPSVI
(Algorithm 2) against LSVI-UCB [35] with delayed feedback, namely, Delayed-UCBVI. In this
section, we discuss results in the first setting and defer the discussion of RiverSwim in Appendix E.

5.1 Synthetic Linear MDP

We construct a synthetic linear MDP instance with |S| = 2, |A| = 50, d = 10, and H = 20. The
linear feature mapping embeds each state-action pair with its binary representation and induces the
following reward function: r(s, a) = 0.99 if s = 0, a = 0; r(s, a) = 0.01 otherwise. The design
of the environment results in the same optimal value V ∗

1 (s1) when d and H are fixed. Algorithms
are examined under three types of delays that are commonly encountered in real-world phenomena,
including sub-exponential delays and long-tail delays:

9



Figure 1: Left:(a) Multinomial delay with delay categories {10, 20, 30}. (b) Poisson delay with rate E[τ ] = 50.
(c) Long-tail Pareto delay with shape 1.0, scale 500. Results are reported over 10 experiments. Delayed-PSVI
and Delayed-LPSVI demonstrate robust performance under both well-behaved and long-tail delays.

• Multinomial delay. Delays follow a Multinomial distribution with three categories
{10, 20, 30}, with the corresponding probabilities as {0.5, 0.3, 0.2}.

• Poisson delay. Delays follow a Poisson distribution with the expected delay as E[τ ] = 50.
• Long-tail delay. Delays are discretized from a Pareto distribution 6 with the shape param-

eter as 1.0 and the scale parameter as 500.

To run Delayed-LPSVI, we warm start LMC by initializing w0 at each time step with the previous
sample, and let M = 2, N = 40, η = cη/λmax(Ω

k
h). For Delayed-PSVI, we set parameters

M = 2, ν =
√
dH . In the case of Delayed-UCBVI, we set the bonus coefficient as β = cβ/2 ·

dH
√
log(dH). To make a fair comparison, we perform a grid search to determine the optimal

hyperparameter values and fix cβ = 0.1, cη = 0.5, γ = 0.02. Experiments are repeated with 10
different random seeds, and the returns are averaged over episodes in Figure 1. Further elaboration
on additional metrics is available in Appendix E.2.

Results and Discussions. Both Delayed-PSVI and Delayed-LPSVI exhibit consistent and robust
performance with resilience, not only under the well-behaved delays that decay exponentially fast,
as assumed in Assumption 1, but also under the heavy-tailed delays, such as those following Pareto
distributions. Notably, when confronted with the challenge of long-tail delays, our algorithms ex-
cel Delayed-UCBVI in terms of statistical accuracy (yielding higher return) and convergence rate.
Specifically, the performance of Delayed-UCBVI degrades under long-tail delays, resulting from its
computational inefficiency in iteratively constructing confidence intervals. In contrast, PS methods
offer a higher degree of flexibility to adjust the range of exploration, owing to the inherent random-
ized algorithmic nature. To assess the computational advantages facilitated by LMC, we consider
additional synthetic environments with varied dimensions for a more comprehensive analysis. For
detailed statistics and further discussions, please refer to Appendix E.2. It is noteworthy that in
practical high-dimensional RL tasks, the computational savings achieved by Delayed-LPSVI, in
comparison to Delayed-PSVI, are considerably more significant.

6 Conclusion

In this paper, we study posterior sampling with episodic delayed feedback in linear MDPs. We
introduce two novel value-based algorithms: Delayed-PSVI and Delayed-LPSVI. Both algorithms
are proved to achieve Õ(

√
d3H3T + d2H2E[τ ]) worst-case regret. Notably, by incorporating LMC

for approximate sampling, Delayed-LPSVI reduces the computational cost by Õ(d2) while main-
taining the same order of regret. Our empirical experiments further validate the effectiveness of our
algorithms by demonstrating their superiority over the UCB-based methods.

This work provides the first delayed-feedback analysis for posterior sampling algorithms in RL,
paving the way to several promising avenues for future research. Firstly, it is interesting to extend the
current results to settings with general function approximation [34, 71]. Additionally, leveraging the
sharp analysis outlined in [27] to improve the suboptimal dependence on H for posterior sampling
algorithms presents an intriguing avenue for exploration. Furthermore, addressing other types of
delay (e.g. adversarial delay) that differ from stochastic one will contribute to the ongoing field of
delayed feedback studies in online learning, and we leave the investigation in future works.

6Pareto distribution with shape parameter less than 5.0 are known to have hevy right tails.
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Appendices

A Some Properties

A.1 Properties of Linear MDPs

Lemma A.1. In linear MDPs, the action-value function is also linear in feature map. ∀(s, a) ∈
S ×A, h ∈ [H] and ϕ ∈ Rd, under any fixed policy π,

Qπ
h(s, a) = ϕ(s, a)Twπ

h ,

where wπ
h := θh + Eµ[V

π
h+1(s

′)] and wh ∈ Rd. As a corollary, there exists w∗
h such that Q∗

h =

ϕTw∗
h.

Proof of Lemma A.1. By Bellman equation,

Qπ
h(s, a) = rh(s, a) + Es′∼Ph(·|s,a)[V

π
t+1(s

′)]

= ϕ(s, a)Tθh +

∫
V π
h+1(s

′) d(ϕ(s, a)Tµh(s
′))

= ϕ(s, a)Twπ
h ,

where wπ
h := θh + Eµh

[V π
h+1(s

′)].

A.2 Worst-case regret as a stronger criterion

We use Theorem 1 as an example. Using the worst-case result, i.e. with probability 1− δ,

R(T ) ≤ c
√
d3H3Tι+ c′d2H2E[τ ]ι+ c′′ι.

Here ι has the functional form ι = Polylog(d,K,H, δ). Then choosing δ = 1/(HK) to obtain
with probability 1− 1/(HK),

R(T ) ≤ c
√
d3H3Tι+ c′d2H2E[τ ]ι+ c′′ι := A

for ι = Polylog(d,K,H). Therefore,

E[R(T )] ≤ E[R(T )1{R(T )≤A}] + E[R(T )1{R(T )≥A}]

≤A · 1 +HK · P(R(T ) ≥ A) ≤ A+ 1.

This completes Corollary 1.

A.3 Discussion on the arbitrary delay

For completeness of our study, we also briefly discuss the case when delay is arbitrary. In genreal,
the regret can be (roughly) bounded by Õ( 1q

√
d3H3T +dH2dτ (q)) for dτ (q) to be the q-th quantile

of delay τ . This could be achieved by creating a low-switching variant of our Theorem 1/Theorem 2
and applying the reduction of the concurrent work [68]. We do not focus on this setting since there
is a 1/q blow-up in the main regret that many distributions (e.g. sub-exponential) do not need to
sacrifice.

B Regret Analysis for Delayed-PSVI

To proceed with the regret analysis, we introduce some helpful notations. Besides Q̃k
h(s, a) =

maxm ϕ(s, a)T, w̃k,m
h , Ṽ k

h (s) = maxa Q̃
k
h(s, a) in Algorithm 1, we define

Q̂k
h(s, a) = ϕ(s, a)Tŵk

h, V̂ k
h (s) = max

a
Q̂k

h(s, a), Q̄k
h = min{Q̃k

h, H − h+ 1};

(rkh + PhṼ
k
h+1)(s, a) := ϕ(s, a)Twk

h, with wk
h := θh +

∫
S
Ṽ k
h+1(s

′)dµh(s
′).
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Regret decomposition: We start by rewriting regret in terms of value-function error decomposition
following the standard analysis of optimistic algorithms [10]:

R(T ) =

K∑
k=1

V ∗
1 (s

k
1)− Ṽ k

1 (sk1)︸ ︷︷ ︸
∆k

opt

+ Ṽ k
1 (sk1)− V πk

1 (sk1)︸ ︷︷ ︸
∆k

est

,

where at each episode k, ∆k
opt corresponds to the regret resulting from optimism, and ∆k

est tracks
down the regret incurred from estimation error. Efficient RL algorithms thus need to strike a balance
between both terms. More specifically, it is desirable to generate optimistic estimations over the true
value function, while keeping estimation error relatively small. By cautious design of noise pertur-
bation, we show in Theorem 1 that Algorithm 1 effectively achieves

√
T order regret in episodic

MDPs with linear function approximation.

Proof of Theorem 1. The proof proceeds by bounding ∆k
opt and ∆k

est respectively.

Step 1: bound regret from optimism.

By Lemma B.7, the optimism provided by our algorithm guarantees with probability at least 1−δ/2,
for all k ∈ [K], ∆k

opt := V ∗
1 (s

k
1)− Ṽ k

1 (sk1) ≤ 0.

Step 2: bound regret from estimation error. To bound the estimation error, we first condition on
the following event

E := {||min{Q̃k
h(s, a), H−h+1}−(rkh+PhṼ

k
h+1)(s, a)| ≤ β ∥ϕ(s, a)∥(Ωk

h)
−1+

1

K3
, ∀s, a, h, k},

with β :=
√

2ν2 log(16CdHMK/δ)+

√
8H2

[
d
2
log

(
k+λ
λ

)
+ dM log(1 +

2
√
8k3CH,d,k,M,δ/8

H
√
λ

) + log 16
δ

]
+

2
√
λ
√
dH.7 Here Cd and CH,d,k,M,δ are defined in Lemma B.8.

Recall that ∆k
est := Ṽ k

1 (sk1)− V πk
1 (sk1) and define ζkh = E[Ṽ k

h+1

(
skh+1

)
− V πk

h+1

(
skh+1

)
|skh, akh]−

Ṽ k
h+1

(
skh+1

)
+ V πk

h+1

(
skh+1

)
. Then by applying Lemma B.1 recursively, the total estimation error∑K

k=1 ∆
k
est can be decomposed as:

K∑
k=1

∆k
est =

K∑
k=1

Ṽ k
1 (sk1)− V πk

1 (sk1)

≤
K∑

k=1

(
Ṽ k
2

(
sk2
)
− V πk

2

(
sk2
)
+ ζk1 + β

∥∥ϕ(sk1 , ak1)∥∥(Ωk
1 )

−1 +
1

K3

)
≤ . . .

≤
K∑

k=1

H∑
h=1

ζkh + β

K∑
k=1

H∑
h=1

∥∥ϕ(skh, akh)∥∥(Ωk
h)

−1 +
H

K2
.

(6)

On one hand, by definition, |ζkh | ≤ 2H for all h ∈ [H], k ∈ [K]. Therefore, {ζkh} is a martingale
difference sequence (since the computation of Ṽ k

h is independent of the new observation at episode
k). By Azuma-Hoeffding’s inequality (for t > 0),

P

(
K∑

k=1

H∑
h=1

ζkh > t

)
≥ exp

(
−t2

2K ·H3

)
:= δ/8,

which implies with probability 1− δ/8,

K∑
k=1

H∑
h=1

ζkh ≤
√
2KH3 · log(8/δ) =

√
2H2T · log(8/δ). (7)

7Note here the δ equals δ/4 as of Lemma B.8. Therefore, by Lemma B.8, P(E) ≥ 1− δ/4.
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Step 3: bounding the delayed error. By Lemma B.4, with probability 1− δ/8,
H∑

h−1

K∑
k=1

∥∥ϕ(skh, akh)∥∥(Ωk
h)

−1 ≤ H
√
2dK log((d+K)/d) + dHDτ,δ,H,K log((d+K)/d).

Here Dτ,δ,H,K := 1 + 2E[τ ] + 2
√
2E[τ ] log( 24KH

δ ) + 4
3 log(

24KH
δ ) + Dτ,K, δ

16H
and Dτ,K,δ is

defined in Lemma D.6. Consequently,

β

K∑
k=1

H∑
h=1

∥∥ϕ(skh, akh)∥∥(Ωk
h)

−1 ≤ βH
√
2dK log((d+K)/d)+βdHDτ,δ,H,K log((d+K)/d). (8)

Note that by Lemma B.8, event E holds with probability 1− δ/4, and by a union bound with (7) and
(8), we have with probability 1− δ/2,
K∑

k=1

∆k
est ≤

√
2H2T · log(8/δ)+βH

√
2dK log((d+K)/d)+βdHDτ,δ,H,K log((d+K)/d)+

H

K2
.

Finally, by a union bound over Step1, Step2 and Step3, we obtain with probability 1− δ,

R(T ) =
K∑

k=1

∆k
opt +

K∑
k=1

∆k
est ≤

K∑
k=1

∆k
est

≤
√
2H2T · log(8/δ) + βH

√
2dK log((d+K)/d) + βdHDτ,δ,H,K log((d+K)/d) +

H

K2

≤c
√
d3H3Tι+ c′d2H2E[τ ]ι+O(ι)

where c > 0 is some universal constant and ι is a Polylog term of H, d,K, δ. The last step is due
to: by the choice of λ = 1, σ2 = 1, ν = Cδ/4 and M = log(4HK/δ)/ log(64/63), we can bound
Cδ (in Lemma B.10) by Cδ ≤ c0H

√
dMιδ with c0 a universal constant and ιδ contains only the

Polylog terms. This implies ν2 ≤ c1H
2dMιδ . Note Cd ≤ dιδ , therefore β is dominated by the

first term β ≤ C2

√
2ν2 log(16CdHMK/δ) ≤ C3dHιδ for some universal constants C2, C3. Since

R(T ) is dominated by the second term in the second to last inequality, plug back the upper bound
for β gets the result. Finally, it is readily to verify Dτ,δ,H,K is bounded by c′E[τ ]ι+O(ι).

Lemma B.1. Define ζkh = E[Ṽ k
h+1

(
skh+1

)
− V πk

h+1

(
skh+1

)
|skh, akh] − Ṽ k

h+1

(
skh+1

)
+ V πk

h+1

(
skh+1

)
and condition on the event (10) in Lemma B.8. Then for all k ∈ [K], h ∈ [H], the following holds,

Ṽ k
h

(
skh
)
− V πk

h

(
skh
)
≤ Ṽ k

h+1

(
skh+1

)
− V πk

h+1

(
skh+1

)
+ ζkh+1 + β

∥∥ϕ(skh, akh)∥∥(Ωk
h)

−1 +
1

K3
.

Proof of Lemma B.1. Since akh = πk(s
k
h), it implies V k

h

(
xk
h

)
= Q̄k

h(s
k
h, a

k
h) (recall Q̄k

h :=

min{Q̃k
h, H − h+ 1}) and V πk

h

(
xk
h

)
= Qπk

h (skh, a
k
h). Hence,

|(Ṽ k
h

(
skh
)
− V πk

h

(
skh
)
)− (Ṽ k

h+1

(
skh+1

)
− V πk

h+1

(
skh+1

)
)− ζkh |

=|(Ṽ k
h

(
skh
)
− V πk

h

(
skh
)
)− E[Ṽ k

h+1

(
skh+1

)
− V πk

h+1

(
skh+1

)
|skh, akh]|

=|Ṽ k
h

(
skh
)
− rkh − (PhṼ

k
h+1)(s

k
h, a

k
h)|

=|Q̄k
h(s

k
h, a

k
h)− rkh − (PhṼ

k
h+1)(s

k
h, a

k
h)|

≤β
∥∥ϕ(skh, akh)∥∥(Ωk

h)
−1 +

1

K3
,

where the last step is by the event defined in (10).

B.1 Bounding the delayed error term
∑K

k=1

∥∥ϕ(skh, akh)∥∥(Ωk
h)

−1 .

Recall the delayed covariance matrix Ωk
h =

∑k−1
τ=1 1τ,k−1ϕ(s

τ
h, a

τ
h)ϕ(s

τ
h, a

τ
h)

T + λI with 1s,t :=
1[s+ τs ≤ t], then we can define the full design matrix Σk

h and the complement matrix Λk
h as

Σk
h :=

k−1∑
τ=1

ϕ(sτh, a
τ
h)ϕ(s

τ
h, a

τ
h)

T + λI, Λk
h :=

k−1∑
τ=1

1[s+ τs > t]ϕ(sτh, a
τ
h)ϕ(s

τ
h, a

τ
h)

T, (9)
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then Σk
h = Ωk

h + Λk
h. Also, denote the number of missing episodes as: Uk =

∑k
s=1 1[s+ τs > k].

Then we have the following Lemmas.
Lemma B.2. For λ > 0, (Ωk

h)
−1 = (Σk

h)
−1 + (Σk

h)
−1Λk

h(Ω
k
h)

−1.

Proof of Lemma B.2. Since λ > 0, both Ωk
h and Σk

h are invertible with:

(Ωk
h)

−1 =(Σk
h)

−1 + (Ωk
h)

−1 − (Σk
h)

−1

=(Σk
h)

−1 + (Σk
h)

−1Σk
h(Ω

k
h)

−1 − (Σk
h)

−1Ωk
h(Ω

k
h)

−1

=(Σk
h)

−1 + (Σk
h)

−1Λk
h(Ω

k
h)

−1

Lemma B.3. Denote ϕk
h := ϕ(skh, a

k
h). Let λ > 0, then

K∑
k=1

∥∥ϕk
h

∥∥
(Σk

h)
−1Λk

h(Ω
k
h)

−1 ≤
1

2

K∑
k=1

(1 + max
k∈[K]

Uk + τk)
∥∥ϕk

h

∥∥2
(Σk

h)
−1

Proof of Lemma B.3. By definition and Trace of matrix, we have∥∥ϕk
h

∥∥
(Σk

h)
−1Λk

h(Ω
k
h)

−1 =
√
(ϕk

h)
T(Σk

h)
−1Λk

h(Ω
k
h)

−1ϕk
h

=
√

Tr[(ϕk
h)

T(Σk
h)

−1Λk
h(Ω

k
h)

−1ϕk
h] =

√
Tr[(Σk

h)
−1Λk

h(Ω
k
h)

−1ϕk
h(ϕ

k
h)

T]

Denote A = (Σk
h)

−1Λk
h and B = (Ωk

h)
−1ϕk

h(ϕ
k
h)

T, then A,B both have non-negative eigenvalues
(by Lemma D.14) and this implies

Tr(AB) = Tr
(
AB1/2B1/2

)
= Tr

(
B1/2AB1/2

)
≤ Tr

(
B1/2(Tr(A))IB1/2

)
= Tr(A) Tr(B)

and this implies∥∥ϕk
h

∥∥
(Σk

h)
−1Λk

h(Ω
k
h)

−1 =
√

Tr[AB] ≤
√

Tr[A]Tr[B] ≤ 1

2
Tr(A) +

1

2
Tr(B)

=
1

2

∥∥ϕk
h

∥∥2
(Ωk

h)
−1 +

1

2

k−1∑
t=1

1[t+ τt > k − 1]
∥∥ϕt

h

∥∥2
(Σk

h)
−1

≤
1 + maxk∈[K] Uk

2

∥∥ϕk
h

∥∥2
(Σk

h)
−1 +

1

2

k−1∑
t=1

1[t+ τt > k − 1]
∥∥ϕt

h

∥∥2
(Σk

h)
−1

where the last inequality uses Lemma D.15. Next, by changing the order summation, we have
K∑

k=1

k−1∑
t=1

1[t+ τt > k − 1]
∥∥ϕt

h

∥∥2
(Σt

h)
−1 =

K−1∑
t=1

K∑
k=t+1

1[t+ τt > k − 1]
∥∥ϕt

h

∥∥2
(Σt

h)
−1

=

K−1∑
t=1

K−t−1∑
s=0

1[τt > s]
∥∥ϕt

h

∥∥2
(Σt

h)
−1 ≤

K−1∑
t=1

∞∑
s=0

1[τt > s]
∥∥ϕt

h

∥∥2
(Σt

h)
−1 =

K−1∑
t=1

τt
∥∥ϕt

h

∥∥2
(Σt

h)
−1 ,

which implies
K∑

k=1

∥∥ϕk
h

∥∥
(Σk

h)
−1Λk

h(Ω
k
h)

−1

≤
1 + maxk∈[K] Uk

2

K∑
k=1

∥∥ϕk
h

∥∥2
(Σk

h)
−1 +

1

2

K∑
k=1

k−1∑
t=1

1[t+ τt > k − 1]
∥∥ϕt

h

∥∥2
(Σk

h)
−1

≤
1 + maxk∈[K] Uk

2

K∑
k=1

∥∥ϕk
h

∥∥2
(Σk

h)
−1 +

1

2

K∑
k=1

k−1∑
t=1

1[t+ τt > k − 1]
∥∥ϕt

h

∥∥2
(Σt

h)
−1

≤
1 + maxk∈[K] Uk

2

K∑
k=1

∥∥ϕk
h

∥∥2
(Σk

h)
−1 +

K−1∑
t=1

τt
∥∥ϕt

h

∥∥2
(Σt

h)
−1 ,

19



where the second step uses (Σk
h)

−1 ⪰ (Σt
h)

−1 for k ≥ t.

Lemma B.4 (Bounding the delayed error). With probability 1− δ/8,
H∑

h−1

K∑
k=1

∥∥ϕ(skh, akh)∥∥(Ωk
h)

−1 ≤ H
√
2dK log((d+K)/d) + dHDτ,δ,H,K log((d+K)/d).

Here Dτ,δ,H,K := 1 + 2E[τ ] + 2
√
2E[τ ] log( 24KH

δ ) + 4
3 log(

24KH
δ ) + Dτ,K, δ

16H
and Dτ,K,δ is

defined in Lemma D.6.

Proof of Lemma B.4. Now Combine Lemma B.2 and Lemma B.3, we obtain
K∑

k=1

∥∥ϕk
h

∥∥
(Ωk

h)
−1 ≤

K∑
k=1

∥∥ϕk
h

∥∥
(Σk

h)
−1 +

K∑
k=1

∥∥ϕk
h

∥∥
(Σk

h)
−1Λk

h(Ω
k
h)

−1

≤
K∑

k=1

∥∥ϕk
h

∥∥
(Σk

h)
−1︸ ︷︷ ︸

(∗)

+
1

2

K∑
k=1

(1 + max
k∈[K]

Uk + τk)
∥∥ϕk

h

∥∥2
(Σk

h)
−1︸ ︷︷ ︸

(∗∗)

.

For term (∗), since λ = 1, by Cauchy-Schwartz inequality and Elliptical Potential Lemma D.8,

K∑
k=1

∥∥ϕk
h

∥∥
(Σk

h)
−1 ≤

√√√√K

K∑
k=1

∥∥ϕk
h

∥∥2
(Σk

h)
−1 ≤

√√√√2K log

(
det(ΣK+1

h )

det(Σ1
h)

)
≤
√

2dK log((d+K)/d)

For term (∗∗), by Lemma D.15 and Lemma D.6 and a union bound, with probability 1− δ/8,

1

2

K∑
k=1

(1 + max
k∈[K]

Uk + τk)
∥∥ϕk

h

∥∥2
(Σk

h)
−1

≤1

2
(1 + max

k∈[K]
Uk + max

k∈[K]
τk)

K∑
k=1

∥∥ϕk
h

∥∥2
(Σk

h)
−1

≤1

2
(1 + max

k∈[K]
Uk + max

k∈[K]
τk)2d log(1 +K)

≤d(1 + E[τ ] + 2

√
2E[τ ] log(

24K

δ
) +

4

3
log(

24K

δ
) + max

k∈[K]
τk) log((d+K)/d)

≤d(1 + E[τ ] + 2

√
2E[τ ] log(

24K

δ
) +

4

3
log(

24K

δ
) + E[τ ] +Dτ, δ

16
) log((d+K)/d)

Denote Dτ,δ,K := 1 + E[τ ] + 2
√

2E[τ ] log(24Kδ ) + 4
3 log(

24K
δ ) + E[τ ] +Dτ,K, δ

16
, then we have

with probability 1− δ/8,
K∑

k=1

∥∥ϕ(skh, akh)∥∥(Ωk
h)

−1 ≤
√

2dK log((d+K)/d) + dDτ,δ,K log((d+K)/d),

then apply a union bound over h ∈ [H] to obtained the stated result.

B.2 Proofs of Anti-concentration for Delayed-PSVI

In this section, we prove the optimism via anti-concentration for Delayed-PSVI. We first present
two assisting lemmas.
Lemma B.5 (Anti-concentration for Optimism). Suppose the event

E = {
∣∣∣Q̂k

h(s, a)− (rkh + PhṼ
k
h+1)(s, a)

∣∣∣ ≤ Cδ′ ∥ϕ(s, a)∥(Ωk
h)

−1 , ∀s, a, h, k}

holds. Choose ν = Cδ′ and Mδ = log(HK/δ)/ log(64/63). Then we have with probability 1− δ,

Q̃k
h(s, a) ≥ (rh + PhṼ

k
h+1)(s, a), ∀(s, a) ∈ S ×A, h ∈ [H], k ∈ [K].
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Proof of Lemma B.5. For the rest of the proof, we condition on the event

E = {
∣∣∣Q̂k

h(s, a)− (rkh + PhṼ
k
h+1)(s, a)

∣∣∣ ≤ Cδ′ ∥ϕ(s, a)∥(Ωk
h)

−1 , ∀s, a, h, k}

where δ′ will be specified later and Cδ is defined in the Lemma B.10. Also note
Q̃k,m

h (s, a)− Q̂k
h(s, a) =ϕ(s, a)T(w̃k

h − ŵk
h) ∼ N (0, ν2ϕ(s, a)T(Ωk

h)
−1ϕ(s, a))

⇔
Q̃k,m

h (s, a)− Q̂k
h(s, a)√

ν2ϕ(s, a)T(Ωk
h)

−1ϕ(s, a)
∼ N (0, 1).

Therefore,

P
(
Q̃k,m

h (s, a) ≥ (rh + PhṼ
k
h+1)(s, a),∀s, a

∣∣∣ Q̂k
h

)
=P

(
Q̃k,m

h (s, a)− Q̂k
H(s, a)√

ν2ϕ(s, a)T(Ωk
h)

−1ϕ(s, a)
≥ (rh + PhṼh+1)(s, a)− Q̂k

h(s, a)√
ν2ϕ(s, a)T(Ωk

h)
−1ϕ(s, a)

, ∀s, a
∣∣∣ Q̂k

h

)

=P

(
N (0, 1) ≥ (rh + PhṼh+1)(s, a)− Q̂k

h(s, a)√
ν2ϕ(s, a)T(Ωk

h)
−1ϕ(s, a)

, ∀s, a
∣∣∣ Q̂k

h

)

≥P

(
N (0, 1) ≥ Cδ′/ν

)

≥ 1

2
√
8π

e−1/2 ≥ 1

64
,

where the first event uses the condition on E and the second inequality chooses ν = Cδ′ and uses
Lemma D.5. Apply Lemma B.6 with f = rh + PhṼ

k
h+1, for Mδ = log(1/δ)/ log(64/63),

P
(
Q̃k

h(s, a) ≥ (rh + PhṼ
k
h+1)(s, a),∀s, a

∣∣∣ Q̂k
h

)
≥ 1− δ.

By law of total expectation E[E[1A|X]] = E[1A] = P[A], it implies

P
(
Q̃k

h(s, a) ≥ (rh + PhṼ
k
h+1)(s, a),∀s, a

)
≥ 1− δ.

Apply a union bound for h, k, we have for Mδ = log(HK/δ)/ log(64/63), with probability 1− δ,

P
(
Q̃k

h(s, a) ≥ (rh + PhṼ
k
h+1)(s, a),∀s, a, h, k

)
≥ 1− δ.

The following lemma is used to prove Lemma B.5.
Lemma B.6. For any function f : S × A 7→ R. For any 0 < δ < 1. Suppose for any (k, h,m) ∈
[K] × [H] × [M ], P

(
Q̃k,m

h (s, a) ≥ f(s, a),∀s, a | Q̂k
h

)
≥ c for some constant c > 0. Let M =

log(1/δ)/ log(1/(1− c)). Then

P
(
Q̃k

h(s, a) ≥ f(s, a),∀s, a | Q̂k
h

)
≥ 1− δ.

Proof of Lemma B.6. For any fixed (k, h) ∈ [K]× [H], we have

P
(
∃(s, a) s.t. max

m∈[M ]
Q̃k,m

h (s, a) ≤ f(s, a) | Q̂k
h

)
= P

(
∃(s, a) s.t. ∀m ∈ [M ], Q̃k,m

h (s, a) ≤ f(s, a) | Q̂k
h

)
≤ P

(
∀m ∈ [M ],∃(sm, am) s.t. Q̃k,m

h (sm, am) ≤ f(sm, am) | Q̂k
h

)
=

M∏
m=1

P
(
∃(s, a) s.t. Q̃k,m

h (s, a) ≤ f(s, a) | Q̂k
h

)
=

M∏
m=1

[
1− P

(
Q̃k,m

h (s, a) ≥ f(s, a),∀s, a | Q̂k
h

)]
≤ (1− c)M = δ,
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then this implies
P
(
Q̃k

h(s, a) ≥ f(s, a),∀s, a | Q̂k
h

)
≥ 1− δ.

With the above two lemmas, we are ready to prove the optimism achieved by Delayed-PSVI with
respect to Q̃k

h.
Lemma B.7 (Optimism). For any 0 ≤ δ < 1, we set the input in Algorithm 1 as ν = Cδ/4 and
Mδ = log(4HK/δ)/ log(64/63), then with probability 1− δ/2, we have

Q̃k
h(s, a) ≥ Q∗

h(s, a), Ṽ
k
h (s) ≥ V ∗

h (s) ∀s, a ∈ S ×A,∀h ∈ [H], k ∈ [K].

Here Cδ is defined in Lemma B.10.

Proof of Lemma B.7. Step1: Suppose the event

E = {
∣∣∣Q̂k

h(s, a)− (rkh + PhṼ
k
h+1)(s, a)

∣∣∣ ≤ Cδ′ ∥ϕ(s, a)∥(Ωk
h)

−1 , ∀s, a, h, k}

holds. Choose ν = Cδ′ and Mδ = log(4HK/δ)/ log(64/63). Then we show, for any h ∈ [H],
with probability 1 − δ/4, Q̃k

h(s, a) ≥ Q∗
h(s, a), Ṽ

k
h (s) ≥ V ∗

h (s) for all (s, a) ∈ S × A, h ∈ [H],
k ∈ [K].

First, due to our choice of Mδ = log(4HK/δ)/ log(64/63), by Lemma B.5, with probability 1 −
δ/4,

Q̃k
h(s, a) ≥ (rh + PhṼ

k
h+1)(s, a), ∀(s, a) ∈ S ×A, h ∈ [H], k ∈ [K],

which we condition on.

Next, we finish the proof by backward induction. Base case: for h = H + 1, the value functions
are zero, and thus Q̃k

H+1 ≥ Q∗
H+1 holds trivially, which also implies Ṽ k

H+1 ≥ V ∗
H+1. Suppose the

conclusion holds true for h+ 1. Then for time step h and any k ∈ [K],

Q̃k
h −Q∗

h = Q̃k
h − (rh + PhṼ

k
h+1) + (rh + PhṼ

k
h+1)−Q∗

h

≥ Q̃k
h − (rh + PhṼ

k
h+1) + (rh + PHV ∗

h+1)−Q∗
h

= Q̃k
h − (rh + PhṼ

k
h+1) ≥ 0

where the first inequality uses the induction hypothesis and the second inequality uses the condi-
tion. Lastly, Ṽ k

h (·) = maxa min{Q̃k
h(·, a), H − h + 1} ≤ maxa min{Q∗

h(·, a), H − h + 1} =
maxa Q

∗
h(·, a) = V ∗

h (·). By induction, this finishes the Step1.

Step2: By Lemma B.10, with probability 1− δ/4, for all k ∈ [K], h ∈ [H], s ∈ S, a ∈ A, it holds∣∣∣Q̂k
h(s, a)− (rkh + PhṼ

k
h+1)(s, a)

∣∣∣ ≤ Cδ/4 ∥ϕ(s, a)∥(Ωk
h)

−1 .

Therefore, in Step1, choose δ′ = δ/4, and a union bound we obtain: for the choice ν = Cδ/4 and
Mδ = log(4HK/δ)/ log(64/63), then with probability 1− δ/2, we have

Q̃k
h(s, a) ≥ Q∗

h(s, a), Ṽ
k
h (s) ≥ V ∗

h (s) ∀(s, a) ∈ S ×A, h ∈ [H], k ∈ [K].

B.3 Proofs of Concentration for Delayed-PSVI

Lemma B.8 (Pointwise Concentration). Algorithm 1 guarantees that with probability 1 − δ, ∀k ∈
[K], h ∈ [H], s ∈ S, a ∈ A, , it holds:∣∣∣|min{Q̃k

h(s, a), H − h+ 1} − (rkh + PhṼ
k
h+1)(s, a)

∣∣∣ ≤ β ∥ϕ(s, a)∥(Ωk
h)

−1 +
1

K3
(10)

where β :=
√

2ν2 log(4CdHMK/δ) +

√
8H2

[
d
2 log

(
k+λ
λ

)
+ dM log(1 +

2
√
8k3CH,d,k,M,δ/2

H
√
λ

) + log 4
δ

]
+

2
√
λ
√
dH . In particular, here logCd = d log(1 + (8

√
2ν2 log(4/δ)/λ+ 8H

√
d)K3) and

CH,d,k,M,δ = 2H
√

dk
λ +

ν
√
2d+ν
√

2 log(M/δ)√
λ

.
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Proof of Lemma B.8. Recall that |rkh + PhṼ
k
h+1| ≤ H − h + 1, therefore rkh + PhṼ

k
h+1 =

min{rkh+PhṼ
k
h+1, H−h+1}. This implies |min{Q̃k

h(s, a), H−h+1}−rkh− [PhṼ
k
h+1](s, a)| =

|min{Q̃k
h(s, a), H − h + 1} − min{rkh + [PhṼ

k
h+1](s, a), H − h + 1}| ≤ |Q̃k

h(s, a) − rkh −
[PhṼ

k
h+1](s, a)|. Hence

∣∣∣min{Q̃k
h(s, a), H − h+ 1} − rkh − [PhṼ

k
h+1](s, a)

∣∣∣ ≤ ∣∣∣Q̃k
h(s, a)− rkh − [PhṼ

k
h+1](s, a)

∣∣∣
=
∣∣∣Q̃k

h(s, a)− Q̂k
h(s, a) + Q̂k

h(s, a)− rkh − [PhṼ
k
h+1](s, a)

∣∣∣
≤
∣∣∣Q̃k

h(s, a)− Q̂k
h(s, a)

∣∣∣︸ ︷︷ ︸
R1

+
∣∣∣Q̂k

h(s, a)− rkh − [PhṼ
k
h+1](s, a)

∣∣∣︸ ︷︷ ︸
R2

.

The proof then directly follows Lemma B.9 and Lemma B.10 to bound R1 and R2 respectively
(together with a union bound).

Lemma B.9 (Concentration of R1). For any 0 < δ < 1, define the event Ẽ as

Ẽ =
{∣∣∣Q̃k

h(s, a)− ϕ(s, a)Tŵk
h

∣∣∣ ≤√2ν2 log(2CdHMK/δ) ∥ϕ(s, a)∥(Ωk
h)

−1 +
1

K3
,

∀k ∈ [K], h ∈ [H], s ∈ S, a ∈ A
}
, (11)

then Ẽ happens with probability 1−δ. Here logCd = d log(1+(8
√
2ν2 log(2/δ)/λ+ 8H

√
d)K3).

Proof of Lemma B.9. In the Step1 and Step2, we abuse w̃k
h to denote w̃k,m

h for arbitrary m to avoid
notation redundancy.

In Step1: We first show for any k ∈ [K], h ∈ [H], (s, a) ∈ S ×A, with probability 1− δ,∣∣ϕ(s, a)T(w̃k
h − ŵk

h)
∣∣ ≤√2ν2 log(2/δ) ∥ϕ(s, a)∥(Ωk

h)
−1 .

Indeed, by design of Algorithm 1, w̃k
h ∼ N (ŵk

h, ν
2(Ωk

h)
−1), which gives,

ϕ(s, a)T(w̃k
h − ŵk

h) ∼ N (0, ν2ϕ(s, a)T(Ωk
h)

−1ϕ(s, a)).

Therefore, ϕ(s, a)T(w̃k
h− ŵk

h) is ν2ϕ(s, a)T(Ωk
h)

−1ϕ(s, a)-sub-Gaussian. By concentration of sub-
Gaussian random variables, we have

P
(∣∣∣ϕ(s, a)T(w̃k

h − ŵk
h)
∣∣∣ ≥ t

)
≤ 2 exp

(
− t2

2ν2ϕ(s, a)T(Ωk
h)

−1ϕ(s, a)

)
:= δ

Solving for δ gives with probability 1− δ,∣∣ϕ(s, a)T(w̃k
h − ŵk

h)
∣∣ ≤√2ν2ϕ(s, a)⊤(Ωk

h)
−1ϕ(s, a) log(2/δ) =

√
2ν2 log(2/δ) ∥ϕ(s, a)∥(Ωk

h)
−1

Step2: For any 0 < δ < 1, define the event Ẽ as

Ẽ =
{∣∣∣ϕ(s, a)Tw̃k

h − ϕ(s, a)Tŵk
h

∣∣∣ ≤√2ν2 log(2CdHK/δ) ∥ϕ(s, a)∥(Ωk
h)

−1 +
1

K3
,

∀k ∈ [K], h ∈ [H], s ∈ S, a ∈ A
}
, (12)

then Ẽ happens with probability 1−δ. Here logCd = d log(1+(8
√
2ν2 log(2/δ)/λ+ 8H

√
d)K3).

In Lemma D.12, set θ = w̃k
h− ŵk

h and A = (Ωk
h)

−1 and B = 1/λ, and let V be the 1
2K3 -epsilon net

for the class of values {|⟨ϕ, w̃k
h−ŵk

h⟩|−C
√
ϕ⊤(Ωk

h)
−1ϕ : ∥ϕ∥ ≤ 1} (where C =

√
2ν2 log(2/δ)),

then it must also be the 1
2K3 -epsilon net for the class of values F = {|⟨ϕ(s, a), w̃k

h − ŵk
h⟩| −

C
√
ϕ(s, a)⊤(Ωk

h)
−1ϕ(s, a) : (s, a) ∈ S × A}, let V̄ is the smallest subset of V such that it is

23



1
2K3 -epsilon net for the class of values F . Then we can select VS×A to be the set of state-action

pairs such that for any fϕ := |⟨ϕ, w̃k
h − ŵk

h⟩| − C
√
ϕ⊤(Ωk

h)
−1ϕ ∈ V̄ , there exists (s, a) ∈ VS×A

satisfies |⟨ϕ(s, a), w̃k
h − ŵk

h⟩|C
√

ϕ(s, a)⊤(Ωk
h)

−1ϕ(s, a)| − fϕ ≤ 1/2K3, then we have VS×A is a

1/K3-epsilon net of F and |VS×A| ≤ |V̄| ≤ |V|. Therefore,

sup
s,a
|⟨ϕ(s, a), w̃k

h − ŵk
h⟩| − C

√
ϕ(s, a)⊤(Ωk

h)
−1ϕ(s, a)

≤ sup
(s,a)∈VS×A

|⟨ϕ(s, a), w̃k
h − ŵk

h⟩| − C
√
ϕ(s, a)⊤(Ωk

h)
−1ϕ(s, a) + 1/K3

Then by a union bound over (1+(8
√
2ν2 log(2/δ)/λ+ 8H

√
d)K3)d, H and K, we have the stated

the result.

Step3: Note Q̃k
h = maxm ϕTw̃k,m

h , hence by a union bound over M , we have∣∣∣Q̃k
h(s, a)− ϕ(s, a)Tŵk

h

∣∣∣ = |max
m

ϕ(s, a)Tw̃k,m
h − ϕ(s, a)Tŵk

h|

≤max
m
|ϕ(s, a)Tw̃k,m

h − ϕ(s, a)Tŵk
h|

≤
√
2ν2 log(2CdHMK/δ) ∥ϕ(s, a)∥(Ωk

h)
−1 +

1

K3

for all k, h, s, a with probability 1− δ. Here the last inequality follows Step2, which completes the
proof.

Lemma B.10 (Concentration of R2). For any 0 < δ < 1, with probability 1−δ, for all k ∈ [K], h ∈
[H], s ∈ S, a ∈ A, it holds∣∣∣Q̂k

h(s, a)− (rkh + PhṼ
k
h+1)(s, a)

∣∣∣ ≤ Cδ ∥ϕ(s, a)∥(Ωk
h)

−1

where Cδ =

√
8H2

[
d
2 log

(
k+λ
λ

)
+ dM log(1 +

2
√
8k3CH,d,k,M,δ

H
√
λ

) + log 2
δ

]
+ 2
√
λ
√
dH and the

quantity CH,d,k,M,δ = 2H
√

dk
λ +

ν
√
2d+ν
√

2 log(M/δ)√
λ

.

Proof of Lemma B.10. For any (k, h) ∈ [K]× [H] and (s, a) ∈ S ×A, denote

ϕ(s, a)Twk
h := (rkh + PhṼ

k
h+1)(s, a),where wk

h := θh +

∫
S
Ṽ k
h+1(s

′)dµh(s
′).

Recall yτh = 1τ,k−1 · [rτh(sτh, aτh) + Ṽ k
h+1(s

τ
h+1)] from Algorithm 1 and denote ȳτh := rτh(s

τ
h, a

τ
h) +

Ṽ k
h+1(s

τ
h+1). Then by definition,

ŵk
h = (Ωk

h)
−1

k−1∑
τ=1

1τ,k−1 · ϕ(sτh, aτh)yτh = (Ωk
h)

−1
k−1∑
τ=1

1τ,k−1 · ϕ(sτh, aτh)ȳτh.

From Ωk
h defined in line 7 of Algorithm 1, we have ΦhΦ

T
h = Ωk

h − λI . Plug it into the definition of
ŵk

h, we have

ŵk
h = (Ωk

h)
−1

k−1∑
τ=1

1τ,k−1 · ϕ(sτh, aτh)
(
ȳτh − ϕ(sτh, a

τ
h)

Twk
h + ϕ(sτh, a

τ
h)

Twk
h

)
= (Ωk

h)
−1

k−1∑
τ=1

1τ,k−1 · ϕ(sτh, aτh)
(
ȳτh − ϕ(sτh, a

τ
h)

Twk
h

)
+ (Ωk

h)
−1
(
Ωk

h − λI
)
wk

h.
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We then proceed to bound ŵk
h − wk

h, which gives

ŵk
h − wk

h = (Ωk
h)

−1
k−1∑
τ=1

1τ,k−1 · ϕ(sτh, aτh)
(
ȳτh − ϕ(sτh, a

τ
h)

Twk
h

)
− λ(Ωk

h)
−1wk

h

= (Ωk
h)

−1
k−1∑
τ=1

1τ,k−1 · ϕ(sτh, aτh)
(
Ṽ k
h+1(s

τ
h+1)− PhṼ

k
h+1(s

τ
h, a

τ
h)
)

︸ ︷︷ ︸
(i)

−λ(Ωk
h)

−1wk
h︸ ︷︷ ︸

(ii)

.

Term (i). Since Ωk
h is positive definite, multiplying the first term (i) with ϕ(s, a) and by Cauchy-

Schwartz inequality, we obtain,

∣∣ϕ(s, a)T(i)∣∣ ≤ ∥ϕ(s, a)∥(Ωk
h)

−1

∥∥∥∥∥
k−1∑
τ=1

1τ,k−1 · ϕ(sτh, aτh)
(
Ṽ k
h+1(s

τ
h+1)− PhṼ

k
h+1(s

τ
h, a

τ
h)
)∥∥∥∥∥

(Ωk
h)

−1

.

Apply Lemma B.11, we have with probability at least 1 − δ, for any (k, h) ∈ [K] × [H], and
(s, a) ∈ S ×A, ∣∣ϕ(s, a)T(i)∣∣ ≤ C1 ∥ϕ(s, a)∥(Ωk

h)
−1 , (13)

where C1 =

√
8H2

[
d
2 log

(
k+λ
λ

)
+ dM log(1 +

2
√
8k3CH,d,k,M,δ

H
√
λ

) + log 2
δ

]
.

Term (ii). By Lemma B.12, ∀(s, a) ∈ S×A, and (k, h) ∈ [K]× [H],
∣∣ϕ(s, a)T(ii)∣∣ can be bounded

as ∣∣ϕ(s, a)T(ii)∣∣ = λ
∣∣ϕ(s, a)T(Ωk

h)
−1wk

h

∣∣ ≤ 2
√
λ
√
dH ∥ϕ(s, a)∥(Ωk

h)
−1 . (14)

Combining (13), (14), we have with probability 1−δ, for any (k, h) ∈ [K]×[H] and (s, a) ∈ S×A,∣∣∣Q̂k
h(s, a)− (rkh + PhṼ

k
h+1)(s, a)

∣∣∣ = ∣∣ϕ(s, a)T(ŵk
h − wk

h)
∣∣ ≤ ∣∣ϕ(s, a)T(i)∣∣+ ∣∣ϕ(s, a)T(ii)∣∣

≤ (C1 + 2
√
λ
√
dH) ∥ϕ(s, a)∥(Ωk

h)
−1 ,

This concludes the proof.

Lemma B.11. For any 0 < δ < 1, with probability 1− δ, we have ∀(k, h) ∈ [K]× [H],∥∥∥∥∥
k−1∑
τ=1

1τ,k−1 · ϕ(sτh, aτh)
(
Ṽ k
h+1(s

τ
h+1)− PhṼ

k
h+1(s

τ
h, a

τ
h)
)∥∥∥∥∥

2

(Ωk
h)

−1

≤8H2

[
d

2
log

(
k + λ

λ

)
+ dM log(1 +

2
√
8k3CH,d,k,M,δ

H
√
λ

) + log
2

δ

]
,

here CH,d,k,M,δ = 2H
√

dk
λ +

ν
√
2d+ν
√

2 log(M/δ)√
λ

.8

Proof of Lemma B.11. First note that

Ṽ k
h (·) := max

a
min{Q̃k

h(·, a), (H − h+ 1)} = max
a

minmax
m
{Q̃k,m

h , (H − h+ 1)}

= max
a

min{max
m

ϕ(·, a)Tw̃k,m
h , (H − h+ 1)}.

Recall that (Ωk
h)

1/2(w̃k,m
h − ŵk

h)/ν ∼ N (0, Id), then by Lemma D.7, with probability 1− δ/2, we
have √

λ

ν

∥∥∥w̃k,m
h − ŵk

h

∥∥∥ ≤ 1

ν

∥∥∥(Ωk
h)

1/2(w̃k,m
h − ŵk

h)
∥∥∥ ≤ √2d+√2 log(1/δ).

8Note here ν is in the line 10 of Algorithm 1. At the end we will choose ν to be Poly(H, d,K) and this will
not affect the overall dependence of the guarantee since CH,d,k,M,δ is inside the log term.
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Apply the union bound over all m, then above implies with probability 1− δ/2, ∀m ∈ [M ]∥∥∥w̃k,m
h

∥∥∥ ≤ ∥∥ŵk
h

∥∥+ ν
√
2d+ν
√

2 log(M/δ)√
λ

≤ 2H
√

dk
λ +

ν
√
2d+ν
√

2 log(M/δ)√
λ

:= CH,d,k,M,δ. (15)

Now consider the function class V̄ := {maxa maxm ϕ(·, a)Twm : ∥wm∥ ≤ CH,d,k,M,δ},
so by Lemma D.13 the ϵ-log covering number for V̄ is dM log(1 +

2CH,d,k,M,δ

ϵ ). Since
min{·, ·} is a non-expansive operator, the ϵ-log covering number for the function class V :=
{maxa min{maxm ϕ(·, a)Twm, (H − h + 1)} : ∥wm∥ ≤ CH,d,k,M,δ}, is at most dM log(1 +
2CH,d,k,M,δ

ϵ ). Hence, for any V ∈ V , there exists V ′ in the ϵ-covering such that V = V ′ +∆V with
∥∆V ∥∞ ≤ ϵ. Then with probability 1− δ/2,∥∥∥∥∥

k−1∑
τ=1

1τ,k−1ϕ(s
τ
h, a

τ
h) (V (sτh+1)− PhV (sτh, a

τ
h))

∥∥∥∥∥
2

(Ωk
h
)−1

≤2

∥∥∥∥∥
k−1∑
τ=1

1τ,k−1ϕ(s
τ
h, a

τ
h)

(
V ′(sτh+1)− PhV

′(sτh, a
τ
h)
)∥∥∥∥∥

2

(Ωk
h
)−1

+ 2

∥∥∥∥∥
k−1∑
τ=1

1τ,k−1ϕ(s
τ
h, a

τ
h) (∆V (sτh+1)− Ph∆V (sτh, a

τ
h))

∥∥∥∥∥
2

(Ωk
h
)−1

≤2

∥∥∥∥∥
k−1∑
τ=1

1τ,k−1ϕ(s
τ
h, a

τ
h)

(
V ′(sτh+1)− PhV

′(sτh, a
τ
h)
)∥∥∥∥∥

2

(Ωk
h
)−1

+
8k2ϵ2

λ

≤4H2

[
d

2
log

(
k + λ

λ

)
+ dM log(1 +

2CH,d,k,M,δ

ϵ
) + log

2

δ

]
+

8k2ϵ2

λ

(16)

where the second inequality can be conducted using a direct calculation and the third inequality uses
Lemma D.9 and a union bound over the covering number. Now by (15) and (16) and a union bound,
we have for any ϵ > 0, with probability 1− δ,∥∥∥∥∥

k−1∑
τ=1

ϕ(sτh, a
τ
h)
(
Ṽ k
h+1(s

τ
h+1)− PhṼ

k
h+1(s

τ
h, a

τ
h)
)∥∥∥∥∥

2

(Ωk
h)

−1

≤4H2

[
d

2
log

(
k + λ

λ

)
+ dM log(1 +

2CH,d,k,M,δ

ϵ
) + log

2

δ

]
+

8k2ϵ2

λ

≤8H2

[
d

2
log

(
k + λ

λ

)
+ dM log(1 +

2
√
8k3CH,d,k,M,δ

H
√
λ

) + log
2

δ

]
,

where the last step choose ϵ2 = H2λ/8k2 so 8k2ϵ2

λ ≤ 4H2. Lastly, apply the union bound over
H,K to obtain the stated result.

Lemma B.12. ∀(s, a) ∈ S ×A, h ∈ [H], k ∈ [K], it holds that∣∣ϕ(s, a)T(Ωk
h)

−1wk
h

∣∣ ≤ 2√
λ

√
dH ∥ϕ(s, a)∥(Ωk

h)
−1 .

Proof of Lemma B.12. Note that the precision matrix Ωk
h for any step h and episode k is always

positive definite. By Cauchy-Schwartz inequality and Lemma D.1,∣∣ϕ(s, a)T(Ωk
h)

−1wk
h

∣∣ = ∣∣∣ϕ(s, a)T(Ωk
h)

−1/2(Ωk
h)

−1/2wk
h

∣∣∣
≤ ∥ϕ(s, a)∥(Ωk

h)
−1

∥∥wk
h

∥∥
(Ωk

h)
−1

≤ ∥ϕ(s, a)∥(Ωk
h)

−1

√∥∥wk
h

∥∥2 ∥∥(Ωk
h)

−1
∥∥

≤ ∥ϕ(s, a)∥(Ωk
h)

−1

∥∥wk
h

∥∥ 1√
λmin(Ωk

h)

Note that λmin(Ω
k
h) ≥ λ. Applying Lemma D.3 for

∥∥wk
h

∥∥ completes the proof.
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C Regret Analysis for Delayed-LPSVI

Proof of Theorem 2. The proof structure is similar to that of Theorem 1. We proceed by bounding
∆k

opt and ∆k
est respectively.

Step 1: bound regret from optimism. By Lemma C.5, with probability 1− δ/2,

∆k
opt := V ∗

1 (s
k
1)− Ṽ k

1 (sk1) ≤ 0, ∀k ∈ [K].

Step 2: bound regret from estimation error. We first condition on the event that

E := {||min{Q̃k
h(s, a), H−h+1}−(rkh+PhṼ

k
h+1)(s, a)| ≤ β ∥ϕ(s, a)∥(Ωk

h)
−1+

1

K3
, ∀s, a, h, k},

with β :=
√

2γ log(16CdHMK/δ)+

√
8H2

[
d
2
log

(
k+λ
λ

)
+ dM log(1 +

2
√
8k3CH,d,k,M,δ/8

H
√
λ

) + log 16
δ

]
+

2
√
λ
√
dH. Here Cd and CH,d,k,M,δ are defined in Lemma C.6.

Similarly, define

ζkh = E[Ṽ k
h+1

(
skh+1

)
− V πk

h+1

(
skh+1

)
|skh, akh]− Ṽ k

h+1

(
skh+1

)
+ V πk

h+1

(
skh+1

)
.

Then by Lemma C.1,
K∑

k=1

∆k
est =

K∑
k=1

Ṽ k
1 (sk1)− V πk

1 (sk1)

≤
K∑

k=1

(
Ṽ k
2

(
sk2
)
− V πk

2

(
sk2
)
+ ζk1 + β

∥∥ϕ(sk1 , ak1)∥∥(Ωk
1 )

−1 +
1

K3

)

≤
K∑

k=1

H∑
h=1

ζkh + β

K∑
k=1

H∑
h=1

∥∥ϕ(skh, akh)∥∥(Ωk
h)

−1 +
H

K2
.

(17)

By definition, |ζkh | ≤ 2H for all h ∈ [H], k ∈ [K], therefore {ζkh} is a martingale difference
sequence. By Azuma-Hoeffding’s inequality,

P

(
K∑

k=1

H∑
h=1

ζkh > t

)
≥ exp

(
−t2

2K ·H3

)
:= δ/8, ∀t > 0.

Thus, with probability 1− δ/8,
K∑

k=1

H∑
h=1

ζkh ≤
√
2KH3 · log(8/δ) =

√
2H2T · log(8/δ). (18)

Step 3: bounding the delayed error. By Lemma B.4, with probability 1− δ/8,

β
∑K

k=1

∑H
h=1

∥∥ϕ(skh, akh)∥∥(Ωk
h)

−1 ≤ βH
√
2dK log((d+K)/d) + βdHDτ,δ,H,K log((d+K)/d).

(19)

Here Dτ,δ,H,K := 1 + 2E[τ ] + 2
√
2E[τ ] log( 24KH

δ ) + 4
3 log(

24KH
δ ) + Dτ,K, δ

16H
and Dτ,K,δ is

defined in Lemma D.6. By Lemma C.6, event E holds with probability 1 − δ/4, by a union bound
with (18) and (19), we have with probability 1− δ/2,
K∑

k=1

∆k
est ≤

√
2H2T · log(8/δ)+βH

√
2dK log((d+K)/d)+βdHDτ,δ,H,K log((d+K)/d)+

H

K2
.

Finally, by a union bound over Step1, Step2 and Step3, we obtain with probability 1− δ,

R(T ) =

K∑
k=1

∆k
opt +

K∑
k=1

∆k
est ≤

K∑
k=1

∆k
est

≤
√
2H2T · log(8/δ) + βH

√
2dK log((d+K)/d) + βdHDτ,δ,H,K log((d+K)/d) +

H

K2

≤c
√
d3H3Tι+ c′d2H2E[τ ]ι+O(ι)
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where c > 0 is some universal constant and ι is a Polylog term of H, d,K, δ. Similarly, we can
bound β ≤ CdHιδ for some universal constant C, and it is readily to verify Dτ,δ,H,K is bounded
by c′E[τ ]ι+O(ι).

Lemma C.1. Define ζkh = E[Ṽ k
h+1

(
skh+1

)
− V πk

h+1

(
skh+1

)
|skh, akh] − Ṽ k

h+1

(
skh+1

)
+ V πk

h+1

(
skh+1

)
and condition on the event (21) in Lemma C.6. Then for all k ∈ [K], h ∈ [H], the following holds,

Ṽ k
h

(
skh
)
− V πk

h

(
skh
)
≤ Ṽ k

h+1

(
skh+1

)
− V πk

h+1

(
skh+1

)
+ ζkh+1 + β

∥∥ϕ(skh, akh)∥∥(Ωk
h)

−1 +
1

K3
.

Proof of Lemma C.1. By the event defined in (21), the proof follows exactly as in that of
Lemma B.1.

C.1 Convergence of Langevin Monte Carlo

The following lemma is crucial to prove the optimism and bound the error in Langevin analysis. For
ease of notation, within the episode k, we simply use η to denote ηk for conciseness.

Lemma C.2 (Convergence of LMC). Denote {w̃k,m
h }m∈[M ] to be the weights returned by Line 6 of

Algorithm 2. Set η = 1
4λmax(Ωk

h)
, we have

w̃k,m
h ∼ N (ANk

h,kw0 + (I −ANk

h,k)ŵ
k
h,Θ

k
h) ∀m ∈ [M ]

where

Ah,k := I − 2ηΩk
h

Ωk
h := λI +

K∑
k=1

ϕh(s
k
h, a

k
h)ϕh(s

k
h, a

k
h)

T

ŵk
h := (Ωk

h)
−1

k−1∑
τ=1

ϕh(s
τ
h, a

τ
h)y

τ
h

Θk
h := γ(I −A2Nk

h,k )(Ωk
h)

−1(I +Ah,k)
−1.

Furthermore, we have
γ

2

(
1− (1− 1

2κh
)2Nk

)
(Ωk

h)
−1 ≺ Θk

h ≺ γ(Ωk
h)

−1,

where κh :=
λmax(Ω

k
h)

λmin(Ωk
h)

is the condition number.

Proof of Lemma C.2. Let bkh :=
∑k−1

τ=1 ϕ(s
τ
h, a

τ
h)y

τ
h, then

∇Lk
h(w) = 2Ωk

hw − 2bkh.

Therefore, fix h, k,m, and within the Algorithm 3 we have

wN =wN−1 − 2η(Ωk
h · wN−1 − bkh) +

√
2ηγϵN

=(I − 2ηΩk
h)wN−1 + 2ηbkh +

√
2ηγϵN

=Ah,kwN−1 + 2ηbkh +
√
2ηγϵN

=AN
h,kw0 + 2η

N−1∑
l=0

Al
h,kb

k
h +

√
2ηγ

N−1∑
l=0

Al
h,kϵN−l

=AN
h,kw0 + (I −AN

h,k)ŵ
k
h +

√
2ηγ

N−1∑
l=0

Al
h,kϵN−l

where the last equality uses (Ωk
h)

−1bkh = ŵk
h and I ≻ I−2ηΩk

h ≻ 0, so
∑N−1

l=0 Al = (I−AN )(I−
A)−1. Since ϵi are i.i.d gaussian noise, from the above we directly have

wN ∼ N (AN
h,kw0 + (I −AN

h,k)ŵ
k
h,Θ

k
h)
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where

Θk
h =Cov[

√
2ηγ

N−1∑
l=0

Al
h,kϵN−l] = 2ηγ · Cov[

N−1∑
l=0

Al
h,kϵN−l]

=2ηγ ·
N−1∑
l=0

A2l
h,k = 2ηγ(I −A2N

h,k)(I −A2
h,k)

−1

=γ(I −A2Nk

h,k )(Ωk
h)

−1(I +Ah,k)
−1.

Next, due to the choice of η = 1
4λmax(Ωk

h)
, we have

1

2
I ≺ Ah,k = I − 2ηΩk

h ≺ (1− 2ηλmin(Ω
k
h))I

⇒ 1

22N
I ≺ A2N

h,k ≺ (1− 2ηλmin(Ω
k
h))

2NI

⇒
(
1− (1− 2ηλmin(Ω

k
h))

2N
)
I ≺ I −A2N

h,k ≺ (1− 1

22N
)I

(20)

In addition,

1

2
I ≺ Ah,k = I − 2ηΩk

h ≺ (1− 2ηλmin(Ω
k
h))I

⇒3

2
I ≺ I +Ah,k ≺ (2− 2ηλmin(Ω

k
h))I

⇒ 1

2− 2ηλmin(Ωk
h)

I ≺ (I +Ah,k)
−1 ≺ 2

3
I

The above two implies

γ

(
1− (1− 2ηλmin(Ω

k
h))

2N
)

2− 2ηλmin(Ωk
h)

(Ωk
h)

−1 ≺ Θk
h ≺ γ

2

3
(1− 1

22N
)(Ωk

h)
−1

⇒γ

(
1− (1− 2ηλmin(Ω

k
h))

2N
)

2
(Ωk

h)
−1 ≺ Θk

h ≺ γ(Ωk
h)

−1

Replacing N with Nk and wN with w̃k,m
h for all m ∈ [M ] completes the proof.

C.2 Proofs of optimism for Delayed-LPSVI

Lemma C.3 (Anti-concentration for Optimism). Suppose the event

E = {
∣∣∣Q̂k

h(s, a)− (rkh + PhṼ
k
h+1)(s, a)

∣∣∣ ≤ Cδ′ ∥ϕ(s, a)∥(Ωk
h)

−1 , ∀s, a, h, k}

holds. Choose Nk ≥ max{log( 32H
2(K+λ)dk
γλ + 1)/[2 log(1/(1 − 1

2κh
))], log 2

2 log(1/(1− 1
2κh

))
}, γ =

16C2
δ′ and Mδ = log(HK/δ)/ log(64/63). Then we have with probability 1− δ,

Q̃k
h(s, a) ≥ (rh + PhṼ

k
h+1)(s, a), ∀(s, a) ∈ S ×A, h ∈ [H], k ∈ [K].

Proof of Lemma C.3. For the rest of the proof, we condition on the event

E = {
∣∣∣Q̂k

h(s, a)− (rkh + PhṼ
k
h+1)(s, a)

∣∣∣ ≤ Cδ′ ∥ϕ(s, a)∥(Ωk
h)

−1 , ∀s, a, h, k}

where δ′ will be specified later and Cδ is defined in the Lemma C.9.

ϕ(s, a)T(w̃k
h − (I −ANk

h,k)ŵ
k
h) ∼ N (0, ϕ(s, a)TΘk

hϕ(s, a)).
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Also note

Q̃k,m
h (s, a)− ϕ(s, a)T(I −ANk

h,k)ŵ
k
h ∼ N (0, ϕ(s, a)TΘk

hϕ(s, a))

⇔
Q̃k,m

h (s, a)− ϕ(s, a)T(I −ANk

h,k)ŵ
k
h√

ϕ(s, a)TΘk
hϕ(s, a)

∼ N (0, 1).

Therefore,

P
(
Q̃k,m

h (s, a) ≥ (rh + PhṼ
k
h+1)(s, a),∀s, a

)
=P

(
Q̃k,m

h (s, a)− ϕ(s, a)T(I −ANk

h,k)ŵ
k
h√

ϕ(s, a)TΘk
hϕ(s, a)

≥
(rh + PhṼh+1)(s, a)− ϕ(s, a)T(I −ANk

h,k)ŵ
k
h√

ϕ(s, a)TΘk
hϕ(s, a)

, ∀s, a

)

=P

(
N (0, 1) ≥

(rh + PhṼh+1)(s, a)− ϕ(s, a)T(I −ANk

h,k)ŵ
k
h√

ϕ(s, a)TΘk
hϕ(s, a)

, ∀s, a

)

≥P

(
N (0, 1) ≥

(rh + PhṼh+1)(s, a)− ϕ(s, a)T(I −ANk

h,k)ŵ
k
h√

γ
2

(
1− (1− 1

2κh
)2Nk

)
ϕ(s, a)T(Ωk

h)
−1ϕ(s, a)

, ∀s, a

)

≥P

(
N (0, 1) ≥ 1

)
≥ 1

2
√
8π

e−1/2 ≥ 1

64
,

where the first two inequalities follow Lemma C.2 and Lemma C.4 respectively and the thrid in-
equality results from Lemma D.5. Applying Lemma B.6 with f = rh + PhṼ

k
h+1 and without

conditioning, for Mδ = log(1/δ)/ log(64/63),

P
(
Q̃k

h(s, a) ≥ (rh + PhṼ
k
h+1)(s, a),∀s, a

)
≥ 1− δ.

Apply a union bound for h, k, we have for Mδ = log(HK/δ)/ log(64/63), with probability 1− δ,

P
(
Q̃k

h(s, a) ≥ (rh + PhṼ
k
h+1)(s, a),∀s, a, h, k

)
≥ 1− δ.

Lemma C.4. Suppose the event

E = {
∣∣∣Q̂k

h(s, a)− (rkh + PhṼ
k
h+1)(s, a)

∣∣∣ ≤ Cδ′ ∥ϕ(s, a)∥(Ωk
h)

−1 , ∀s, a, h, k}

holds. Choose Nk ≥ max{log( 32H
2(K+λ)dk
γλ + 1)/[2 log(1/(1 − 1

2κh
))], log 2

2 log(1/(1− 1
2κh

))
} and

γ = 16C2
δ′ . Then

|(rh + PhṼh+1)(s, a)− ϕ(s, a)T(I −ANk

h,k)ŵ
k
h|√

γ
2

(
1− (1− 1

2κh
)2Nk

)
ϕ(s, a)T(Ωk

h)
−1ϕ(s, a)

≤ 1, ∀s, a ∈ S ×A, h ∈ [H], k ∈ [K].

Proof of Lemma C.4. By direct calculation,

|(rh + PhṼh+1)(s, a)− ϕ(s, a)T(I −A
Nk
h,k)ŵ

k
h|√

γ
2

(
1− (1− 1

2κh
)2Nk

)
ϕ(s, a)T(Ωk

h)
−1ϕ(s, a)

≤
|ϕ(s, a)TANk

h,kŵ
k
h|√

γ
2

(
1− (1− 1

2κh
)2Nk

)
ϕ(s, a)T(Ωk

h)
−1ϕ(s, a)

+
|(rh + PhṼh+1)(s, a)− ϕ(s, a)Tŵk

h|√
γ
2

(
1− (1− 1

2κh
)2Nk

)
ϕ(s, a)T(Ωk

h)
−1ϕ(s, a)
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For the first term above, by CS inequality we have

|ϕ(s, a)TANk

h,kŵ
k
h| ≤

√
ϕ(s, a)T(Ωk

h)
−1ϕ(s, a) ·

∥∥∥(Ωk
h)

1/2ANk

h,kŵ
k
h

∥∥∥
≤
√
ϕ(s, a)T(Ωk

h)
−1ϕ(s, a) ·

∥∥∥(Ωk
h)

1/2
∥∥∥ ∥Ah,k∥Nk · 2H

√
dk

λ

≤
√

ϕ(s, a)T(Ωk
h)

−1ϕ(s, a) ·
√
k + λ · (1− 1

2κh
)Nk · 2H

√
dk

λ

and this indicates

|ϕ(s, a)TANk

h,kŵ
k
h|√

γ
2

(
1− (1− 1

2κh
)2Nk

)
ϕ(s, a)T(Ωk

h)
−1ϕ(s, a)

≤

√
k + λ · (1− 1

2κh
)Nk · 2H

√
dk
λ√

γ
2

(
1− (1− 1

2κh
)2Nk

) ≤ 1

2

where the last inequality is by Nk ≥ log( 32H
2(K+λ)dk
γλ + 1)/[2 log(1/(1− 1

2κh
))].

For the second term above,

|(rh+PhṼh+1)(s,a)−ϕ(s,a)Tŵk
h|√

γ
2

(
1−(1− 1

2κh
)2Nk

)
ϕ(s,a)T(Ωk

h)
−1ϕ(s,a)

≤ Cδ′√
γ
2

(
1−(1− 1

2κh
)2Nk

) ≤ Cδ′√
γ
2 (1−

1
2 )

= 1
2 .

Here the second inequality uses Nk ≥ log 2
2 log(1/(1− 1

2κh
))

and the last equal sign comes from γ =

16C2
δ′ .

Lemma C.5 (Optimism for Langevin Posterior Sampling). For any 0 ≤ δ < 1, we set the input
in Algorithm 2 as Nk ≥ max{log( 32H

2(K+λ)dk
γλ + 1)/[2 log(1/(1− 1

2κh
))], log 2

2 log(1/(1− 1
2κh

))
}, γ =

16C2
δ/4 and Mδ = log(4HK/δ)/ log(64/63), then with probability 1− δ/2, we have

Q̃k
h(s, a) ≥ Q∗

h(s, a), Ṽ
k
h (s) ≥ V ∗

h (s) ∀s, a ∈ S ×A,∀h ∈ [H], k ∈ [K].

Here Cδ is defined in Lemma C.9.

Proof of Lemma C.5. Step1: Suppose the event

E = {
∣∣∣Q̂k

h(s, a)− (rkh + PhṼ
k
h+1)(s, a)

∣∣∣ ≤ Cδ′ ∥ϕ(s, a)∥(Ωk
h)

−1 , ∀s, a, h, k}

holds. Choose Nk ≥ max{log( 32H
2(K+λ)dk
γλ + 1)/[2 log(1/(1 − 1

2κh
))], log 2

2 log(1/(1− 1
2κh

))
}, γ =

16C2
δ′ and Mδ = log(4HK/δ)/ log(64/63). Then we show, for any h ∈ [H], with probability

1− δ/4, Q̃k
h(s, a) ≥ Q∗

h(s, a), Ṽ
k
h (s) ≥ V ∗

h (s) for all (s, a) ∈ S ×A, h ∈ [H], k ∈ [K].

First, due to our choice of Mδ = log(4HK/δ)/ log(64/63), by Lemma C.3, with probability 1 −
δ/4,

Q̃k
h(s, a) ≥ (rh + PhṼ

k
h+1)(s, a), ∀(s, a) ∈ S ×A, h ∈ [H], k ∈ [K],

which we condition on.

Next, we finish the proof by backward induction. Base case: for h = H + 1, the value functions
are zero, and thus Q̃k

H+1 ≥ Q∗
H+1 holds trivially, which also implies Ṽ k

H+1 ≥ V ∗
H+1. Suppose the

conclusion holds true for h+ 1. Then for time step h and any k ∈ [K],

Q̃k
h −Q∗

h = Q̃k
h − (rh + PhṼ

k
h+1) + (rh + PhṼ

k
h+1)−Q∗

h

≥ Q̃k
h − (rh + PhṼ

k
h+1) + (rh + PHV ∗

h+1)−Q∗
h

= Q̃k
h − (rh + PhṼ

k
h+1) ≥ 0
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where the first inequality uses the induction hypothesis and the second inequality uses the condi-
tion. Lastly, Ṽ k

h (·) = maxa min{Q̃k
h(·, a), H − h + 1} ≤ maxa min{Q∗

h(·, a), H − h + 1} =
maxa Q

∗
h(·, a) = V ∗

h (·). By induction, this finishes the Step1.

Step2: By Lemma C.9, with probability 1− δ/4, for all k ∈ [K], h ∈ [H], s ∈ S, a ∈ A, it holds∣∣∣Q̂k
h(s, a)− (rkh + PhṼ

k
h+1)(s, a)

∣∣∣ ≤ Cδ/4 ∥ϕ(s, a)∥(Ωk
h)

−1 .

Therefore, in Step1, choose δ′ = δ/4, and a union bound we obtain: for the choice Nk ≥
max{log( 32H

2(K+λ)dk
γλ + 1)/[2 log(1/(1 − 1

2κh
))], log 2

2 log(1/(1− 1
2κh

))
}, γ = 16C2

δ/4 and Mδ =

log(4HK/δ)/ log(64/63), then with probability 1− δ/2, we have

Q̃k
h(s, a) ≥ Q∗

h(s, a), Ṽ
k
h (s) ≥ V ∗

h (s) ∀(s, a) ∈ S ×A, h ∈ [H], k ∈ [K].

C.3 Proofs of Concentration for Delayed-LPSVI

Lemma C.6 (Pointwise Concentration for Langevin Posterior Sampling). Choose Nk ≥
log( 4HK3√

λ/dK
)/ log(1/(1 − 1

2κh
)). Algorithm 2 guarantees that ∀k ∈ [K], h ∈ [H], s ∈ S, a ∈ A,

the following holds with probability 1− δ,∣∣∣|min{Q̃k
h(s, a), H − h+ 1} − (rkh + PhṼ

k
h+1)(s, a)

∣∣∣ ≤ β ∥ϕ(s, a)∥(Ωk
h)

−1 +
1

K3
. (21)

where β :=
√

2γ log(4CdHMK/δ) +

√
8H2

[
d
2 log

(
k+λ
λ

)
+ dM log(1 +

2
√
8k3CH,d,k,M,δ/2

H
√
λ

) + log 4
δ

]
+2
√
λ
√
dH . In particular, here logCd = d log(1 + (16

√
2γ log(2/δ)/λ+ 16H

√
d)K3) and

CH,d,k,M,δ = 2H
√

dk
λ +

√
2dγ+
√

2γ log(M/δ)√
λ

.

Proof of Lemma C.6. Recall that |rkh + PhṼ
k
h+1| ≤ H − h + 1, therefore rkh + PhṼ

k
h+1 =

min{rkh+PhṼ
k
h+1, H−h+1}. This implies |min{Q̃k

h(s, a), H−h+1}−rkh− [PhṼ
k
h+1](s, a)| =

|min{Q̃k
h(s, a), H − h + 1} − min{rkh + [PhṼ

k
h+1](s, a), H − h + 1}| ≤ |Q̃k

h(s, a) − rkh −
[PhṼ

k
h+1](s, a)|. Hence

∣∣∣min{Q̃k
h(s, a), H − h+ 1} − rkh − [PhṼ

k
h+1](s, a)

∣∣∣ ≤ ∣∣∣Q̃k
h(s, a)− rkh − [PhṼ

k
h+1](s, a)

∣∣∣
=
∣∣∣Q̃k

h(s, a)− Q̂k
h(s, a) + Q̂k

h(s, a)− rkh − [PhṼ
k
h+1](s, a)

∣∣∣
≤
∣∣∣Q̃k

h(s, a)− Q̂k
h(s, a)

∣∣∣︸ ︷︷ ︸
R1

+
∣∣∣Q̂k

h(s, a)− rkh − [PhṼ
k
h+1](s, a)

∣∣∣︸ ︷︷ ︸
R2

.

The proof then directly follows Lemma C.7 and Lemma C.9 to bound R1 and R2 respectively
(together with a union bound).

Lemma C.7 (Concentration of R1 with Langevin Posterior Sampling). Suppose Nk ≥
log( 4HK3√

λ/dK
)/ log(1/(1− 1

2κh
)). For any 0 < δ < 1, define the event Ẽ as

Ẽ =
{∣∣∣Q̃k

h(s, a)− ϕ(s, a)Tŵk
h

∣∣∣ ≤√2γ log(2CdHMK/δ) ∥ϕ(s, a)∥(Ωk
h)

−1 +
1

K3
,

∀k ∈ [K], h ∈ [H], s ∈ S, a ∈ A
}
, (22)

then Ẽ happens w.p. 1− δ. Here logCd = d log(1 + (16
√
2γ log(2/δ)/λ+ 16H

√
d)K3).
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Proof of Lemma C.7. In the Step1 and Step2, we abuse w̃k
h to denote w̃k,m

h for arbitrary m to avoid
notation redundancy.

In Step1: We first show for any k ∈ [K], h ∈ [H], (s, a) ∈ S ×A, with probability 1− δ,∣∣ϕ(s, a)T(w̃k
h − ŵk

h)
∣∣ ≤√2γ log(2/δ) ∥ϕ(s, a)∥(Ωk

h)
−1 +

1

2K3
.

Indeed, by Lemma C.2 we have (w̃k
h − (I −ANk

h,k)ŵ
k
h) ∼ N (0,Θk

h), which gives,

ϕ(s, a)T(w̃k
h − (I −ANk

h,k)ŵ
k
h) ∼ N (0, ϕ(s, a)TΘk

hϕ(s, a)).

Therefore, ϕ(s, a)T(w̃k
h − (I −ANk

h,k)ŵ
k
h) is ϕ(s, a)TΘk

hϕ(s, a)-sub-Gaussian. By concentration of
sub-Gaussian random variables, we have

P
(∣∣∣ϕ(s, a)T(w̃k

h − (I −ANk

h,k)ŵ
k
h)
∣∣∣ ≥ t

)
≤ 2 exp

(
− t2

2ϕ(s, a)TΘk
hϕ(s, a)

)
:= δ

Solving for δ gives with probability 1− δ,∣∣∣ϕ(s, a)T(w̃k
h − (I −ANk

h,k)ŵ
k
h)
∣∣∣ ≤√2 log(2/δ) ∥ϕ(s, a)∥Θk

h
≤
√
2γ log(2/δ) ∥ϕ(s, a)∥(Ωk

h)
−1 ,

where the last inequality is by Lemma C.2, and by Lemma C.8, the above further implies∣∣ϕ(s, a)T(w̃k
h − ŵk

h)
∣∣ ≤√2γ log(2/δ) ∥ϕ(s, a)∥(Ωk

h)
−1 +

1

2K3
.

Step2: we prove that for any 0 < δ < 1, define the event Ẽ as

Ẽ =
{∣∣∣ϕ(s, a)Tw̃k

h − ϕ(s, a)Tŵk
h

∣∣∣ ≤√2γ log(2CdHK/δ) ∥ϕ(s, a)∥(Ωk
h)

−1 +
1

K3
,

∀k ∈ [K], h ∈ [H], s ∈ S, a ∈ A
}
, (23)

then Ẽ happens w.p. 1− δ. Here logCd = d log(1 + (16
√
2γ log(2/δ)/λ+ 16H

√
d)K3).

In Lemma D.12, set θ = w̃k
h − ŵk

h and A = (Ωk
h)

−1 and B = 1/λ, and let V be the 1
4K3 -epsilon

net for the class of values {|⟨ϕ, w̃k
h − ŵk

h⟩| − C
√
ϕ⊤(Ωk

h)
−1ϕ − 1

2K3 : ∥ϕ∥ ≤ 1} (where C =√
2γ log(2/δ)), then it must also be the 1

4K3 -epsilon net for the class of valuesF = {|⟨ϕ(s, a), w̃k
h−

ŵk
h⟩| −C

√
ϕ(s, a)⊤(Ωk

h)
−1ϕ(s, a)− 1

2K3 : (s, a) ∈ S ×A}, let V̄ is the smallest subset of V such

that it is 1
2K3 -epsilon net for the class of values F . Then we can select VS×A to be the set of

state-action pairs such that for any fϕ := |⟨ϕ, w̃k
h − ŵk

h⟩| − C
√
ϕ⊤(Ωk

h)
−1ϕ ∈ V̄ − 1

2K3 , there ex-

ists (s, a) ∈ VS×A satisfies
∣∣∣∣|⟨ϕ(s, a), w̃k

h − ŵk
h⟩| − C

√
ϕ(s, a)⊤(Ωk

h)
−1ϕ(s, a)| − 1

2K3 − fϕ

∣∣∣∣ ≤
1/4K3, then we have VS×A is a 1/(2K3)-epsilon net of F and |VS×A| ≤ |V̄| ≤ |V|. Therefore,

sup
s,a

(
|⟨ϕ(s, a), w̃k

h − ŵk
h⟩| − C

√
ϕ(s, a)⊤(Ωk

h)
−1ϕ(s, a)− 1

2K3

)
≤ sup

(s,a)∈VS×A

(
|⟨ϕ(s, a), w̃k

h − ŵk
h⟩| − C

√
ϕ(s, a)⊤(Ωk

h)
−1ϕ(s, a)− 1

2K3

)
+ 1/(2K3)

≤ 1/(2K3),

where the last inequality is from Step1. Then by a union bound over H , K and (1 +

(16
√

2γ log(2/δ)/λ+ 16H
√
d)K3)d, we have with probability 1− δ,

sup
s,a,h,k

(
|⟨ϕ(s, a), w̃k

h − ŵk
h⟩| −

√
2γ log(2CdHK/δ)

√
ϕ(s, a)⊤(Ωk

h)
−1ϕ(s, a)

)
≤ 1

2K3
+

1

2K3
=

1

K3
,
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where logCd = d log(1 + (16
√
2γ log(2/δ)/λ+ 16H

√
d)K3).

Step3: We finish the proof. Note Q̃k
h = maxm ϕTw̃k,m

h , hence by a union bound over M , we have∣∣∣Q̃k
h(s, a)− ϕ(s, a)Tŵk

h

∣∣∣ = |max
m

ϕ(s, a)Tw̃k,m
h − ϕ(s, a)Tŵk

h|

≤max
m
|ϕ(s, a)Tw̃k,m

h − ϕ(s, a)Tŵk
h|

≤
√
2γ log(2CdHMK/δ) ∥ϕ(s, a)∥(Ωk

h)
−1 +

1

K3

for all k, h, s, a with probability 1 − δ. Here the last inequality uses Step2. This finishes the proof.

Lemma C.8. Let Nk ≥ log( 4HK3√
λ/dK

)/ log(1/(1− 1
2κh

)) and η = 1
4λmax(Ωk

h)
, then

∥∥∥ϕ(s, a)TANk

h,kŵ
k
h

∥∥∥ ≤ 1

2K3

Proof of Lemma C.8. By direct calculation,∥∥∥ϕ(s, a)TANk

h,kŵ
k
h

∥∥∥ ≤ ∥ϕ(s, a)∥ ∥Ah,k∥Nk
∥∥ŵk

h

∥∥ ≤ ∥Ah,k∥Nk
∥∥ŵk

h

∥∥
≤∥Ah,k∥Nk 2H

√
dk

λ
≤
(
1− 1

2κh

)Nk

· 2H
√

dk

λ
≤ 1

2K3

where the third inequality is by Lemma D.4 and the fourth inequality is by (20). The last inequality
is by the choice of Nk.

Lemma C.9 (Concentration of R2 with Langevin Posterior Sampling). For any 0 < δ < 1, with
probability 1− δ, for all k ∈ [K], h ∈ [H], s ∈ S, a ∈ A, it holds∣∣∣Q̂k

h(s, a)− (rkh + PhṼ
k
h+1)(s, a)

∣∣∣ ≤ Cδ ∥ϕ(s, a)∥(Ωk
h)

−1

where Cδ =

√
8H2

[
d
2 log

(
k+λ
λ

)
+ dM log(1 +

2
√
8k3CH,d,k,M,δ

H
√
λ

) + log 2
δ

]
+ 2
√
λ
√
dH and the

quantity CH,d,k,M,δ = 2H
√

dk
λ +

√
2dγ+
√

2γ log(M/δ)√
λ

.

Proof of Lemma C.9. For any (k, h) ∈ [K]× [H] and (s, a) ∈ S ×A, denote

ϕ(s, a)Twk
h := (rkh + PhṼ

k
h+1)(s, a),where wk

h := θh +

∫
S
Ṽ k
h+1(s

′)dµh(s
′).

Recall yτh = 1τ,k−1 · [rτh(sτh, aτh) + Ṽ k
h+1(s

τ
h+1)] from Algorithm 1 and denote ȳτh := rτh(s

τ
h, a

τ
h) +

Ṽ k
h+1(s

τ
h+1). Then by definition,

ŵk
h = (Ωk

h)
−1

k−1∑
τ=1

1τ,k−1 · ϕ(sτh, aτh)yτh = (Ωk
h)

−1
k−1∑
τ=1

1τ,k−1 · ϕ(sτh, aτh)ȳτh.

By definition of Ωk
h, we have ΦhΦ

T
h = Ωk

h − λI . Plug it into the definition of ŵk
h, we have

ŵk
h = (Ωk

h)
−1

k−1∑
τ=1

1τ,k−1 · ϕ(sτh, aτh)
(
ȳτh − ϕ(sτh, a

τ
h)

Twk
h + ϕ(sτh, a

τ
h)

Twk
h

)
= (Ωk

h)
−1

k−1∑
τ=1

1τ,k−1 · ϕ(sτh, aτh)
(
ȳτh − ϕ(sτh, a

τ
h)

Twk
h

)
+ (Ωk

h)
−1
(
Ωk

h − λI
)
wk

h.
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We then proceed to bound ŵk
h − wk

h, which gives

ŵk
h − wk

h = (Ωk
h)

−1
k−1∑
τ=1

1τ,k−1 · ϕ(sτh, aτh)
(
ȳτh − ϕ(sτh, a

τ
h)

Twk
h

)
− λ(Ωk

h)
−1wk

h

= (Ωk
h)

−1
k−1∑
τ=1

1τ,k−1 · ϕ(sτh, aτh)
(
Ṽ k
h+1(s

τ
h+1)− PhṼ

k
h+1(s

τ
h, a

τ
h)
)

︸ ︷︷ ︸
(i)

−λ(Ωk
h)

−1wk
h︸ ︷︷ ︸

(ii)

.

Term (i). Since Ωk
h is positive definite, multiplying the first term (i) with ϕ(s, a) and by Cauchy-

Schwartz inequality, we obtain,∣∣ϕ(s, a)T(i)∣∣ ≤ ∥ϕ(s, a)∥(Ωk
h)

−1

∥∥∥∥∥
k−1∑
τ=1

1τ,k−1 · ϕ(sτh, aτh)
(
Ṽ k
h+1(s

τ
h+1)− PhṼ

k
h+1(s

τ
h, a

τ
h)
)∥∥∥∥∥

(Ωk
h)

−1

.

Apply Lemma C.10, we have with probability at least 1 − δ, for any (k, h) ∈ [K] × [H], and
(s, a) ∈ S ×A, ∣∣ϕ(s, a)T(i)∣∣ ≤ C1 ∥ϕ(s, a)∥(Ωk

h)
−1 , (24)

where C1 =

√
8H2

[
d
2 log

(
k+λ
λ

)
+ dM log(1 +

2
√
8k3CH,d,k,M,δ

H
√
λ

) + log 2
δ

]
.

Term (ii). By Lemma B.12, ∀(s, a) ∈ S×A, and (k, h) ∈ [K]× [H],
∣∣ϕ(s, a)T(ii)∣∣ can be bounded

as ∣∣ϕ(s, a)T(ii)∣∣ = λ
∣∣ϕ(s, a)T(Ωk

h)
−1wk

h

∣∣ ≤ 2
√
λ
√
dH ∥ϕ(s, a)∥(Ωk

h)
−1 . (25)

Combining (24), (25), we have with probability 1−δ, for any (k, h) ∈ [K]×[H] and (s, a) ∈ S×A,∣∣∣Q̂k
h(s, a)− (rkh + PhṼ

k
h+1)(s, a)

∣∣∣ = ∣∣ϕ(s, a)T(ŵk
h − wk

h)
∣∣ ≤ ∣∣ϕ(s, a)T(i)∣∣+ ∣∣ϕ(s, a)T(ii)∣∣

≤ (C1 + 2
√
λ
√
dH) ∥ϕ(s, a)∥(Ωk

h)
−1 ,

This concludes the proof.

Lemma C.10. For any 0 < δ < 1, with probability 1− δ, we have ∀(k, h) ∈ [K]× [H],∥∥∥∥∥
k−1∑
τ=1

1τ,k−1 · ϕ(sτh, aτh)
(
Ṽ k
h+1(s

τ
h+1)− PhṼ

k
h+1(s

τ
h, a

τ
h)
)∥∥∥∥∥

2

(Ωk
h)

−1

≤8H2

[
d

2
log

(
k + λ

λ

)
+ dM log(1 +

2
√
8k3CH,d,k,M,δ

H
√
λ

) + log
2

δ

]
,

here CH,d,k,M,δ = 2H
√

dk
λ +

√
2dγ+
√

2γ log(M/δ)√
λ

.9

Proof of Lemma C.10. First note that

Ṽ k
h (·) := max

a
min{Q̃k

h(·, a), (H − h+ 1)} = max
a

minmax
m
{Q̃k,m

h , (H − h+ 1)}

= max
a

min{max
m

ϕ(·, a)Tw̃k,m
h , (H − h+ 1)}.

Choosing w0 = 0, then by Lemma C.2 and (Θk
h)

−1/2(w̃k,m
h − (I − ANk

h,k)ŵ
k
h) ∼ N (0, Id), and by

Lemma D.7, with probability 1− δ/2, we have
√
λ
√
γ

∥∥∥w̃k,m
h − (I −ANk

h,k)ŵ
k
h

∥∥∥ ≤ ∥∥∥(Θk
h)

−1/2(w̃k,m
h − (I −ANk

h,k)ŵ
k
h)
∥∥∥ ≤ √2d+√2 log(1/δ),

9We will choose γ to be Poly(H, d,K) and this will not affect the overall dependence of the guarantee
since CH,d,k,M,δ is inside the log term.
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where the first inequality uses Lemma C.2 again. Apply the union bound over all m, then above
implies with probability 1− δ/2, ∀m ∈ [M ]∥∥∥w̃k,m

h

∥∥∥ ≤ ∥∥ŵk
h

∥∥+√2dγ +
√
2γ log(M/δ)√
λ

≤ 2H

√
dk

λ
+

√
2dγ +

√
2γ log(M/δ)√
λ

:= CH,d,k,M,δ.

(26)
(where we used

∥∥∥(I −ANk

h,k)ŵ
k
h

∥∥∥ ≤ ∥∥∥(I −ANk

h,k)
∥∥∥∥∥ŵk

h

∥∥ ≤ ∥∥ŵk
h

∥∥). Now consider the function

class V̄ := {maxa maxm ϕ(·, a)Twm : ∥wm∥ ≤ CH,d,k,M,δ}, so by Lemma D.13 the ϵ-log cov-
ering number for V̄ is dM log(1 +

2CH,d,k,M,δ

ϵ ). Since min{·, ·} is a non-expansive operator, the
ϵ-log covering number for the function class V := {maxa min{maxm ϕ(·, a)Twm, (H − h+ 1)} :
∥wm∥ ≤ CH,d,k,M,δ}, is at most dM log(1 +

2CH,d,k,M,δ

ϵ ). Hence, for any V ∈ V , there exists V ′

in the ϵ-covering such that V = V ′ +∆V with ∥∆V ∥∞ ≤ ϵ. Then with probability 1− δ/2,∥∥∥∥∥
k−1∑
τ=1

1τ,k−1ϕ(s
τ
h, a

τ
h) (V (sτh+1)− PhV (sτh, a

τ
h))

∥∥∥∥∥
2

(Ωk
h
)−1

≤2

∥∥∥∥∥
k−1∑
τ=1

1τ,k−1ϕ(s
τ
h, a

τ
h)

(
V ′(sτh+1)− PhV

′(sτh, a
τ
h)
)∥∥∥∥∥

2

(Ωk
h
)−1

+ 2

∥∥∥∥∥
k−1∑
τ=1

1τ,k−1ϕ(s
τ
h, a

τ
h) (∆V (sτh+1)− Ph∆V (sτh, a

τ
h))

∥∥∥∥∥
2

(Ωk
h
)−1

≤2

∥∥∥∥∥
k−1∑
τ=1

1τ,k−1ϕ(s
τ
h, a

τ
h)

(
V ′(sτh+1)− PhV

′(sτh, a
τ
h)
)∥∥∥∥∥

2

(Ωk
h
)−1

+
8k2ϵ2

λ

≤4H2

[
d

2
log

(
k + λ

λ

)
+ dM log(1 +

2CH,d,k,M,δ

ϵ
) + log

2

δ

]
+

8k2ϵ2

λ

(27)

where the second inequality can be conducted using a direct calculation and the third inequality uses
Lemma D.9 and a union bound over the covering number. Now by (26) and (27) and a union bound,
we have for any ϵ > 0, with probability 1− δ,∥∥∥∥∥

k−1∑
τ=1

ϕ(sτh, a
τ
h)
(
Ṽ k
h+1(s

τ
h+1)− PhṼ

k
h+1(s

τ
h, a

τ
h)
)∥∥∥∥∥

2

(Ωk
h)

−1

≤4H2

[
d

2
log

(
k + λ

λ

)
+ dM log(1 +

2CH,d,k,M,δ

ϵ
) + log

2

δ

]
+

8k2ϵ2

λ

≤8H2

[
d

2
log

(
k + λ

λ

)
+ dM log(1 +

2
√
8k3CH,d,k,M,δ

H
√
λ

) + log
2

δ

]
,

where the last step choose ϵ2 = H2λ/8k2 so 8k2ϵ2

λ ≤ 4H2. Lastly, apply the union bound over
H,K to obtain the stated result.

D Auxiliary lemmas

D.1 Useful Norm Inequalities

Lemma D.1. Suppose v ∈ Rd, and A is some positive definite matrix whose eigenvalues satisfy
λmax(A) ≥ · · · ≥ λmin(A) > 0. It can be shown that√

λmin(A) ∥v∥ ≤ ∥v∥A ≤
√

λmax(A) ∥v∥ .

Proof of Lemma D.1. Consider the eigenvalue decomposition of A, which gives A = UΛUT, where
Λ = diag(λmax(A), . . . , λmin(A)). Then

∥v∥A =

√√√√ d∑
i=1

λi(A)(uT
i v)

2 ≤
√

λmax(A)
∥∥uT

i v
∥∥2 =

√
λmax(A) ∥v∥ .
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Similar argument shows ∥v∥A ≥
√
λmin(A).

Lemma D.2 (Lemma D.1 of [35]). Let Ωk
h be the precision matrix of the posterior distribution of

wk
h at step h of episode k, where Ωk

h := σ−2ΦhΦ
T
h +Σ−1 with Σ−1 = λId and σ2 = 1. Then

k−1∑
τ=1

∥ϕ(sτh, aτh)∥
2
(Ωk

h)
−1 ≤ d.

Lemma D.3 (Bound on Weights of Q-function). Suppose the linear MDP assumption and at each
step h ∈ [H], rewards rh are bounded between [0, 1], then the norm of the true parameter wπ

h under
fixed policy π satisfies

∀h ∈ [H], ∥wπ
h∥ ≤ 2H

√
d.

In addition, for any (s, a) ∈ S ×A, let ϕ(s, a)Twk
h := (rh + PhṼ

k
h+1)(s, a), we also have

∀h ∈ [H], k ∈ [K],
∥∥wk

h

∥∥ ≤ 2H
√
d.

Proof of Lemma D.3. By definition in Lemma A.1, the true parameter wh at time step h is

wπ
h := θh + Es′∼µh

[V π
h+1(s

′)].

With bounded rewards rh ∈ [0, 1], we have V π
h+1(s) ≤ H, ∀s ∈ S . Since ∥θh∥ ≤

√
d, and∥∥Eµh

[V π
h+1(s

′)]
∥∥ ≤ ∥∥∫S Hdµh(s

′)
∥∥ ≤ H

√
d.

Similarly, by definition of the constructed weights wk
h,

wk
h := θh +

∫
S
Ṽ k
h+1(s

′)dµh(s
′).

From Line 15 of Algorithm 1, for any h ∈ [H] and s ∈ S , Ṽ k
h (s) = maxa min{Q̃k

h(·, a), H − h+
1} ≤ H . Applying triangle inequality, we have∥∥wk

h

∥∥ ≤ ∥θh∥+ ∥∥∥∥∫
S
Ṽ k
h+1(s

′)dµh(s
′)

∥∥∥∥
≤
√
d+

∥∥∥∥∫
S
Hdµh(s

′)

∥∥∥∥
≤ 2H

√
d.

Lemma D.4 (Bound on Estimated Weights of Algorithm 1). For any step h ∈ [H] and episode
k ∈ [K], the weight ŵk

h output by Algorithm 1 satisfies,

∥∥ŵk
h

∥∥ ≤ 2H

√
dk

λ
.

Proof of Lemma D.4. For any vector v ∈ Rd, it holds

∣∣v⊤ŵk
h

∣∣ = ∣∣∣∣∣v⊤ (Ωk
h

)−1
k−1∑
τ=1

ϕτ
h

[
r (sτh, a

τ
h) + Ṽ k

h (sτh+1)
]∣∣∣∣∣

≤
k−1∑
τ=1

∣∣∣v⊤ (Ωk
h

)−1
ϕτ

h

∣∣∣ · 2H ≤
√√√√[k−1∑

τ=1

v⊤
(
Ωk

h

)−1
v

]
·

[
k−1∑
τ=1

(ϕτ
h)

⊤ (
Ωk

h

)−1
ϕτ

h

]
· 2H

≤ 2H∥v∥
√
dk/λ,

where the last step is by Lemma D.2. The above directly imply the stated result by the definition of
l2 norm.
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D.2 Concentration Inequalities

Lemma D.5 ([3]). Suppose Z is a random variable following a Gaussian distribution N (µ, σ2),
where σ > 0. The following concentration and anti-concentration inequalities hold for any z ≥ 1:

1

2
√
πz

e−z2/2 ≤ P (|Z − µ| > zσ) ≤ 1√
πz

e−z2/2.

And for 0 ≤ z ≤ 1, we have,

P (|Z − µ| > zσ) ≥ 1√
8π

e−z2/2.

Lemma D.6 (Sub-exponential tail bound). Suppose {τk}∞k=1 are (v, b)-sub-exponential random

variables. denote Dτ,K,δ := min
{√

2v2 log
(
3K
2δ

)
, 2b log

(
3K
2δ

)}
. Then with probability 1− δ,

max
k∈[K]

τk ≤ E[τ ] +Dτ,K,δ.

Lemma D.7 (Multivariate Gaussian Concentration). Suppose X ∼ N (0, Id). Then with probability
1− δ,

∥X∥ ≤
√
2d+

√
2 log(1/δ).

Proof. Apply Proposition 1 of [30], choose A = Id, then Σ = Id and Tr(Σ) = d, ∥Σ∥ = 1. Then

P
[
∥X∥2 ≥ d+ 2

√
dt+ 2t

]
≤ e−t ⇒ P [∥X∥2 ≥ 2(

√
d+
√
t)2] ≤ e−t := δ

which implies with probability 1− δ, ∥X∥ ≤
√
2d+

√
2 log(1/δ).

Lemma D.8 (Elliptical Potential Lemma [1]). Suppose {ϕt}∞t=1 is an Rd-valued sequence, Ω0 ∈
Rd×d is positive definite, and Ωt = Ω0 +

∑t−1
τ=1 ϕτϕ

T
τ . If λmin(Ω0) ≥ 1, and ∥ϕτ∥2 ≤ 1 for all

τ ∈ Z+, then for any t ∈ Z+,

log

(
det(Ωt+1)

det(Ω1)

)
≤

t∑
τ=1

ϕT
τ (Ωτ )

−1ϕτ ≤ 2 log

(
det(Ωt+1)

det(Ω1)

)
.

Lemma D.9 (Self-normalized process [1]). Let {Ft}∞t=0 be a filtration, and {ηt}∞t=1 be a
real-valued stochastic process such that ηt is Ft-measurable and ηt|Ft−1 is zero-mean (i.e.
E[ηt|Ft−1] = 0). Assume that conditioning on Ft, ηt is C-sub-Gaussian. Let {ϕt}∞t=1 be an Rd

real-valued stochastic process such that ϕt is Ft-measurable. Let Ω0 ∈ Rd×d be a positive definite
matrix and Ωt = Ω0 + σ−2

∑t
τ=1 ϕτϕ

T
τ . Then for δ > 0, with probability at least 1 − δ, for all

t ≥ 0, ∥∥∥∥∥
t∑

τ=1

ϕτητ

∥∥∥∥∥
2

Ω−1
t

≤ 2C2 log

(
det(Ωt)

1/2det(Ω0)
−1/2

δ

)
.

Lemma D.10. Suppose Ω0 := λId is a positive definite matrix in Rd×d and Ωt = Ω0 +

σ−2
∑t−1

τ=1 ϕτϕ
T
τ .

det(Ωt+1)

det(Ω1)
≤
(
λ+ σ−2t

λ

)d

.

Proof of Lemma D.10. By definition, det(Ω1) = det(λI) = λd. For any τ ∈ Z+ and ϕτ ∈ Rd,
notice that ϕτϕ

T
τ is a rank-1 matrix with eigenvalues ∥ϕτ∥ and 0. By Definition 1 and triangle

inequality, ∥∥∥∥∥
t∑

τ=1

ϕτϕ
T
τ

∥∥∥∥∥ ≤
t∑

τ=1

∥∥ϕτϕ
T
τ

∥∥ ≤ t.

Consider the eigenvalue decomposition for
∑t−1

τ=1 ϕτϕ
T
τ :

t−1∑
τ=1

ϕτϕ
T
τ = Udiag(λ1, . . . , λd)U

T,

38



which suggests

det(Ωt+1) = det(λI + σ−2
t−1∑
τ=1

ϕτϕ
T
τ ) =

d∏
i=1

(σ−2λi + λ) ≤ (σ−2 max
i
|λi|+ λ)d ≤ (λ+ σ−2t)d.

D.3 Covering Argument

Lemma D.11 (Covering number of Euclidean Ball). Consider an Euclidean ball BR equipped with
the Euclidean metric, whose radius is R > 0. The ϵ-covering number of BR satisfies,

Nϵ(BR) ≤
(
1 +

2R

ϵ

)d

.

Lemma D.12. Define V to be a class of values with the parametric form

fϕ := |⟨ϕ, θ⟩| − C
√

ϕ⊤A · ϕ

where the feature space is {ϕ : ∥ϕ∥2 ≤ 1} and ∥A∥2 ≤ B, ∥θ∥ ≤ 2H
√
d. Let NV

ϵ be the covering
number of ϵ-net with respect to the absolute value distance, then we have

logNV
ϵ ≤ d log(1 +

4C
√
B + 4H

√
d

ϵ
).

Proof of Lemma D.12.

|fϕ1 − fϕ2 | ≤
∣∣∣∣|⟨ϕ1, θ⟩| − C

√
ϕ⊤
1 A · ϕ1 − (|⟨ϕ2, θ⟩| − C

√
ϕ⊤
2 A · ϕ2)

∣∣∣∣
≤∥ϕ1 − ϕ2∥ · ∥θ∥+ C

√
|ϕ⊤

1 A · ϕ1 − ϕ⊤
2 A · ϕ2|

≤ ∥ϕ1 − ϕ2∥ · 2H
√
d+ C

√
∥ϕ1∥ ∥A∥ ∥ϕ1 − ϕ2∥+ C

√
∥ϕ1 − ϕ2∥ ∥A∥ ∥ϕ2∥

≤∥ϕ1 − ϕ2∥ · 2H
√
d+ 2C

√
B ∥ϕ1 − ϕ2∥ ≤ (2C

√
B + 2H

√
d ∥ϕ1 − ϕ2∥) · ∥ϕ1 − ϕ2∥

≤2C
√
B ∥ϕ1 − ϕ2∥ ≤ (2C

√
B + 2H

√
d) · ∥ϕ1 − ϕ2∥

Let Cϕ be the ϵ
2C

√
B+2H

√
d

-net of space {ϕ : ∥ϕ∥2 ≤ 1}, then by Lemma D.11,

|Cϕ| ≤ (1 +
4C
√
B + 4H

√
d

ϵ
)d

Therefore, the covering number of space V satisfies

logNV
ϵ ≤ d log(1 +

4C
√
B + 4H

√
d

ϵ
).

Lemma D.13. Let V denote the function class from S to R

V (·) := max
a

max
m

ϕ(·, a)Twm,where ∥wm∥ ≤ CH,d,k,M,δ,∀m ∈ [M ]

letNϵ be the ϵ-covering number of V with respect to the distance dist(V, V ′) = sups |V (s)−V ′(s)|.
Then

logNϵ ≤ dM log(1 +
2CH,d,k,M,δ

ϵ
).

Here CH,d,k,M,δ = 2H
√

dk
λ +

√
2d+
√

2 log(M/δ)√
λ

.
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Proof. Let V1 = maxa maxm ϕ(·, a)Twm
1 and V2 = maxa maxm ϕ(·, a)Twm

2 . Then

dist(V1, V2) =max
s
|max

a
max
m

ϕ(·, a)Twm
1 −max

a
max
m

ϕ(·, a)Twm
2 |

≤max
s,a,m

∥ϕ(s, a)∥ · ∥wm
1 − wm

2 ∥ ≤ max
s,a,m

∥wm
1 − wm

2 ∥ ,

For any m ∈ [M ], let Cm be the ϵ-net for {wm : ∥wm∥ ≤ CH,d,k,M,δ}, then by Lemma D.11,
|Nm

ϵ | ≤ (1 +
2CH,d,k,M,δ

ϵ )d, implies the total log covering number

log |Nϵ| ≤ log ΠM
m=1|Nm

ϵ | ≤ dM log(1 +
2CH,d,k,M,δ

ϵ
).

D.4 Delayed Feedback

Lemma D.14 (Lemma 9 of [28]). Let A,B ∈ Rd×d be two symmetric positive semi-definite matri-
ces. Then, A

1
2BA

1
2 and AB share the same set of eigenvalues. Further, these eigenvalues are all

non-negative.
Lemma D.15. Let Σk

h,Ω
k
h,Λ

k
h be the full design, delayed, and complement matrix respectively.

Then (1 + Uk

λ )(Σk
h)

−1 ⪰ (Ωk
h)

−1. In addition, with probability 1− δ,

max
k∈[K]

Uk ≤ E[τ ] + 2
√

2E[τ ] log(3K/2δ) +
4

3
log(3K/2δ).

Proof. The proof follows from Lemma 11 of [28] with Uk

λ (Σk
h)

−1 ⪰ (Σk
h)

−1Λk
h(Ω

k
h)

−1, and then
apply Lemma B.2 that (Ωk

h)
−1 = (Σk

h)
−1+(Σk

h)
−1Λk

h(Ω
k
h)

−1. The second part comes from Lemma
4 of [28].

E Experimental Details

In this section, we provide the experimental details of both simulated environments (synthetic linear
MDP and RiverSwim) and discuss their results respectively.

E.1 Delayed-UCBVI

As shown in Table 1 and Section 2, there is no prior UCB method that concerns exactly the same
delayed linear MDP setting without resorting to specific policy-switching schemes. To benchmark
our posterior sampling algorithms, we modify the existing LSVI-UCB method to accommodate the
delayed feedback, which is referred to as the Delayed-UCBVI. Below we include the algorithm of
delayed-UCBVI for completeness.

Algorithm 4: Delayed Value Iteration with UCB (Delayed-UCBVI)
Input: bonus parameter β, regularization λ.

1 Initialization: ∀k, h, Q̃k
H+1(·, ·), ṼH+1(·, ·), Ṽh(·, ·)← 0, Dh ← ∅.

2 for episode k = 1, . . . ,K do
3 Sample initial state sk1
4 for time step h = H, . . . , 1 do
5 yh ← [y1

h, . . . , y
k−1
h ], with yτ

h ← 1τ,k−1 · [rτh + Ṽh+1(s
τ
h+1)]

6 Φh ← [ϕ1, ϕ2, . . . , ϕk−1] with ϕτ = 1τ,k−1 · ϕ(sτh, aτ
h)

7 Ωk
h ← ΦhΦ

T
h + λI

8 wk
h ← (Ωk

h)
−1Φhyh

T

9 Qk
h(·, ·)← ϕ(·, ·)Twk

h + β
√

ϕ(·, ·)T(Ωk
h)

−1ϕ(·, ·)
10 Vh(·, ·)← maxa min{Qk

h(·, a), H − h+ 1}
11 Update πk

h(·)← argmaxa∈A min{Qk
h(·, a), H − h+ 1}

12 for time step h = 1, . . . , H do
13 Choose action ak

h ∼ πk
h(s

k
h)

14 Collect transitions Dh ← Dh ∪ {(skh, ak
h, r

k
h, s

k
h+1)}

/* Feedback generated in episode k cannot be immediately observed in the presence of delay */
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E.2 Synthetic Linear MDP Environment

In this section, we describe the further details in Section 5.1.

Environment Details. Following [44, 46, 70], we construct a set of synthetic linear MDP environ-
ments with |S| = 2, feature dimension d = 10, planning horizon H = 20, and varying action space
|A| ∈ {20, 50, 100}. Each action a ∈ A ⊆ {0, 1}d is encoded with its 8-bit binary representation
and represented by a vector ba ∈ R8. The feature map ϕ(·, ·) can then be defined as

ϕ(s, a) = [bTa , δ(s, a), 1− δ(s, a)]T ∈ R10, ∀(s, a) ∈ S ×A,
where

δ(s, a) =

{
1 if 1(s = 0) = 1(a = 0),

0 otherwise.

In addition, let θh that induces the reward functions r be

θh = [0, . . . , 0, r, 1− r]T ∈ R10,

with the choice of r = 0.99, and further define the measures µh that govern the transition dynamics
P as

µh(s) = [0, . . . , 0, (1− s)⊕ αh, s⊕ αh],

where {αh}h∈[H] ∈ {0, 1}H is a sequence of integers taking values 0 or 1, ⊕ is the XOR operator.
By design, the set of environments with identical d and H has the same optimal value V ∗

1 (s1).

Further Results and Discussions. Figure 2 depicts the empirical distributions of delays considered
in section 5.1. Additionally, the average return achieved by each method upon convergence is re-
ported in Table 2, corresponding to the results shown in Figure 1. Our empirical findings indicate
that posterior sampling methods excel UCB-based methods in terms of both statistical accuracy and
computational efficiency. More specifically, under different types of delays, both Delayed-PSVI
and Delayed-LPSVI achieve higher return (lower regret) and exhibit faster convergence compared
to Delayed-UCBVI.

While delays following multinomial distribution and Poisson distributions decay exponentially fast,
Pareto delays are heavy-tailed. When computational budget is limited or when episodes are finite,
feedback is only partially observable under long-tailed delays and is not guaranteed to be revealed
to the agent. This setup captures the practical scenarios when small time windows are considered
for decision-making or in online recommender systems, where only positive feedback (e.g. click,
make a purchase) are often observed. As shown in Table 2, performance of Delayed-UCBVI can
dramatically deteriorate in the presence of long-tailed delays.

Furthermore, our results presented in Table 4 and Table 3 illustrate the consistent behavior of poste-
rior sampling in environments with delayed feedback, considering both statistical and computational
aspects. When employing feature mapping, performance of the algorithms is much less dependent
on the sizes of state and action space in contrast to tabular settings. It is worth noting that in large
state and action space, the neighborhoods of a substantial number of state-action pairs may remain
unvisited, leading to increased uncertainty in estimation. In such cases, adjusting the scale of ex-
ploration by decreasing the noise scaling factor σ for Delayed-PSVI can yield faster convergence.
Finally, as shown in Table 3, Delayed-LPSVI achieves appealing performance as Delayed-PSVI
while reducing computation through the use of approximate sampling with Langevin dynamics.

Multinomial Delay
(10, 20, 30)

Poisson Delay
(E[τ ] = 50)

Pareto Delay (Shape
1.0, Scale 500)

Delayed-PSVI (σ = 0.1) 11.53± 0.76 11.48± 0.81 11.53± 0.74

Delayed-LPSVI (cη = 0.5) 11.56± 0.48 11.37± 0.48 10.98± 0.40

Delayed-UCBVI (cβ = 0.1) 10.61± 0.76 10.54± 0.81 7.20± 0.38

Table 2: Average return achieved by Delayed-PSVI, Delayed-LPSVI and Delayed-UCBVI upon convergence
under different delays. Environment setup: |S| = 2, |A| = 20, d = 10, H = 20. Optimal average return is
V ∗
1 (s1) = 11.96. Results are obtained over 10 experiments.
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Figure 2: Empirical distributions of three types of delays. (a) Multinomial delays with delay categories
{10, 20, 30}. (b) Poisson delays with rate E[τ ] = 50. (c) Long-tail Pareto delays with shape 1.0, scale 500. The
first two types of delays are well-behaved and decay exponentially fast, while pareto delays are heavy-tailed.

|S||A| = 20 |S||A| = 40 |S||A| = 100 |S||A| = 200

Delayed-PSVI (σ = 0.3) 1418 1290 1669 2633

Delayed-PSVI (σ = 0.2) 531 1114 1323 826

Delayed-PSVI (σ = 0.1) 391 571 650 709

Delayed-LPSVI (cη = 0.5) 293 246 517 566

Delayed-UCBVI (cβ = 0.1) 3205 2713 3351 3694

Table 3: Number of episodes for each method to achieve its highest expected return. Different synthetic envi-
ronments are examined with varied |S| and |A|. Optimal average return is V ∗

1 (s1) = 11.96 for all environments
(d = 10, H = 20). Results are obtained over 10 experiments with Poisson delays (E[τ ] = 50).

|S||A| = 20 |S||A| = 40 |S||A| = 100 |S||A| = 200

Delayed-PSVI (σ = 0.3) 11.23± 1.00 11.07± 1.05 10.93± 1.11 10.80± 1.13

Delayed-PSVI (σ = 0.2) 11.39± 0.91 11.28± 0.94 11.16± 1.02 11.11± 1.03

Delayed-PSVI (σ = 0.1) 11.57± 0.74 11.48± 0.81 11.39± 0.86 11.33± 0.92

Delayed-LPSVI (cη = 0.5) 11.31± 0.46 11.37± 0.48 11.57± 0.48 11.57± 0.78

Delayed-UCBVI (cβ = 0.1) 10.98± 1.78 10.54± 0.81 9.67± 0.54 10.01± 0.16

Table 4: Average return achieved by Delayed-PSVI, Delayed-LPSVI and Delayed-UCBVI upon convergence in
different linear MDP environments with varied |S| and |A|. Optimal average return is V ∗

1 (s1) = 11.96 for all
environments (d = 10, H = 20). Results are obtained over 10 experiments with Poisson delays (E[τ ] = 50).

E.3 RiverSwim

RiverSwim environment is known to be a difficult exploration problem for least-squares value iter-
ation with ϵ-greedy exploration due to the sparse reward setting. It models an agent swimming in
the river who can either swim towards the right (against the current) or towards the left (with the
current). While trying to move rightwards may fail with some probability, moving leftwards always
yield successful transition. We consider the environment with linear feature maps where |S| = 5,
d = 10, H = 20, and Poisson delays. Accordingly, the tabular environment can be recovered with
canonical basis in Rd as its feature mapping:

ϕ(s, a) = es,a ∈ R10, (s, a) ∈ S ×A.

Define θh as
θh(s, a) = [0.005, 0, . . . , 0, 1.0]T ∈ R10,

then reward functions induced by θh are given by:

rh(s, a) =


0.005 if s = 0, a = left;
1.0 if s = 4, a = right;
0.0 otherwise.

In this environment, We warm start LMC for Delayed-LPSVI by reusing the previous sample for
initialization, and set M = 2, N = 40, η = cη/λmax(Ω

k
h), γ = c2γdMH2. We set parameters

M = 2, ν = 1.0 for Delayed-PSVI, and the bonus coefficient in Delayed-UCBVI as βk
h = cβ/2 ·
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d
√
k(H − h). Optimal hyperparameters are determined by gridsearch and we fix cβ = 0.04, cη =

0.5, cγ = 0.005, σ = 1.13. Experiments are repeated with 5 different random seeds. Cumulative
regrets are then depicted in Figure 3.

Results and Discussions. Compared to the previous synthetic environment where dense rewards are
available, posterior sampling methods are shown to be robust with spare rewards even in the presence
of delays. Figure 3 shows that both Delayed-PSVI and Delayed-LPSVI outperform Delayed-UCBVI
in delayed-feedback settings with linear function approximation. In particular, LMC (Algorithm 3)
provides strong concentration such that Delayed-LPSVI is able to maintain the order-optimal regret
as Delayed-PSVI when exploring the value-function space.

Figure 3: Delayed-PSVI and Delayed-LPSVI outperform Delayed-UCBVI in sparse-reward setting with Pois-
son delays (E[τ ] = 5). Results are reported over 5 experiments.
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