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ABSTRACT

We focus on the setting of contextual batched bandit (CBB), where a batch of re-
wards is observed from the environment in each episode. But these rewards are
partial-information feedbacks where the rewards of the non-executed actions are
unobserved. Existing approaches for CBB usually ignore the potential rewards of
the non-executed actions, resulting in feedback information being underutilized.
In this paper, we propose an efficient reward imputation approach using sketch-
ing in CBB, which completes the unobserved rewards with the imputed rewards
approximating the full-information feedbacks. Specifically, we formulate the re-
ward imputation as a problem of imputation regularized ridge regression, which
captures the feedback mechanisms of both the non-executed and executed actions.
To reduce the time complexity of reward imputation on a large batch of data, we
use randomized sketching for solving the regression problem of imputation. We
prove that the proposed reward imputation approach obtains a relative-error bound
for sketching approximation, achieves an instantaneous regret with a controllable
bias and a smaller variance than that without reward imputation, and enjoys a
sublinear regret bound against the optimal policy. Moreover, we present two ex-
tensions of our approach, including the rate-scheduled version and the version for
nonlinear rewards, which makes our approach more feasible. Experimental results
demonstrated that our approach can outperform the state-of-the-art baselines on a
synthetic dataset, the Criteo dataset, and a dataset from a commercial app.

1 INTRODUCTION

Contextual bandits have been widely used in real-world sequential decision-making problems (Li
et al., 2010; Lan & Baraniuk, 2016; Yom-Tov et al., 2017; Yang et al., 2021), where the agen-
t updates the decision-making policy fully online (i.e., at each step) according to the context and
corresponding reward feedback so as to maximize the cumulative reward. In this paper, we con-
sider a more complex setting—contextual batched bandits (CBB), where the decision process is
partitioned into N episodes, the agent interacts with the environment for B steps in one episode,
collects the reward feedbacks and contexts at the end of the episode, and then updates the policy
using the collected data for the next episode. CBB is more practical in some real-world applications,
since updating the policy once receiving the reward feedback is rather unrealistic due to its high
computational cost and decision instability.

In bandit settings, it is inevitable that the environment only reveals the rewards of the executed
actions to the agent as the feedbacks, while hiding the rewards of non-executed actions. We refer to
this category of limited feedback as the partial-information feedback (also called “bandit feedback”).
Existing batched bandit approaches in the CBB setting discard the information contained in the
potential rewards of the non-executed actions, address the problem of partial-information feedback
using an exploitation-exploration tradeoff on the context space and reward space (Han et al., 2020;
Zhang et al., 2020).But in the CBB setting, the agent usually estimates and maintains reward models
for the action-selection policy, and the potential rewards of the non-executed actions have been
somehow captured by the policy. This additional reward structure information is estimated and
available in each episode, however, are not utilized by existing batched bandit approaches.

In contextual bandit settings where the policy is updated fully online, several bias-correction ap-
proaches have been introduced to address the partial-information feedback. Dimakopoulou et al.
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(2019) presented linear contextual bandits integrating the balancing approach from causal inference,
which reweight the contexts and rewards by the inverse propensity scores. Chou et al. (2015) de-
signed pseudo-reward algorithms for contextual bandits, which use a direct method to estimate the
unobserved rewards for the upper confidence bound (UCB) strategy. Kim & Paik (2019) focused
on the feedback bias-correction for LASSO bandit with high-dimensional contexts, and applied
the doubly-robust approach to the reward modification using average contexts. Although these ap-
proaches have been demonstrated to be effective in contextual bandit settings, little efforts have been
spent to address the under-utilization of partial-information feedback in the CBB setting.

Theoretical and experimental analyses in Section 2 indicate that better performance of CBB is
achievable if the rewards of the non-executed actions can be received. Motivated by these observa-
tions, we propose a novel reward imputation approach for the non-executed actions, which mimics
the reward generation mechanisms of environments. We conclude our contributions as follows.
• To fully utilize feedback information in CBB, we formulate the reward imputation as a problem of
imputation regularized ridge regression, where the policy can be updated efficiently using sketching.
• We prove that our reward imputation approach obtains a relative-error bound for sketching ap-
proximation, achieves an instantaneous regret with a controllable bias and a smaller variance than
that without reward imputation, has a lower bound of the sketch size independently of the overall
number of steps, enjoys a sublinear regret bound against the optimal policy, and reduces the time
complexity from O(Bd2) to O(cd2) for each action in one episode, where B denotes the batch size,
c the sketch size, and d the dimensionality of inputs, satisfying d < c < B.
• We present two practical variants of our reward imputation approach, including the rate-scheduled
version in which the imputation rate is set without tuning, and the version for nonlinear rewards.
• We carried out extensive experiments on the synthetic data, public benchmark, and the data col-
lected from a real commercial product to demonstrate our performance, empirically analyzed the
influence of different parameters, and verified the correctness of the theoretical results.

Related Work. Recently, batched bandit has become an active research topic in statistics and learn-
ing theory including 2-armed bandit (Perchet et al., 2016), multi-armed bandit (Gao et al., 2019;
Zhang et al., 2020; Wang & Cheng, 2020), and contextual bandit (Han et al., 2020; Ren & Zhou,
2020; Gu et al., 2021). Han et al. (2020) defined linear contextual bandits, and designed UCB-type
algorithms for both stochastic and adversarial contexts, where true rewards of different actions have
the same parameters. Zhang et al. (2020) provided methods for inference on data collected in batch-
es using bandits, and introduced a batched least squares estimator for both multi-arm and contextual
bandits. Recently, Esfandiari et al. (2021) proved refined regret upper bounds of batched bandits in
stochastic and adversarial settings. There are several recent works that consider similar settings to
CBB, e.g., episodic Markov decision process (Jin et al., 2018), LASSO bandits (Wang & Cheng,
2020). Sketching is another related technology that compresses a large matrix to a much smaller
one by multiplying a (usually) random matrix with certain properties (Woodruff, 2014), which has
been used in online convex optimization (Calandriello et al., 2017; Zhang & Liao, 2019).

2 PROBLEM FORMULATION AND ANALYSIS

First, we introduce some notations. Let [x] = {1, 2, . . . , x}, S ⊆ Rd be the context space, A =
{Aj}j∈[M ] the action space containing M actions,[A;B] = [Aᵀ,Bᵀ]ᵀ, ‖A‖F, ‖A‖1 ‖A‖2 denote
the Frobenius norm, 1-norm, and spectral norm of a matrix A, respectively, ‖a‖1 and ‖a‖2 be the
`1-norm and the `2-norm of a vector a, σmin(A) and σmax(A) denote the minimum and maximum
of the of singular values of A. In this paper, we focus on the setting of Contextual Batched Bandits
(CBB) (see Algorithm 1), where the decision process is partitioned into N episodes, and in each
episode, CBB consists of two phases: 1) the policy updating approximates the optimal policy based
on the received contexts and rewards; 2) the online decision selects actions for execution following
the updated and fixed policy p for B steps (also called the batch size is B), and stores the context-
action pairs and the observed rewards of the executed actions into a data buffer D. The reward R in
CBB is a partial-information feedback where rewards are unobserved for the non-executed actions.

Different from existing batch bandit setting (Han et al., 2020; Esfandiari et al., 2021), where the
true reward feedbacks for all actions are controlled by the same parameter vector while the contexts
received differ by actions at each step, we assume that in the CBB setting, the mechanism of true
reward feedback differs by actions and the received context is shared by actions. Formally, for any
context si ∈ S ⊆ Rd and action A ∈ A, we assume that the expectation of the true reward Rtrue

i,A
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Algorithm 1 Contextual Batched Bandit (CBB)
INPUT: Batch size B, number of episodes N , action space A = {Aj}j∈[M ], context space S ⊆ Rd

1: Initialize policy p0 ← 1/M , sample data buffer D1 = {(s0,b, AI0,b , R0,b)}b∈[B] using initial policy p0
2: for n = 1 to N do
3: Update the policy pn on Dn {Policy Updating}
4: for b = 1 to B do
5: Observe context sn,b

6: Choose AIn,b ∈ A following the updated policy pn(sn,b) {Online Decision}
7: end for
8: Dn+1 ← {(sn,b, AIn,b , Rn,b}b∈[B], where Rn,b denotes the reward of action AIn,b on context sn,b

9: end for

is determined by an unknown action-specific reward parameter vector θ∗A ∈ Rd: E
[
Rtrue
i,A | si

]
=

〈θ∗A, si〉 (the linear reward will be extended to the nonlinear case in Section 5). This setting for
reward feedback matches many real-world applications, e.g., each action corresponds to a different
category of candidate coupons in coupon recommendation, and the reward feedback mechanism of
each category differs due to the different discount pricing strategies.

Next, we provide deeper understandings of the influence of unobserved feedbacks on the perfor-
mance of policy updating in the CBB setting. We first conducted an empirical comparison by
applying the batch UCB policy (Han et al., 2020) to environments under different proportion-
s of received reward feedbacks. In particular, the agent under full-information feedback can re-
ceive all the rewards of the executed and non-executed actions, called Full-Information CBB (FI-
CBB) setting. From Figure 1, we can observe that the partial-information feedbacks could be
damaging in terms of hurting the policy updating, and batched bandit could benefit from more
reward feedbacks, where the performance of 80% feedback is very close to that of FI-CBB.
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Figure 1: Average rewards of batch UCB
policy (Han et al., 2020) under different pro-
portions of received reward feedbacks, in-
teracting with the synthetic environment in
Section 6, where x% feedback means that
x% of actions can receive their true rewards

Then, we demonstrate the difference of instantaneous
regrets between the CBB and FI-CBB settings as in
Theorem 1. The detailed description and proof of
Theorem 1 can be found in Appendix A.
Theorem 1. For any action A ∈ A and contex-
t si ∈ S, let θnA be the reward parameter vec-
tor estimated by the batched UCB policy in the n-
th episode. The upper bound of instantaneous regret
(defined by |〈θnA, si〉 − 〈θ∗A, si〉|) in the FI-CBB set-
ting is tighter than that in CBB setting (i.e., using the
partial-information feedback).

From Theorem 1, we can conclude that the price
paid for having access only to the partial-information
feedbacks is the deterioration in the regret bound.
Ideally, the policy would be updated using the full-
information feedback. In CBB, however, the full-
information feedback is unaccessible. Fortunately, in
CBB, different reward parameter vectors need to be maintained and estimated separately for each
action, and the potential reward structures of the non-executed actions have been somehow cap-
tured. So why don’t we use these maintained reward parameters to estimate the unknown rewards
for the non-executed actions? Next, we propose an efficient reward imputation approach that uses
this additional reward structure information for improving the performance of the bandit policy.

3 EFFICIENT REWARD IMPUTATION FOR POLICY UPDATING

In this section, we present an efficient reward imputation approach tailored for policy updating in
the CBB setting.

Formulation of Reward Imputation. Since the true reward parameters differ by actions in the CBB
setting, we need to maintain a different estimated reward parameter vector for each action. As shown
in Figure 2, in contrast to CBB that ignores the contexts and rewards of the non-executed steps of
Aj , our reward imputation approach completes the missing values using the imputed contexts and
rewards, approximating the full-information CBB setting. Specifically, in the (n+1)-th episode, for
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Figure 2: Comparison of the stored data corresponding to the action Aj ∈ A in CBB, CBB with our
reward imputation, and full-information CBB, in the (n+ 1)-th episode

each action Aj ∈ A, j ∈ [M ], we store context vectors and rewards corresponding to the steps in
which the action Aj is executed, into a context matrix SnAj ∈ RN

n
j ×d and a reward vector Rn

Aj
∈

RN
n
j , respectively, whereNn

j denotes the number of steps (in episode n+1) in which the actionAj is
executed. Additionally, for anyAj ∈ A, j ∈ [M ], we store context vectors corresponding to the non-
executed steps of action Aj (denote the number of non-executed steps by N̂n

j , i.e., N̂n
j = B−Nn

j ),

into an imputed context matrix ŜnAj ∈ RN̂
n
j ×d, and compute the imputed reward vector as follows:

R̂n
Aj = {rn,1(Aj), rn,2(Aj), . . . , rn,N̂nj

(Aj)} ∈ RN̂
n
j , j ∈ [M ],

where rn,b(Aj) := 〈θ̄nAj , sn,b〉 denotes the imputed reward for each step b ∈ [N̂n
j ], and sn,b is the

b-th row of ŜnAj . Then, we obtain several block matrices by concatenating the context and reward
matrices from the previous episodes: LnAj = [S0

Aj
; · · · ;SnAj ] ∈ RL

n
j ×d, T nAj = [R0

Aj
; · · · ;Rn

Aj
] ∈

RL
n
j , Lnj =

∑n
k=0N

k
j , L̂

n
Aj

= [Ŝ0
Aj

; · · · ; ŜnAj ] ∈ RL̂
n
j ×d, T̂ nAj = [R̂0

Aj
; · · · ; R̂n

Aj
] ∈ RL̂

n
j , L̂nj =∑n

k=0 N̂
k
j . In the (n + 1)-th episode, the estimated parameter vector θ̄n+1

Aj
of the imputed reward

for action Aj can be updated by solving the following imputation regularized ridge regression:

θ̄n+1
Aj

= arg min
θ∈Rd

∥∥∥LnAjθ − T nAj∥∥∥2

2︸ ︷︷ ︸
Observed Term

+ γ
∥∥∥L̂nAjθ − T̂ nAj∥∥∥2

2︸ ︷︷ ︸
Imputation Term

+λ‖θ‖22, n = 0, 1, . . . , N − 1, (1)

where γ ∈ [0, 1] is the imputation rate which controls the degree of reward imputation and measures
a trade-off between bias and variance (Remark 1&2), λ > 0 is the regularization parameter, yielding

θ̄n+1
Aj

=
(
Ψn+1
Aj

)−1 (
bn+1
Aj

+ γb̂n+1
Aj

)
, (2)

that can be obtained by the closed least squares solution, where Ψn+1
Aj

:= λId + Φn+1
Aj

+ γΦ̂n+1
Aj

,

Φn+1
Aj

= Φn
Aj + SnᵀAjS

n
Aj , bn+1

Aj
= bnAj + SnᵀAjR

n
Aj , (3)

Φ̂n+1
Aj

= ηΦ̂n
Aj + ŜnᵀAj Ŝ

n
Aj , b̂n+1

Aj
= ηb̂nAj + ŜnᵀAj R̂

n
Aj , (4)

and η ∈ (0, 1) is the discount parameter which controls how fast the previous imputed rewards are
forgotten, and can help guaranteeing the regret bound in Theorem 2.

Efficient Reward Imputation using Sketching. As shown in the first 4 columns in Table 1, the
overall time complexity of the imputation for each action is O(Bd2) in each episode, where B
represents the batch size, and d the dimensionality of the input. Thus, for all the M actions in one
episode, reward imputation increases the time complexity from O(Bd2) of the approach without
imputation to O(MBd2). To address this issue, we design an efficient reward imputation approach
using sketching, which reduces the time complexity of each action in one episode from O

(
Bd2

)
to O

(
cd2
)
, where c denotes the sketch size satisfying d < c < B and cd > B. Specifically, in

the (n+ 1)-th episode, the imputation regularized ridge regression Eq.(1) can be approximated by a
sketched ridge regression as

θ̃n+1
Aj

= arg min
θ∈Rd

∥∥∥Πn
Aj

(
LnAjθ − T

n
Aj

)∥∥∥2

2
+ γ

∥∥∥Π̂n
Aj

(
L̂nAjθ − T̂

n
Aj

)∥∥∥2

2
+ λ‖θ‖22, (5)

4



Under review as a conference paper at ICLR 2022

Table 1: The time complexities of the original reward imputation in Eq.(1) (first 4 columns) and the
reward imputation using sketching in Eq.(5) (last 4 columns) for actionAj in the (n+1)-th episode,
where Nn

j (N̂n
j ) denotes the number of steps in which the action Aj is executed (non-executed) in

episode n+1, N̂n
j +Nn

j = B, and the sketch size c satisfying d < c < B and cd > B (MM: matrix
multiplication; MI: matrix inversion; Overall: overall time complexity for action Aj in one episode)

Original reward imputation in Eq.(1) Reward imputation using sketching in Eq.(5)
Item Operation Eq. Time Item Operation Eq. Time
Φn+1

Aj
, Φ̂n+1

Aj
MM (3), (4) O(Bd2) Gn+1

Aj
, Ĝn+1

Aj
MM (7), (8) O(cd2)

bn+1
Aj

, b̂n+1
Aj

MM (3), (4) O(Bd) pn+1
Aj

, p̂n+1
Aj

MM (7), (8) O(cd)

(Ψn+1
Aj

)−1 MI (2) O(d3) (W n+1
Aj

)−1 MI (6) O(d3)

– Γn
Aj

, Λn
Aj

Sketching – O(Nn
j d)

– Γ̂n
Aj

, Λ̂n
Aj

Sketching – O(N̂n
j d)

Overall – – O(Bd2) Overall – – O(cd2)

where θ̃n+1
A denotes the estimated parameter vector of the imputed reward using sketching for action

A ∈ A,Cn
Aj
∈ Rc×N

n
j and Ĉn

Aj
∈ Rc×N̂

n
j are the sketch submatrices for the observed term and the

imputation term, respectively, and the sketch matrices for the two terms can be represented as

Πn
Aj =

[
C0
Aj ,C

1
Aj , · · · ,C

n
Aj

]
∈ Rc×L

n
j , Π̂n

Aj =
[
Ĉ0
Aj , Ĉ

1
Aj , · · · , Ĉ

n
Aj

]
∈ Rc×L̂

n
j .

We denote the sketches of the context matrix and the reward vector by ΓnAj := Cn
Aj
SnAj ∈ Rc×d

and Λn
Aj

:= Cn
Aj
Rn
Aj
∈ Rc, the sketches of the imputed context matrix and the imputed reward

vector by Γ̂nAj := Ĉn
Aj
ŜnAj ∈ Rc×d and Λ̂n

Aj
:= Ĉn

Aj
R̂n
Aj
∈ Rc, and obtain the solution of Eq.(5):

θ̃n+1
Aj

=
(
W n+1

Aj

)−1 (
pn+1
Aj

+ γp̂n+1
Aj

)
, (6)

where η ∈ (0, 1) denotes the discount parameter,W n+1
Aj

:= λId +Gn+1
Aj

+ γĜn+1
Aj

, and

Gn+1
Aj

= Gn
Aj + ΓnᵀAjΓ

n
Aj , pn+1

Aj
= pnAj + ΓnᵀAjΛ

n
Aj , (7)

Ĝn+1
Aj

= ηĜn
Aj + Γ̂nᵀAj Γ̂

n
Aj , p̂n+1

Aj
= ηp̂nAj + Γ̂nᵀAj Λ̂

n
Aj . (8)

Using the parameter θ̃n+1
Aj

, we obtain the sketched version of imputed reward as r̃n,b(Aj) :=

〈θ̃nAj , sn,b〉 at step b ∈ [N̂n
j ]. Finally, we specify that the sketch submatrices {Cn

A}A∈A,n∈[N ] and

{Ĉn
Aj
}A∈A,n∈[N ] are the block construction of Sparser Johnson-Lindenstrauss Transform (SJLT)

(Kane & Nelson, 2014), where the sketch size c is divisible by the number of blocks D1. As shown
in the last 4 columns in Table 1, sketching reduces the time complexity fromO(MBd2) toO(Mcd2)
for reward imputation of all M actions in one episode, where c < B. When Mc ≈ B, the overall
time complexity of our reward imputation using sketching is even comparable to that without reward
imputation which has a O(Bd2) time complexity.

Updated Policy using Imputed Rewards. Inspired by the UCB strategy (Li et al., 2010), the updat-
ed policy for online decision of the (n+ 1)-th episode can be formulated using the imputed rewards
(parameterized by θ̄n+1

A in Eq.(2)) or the sketched version of imputed rewards (parameterized by
θ̃n+1
A in Eq.(6)). Specifically, for a new context s,

origin policy p̄n+1 selects the action following A← arg max
A∈A

〈θ̄n+1
A , s〉+ ω[sᵀ(Ψn+1

A )−1s]
1
2 ,

sketched policy p̃n+1 selects the action following A ← arg max
A∈A

〈θ̃n+1
A , s〉 + α[sᵀ(W n+1

A )−1s]
1
2 ,

where ω ≥ 0 and α ≥ 0 are the regularization parameters in policy and their theoretical values are
given in Theorem 4. We summarize the reward imputation using sketching and the sketched poli-
cy into Algorithm 2, called SPUIR. Similarly, we call the updating of the original policy that uses
reward imputation without sketching, the Policy Updating with Imputed Rewards (PUIR).

1Since we set the number of blocks of SJLT as D < d, we omit D in the complexity analysis.
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Algorithm 2 Sketched Policy Updating with Imputed Rewards (SPUIR) in the (n+ 1)-th episode
INPUT: Policy p̃n, Dn+1, A = {Aj}j∈[M ], α ≥ 0, η ∈ (0, 1), γ ∈ [0, 1], λ > 0, W 0

Aj
= λId, G

0
Aj

=

Ĝ0
Aj

= Od, p0
Aj

= p̂0
Aj

= 0, θ̃0Aj = 0, j ∈ [M ], batch size B, sketch size c, number of block D
OUTPUT: Updated policy p̃n+1

1: For all j ∈ [M ], store context vectors and rewards corresponding to the steps in which the action Aj is
executed, into Γn

Aj
∈ RNnj ×d and Λn

Aj
∈ RNnj

2: For all j ∈ [M ], store context vectors corresponding to the steps in which the action Aj is not executed
into Γ̂n

Aj
∈ RN̂nj ×d, where N̂n

j ← B −Nn
j

3: r̃n,b(Aj)← 〈θ̃nAj , sn,b〉, for all Aj ∈ A and b ∈ [N̂n
j ], where sn,b is the b-th row of Γ̂n

Aj

4: Compute imputed reward vector R̂n
Aj
← {r̃n,1(Aj), . . . , r̃n,N̂nj

(Aj)} ∈ RN̂nj for any j ∈ [M ]

5: for all action Aj ∈ A do
6: Gn+1

Aj
← Gn

Aj
+ Γnᵀ

Aj
Γn

Aj
, pn+1

Aj
← pn

Aj
+ Γnᵀ

Aj
Λn

Aj
{Eq.(7)}

7: Ĝn+1
Aj
← ηĜn

Aj
+ Γ̂nᵀ

Aj
Γ̂n

Aj
, p̂n+1

Aj
← ηp̂n

Aj
+ Γ̂nᵀ

Aj
Λ̂n

Aj
{Eq.(8)}

8: W n+1
Aj
← λId +Gn+1

Aj
+ γĜn+1

Aj
, θ̃n+1

Aj
← (W n+1

Aj
)−1(pn+1

Aj
+ γp̂n+1

Aj
) {Eq.(6)}

9: end for
10: p̃n+1(s) selects action A← argmaxA∈A〈θ̃

n+1
A , s〉+ α[sᵀ

(
W n+1

A

)−1
s]

1
2 for a new context s

11: return {θ̃n+1
A }A∈A, {

(
W n+1

A

)−1}A∈A

4 THEORETICAL ANALYSIS

We provide the instantaneous regret bound, prove the approximation error of sketching, and analyze
the regret in the CBB setting. The detailed proofs can be found in Appendix B. We first demonstrate
the instantaneous regret bound of the original solution θ̄nA in Eq.(1).
Theorem 2 (Instantaneous Regret Bound). Let η ∈ (0, 1) be the discount parameter, γ ∈ [0, 1] the
imputation rate. In the n-th episode, if the rewards {Rn,b}b∈[B] are independent2 and bounded by
CR, then, for any b ∈ [B] and ∀A ∈ A, with probability at least 1− δ,∣∣〈θ̄nA, sn,b〉− 〈θ∗A, sn,b〉∣∣ ≤ [λ‖θ∗A‖2 + ν + γ

1
2 η−

1
2CImp

]
[sᵀn,b (Ψn

A)
−1
sn,b]

1
2 , (9)

where Ψn
A = λId + Φn

A + γΦ̂n
A, ν = [2C2

R log(2MB/δ)]
1
2 , and CImp > 0. The first term on the

right-hand side of Eq.(9) can be seen as the bias term for the reward imputation, while the second
term is the variance term. The variance term of our algorithm is not larger than that without the
reward imputation, i.e, for any s ∈ Rd, [sᵀ (Ψn

A)
−1
s]

1
2 ≤ [sᵀ (λId + Φn

A)
−1
s]

1
2 . Further, a larger

imputation rate γ leads to a smaller variance term [sᵀ (Ψn
A)
−1
s]

1
2 .

Remark 1 (Smaller Variance). From Theorem 2, we can observe that the proposed reward impu-
tation achieves a smaller variance ([sᵀn,b (Ψn

A)
−1
sn,b]

1
2 ) than that without the reward imputation.

Remark 2 (Controllable Bias). Our reward imputation approach incurs a bias term γ
1
2 η−

1
2CImp in

addition to the two bias terms λ‖θ∗A‖2, ν that exist in every UCB-based policy. But this additional
bias term is controllable due to the presence of imputation rate γ that can help controlling the addi-
tional bias. Moreover, the term CImp in the additional bias can be replaced by a function fImp(n),
and fImp(n) is monotonic decreasing w.r.t. number of episodes n provided that the mild condition√
η = Θ(d−1) holds (the definition and analysis about fImp can be found in Appendix B.1). Over-

all, the imputation rate γ controls a trade-off between the bias term and the variance term, and we
will design a rate-scheduled approach for choosing the imputation rate γ in Section 5.

Although some approximation error bounds using SJLT have been proposed (Nelson & Nguyên,
2013; Kane & Nelson, 2014; Zhang & Liao, 2019), it is still unknown what is the lower bound of
the sketch size while applying SJLT to the sketched ridge regression problem in our SPUIR. Next,
we prove the approximation error as well as the lower bound of the sketch size for the sketched ridge
regression problem. For convenience, we drop all the superscripts and subscripts in this result.
Theorem 3 (Approximation Error Bound of Imputation using Sketching). Denote the imputation
regularized ridge regression function by F (θ) (defined in Eq.(1)) and the sketched ridge regression

2The assumption about conditional independence of the rewards is commonly used in the bandits literature,
which can be ensured using a master technology as a theoretical construction (Auer, 2002; Chu et al., 2011).
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function by F S(θ) (defined in Eq.(5)) for reward imputation, whose solutions (i.e., the estimated re-
ward parameter vectors) are θ̄ = arg minθ∈Rd F (θ) and θ̃ = arg minθ∈Rd F

S(θ). Let γ ∈ [0, 1] be
the imputation rate, λ > 0 the regularization parameter, δ ∈ (0, 0.1], ε ∈ (0, 1), Lall = [L;

√
γL̂],

and ρλ = ‖Lall‖22/(‖Lall‖22+λ). If Π and Π̂ are SJLT, assuming thatD = Θ(ε−1 log3(dδ−1)) and
the sketch size c = Ω

(
d polylog

(
dδ−1

)
/ε2
)
,with probability at least 1−δ, F (θ̃) ≤ (1+ρλε)F (θ̄)

and ‖θ̃ − θ̄‖2 = O
(√
ρλε
)

hold.

To measure the convergence of approximating the optimal policy in sequential decision-making, we
define the regret of SPUIR against the optimal policy as follows:

Reg
(
{AIn,b}n∈[N ],b∈[B]

)
:= maxA∈A

∑
n∈[N ],b∈[B][〈θ∗A, sn,b〉 − 〈θ∗AIn,b , sn,b〉],

where In,b denotes the index of the executed action using the sketched policy p̃n (parameterized by
{θ̃nA}A∈A) at step b in the n-th episode. Finally, we demonstrate the regret bound of SPUIR.
Theorem 4 (Regret Bound of SPUIR). Let T = BN be the overall number of steps, η ∈ (0, 1)
be the discount parameter, γ ∈ [0, 1] the imputation rate, λ > 0 the regularization parameter,
Cmax
θ∗ = maxA∈A ‖θ∗A‖2, CImp be a positive constant. Assume that the conditional independence

assumption in Theorem 2 holds and the upper bound of rewards is CR, M = O(poly(d)), T ≥ d2,
ν = [2C2

R log(2MB/δ1)]
1
2 with δ1 ∈ (0, 1),

ω = λCmax
θ∗ + ν + γ

1
2 η−

1
2CImp, α = ωCα,

where Cα > 0 which decreases with increase of 1/ε and ε ∈ (0, 1). Let δ2 ∈ (0, 0.1], ρλ < 1 be the
constant defined in Theorem 3, and Creg be a positive constant that decreases with increase of 1/ε.
For the sketch matrices {Πn

A}A∈A,n∈[N ] and {Π̂}A∈A,n∈[N ], assuming that the number of blocks in
SJLT D = Θ(ε−1 log3(dδ−1

2 )), and the sketch size satisfying c = Ω
(
d polylog

(
dδ−1

2

)
/ε2
)
, then,

for an arbitrary sequence of contexts {sn,b}n∈[N ],b∈[B], with probability at least 1−N(δ1 + δ2),

Reg({AIn,b}n∈[N ],b∈[B]) ≤ 2αCreg

√
10M log(T + 1)(

√
dT + dB) +O

(
T
√
ρλεd/B

)
. (10)

Remark 3. Setting B = O(
√
T/d) and ρλε = 1/d yields a sublinear upper bound of regret of

order Õ(
√
MdT )3 provided that the sketch size c = Ω(ρ2

λd
3 polylog(dδ−1

2 )). We can observe that
the lower bound of c is independent of the overall number of steps T , and a theoretical value of
the batch size is B = CB

√
T/d = C2

BN/d, where setting CB ≈ 25 is a suitable choice that has
been verified in the experiments in Section 6. In particular, when ρλ = O(1/d), the sketch size of
order c = Ω(d polylogd) is sufficient to achieve a sublinear regret, which has been demonstrated
in our experimental results. Since the lower bound of regret for contextual batched bandit in (Han
et al., 2020) assumes that there are only two actions and both the actions share the same true reward
model, it can not be applied to our CBB setting where each action corresponds to a different reward
model. Despite the lack of the lower bound in CBB setting, from the theoretical results of regret,
we can observe that our SPUIR admits several advantages: (a) The order of our regret bound is
not higher than those in the literature of contextual bandits in the fully-online setting (i.e., B = 1)
(Li et al., 2019; Dimakopoulou et al., 2019), which is a more simple setting than ours; (b) The
first term in the regret bound Eq.(10) measures the performance of policy updating using imputed
rewards (called “policy error”). From Theorem 2 and Remark 1&2, we obtain that, in each episode,
our policy updating has a smaller variance than the policy without the reward imputation, and
incurs a decreasing additional bias under mild conditions, leading to a tighter regret (i.e., smaller
policy error) after some number of episodes. (c) The second term on the right-hand side of Eq.(10)
is of order O(T

√
ρλεd/B), which is incurred by the sketching approximation using SJLT (called

“sketching error”). This sketching error does not have any influence on the order of regret of SPUIR,
which may even have a lower order with a suitable choice of ρλε, e.g., setting ρλε = T−1/4d−1

yields a sketching error of order O(T 3/8d1/2) provided that c = Ω(ρ2
λd

3 polylog(dδ−1
2 )
√
T ).

5 EXTENSIONS OF OUR APPROACH

To make the proposed reward imputation approach more feasible and practical, we tackle the follow-
ing two research questions by designing variants of our approach following the theoretical results:

3We use the notation of Õ to suppress logarithmic factors in the overall number of steps T .
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RQ1 (Parameter Selection): Can we set the imputation rate γ without tuning?
RQ2 (Nonlinear Reward): Can we apply the proposed reward imputation approach to the case
where the expectation of true rewards is nonlinear?
Rate-Scheduled Approach. For RQ1, we equip PUIR and SPUIR with a rate-scheduled approach,
called PUIR-RS and SPUIR-RS, respectively. From Remark 1&2, a larger imputation rate γ leads
to a smaller variance while increasing the bias, while the bias term includes a monotonic decreasing
function w.r.t. number of episodes under mild conditions. Therefore, we can gradually increase γ
with the number of episodes, avoiding the large bias at the beginning of reward imputation. Specifi-
cally, we set γ = X% for episodes from (X − 10)%×N to X%×N , where X ∈ [10, 100].
Application to Nonlinear Rewards. For RQ2, we provide nonlinear versions of reward imputa-
tion. We use linearization technologies of nonlinear rewards, rather than directly setting the rewards
as nonlinear functions (Valko et al., 2013; Chatterji et al., 2019), avoiding the linear regret or curse
of kernelization. Specifically, instead of using the linear imputed reward r̃n,b(Aj) := 〈θ̃nAj , sn,b〉,
we use the following linearized nonlinear imputed rewards, denotes by Tn,b(θ, A):
1) SPUIR-Exp. We assume that the expected reward is an exponential function as GE(θ, s) =
exp (θᵀs) . Then Tn,b(θ, A) = 〈θ,∇θGE(θ, sn,b)〉 , where∇θGE(θ, sn,b) = exp (θᵀsn,b) sn,b.

2) SPUIR-Poly. When the expected reward is a polynomial function as GP(θ, s) = (θᵀs)
2
. Then

Tn,b(θ, A) = 〈θ,∇θGP(θ, sn,b)〉 , where∇θGP(θ, sn,b) = 2 (θᵀsn,b) sn,b.
3) SPUIR-Kernel. Consider that the underlying expected reward in a Gaussian reproducing kernel
Hilbert space (RKHS). We use Tn,b(θ, A) = 〈θ, φ(sn,b)〉 in random feature space, where the ran-
dom feature mapping φ can be explicitly defined as in (Rahimi & Recht, 2007).
For SPUIR-Exp and SPUIR-Poly, combining the linearization of convex functions (Shalev-Shwartz,
2011) with Theorem 4 yields the regret bounds of the same order. For SPUIR-Kernel, using the
approximation error of random features (Rahimi & Recht, 2008), we can obtain a regret bound with
an additional error of order O(B/

√
dr), where dr is the dimension of the random features.

6 EXPERIMENTS

We empirically evaluated the performance of our algorithms on 3 datasets: the synthetic dataset,
publicly available Criteo dataset4 (Criteo-recent, Criteo-all), and dataset collected from
a real commercial app for coupon recommendation (commercial product).
Experimental Settings. We compared our algorithms with: Sequential Batch UCB (SBUCB) (Han
et al., 2020), Batched linear EXP3 (BEXP3) (Neu & Olkhovskaya, 2020), Batched linear EXP3
using Inverse Propensity Weighting (BEXP3-IPW) (Bistritz et al., 2019), Batched Balanced Linear
Thompson Sampling (BLTS-B) (Dimakopoulou et al., 2019), and Sequential version of Delayed
Feedback Model (DFM-S) (Chapelle, 2014). We implemented all the algorithms on Intel(R) X-
eon(R) Silver 4114 CPU@2.20GHz, and repeated the experiments 20 times. We tested the perfor-
mance of algorithms in streaming recommendation scenarios, where the reward is represented by
a linear combination of the click and conversion behaviors of users. According to Remark 3, we
set the batch size as B = C2

BN/d, the constant CB ≈ 25, and the sketch size c = 150 on all the
datasets. The average reward was used to evaluate the accuracy of algorithms.
Performance Evaluation. Figure 3(a)–(c) reports the average reward of SPUIR with its variants and
the baselines. We observed that SPUIR and its variants achieved higher average rewards, demon-
strating the effectiveness of our reward imputation. Moreover, SPUIR and its rate-scheduled version
SPUIR-RS had similar performances compared with the origin PUIR, which indicates the practi-
cal effectiveness of our variants and verifies the correctness of the theoretical analyses. The results
on commercial product in Table 2 indicate that SPUIR outperformed the second-best base-
line with the improvements of 1.07% CVR (conversion rate) and 1.12% CTCVR (post-view click-
through&conversion rate). Besides, our reward imputation approaches were more efficient than
DFM-S, BLTS-B. The variants using sketching of our algorithms (SPUIR, SPUIR-RS) significantly
reduced the time costs of reward imputation, and took less than twice as long to run compared to the
baselines without reward imputation (SBUCB, BEXP3, BEXP3-IPW). Figure 3(d) illustrates per-
formances of SPUIR and its nonlinear variants, where SPUIR-Kernel achieved the highest rewards
indicating the effectiveness of the nonlinear generalization of our approach. For different decision
tasks, a suitable nonlinear reward model needs to be selected for better performances.
Parameter Influence. From the regret bound Eq.(10), we can observe that a larger batch size B
results in a larger first term (of order O(B), called policy error) but a smaller second term (of order

4https://labs.criteo.com/2013/12/conversion-logs-dataset/
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Table 2: Performance comparison of coupon recommendation on commercial product

Algorithm CVR (mean ± std) CTCVR (mean ± std) Time (sec., mean ± std)

DFM-S 0.8656 ± 0.0473 0.3317 ± 0.0218 302.3140 ± 8.3045
SBUCB 0.8569 ± 0.0037 0.4277 ± 0.0084 43.5435 ± 0.3659
BEXP3 0.4846 ± 0.0205 0.2425 ± 0.0116 53.5001 ± 0.9220
BEXP3-IPW 0.4862 ± 0.0187 0.2436 ± 0.0113 56.0101 ± 1.4142
BLTS-B 0.8663 ± 0.0178 0.4285 ± 0.0157 218.2109 ± 1.8198
PUIR 0.8807 ± 0.0053 0.4411 ± 0.0029 184.3575 ± 2.2346
SPUIR 0.8770 ± 0.0059 0.4397 ± 0.0032 81.5753 ± 1.5879
PUIR-RS 0.8763 ± 0.0056 0.4389 ± 0.0030 180.4999 ± 1.7763
SPUIR-RS 0.8758 ± 0.0058 0.4391 ± 0.0031 80.8003 ± 2.9030
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Figure 3: (a), (b), (c): Average rewards of the compared algorithms, the proposed SPUIR and
its variants on synthetic dataset, Criteo dataset, and the real commercial product data, where we
omitted the curves of algorithms whose average rewards are 5% lower than the highest reward; (d):
SPUIR and its three nonlinear variants on synthetic dataset; (e): SPUIR with different batch sizes
on Criteo-recent; (f): SPUIR and SPUIR-RS with different sketch sizes on synthetic dataset

O(1/B), called sketching error), indicating that a suitable batch sizeB needs to be set. This conclu-
sion was empirically verified in Figure 3(e), where B = 1, 000 (CB = 25) yields better empirical
performance in terms of the average reward. Similar phenomenon can also be observed on Criteo
dataset and commercial product. All of the results verified the theoretical results in Remark 3:
B = CB

√
T/d = C2

BN/d is a suitable choice while setting CB ≈ 25. From the results in Fig-
ure 3(f) we observe that, for our SPUIR and SPUIR-RS, the performances significantly increased
when the sketch size c reached 10%B (≈ d log d), which demonstrates the conclusion in Remark 3
that only the sketch size of order c = Ω(d polylogd) is needed for satisfactory performance.

7 CONCLUSION

Partial-information feedback is ubiquitous in real-world applications, where reward feedback is usu-
ally underutilized for learning. This paper proposes a theoretically sound and computationally ef-
ficient reward imputation approach for contextual batched bandits, which mimics the reward gen-
eration mechanism of the environment approximating the setting of full-information feedback. The
proposed reward imputation approach reduces the time complexity of imputation on large batches
of data using sketching, achieves a relative-error bound for sketching approximation, has an instan-
taneous regret with a controllable bias and a smaller variance, and enjoys a sublinear regret bound
against the optimal policy. The theoretical formulation and algorithmic implementation may provide
an efficient reward imputation scheme for online learning under limited feedback.

9



Under review as a conference paper at ICLR 2022

ETHICS STATEMENT

To verify the effectiveness and efficiency of our algorithms on real products, we conducted experi-
ments on a real dataset collected from a commercial social app. We call this dataset commercial
product, where the data were collected after the users gave consent, and did not contain any
personally identifiable information or offensive content.

REPRODUCIBILITY STATEMENT

The source code of the proposed algorithms is submitted as supplementary materials. For theoretical
results, clear explanations of any assumptions and a complete proof of the claims are included as an
appendix. The detailed experimental settings are also provided in the appendix. Since the dataset
commercial product is non-public, we did not provide a URL. We will release this non-public
dataset after the publication of this paper, and the link to download this non-public dataset is to be
included in the final paper.
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A DETAILED PROBLEM FORMULATION AND DETAILED PROOF IN PROBLEM
ANALYSIS

In this part, we give the detailed problem formulation and the detailed proof of Theorem 1 in problem
analysis in Section 2.

A.1 DETAILED PROBLEM FORMULATION OF CBB

In this paper, we focus on the setting of contextual batched bandits (CBB), which can be formulated
as a 6-tuple 〈S,A, p, R,N,B〉:
Context space S ⊆ Rd means a vector space containing the context information received at each
step, e.g., context summarizes the information of both the user and items in recommendation sce-
narios.
Action space A = {Aj}j∈[M ] contains M candidate actions for execution. As an example, in rec-
ommender systems, each action corresponds to a candidate item, and selecting an action means that
the corresponding item is recommended.
Policy p determines which action to take at each step, which is a function of the context s ∈ S and
outputs an action for execution (or a selection distribution over action space A).
Reward R in CBB is a partial-information feedback where rewards are unobserved for the non-
executed actions. Consider a stochastic bandit setting, where the expectation of the true reward is
assumed to be a function of the context s ∈ S . In particular, different from the shared expectation
function of true rewards in existing batch bandits (Han et al., 2020), we assume that the expectation
functions of true rewards are different for each action, where each expectation function corresponds
to an unknown parameter vector θ∗A ∈ Rd, A ∈ A. This setting for rewards matches many real-
world applications, e.g., each action corresponds to a different category of candidate coupons in
coupon recommendation.
Number of episodes N . The decision process in CBB is partitioned into N episodes. Within one
episode, the agent updates the policy using the collected data, and then interacts with the environ-
ment for multiple steps using the updated and fixed policy.
Batch size B is the number of steps in each episode. That is, in each episode, the agent interacts
with the environment B times using a fixed policy, and stores the contexts, executed actions, and
observed rewards into a data buffer D at the end of each episode.

A.2 DETAILED DESCRIPTION AND PROOF OF THEOREM 1 IN PROBLEM ANALYSIS

We present some theoretical findings about the regret difference between the partial-information
feedback and the full-information feedback. Assuming that the agent in the CBB setting can observe
the rewards of all the candidate actions from the environment at each step, we apply the batched UCB
policy (Han et al., 2020) to this setting (see Algorithm 3), We demonstrate an instantaneous regret
bound in Theorem 5, where Theorem 5 is a detailed version of Theorem 1 in Section 2.

Algorithm 3 Batch UCB Policy Updating in the (n+1)-th episode in Full-Information CBB Setting
INPUT: Policy pn, data buffer Dn+1, action space A = {Aj}j∈[M ], θ0Aj = 0, j ∈ [M ], batch size B
OUTPUT: Updated policy pn+1

1: Let L̃n ∈ R(n+1)B×d be the matrix that stores all the context vectors till the n-th episode as the row
vectors

2: For ∀A ∈ A, let T̃ n
A ∈ R(n+1)B be the reward vector that stores all the rewards of action A ∈ A till the

n-th episode
3: // Policy Updating

4: Υn+1 ← L̃ᵀ
nL̃n

5: for all action A ∈ A do
6: θn+1

A ← (Id + Υn+1)
−1L̃ᵀ

nT̃
n
A

7: end for
8: For a new context s, pn+1(s) is to choose the action following: A← argmax

A∈A

〈
θn+1
A , s

〉
9: return

{
θn+1
A

}
A∈A

13
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Theorem 5 (Instantaneous Regret Bound in Full-Information CBB Setting, Detailed Version of
Theorem 1). Let L̃n−1 ∈ RnB×d be the matrix that stores all the context vectors till the (n− 1)-th
episode as the row vectors, and T̃ n−1

A ∈ RnB be the reward vector that stores all the rewards of
action A ∈ A till the (n − 1)-th episode. Given the action space A = {Aj}j∈[M ], in the n-th
episode, assume that the rewards are independent and bounded by CR. Then, with probability at
least 1 − δ, for any b ∈ [B] and ∀A ∈ A, we have the following instantaneous regret bound in the
n-th episode

|〈θnA, sn,b〉 − 〈θ∗A, sn,b〉| ≤
[
‖θ∗A‖2 +

√
2C2

R log(2MB/δ)

]√
sᵀn,b (Id + Υn)

−1
sn,b, (11)

where Υn = L̃ᵀ
n−1L̃n−1 and the parameter of reward model θnA in the batched UCB policy is

obtained by

θnA := arg min
θ∈Rd

∥∥∥L̃n−1θ − T̃ n−1
A

∥∥∥2

2
+ ‖θ‖22 = (Id + Υn)

−1
L̃ᵀ
n−1T̃

n−1
A .

Further, the instantaneous regret bound Eq.(11) in FI-CBB setting is tighter than that in
CBB setting (i.e., using the partial-information feedback). In particular, the variance term√
sᵀn,b (Id + Υn)

−1
sn,b is smaller than that in CBB setting.

Proof of Theorem 1. By the formulation of θnA and the triangle inequality, we first obtain that

|〈θnA, sn,b〉 − 〈θ∗A, sn,b〉|

=
∣∣∣sᵀn,b (Id + Υn)

−1
L̃ᵀ
n−1T̃

n−1
A − sᵀn,bθ

∗
A

∣∣∣
=
∣∣∣sᵀn,b (Id + Υn)

−1
[
L̃ᵀ
n−1T̃

n−1
A − (Id + Υn)θ∗A

]∣∣∣
=
∣∣∣sᵀn,b (Id + Υn)

−1
[
L̃ᵀ
n−1T̃

n−1
A −

(
Id + L̃ᵀ

n−1L̃n−1

)
θ∗A

]∣∣∣
=
∣∣∣sᵀn,b (Id + Υn)

−1
L̃ᵀ
n−1

(
T̃ n−1
A − L̃n−1θ

∗
A

)
− sᵀn,b (Id + Υn)

−1
θ∗A

∣∣∣
≤
∣∣∣sᵀn,b (Id + Υn)

−1
L̃ᵀ
n−1

(
T̃ n−1
A − L̃n−1θ

∗
A

)∣∣∣+
∣∣∣sᵀn,b (Id + Υn)

−1
θ∗A

∣∣∣

(12)

Next, we bound the two terms in the last row of Eq.(12).

Bounding
∣∣∣sᵀn,b (Id + Υn)

−1
L̃ᵀ
n−1

(
T̃ n−1
A − L̃n−1θ

∗
A

)∣∣∣:
Since E

[
T̃ n−1
A

]
= L̃n−1θ

∗
A and the received rewards are independent, by the Azuma-Hoeffding

bound, we have

Pr

{∣∣∣sᵀn,b (Id + Υn)
−1
L̃ᵀ
n−1

(
T̃ n−1
A − L̃n−1θ

∗
A

)∣∣∣ ≥ ν√sᵀn,b (Id + Υn)
−1
sn,b

}
≤ 2 exp

{
−

ν2sᵀn,b (Id + Υn)
−1
sn,b

2C2
R‖L̃n−1 (Id + Υn)

−1
sn,b‖22

}
,

(13)

where ν > 0 is some constant. Since
‖L̃n−1 (Id + Υn)

−1
sn,b‖22 = sᵀn,b (Id + Υn)

−1
L̃ᵀ
n−1L̃n−1 (Id + Υn)

−1
sn,b

≤ sᵀn,b (Id + Υn)
−1
(
Id + L̃ᵀ

n−1L̃n−1

)
(Id + Υn)

−1
sn,b

≤ sᵀn,b (Id + Υn)
−1

(Id + Υn) (Id + Υn)
−1
sn,b

= sᵀn,b (Id + Υn)
−1
sn,b,

combing with Eq.(13) implies the following results

Pr

{∣∣∣sᵀn,b (Id + Υn)
−1
L̃ᵀ
n−1

(
T̃ n−1
A − L̃n−1θ

∗
A

)∣∣∣ ≥ ν√sᵀn,b (Id + Υn)
−1
sn,b

}
≤ 2 exp

{
− ν2

2C2
R

}
.

(14)

14
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Combing Eq.(14) with the union bound, yields that, with probability at least 1− δ, for any b ∈ [B]
and ∀A ∈ A,∣∣∣sᵀn,b (Id + Υn)

−1
L̃ᵀ
n−1

(
T̃ n−1
A − L̃n−1θ

∗
A

)∣∣∣ ≤ ν√sᵀn,b (Id + Υn)
−1
sn,b, (15)

where the failure probability is

δ = 2MB exp

{
− ν2

2C2
R

}
,

yielding that ν =
√

2C2
R log(2MB/δ).

Bounding
∣∣∣sᵀn,b (Id + Υn)

−1
θ∗A

∣∣∣:
Since Υn is positive semi-definite, combining with the Hölder inequality, we obtain∣∣∣sᵀn,b (Id + Υn)

−1
θ∗A

∣∣∣ ≤ ‖θ∗A‖2 ∥∥∥(Id + Υn)
−1
sn,b

∥∥∥
2

= ‖θ∗A‖2
√
sn,b (Id + Υn)

−1
(Id + Υn)

−1
sn,b

≤ ‖θ∗A‖2
√
sn,b (Id + Υn)

−1
(Id + Υn) (Id + Υn)

−1
sn,b

= ‖θ∗A‖2
√
sn,b (Id + Υn)

−1
sn,b.

(16)

Combing Eq.(15) and Eq.(16) concludes the proof.

Similarly to the proof of Eq.(29), we can obtain that the variance term in full-information setting is
smaller than that in partial-information setting.

B DETAILED PROOFS IN THEORETICAL ANALYSIS

In this section, we provide the instantaneous regret bound in each episode, prove the approximation
error of sketching, and analyze the regret for policy updating in the CBB setting. Figure 4 describes
the dependence structure of our theoretical results.

Regret Bound 
of SPUIR

Approximation Properties 
of Sketching

Approximation Error Bound 
of Reward Imputation

Instantaneous Regret 
Bound

Figure 4: The dependence structure of our theoretical results, where the proof of instantaneous re-
gret bound (Theorem 2) is provided in Appendix B.1, the analysis of approximation properties of
sketching (Theorem 6) is given in Appendix B.2, the approximation error bound of reward imputa-
tion (Theorem 3) is proven in Appendix B.3, and the regret of SPUIR (Theorem 4) is analyzed in
Appendix B.4
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B.1 PROOF OF THEOREM 2

Before we provide the detailed proof of Theorem 2, we first demonstrate a lemma about the conver-
gence and monotonicity of the sum of functions, which is the main tool for analyzing the additional
bias of reward imputation.

Lemma 1 (Convergence and Monotonicity). Let f(n) =
∑n
j=1 a

n−j · g(j), where a ∈ (0, 1) and
n is a positive integer. Then,

1) when g(j) is convergent, the limit limn→∞ f(n) exists. Moreover,

lim
n→∞

f(n) =
1

1− a
lim
n→∞

g(n). (17)

2) f(n) is a monotonic decreasing function if and only if g(j) satisfies, for any positive integer
j ≥ 2,

g(j) ≤

(j − 1)aj−1g(1) a = 1/2,
(1− a)

[
aj−1 − (1− a)j−1

]
2a− 1

g(1) a 6= 1/2.
(18)

Proof. Letting b(j) = a−j · g(j),∀j ∈ [n], and S(n) =
∑n
j=1 b(j), f(n) can be rewritten as

f(n) = anS(n).

1) Rewriting f(n) = S(n)/a−n, from the Stolz’s theorem, we have

lim
n→∞

f(n) = lim
n→∞

S(n)− S(n− 1)

a−n − a−(n−1)

= lim
n→∞

b(n)

a−n − a−(n−1)

= lim
n→∞

a−n · g(n)

a−n − a−(n−1)

=
1

1− a
lim
n→∞

g(n).

2) The condition that f(·) is a monotonic decreasing function is equivalent to the following condi-
tion: for and positive integer n,

f(n+ 1) ≤ f(n)

⇔ an+1S(n+ 1) ≤ anS(n)

⇔ a[S(n) + b(n+ 1)] ≤ S(n)

⇔ b(n+ 1) ≤ (1/a− 1)S(n). (19)

From the equivalent condition Eq.(19), we obtain the following recursion formula:

b(n+ 1) ≤ (1/a− 1)S(n)

b(n) ≤ (1/a− 1)

n−1∑
j=1

b(j)

...
b(3) ≤ (1/a− 1) [b(1) + b(2)]

b(2) ≤ (1/a− 1) b(1),

yielding that, for any positive integer j ≥ 2,

b(j) ≤
[
(1/a− 1) + (1/a− 1)2 + · · ·+ (1/a− 1)j−1

]
b(1). (20)

16



Under review as a conference paper at ICLR 2022

From Eq.(20) , for a 6= 1/2,

b(j) ≤
(1/a− 1)

[
1− (1/a− 1)j−1

]
1− (1/a− 1)

b(1)

=
(1− a)

[
1− (1/a− 1)j−1

]
2a− 1

b(1),

(21)

and substituting the definition of b(j) into Eq.(21) yields the equivalent condition

g(j) ≤
(1− a)

[
1− (1/a− 1)j−1

]
2a− 1

aj−1 g(1).

For a = 1/2, we have the condition b(j) ≤ (j − 1)b(1), which is equivalent to

a−j · g(j) ≤ (j − 1)a−1 · g(1) ⇔ g(j) ≤ (j − 1)aj−1g(1).

Next, we provide the detailed proof of Theorem 2.

Proof of Theorem 2. From the formulation of θ̄nA and the triangle inequality, we can obtain that, for
each action A ∈ A,∣∣〈θ̄nA, sn,b〉− 〈θ∗A, sn,b〉∣∣

=
∣∣∣sᵀn,b (Ψn

A)
−1
(
bnA + γb̂nA

)
− sᵀn,bθ

∗
A

∣∣∣
=
∣∣∣sᵀn,b (Ψn

A)
−1
[(
Ln−1
A

)ᵀ
T n−1
A + γ

(
L̂n−1
A

)ᵀ
T̂ n−1
A −Ψn

Aθ
∗
A

]∣∣∣
=
∣∣∣sᵀn,b (Ψn

A)
−1
[(
Ln−1
A

)ᵀ
T n−1
A + γ

(
L̂n−1
A

)ᵀ
T̂ n−1
A −

(
λId + Φn

A + γΦ̂n
A

)
θ∗A

]∣∣∣
=
∣∣∣sᵀn,b (Ψn

A)
−1
{(
Ln−1
A

)ᵀ
T n−1
A + γ

(
L̂n−1
A

)ᵀ
T̂ n−1
A −[

λId +
(
Ln−1
A

)ᵀ
Ln−1
A + γ

(
L̂n−1
A

)ᵀ
L̂n−1
A

]
θ∗A

}∣∣∣
=
∣∣∣sᵀn,b (Ψn

A)
−1 (

Ln−1
A

)ᵀ (
T n−1
A −Ln−1

A θ∗A
)
− λsᵀn,b (Ψn

A)
−1
θ∗A+

sᵀn,b (Ψn
A)
−1
γ
(
L̂n−1
A

)ᵀ (
T̂ n−1
A − L̂n−1

A θ∗A

)∣∣∣
≤
∣∣∣sᵀn,b (Ψn

A)
−1 (

Ln−1
A

)ᵀ (
T n−1
A −Ln−1

A θ∗A
)∣∣∣︸ ︷︷ ︸

X
(1)
A

+λ
∣∣∣sᵀn,b (Ψn

A)
−1
θ∗A

∣∣∣︸ ︷︷ ︸
X

(2)
A

+

∣∣∣sᵀn,b (Ψn
A)
−1
γ
(
L̂n−1
A

)ᵀ (
T̂ n−1
A − L̂n−1

A θ∗A

)∣∣∣︸ ︷︷ ︸
X

(3)
A

.

Next, we bound X(1)
A , X(2)

A , and X(3)
A . For convenience, we drop all the superscripts and subscripts

about n and b. Similarly to the proof of Theorem 1, we bound X
(1)
A + X

(2)
A as follows: with

probability at least 1− δ,

X
(1)
A +X

(2)
A ≤ (λ‖θ∗A‖2 + ν)

√
sᵀΨ−1

A s, (22)

where ν =
√

2C2
R log(2MB/δ). For X(3)

A , using the Cauchy-Schwarz inequality, we have

X
(3)
A ≤ γ

∥∥∥L̂AΨ−1
A s

∥∥∥
2

∥∥∥T̂A − L̂Aθ∗A∥∥∥
2

=
√
γ

√
sᵀΨ−1

A

(
γL̂ᵀ

AL̂A

)
Ψ−1
A s

∥∥∥T̂A − L̂Aθ∗A∥∥∥
2

≤ √γ
√
sᵀΨ−1

A s
∥∥∥T̂A − L̂Aθ∗A∥∥∥

2
.

(23)
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Now we need to bound the term
∥∥∥T̂A − L̂Aθ∗A∥∥∥

2
. Since using the discount parameter η ∈ (0, 1)

in Eq.(4) is equivalent to multiplying both the imputed contexts and the imputed rewards by the
parameter

√
η in each episode, we have, in the n-th episode,∥∥∥T̂ n−1

A − L̂n−1
A θ∗A

∥∥∥
2

=
∥∥∆η

n−1

∥∥
2
, (24)

where ∆η
n−1 = {η(n−i−1)/2 IRi,b}i∈[n−1],b∈[B] denotes an exponential-decay vector of the in-

stantaneous regrets, and IRi,b denotes the instantaneous regret at step b in the i-th episode, i.e,
IRi,b =

∣∣〈θ̄iA, si,b〉− 〈θ∗A, si,b〉∣∣. From Eq.(24), letting

CIRi =
∑
b∈[B]

IRi,b (25)

be the cumulative instantaneous regret in the i-th episode, we can obtain the upper bound of Eq.(24)
as follows: ∥∥∥T̂ n−1

A − L̂n−1
A θ∗A

∥∥∥
2

=
∥∥∆η

n−1

∥∥
2

≤
∥∥∆η

n−1

∥∥
1

=
∑

i∈[n−1],b∈[B]

∣∣∣η(n−i−1)/2 IRi,b

∣∣∣
=

∑
i∈[n−1]

η(n−i−1)/2 CIRi

= η−
1
2 fImp(n),

(26)

where
fImp(n) :=

∑
i∈[n−1]

(
√
η)
n−i

CIRi. (27)

From monotone bounded theorem, we have that the limit of CIRi exists. From Eq.(17) in Lemma 1,
we get that fImp(n) is convergent and then has an upper bound. We denotes the upper bound of
fImp(n) by CImp > 0, and then from Eq.(26) we have∥∥∥T̂ n−1

A − L̂n−1
A θ∗A

∥∥∥
2
≤ η− 1

2CImp. (28)

Substituting Eq.(28) into Eq.(23) yields the upper bound of X(3)
A .

Then, we prove that √
sᵀ (Ψn

A)
−1
s ≤

√
sᵀ (λId + Φn

A)
−1
s. (29)

holds, which is equivalent to

sᵀ
(
λId + Φ + γΦ̂

)−1

s ≤ sᵀ (λId + Φ)
−1
s. (30)

Letting Θ = λId + Φ, by Sherman-Morrison-Woodbury formula, we have(
Θ + γΦ̂

)−1

=
(
Θ + γŜᵀŜ

)−1

= Θ−1 − γΘ−1Ŝᵀ
(
Id + γŜΘ−1Ŝᵀ

)−1

ŜΘ−1

= Θ−1 −Θ−1Ŝᵀ

(
Id
γ

+ ŜΘ−1Ŝᵀ

)−1

ŜΘ−1,

(31)

yielding that Eq.(30) is equivalent to
sᵀΓs ≥ 0, (32)

where
Γ = Θ−1Ŝᵀ

(
Id/γ + ŜΘ−1Ŝᵀ

)−1

ŜΘ−1.

Let S = UdΣ
1/2
d V ᵀ

d , Ŝ = ÛdΣ̂
1/2
d V̂ ᵀ

d be the Singular Value Decomposition (SVD) of S and Ŝ,
respectively. Note that Φ = VdΣdV

ᵀ
d , Φ̂ = V̂dΣ̂dV̂

ᵀ
d . We can obtain that Γ is a square symmetric

positive semi-definite matrix, since Γ can be decomposed into
Γ = QᵀQ,

18
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where PγΛγP
ᵀ
γ is the SVD of Id/γ + ŜΘ−1Ŝᵀ and

Q = Λ−1/2
γ P ᵀ

γ ŜΘ−1.

Thus, Eq.(32) holds, yielding that Eq.(30) also holds.

Finally, we prove that a larger imputation rate γ leads to a smaller variance term
√
sᵀ (Ψ)

−1
s.

From Eq.(31), the variance term can be represented as follows:√
sᵀ (Ψ)

−1
s =

[
sᵀΘ−1s− sᵀΘ−1ŜᵀM−1

γ ŜΘ−1s
]1/2

, (33)

where Mγ = Id/γ + ŜΘ−1Ŝᵀ. Letting Mγ = UMγ
ΛMγ

Uᵀ
Mγ

be the SVD of Mγ , and z =

Uᵀ
Mγ
ŜΘ−1s, from Eq.(33) we can written the variance term as follows:√

sᵀ (Ψ)
−1
s =

[
sᵀΘ−1s− zᵀΛ−1

Mγ
z
]1/2

. (34)

In Eq.(34), we can observed that

zᵀΛMγ
z = ‖(ΛMγ

)−1/2z‖22 ∈
[

1

σmax(M) + 1/γ
‖z‖22,

1

σmin(M) + 1/γ
‖z‖22

]
where M = ŜΘ−1Ŝᵀ, which indicates that a larger imputation rate γ leads to a smaller variance
term.

Finally, we provide a deeper understanding of the additional bias in Theorem 2.

Remark 4 (Controllable Bias). Our reward imputation approach incurs a bias term γ
1
2 η−

1
2CImp

in addition to the two bias terms λ‖θ∗A‖2 and ν that exist in every UCB-based policy. But this
additional bias term is controllable due to the presence of imputation rate γ that can help controlling
the additional bias. Moreover, from the proof of Eq.(26), we can obtain that, the term CImp in the
additional bias can be replaced by a function fImp(n) (defined in Eq.(27)), and the additional bias
term turns out to be γ

1
2 η−

1
2 fImp(n). Since fImp(n) has the same functional form as the function

f(n) in Lemma 1, we can find the conditions that fImp(n) is monotonic decreasing following Eq.(18)
in Lemma 1. Specifically, letting CIRi be the cumulative instantaneous regret in the i-th episode
defined in Eq.(25),

1) when
√
η 6= 1/2, the condition of a monotonic decreasing function fImp(·) is equivalent to, for

any positive integer i ≥ 2,

CIRi ≤
(1−√η)

[√
ηi−1 − (1−√η)i−1

]
2
√
η − 1

CIR1,

indicating that the regret after N episodes satisfies

∑
2≤i≤N

CIRi ≤ CIR1

∑
2≤i≤N

(1−√η)
[√

ηi−1 − (1−√η)i−1
]

2
√
η − 1

= CIR1

1−√η
2
√
η − 1

∑
2≤i≤N

[√
η
i−1 − (1−√η)i−1

]
= CIR1

1
√
η(2
√
η − 1)

[
2
√
η − 1 + (1−√η)N+1 − (

√
η)N+1

]
= CIR1

1
√
η

[
1 +

(1−√η)N+1 − (
√
η)N+1

2
√
η − 1

]
. (35)

2) for the case
√
η = 1/2, the condition of a monotonic decreasing function fImp(·) is equivalent

to CIRi ≤ (i − 1)(
√
η)i−1CIR1 for any positive integer i ≥ 2, indicating that the regret after
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N episodes satisfies∑
2≤i≤N

CIRi ≤ CIR1

∑
2≤i≤N

(i− 1)(
√
η)i−1

=

√
η

(1−√η)2
CIR1 −

[
1

(1−√η)2
+

N − 1

1−√η

]
(
√
η)NCIR1

=

(
2− 1 +N

2N−1

)
CIR1

=

[
1
√
η
− (1 +N)

√
η
N−1

]
CIR1. (36)

From Eq.(35) and Eq.(36), we can conclude that a monotonic decreasing function fImp(·) indicates
the upper bound of regret after N episodes is of order O(CIR1/

√
η). The conclusion also indicates

that setting the discount parameter as
√
η = Θ(CIR1/N) achieves a O(N) regret bound (i.e., a

Õ(
√
dT ) regret bound following Remark 3). Note that setting the discount parameter as

√
η =

Θ(CIR1/N) is a mild condition, since the cumulative instantaneous regret CIR1 is typically of
order O(B) (B = O(

√
T/d) in Remark 3) yielding that

√
η = Θ(d−1). Overall, since a larger

imputation rate γ leads to a smaller variance while increasing the bias (variance analysis can be
found in Remark 2), γ controls a trade-off between the bias term and the variance term. When
fImp is a monotonic decreasing function w.r.t. number of episodes n, the additional bias term
γ

1
2 η−

1
2 fImp(n) can be easily controlled, e.g., gradually increasing γ with the number of episodes,

avoiding the large bias from fImp(n) at the beginning of reward imputation. We design a rate-
scheduled approach for choosing the imputation rate γ in Section 5.
Remark 5 (Relationship to Exploration and Exploitation Trade-off). Exploration-exploitation
dilemma is the key challenge in online learning under bandit settings. In the full-information set-
ting, agent (e.g., UCB policy) receives the rewards from all the actions, does not need to consider
the choice of exploring the feedback mechanisms, and achieves a lower variance part in the re-
gret upper bound (Theorem 1). Along this line, our reward computation approach is proposed to
approximate the setting of full-information feedback, which somewhat relaxes the explore/exploit
dilemma and also brings a lower variance part and a controllable additional bias part in the regret.
Extra information that pushes the policy towards exploitation and away from exploration comes
from the estimated reward structures of the non-executed actions maintained in each episode, and
the proposed reward imputation can be seen as an effective and efficient tool to capture this extra
information.

B.2 APPROXIMATION PROPERTIES OF SKETCHING

Although some error bounds of approximation using SJLT have been proposed (Nelson & Nguyên,
2013; Kane & Nelson, 2014; Bourgain et al., 2015), it is still unknown what is the lower bound
of the sketch size while applying SJLT to the sketched ridge regression problem in our SPUIR.
To address this issue, we first prove two approximation properties of SJLT which are necessary to
achieve approximation error bound of the sketched ridge regression using SJLT. For convenience,
we drop all the superscripts and subscripts in these theoretical results.
Lemma 2 ((Nelson & Nguyên, 2013)). Let U ∈ RL×d be a matrix with orthonormal columns,
Π ∈ Rc×L the SJLT. Assuming that D = Θ(ε−1

σ log3(dδ−1
0 )) for Π, εσ ∈ (0, 1) and d ≤ c, with

probability at least 1− δ0 all singular values of ΠU

σi(ΠU) = 1± εσ, i ∈ [d],

as long as

c ≥
d log8

(
dδ−1

0

)
ε2
σ

.

Further, this holds if the hash function h and σ defining the Π is Ω
(
log(dδ−1

0 )
)
-wise independent.

Theorem 6 (Approximation Properties of SJLT). Let U ∈ RL×d be a matrix with orthonormal
columns, andA be a matrix of any proper size. If Π ∈ Rc×L is the SJLT satisfying the assumptions
in Lemma 2, and d ≤ c ≤ L, then Π has the following two properties:
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1) Subspace embedding property: set c = Ω
(
d polylog

(
dδ−1

s

)
/ε2

s

)
, for εs ∈ (0, 1), with proba-

bility at least 1− δs,
‖UᵀΠᵀΠU − Id‖2 ≤ εs;

2) Matrix multiplication property: set c = Ω(d/(εmδm)), for εm ∈ (0, 1), with probability at least
1− δm,

‖UᵀΠᵀΠA−UᵀA‖2F ≤ εm‖A‖2F.

Proof of Theorem 6. 1) From Lemma 2, by setting c = Ω
(
d polylog

(
dδ−1

s

)
/ε2

0

)
, we can obtain

the upper bounds of eigenvalues: with probability at least 1− δs,

λi (UᵀΠᵀΠU) = σ2
i (ΠU) ∈ [(1− εσ)2, (1 + εσ)2] ⊆ [1− 2εσ, 1 + 3εσ], (37)

which yields that
|λi (UᵀΠᵀΠU − Id)| ≤ 3εσ. (38)

Eq.(39) is equivalent to
‖UᵀΠᵀΠU − Id‖2 ≤ 3εσ.

Letting εs = 3εσ and εσ ∈ (0, 1/3) yields the subspace embedding property.

2) From Lemma 1 in (Zhang & Liao, 2019), we have

E
[
‖UᵀΠᵀΠA−UᵀA‖2F

]
≤ 2

c
‖U‖2F‖A‖2F =

2d

c
‖A‖2F. (39)

Combining Eq.(39) with the Markov’s inequality, we obtain that, with probability at least 1−δm,

‖UᵀΠᵀΠA−UᵀA‖2F ≤
2d

δmc
‖A‖2F.

Letting εm =
2d

δmc
yields the matrix multiplication property.

B.3 PROOF OF THEOREM 3

Next, using the approximation properties of SJLT in Theorem 6, we prove that the objective function
value of the imputation regularized ridge regression problem for reward imputation can be approx-
imated well with a relative-error bound. Moreover, we prove that the solution solving the sketched
ridge regression problem for reward imputation is also a good approximation of the solution solving
the imputation regularized ridge regression. The following theorem is a detailed version of Theo-
rem 3.

Theorem 7 (Approximation Error Bound of Imputation using Sketching, Detailed Version of The-
orem 3). Let γ ∈ [0, 1] be the imputation rate, λ > 0 the regularization parameter, Π ∈ Rc×L

and Π̂ ∈ Rc×L̂ be the SJLT, and L ∈ RL×d, L̂ ∈ RL̂×d,T ∈ RL, T̂ ∈ RL̂,θ ∈ Rd. Denote the
imputation regularized ridge regression function F and sketched ridge regression function F S for
reward imputation by

F (θ) = ‖Lθ − T ‖22 + γ
∥∥∥L̂θ − T̂∥∥∥2

2
+ λ‖θ‖22,

F S(θ) = ‖Π (Lθ − T )‖22 + γ
∥∥∥Π̂(L̂θ − T̂)∥∥∥2

2
+ λ‖θ‖22,

and the solutions of these regression problems by

θ̄ = arg min
θ∈Rd

F (θ) and θ̃ = arg min
θ∈Rd

F S(θ).

Let δ ∈ (0, 0.1], ε ∈ (0, 1), ρλ = ‖Lall‖22/(‖Lall‖22 + λ). For Π and Π̂, assuming that D =
Θ(ε−1 log3(dδ−1)) and

c = Ω
(
d polylog

(
dδ−1

)
/ε2
)
,
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with probability at least 1− δ,

F (θ̃) ≤ (1 + ρλε)F (θ̄), (40)

‖θ̃ − θ̄‖2 ≤

√
ρλεF

(
θ̄
)

σmin

(
Lλall

) , (41)

where Lλall =
[
L;
√
γL̂;
√
λId

]
∈ R(L+L̂+d)×d. Furthermore, if there is a constant fraction of

the norm of T 0
all lies in the column space of Lλall, then Eq.(41) can be strengthened. Formally,

assuming that a mild structural assumption on the context matrix and the reward vector is satisfied,
i.e., ‖UallU

ᵀ
allT

0
all‖2 ≥ ξ‖T 0

all‖2 with a constant ξ ∈ (0, 1], then with probability at least 1− δ,

‖θ̃ − θ̄‖2 ≤
(
κ(Lλall)

√
ξ−2 − 1

)√
ρλε‖θ̄‖2, (42)

where κ(A) denotes the condition number of A, T 0
all = [T ; T̂ ; 0d] ∈ R(L+L̂+d), and Lλall =

UallΣallV
ᵀ

all is the SVD of Lλall.

Proof of Theorem 7. We first introduce some more notation of block matrices that will simplify
the proof of the theorem:

Πall =

(
Π O

O Π̂

)
, Lall =

(
L
√
γL̂

)
, Tall =

(
T

T̂

)
. (43)

Then the regression functions can be rewritten as follows:

F (θ) = ‖Lallθ − Tall‖22 + λ‖θ‖22, F S(θ) = ‖Πall (Lallθ − Tall)‖22 + λ‖θ‖22.

Obviously, Πall is still an SJLT. Combining Theorem 6 with theorem 19 in (Wang et al., 2017), we
can obtain, setting

c = Ω
(
max{d polylog

(
dδ−1

s

)
/ε2

s , d/(εmδm)}
)
,

with probability at least 1− (δs + δm),

F (θ̃)− F (θ̄) ≤ ρλτF (θ̄), (44)

where ρλ =
‖Lall‖22
‖Lall‖22+λ

and τ =
2 max{ε2s ,εm}

1−εs . Letting εs = εm := ε0, Eq.(44) can be rewritten as

F (θ̃)− F (θ̄) ≤ 2ρλε0

1− ε0
F (θ̄), (45)

Assuming that δs = δm := δ/2 ∈ (0, 0.1] and ε0 ∈ (0, 1/3), setting ε = 2ε0
1−ε0 ∈ (0, 1), from

Eq.(45) we obtain the upper bound Eq.(40).

Next, we bound the difference between the solutions solving the sketched ridge regression problem
and the original regression problem. Since σ2

min(A)‖x‖22 ≤ ‖Ax‖22 for any A and x with proper
sizes, we have

σ2
min(Lall)‖θ̃ − θ̄‖22 ≤

∥∥∥Lall(θ̃ − θ̄)
∥∥∥2

2
. (46)

The key ingredient of bounding ‖θ̃−θ̄‖2 is to bound ‖Lall(θ̃−θ̄)‖2. LetLλall =
[
L;
√
γL̂;
√
λId

]
∈

R(L+L̂+d)×d, T 0
all = [T ; T̂ ; 0d] ∈ R(L+L̂+d), Lλall = UallΣallV

ᵀ
all be the SVD of Lλall, and denote

a matrix with orthonormal columns by U⊥all ∈ R(L+L̂+d)×(L+L̂) which satisfies

UallU
ᵀ
all +U⊥all(U

⊥
all)

ᵀ = IL+L̂+d and Uᵀ
allU

⊥
all = O.

Then, we can rewrite the solution θ̄ as follows:

θ̄ = arg min
θ∈Rd

F (θ) = arg min
θ∈Rd

∥∥Lλallθ − T 0
all

∥∥2

2

= (Lλall)
†T 0

all = VallΣ
−1
allU

ᵀ
allT

0
all,
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which yields that
T 0

all −Lλallθ̄ = T 0
all −LλallVallΣ

−1
allU

ᵀ
allT

0
all

= T 0
all −UallΣallV

ᵀ
allVallΣ

−1
allU

ᵀ
allT

0
all

= T 0
all −UallU

ᵀ
allT

0
all

= U⊥all(U
⊥
all)

ᵀ
T 0

all.

(47)

Thus, T 0
all − Lλallθ̄ is orthogonal to Uall, and consequently to Lλall(θ̃ − θ̄), and we can obtain the

following equality by Pythagoras’s theorem:∥∥∥Lλall(θ̃ − θ̄)
∥∥∥2

2
=
∥∥∥Lλallθ̃ − T 0

all

∥∥∥2

2
−
∥∥Lλallθ̄ − T 0

all

∥∥2

2
. (48)

Combining Eq.(48) with Eq.(40) yields that∥∥∥Lλall(θ̃ − θ̄)
∥∥∥2

2
= F (θ̃)− F (θ̄) ≤ ρλεF (θ̄). (49)

Substituting Eq.(49) into Eq.(46) concludes the proof of Eq.(41).

If we make a mild structural assumption on the context matrix and the reward vector, we can provide
a stronger bound of ‖θ̃ − θ̄‖2. Specifically, assuming that ‖UallU

ᵀ
allT

0
all‖2 ≥ ξ‖T 0

all‖2 with a
constant ξ ∈ (0, 1], from Eq.(47) and Pythagoras’s theorem we have

F (θ̄) = ‖Lλallθ̄ − T 0
all‖22

= ‖T 0
all‖22 − ‖UallU

ᵀ
allT

0
all‖22

≤ (ξ−2 − 1)‖UallU
ᵀ
allT

0
all‖22

= (ξ−2 − 1)‖Lλallθ̄‖22
≤ (ξ−2 − 1)‖Lλall‖22 ‖θ̄‖22
≤ (ξ−2 − 1)σ2

max(Lλall)‖θ̄‖22.

(50)

Combining Eq.(50) with Eq.(41) yields Eq.(42).

B.4 PROOF OF THEOREM 4

Proof of Theorem 4. In our sketched policy, letting Cmax
θ∗ = maxA∈A ‖θ∗A‖2, CImp > 0, ν =√

2C2
R log(2MB/δ), and

ω = λCmax
θ∗ + ν + γ

1
2 η−

1
2CImp,

from Eq.(9) in Theorem 2 we obtain that∣∣〈θ̄nA, sn,b〉− 〈θ∗A, sn,b〉∣∣ ≤ ω√sᵀn,b (Ψn
A)
−1
sn,b. (51)

Before proving the upper bound of
∣∣∣〈θ̃nA, sn,b〉− 〈θ∗A, sn,b〉∣∣∣, we need to provide a technical tool

as follows. For convenience, we also drop all the superscripts and subscripts. The goal is to find a
constant Cα such that √

sᵀΨ−1s ≤ Cα
√
sᵀW−1s, (52)

which is equivalent to the condition that the matrix C2
αW

−1 − Ψ−1 is positive semidefinite.
Let Lall and Πall be the matrices defined in Eq.(43), Lall = ŨallΣ̃allṼ

ᵀ
all be the SVD of Lall,

and σ̃1 ≥ σ̃2 · · · ≥ σ̃d be the singular values of Lall. Then the i-th eigenvalue of Ψ−1 =
(λId + Lᵀ

allLall)
−1 can be represented as λi(Ψ−1) = 1/(σ̃2

i + λ), and the i-th eigenvalue of
W−1 = (λId +Lᵀ

allΠ
ᵀ
allΠallLall)

−1 is λi(W−1) = 1/(λ̂i + λ), where λ̂i is the i-th eigenvalue of
Σ̃allŨ

ᵀ
allΠ

ᵀ
allΠallŨallΣ̃all.

From the Lidskii’s theorem and Eq.(37), we have

λ̂i ∈ [σ̃2
d(1− 2εσ), σ̃2

1(1 + 3εσ)]. (53)
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Assuming that the positive semi-definiteness of C2
αW

−1 − Ψ−1 is satisfied, we obtain that
C2
αλi(W

−1)− λi(Ψ−1) ≥ 0 for i ∈ [d], and combining this inequality with Eq.(53) yields that

Cα =
√

[σ̃2
1(1 + 3εσ) + λ]/(σ̃2

d + λ).

From the proof of Theorem 6 and Theorem 3, we can obtain that εσ = ε/(6 + 3ε), yielding that

Cα =

√
σ̃2

1 [1 + ε/(2 + ε)] + λ

σ̃2
d + λ

,

which decreases with increase of 1/ε. Similarly to the proof of Cα satisfying Eq.(52), we can obtain
that

√
sᵀW−1s ≤ Creg

√
sᵀΨ−1s, (54)

provided that

Creg =

√
σ̃2

1 + λ

σ̃2
d[1− 2ε/(6 + 3ε)] + λ

.

Obviously, Creg also decreases with increase of 1/ε.

Then, letting α = ωCα, from Eq.(51) and Eq.(52) we have∣∣∣〈θ̃nA, sn,b〉− 〈θ∗A, sn,b〉∣∣∣ ≤ ∣∣∣〈θ̃nA, sn,b〉− 〈θ̄nA, sn,b〉∣∣∣+
∣∣〈θ̄nA, sn,b〉− 〈θ∗A, sn,b〉∣∣

≤
∣∣∣〈θ̃nA − θ̄nA, sn,b〉∣∣∣+ ω

√
sᵀn,b (Ψn

A)
−1
sn,b

≤ Yn,b + α
√
sᵀn,b (W n

A)
−1
sn,b,

(55)

where Yn,b denotes the upper bound of
∣∣∣〈θ̃nA − θ̄nA, sn,b〉∣∣∣ for any A ∈ A.

Next, using the compatibility of norm, we give a specific representation of the sum of Yn,b as follows:∑
b∈[B]

Yn,b = max
A∈A
‖SnA(θ̃nA − θ̄nA)‖1

≤ max
A∈A
‖SnA‖1‖θ̃nA − θ̄nA‖1

≤ max
A∈A
‖SnA‖1

√
d‖θ̃nA − θ̄nA‖2.

(56)

Further, we give a more specific upper bound in Eq.(56) under mild structural assumption in Theo-
rem 3. Let κmax

all denote the maximum of the condition numbers of Lλall(A,n) for A ∈ A, n ∈ [N ],

and Lλall(A,n) =
[
LnA;
√
γL̂nA;

√
λId

]
, and Uall(A,n) be the left singular matrix of Lλall(A,n).

Letting T 0
all(A,n) = [T nA ; T̂ nA ; 0d], assuming that ‖Uall(A,n)Uall(A,n)ᵀT 0

all(A,n)‖2 ≥
ξ‖T 0

all(A,n)‖2 with a constant ξ ∈ (0, 1], substituting the upper bound Eq.(42) in Theorem 3 into
Eq.(56) yields that ∑

b∈[B]

Yn,b ≤
(
κmax

all

√
ξ−2 − 1

)
CSC

max
θ̄

√
ρλεd, (57)

where CS = maxn∈[N ],A∈A ‖SnA‖1, Cmax
θ̄

= maxA∈A,n∈[N ] ‖θ̄nA‖2.
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From Eq.(54), Eq.(55), Eq.(57) and the definition of our sketched policy, letting CY =(
κmax

all

√
ξ−2 − 1

)
CSC

max
θ̄

, we obtain that

Reg({AIn,b}n∈[N ],b∈[B])

=
∑

n∈[N ],b∈[B]

[
max
A∈A
〈θ∗A, sn,b〉 −

〈
θ∗AIn,b

, sn,b

〉]

≤
∑

n∈[N ],b∈[B]

[
max
A∈A

(〈
θ̃nA, sn,b

〉
+ α

√
sᵀn,b (W n

A)
−1
sn,b

)
+ Yn,b −

〈
θ∗AIn,b

, sn,b

〉]

=
∑

n∈[N ],b∈[B]

[〈
θ̃nAIn,b

, sn,b

〉
+ α

√
sᵀn,b

(
W n

AIn,b

)−1

sn,b + Yn,b −
〈
θ∗AIn,b

, sn,b

〉]

≤ 2α
∑

n∈[N ],b∈[B]

√
sᵀn,b

(
W n

AIn,b

)−1

sn,b + 2
∑

n∈[N ],b∈[B]

Yn,b

≤ 2αCreg

√
B
∑
n∈[N ]

√√√√∑
b∈[B]

sᵀn,b

(
Ψn
AIn,b

)−1

sn,b + 2NCY
√
ρλεd

= 2αCreg

√
B
∑
n∈[N ]

√√√√∑
b∈[B]

〈
sn,b s

ᵀ
n,b,
(
Ψn
AIn,b

)−1
〉

+ 2NCY
√
ρλεd

= 2αCreg

√
B
∑
n∈[N ]

√∑
A∈A

〈
SnᵀA S

n
A, (Ψ

n
A)
−1
〉

+ 2NCY
√
ρλεd

= 2αCreg

√
B
∑
n∈[N ]

√∑
A∈A

tr
(
SnᵀA S

n
A (Ψn

A)
−1
)

+O(N
√
ρλεd),

≤ 2αCreg

√
BM

∑
n∈[N ]

√
max
A∈A

{
tr
(
SnᵀA S

n
A (Ψn

A)
−1
)}

+O(N
√
ρλεd). (58)

When the structural assumption in Theorem 3 is not satisfied, from Eq.(41), we can obtain that the
second term in Eq.(58) is also of order O(

√
ρλεd), which does not influence the order of the final

regret bound. Finally, combining Eq.(58) with lemma 3 in (Han et al., 2020) gives the final regret
bound.

C DETAILED EXPERIMENTAL SETTINGS AND MORE EXPERIMENTAL
RESULTS

In this section, we provide more details and results in the experiments.

C.1 DESCRIPTION OF DATASETS

Table 3 summarizes the description of datasets used in the experiments.

Next, we provide more details about the three datasets.

Synthetic Data. Inspired by the experiments in (Saito et al., 2020), the synthetic data generation
procedure was formulated as follows, which simulates the streaming recommendation environment.

• Context si ∈ Rd: we drew elements of si independently from a Gaussian distribution
N (0.1, 0.22), where d = 40;

• Click-Through-Rate (CTR): the CTRs for the 5 actions were respectively set as
{10%, 15%, 25%, 20%, 30%};
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Table 3: Description of datasets in the experiments (T : number of instances; B: batch size; N :
number of episodes; d: dimensionality of context; M : number of actions; CB satisfying B =
C2
BN/d)

Dataset T B N d M CB

synthetic data 126,000 1,400 90 40 5 25.00
Criteo-recent 75,000 1,000 75 50 5 25.82
Criteo-all 1,276,000 4,000 319 50 15 25.04
commercial product 216,568 1,700 128 50 5 25.83

• The indicator variables of click events:

Ci =

{
1 a click occurs in context si,
0 otherwise.

We sampled the click index set according to the uniform distribution.
• Conversion rate (CVR) in context si: when Ci = 1,

CVR(si) := sigmoid(〈wc, si〉),=
1

1 + exp(−〈wc, si〉)
,

where the coefficient vector wc ∈ Rd is sampled according to a Gaussian distribution as
wc ∼ N (κc1d, σ

2
cId), and we set different means and standard deviations for different

action with κc ∈ [0 : −0.2 : −0.8] and σc ∈ [0.01 : +0.01 : 0.05];

Criteo Data. We used the publicly available Criteo dataset5, consisting of Criteo’s traffic on display
ads over a period of two months (Chapelle, 2014), where each context consists of 8 integer features
and 9 categorical features. Following the experiments in (Yoshikawa & Imai, 2018), the categorical
features were represented as one-hot vectors and then concatenated to the integer features. We
reduced the dimensionality of the feature vectors to 50 using principal component analysis (PCA).
All of the algorithms were tested in a simulated online environment that was trained on users’ logs
in the Criteo dataset. Specifically, we chose several campaigns from the Criteo dataset, where each
campaign represents a category of items and corresponds to an action. This online environment
contains a prediction model for the CVR, which was well trained by applying DFM (Chapelle,
2014) using the true user feedbacks. This environment model was trained for each chosen campaign,
whose AUCs are ranging from 70% to 90%, assuring that the online environment can provide nearly
realistic feedbacks. To simulate the uncertainty of user behaviors, Gaussian noises with zero-mean
were added to the model parameters. At each step, the online environment randomly selected a
campaign and samples one context from this campaign, and revealed the context to the agent with
a preset CTR. To generate a reasonable sequence of instances, the environment kept the order of
timestamps of the contexts in each campaign. We tested our algorithms and the baselines with the
following two online environments on the Criteo dataset: Criteo-recent contains 5 campaigns
(75, 000 instances) chosen from the recent campaigns, corresponding to 5 actions; Criteo-all
contains 15 campaigns (1, 276, 000 instances) chosen from all the campaigns, corresponding to 15
actions.

Data Collected from a Real Commercial App for Coupon Recommendation. To verify the ef-
fectiveness and efficiency of our algorithms on real products, we conducted experiments on a real
dataset collected from a commercial social app. We call this dataset commercial product,
where the data were collected after the users gave consent, and did not contain any personally iden-
tifiable information or offensive content. Since this dataset from a commercial app is proprietary,
we did not provide a URL. We will release this dataset after the publication of this paper. In this
commercial app, after clicking a recommended coupon, a user may convert the coupon after some
time, or just leave it there. The dataset was collected during a 1-month period with a subsampling,
and consists of 216, 568 instances from 5 categories of coupons, where each context is described by
86 numerical features and 16 categorical features. The timestamps of clicks and conversions were

5https://labs.criteo.com/2013/12/conversion-logs-dataset/
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also recorded. Following the settings on the Criteo data, we also represented the categorical features
as a one-hot vector, reduced the dimensionality of the feature vectors to 50 by PCA. The action
space contains 5 actions, where each corresponding to one coupon category. Due to the limitation
of real online experiments, in this experiment, we still trained DFM using the true user feedbacks as
the online environment, where AUCs range from 75% to 90%.

To simulate the real environment under partial-information feedback, The experiments were con-
ducted in environments where the distribution of the initialization data is atypical. Specifically,
in the experiments, we set different numbers of the initialization instances for each action. In
the synthetic environment, we set the number of the initial instances as 140, 210, 350, 280, 420
for the 5 actions, respectively. In Criteo-recent, we set the proportion of the initial in-
stances as 0.1, 0.15, 0.25, 0.2, 0.3 for the 5 actions, and set the number of the initial instances as
[100 : 23 : 423] for the 15 actions in Criteo-all.

C.2 DETAILED SPECIFICATION OF HYPERPARAMETERS

In these experiments, the true reward is defined by Rtrue
i,A = λcCi,A + (1− λc)Vi,A (Ci,A and Vi,A

denote true binary variables of user click and conversion when executing action A given context si),
where λc = 0.01 on the synthetic data, Criteo Data, and commercial product data, respectively. As in
most contextual bandit literature (Li et al., 2010; Chu et al., 2011), we set the regularization parame-
ter λ = 1 in the Euclidean regularization. According to theoretical analysis in Remark 3, we set the
batch size as B = C2

BN/d, set the constant CB ≈ 25 and the sketch size c = 150 on all the dataset-
s (B = 1400, 1000, 4000, 1700 for synthetic data, Criteo-recent, Criteo-all, and
commercial product). The regularization parameters ω, α in our policy and that in the batch
UCB policy were tuned in [0.2 : +0.2 : 1.2]. For the SJLT in SPUIR and its variants, sketch
size was set as c = 150 and the number of block D was selected in {1, 2, 4, 6}. Except for the
rate-scheduled variants of our approaches, the imputation rate γ was selected in [0.1 : +0.2 : 0.9].
Besides, the discount parameter η was tuned in [0.1 : +0.2 : 0.9]. In the nonlinear variant of our
approach SPUIR-Kernel, we selected the dimension of the random features dr in {50, 100, 200} and
the kernel width of Gaussian kernel in {2−(i+1)/2, i = [−12 : 2 : 12]}.
Rate-Scheduled Approach. We equip PUIR and SPUIR with a rate-scheduled approach, called
PUIR-RS and SPUIR-RS, respectively. We design a rate-scheduled approach following the theoret-
ical results about the imputation rate γ. From Remark 1&2, we can obtain that a larger imputation
rate γ leads to a smaller variance while increasing the bias. From Remark 4, we conclude that the
additional bias term includes a monotonic decreasing function w.r.t. number of episodes under mild
conditions. Therefore, instead of using a fixed imputation rate, we can gradually increase γ with the
number of episodes, avoiding the large bias at the beginning of the reward imputation while achiev-
ing a small variance. Specifically, we set γ = X% for episodes from (X − 10)%×N to X%×N ,
where X ∈ [10, 100].

C.3 MORE EXPERIMENTAL RESULTS

For better illustration, in Figure 3 of the manuscript, we omitted the curves of algorithms whose av-
erage rewards are 5% lower than the highest reward. Now we provide the curves of all the algorithms
in Figure 5.
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(a) synthetic data
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(b) Criteo-recent

0 50 100 150 200 250 300
Number of Episodes N

0.18

0.19

0.20

0.21

0.22

0.23

0.24

0.25

0.26

Av
er

ag
e 

Re
wa

rd PUIR
SPUIR
PUIR-RS
SPUIR-RS
BLTS-B
SBUCB
BEXP3-IPW
DFM-S
BEXP3

(c) Criteo-all
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(d) commercial product

Figure 5: Average rewards of the compared algorithms, the proposed SPUIR and its variants on
synthetic dataset, Criteo dataset, and the real commercial product data
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