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ABSTRACT

We study classification problems using binary estimators where the decision
boundary is described by horizon functions and where the data distribution sat-
isfies a geometric margin condition. We establish lower bounds for the minimax
learning rate over broad function classes with bounded Kolmogorov entropy in
Lebesgue norms. A key novelty of our work is the derivation of lower bounds
on the worst-case learning rates under a geometric margin condition—a setting
that is almost universally satisfied in practice but remains theoretically challeng-
ing. Moreover, our results deal with the noiseless setting, where lower bounds are
particularly hard to establish. We apply our general results to classification prob-
lems with decision boundaries belonging to several function classes: for Barron-
regular functions, Hölder-continuous functions, and convex functions with strong
margins, we identify optimal rates close to the fast learning rates of O(n−1) for
n ∈ N samples.

1 INTRODUCTION

How well can we solve classification problems with complex decision boundaries in deep learning?
A lot of emphasis has been put on the noise in the problem. However, in practice, data sets may
have very strong margins (see C3)) between the classes, which makes learning much simpler (see
e.g. Figure 1). The presence of a margin seriously complicates the identification of lower bounds on
learning success. This is intuitively clear, since in the extreme case, where certain regions between
the classes almost surely do not contain any data points, many decision boundaries are valid.

In this manuscript, we overcome these issues and present lower bounds on learning under margin
conditions.

For n ∈ N samples, an estimator can be defined as a measurable function f : Λn → F and a binary
classifier can be seen as an indicator function 1Ω : X → {0, 1}, where Λ := X × {0, 1} for some
set X containing a sequence {xi}ni=1 that belongs to a sample ((xi,1Ω(xi)))

n
i=1 ∈ Λn, F is a

measurable space, and Ω ⊂ X is the decision set.

Remark 1. It is clear from the definition above, that the classifiers considered in this work are
not corrupted by noise. This is an important assumption if we want to resolve the precise role
of the regularity of the decision boundary and the margin conditions. Indeed, even the presence
of low noise could yield vastly different lower bounds, because the learning problem then requires
resolving the noise and this complication can mask the role of the decision boundary and the margin.
An extended discussion of this is given in (Petersen & Voigtlaender, 2021, Section 1.1, Point 1).
For a quick argument, we highlight, e.g., Stone (1982), where it was obtained that the optimal
learning rate, to learn a function f ∈ Ck([0, 1]d) with ∥f∥Ck ≤ 1 and noise defined as a parameter

ε
iid∼ N(0, σ2) for σ > 0, is of the order of O(n−k/(2k+d)), and decays slower than n−1/2. On

the other hand, in Krieg & Sonnleitner (2023), where the same problem is considered without noise,
learning rates of the order of O(n−k/d) were obtained, in some cases faster than n−1.

1.1 CONDITIONS

In this paper, we study classification learning problems using binary estimators, when F :=
L2([0, 1]d); X := [0, 1]d and the following conditions are fulfilled:
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MNIST FASHION MNIST CIFAR-10

Figure 1: Geometric margin in common classification problems. The top row shows a two dimen-
sional embedding on the first two principle components and a decision boundary identified by a
support vector machine. Clearly MNIST Lecun et al. (1998) and Fashion MNIST Xiao et al. (2017)
exhibit a strong margin between some classes. For the CIFAR-10 data Krizhevsky (2009) the margin
is not visible in the two dimensional embedding. In the second row, we show the class probabilities
predicted by a support vector classifier, which again shows extremely strong margin for MNIST
and Fashon MNIST, but also reveals that the CIFAR-10 data exhibits a margin, albeit a weaker one.
Which lower bounds on learning can be found in the presence of such various types of margins will
be demonstrated in our main results Theorem 6, Corollary 8 and Corollary 9.

C1) Ω can be described by horizon functions: We define the general horizon function associated
with b ∈ C ⊂ C([0, 1]d−1; [0, 1]) as

hb : [0, 1]
d → {0, 1},

x = (x1, . . . , xd) 7→ 1b(x(d))≤xd
, (1)

where x(d) := (x1, . . . , xd−1). Then it is fulfilled that

Ω = Ω(h) := Ωh =
{
x ∈ [0, 1]d : h(x) = 1

}
with h ∈ HC := {hb : b ∈ C }, (2)

where HC is the set of general horizon functions associated to C Petersen & Voigtlaender
(2021). So, 1Ωh

= h.
Moreover, Λ is equipped with a probability measure µh, such that µh

(
[0, 1]d × {i}

)
=

νi ∈ [0, 1], for i ∈ {0, 1} and ν0 + ν1 = 1; {xi}ni=1
iid∼ µh, where h ∈ HC , and µh is the

marginal distribution of [0, 1]d admitting a density function fh with respect to the Lebesgue
measure λ.

C2) Regular boundary: C is convex with 0 ∈ C . Furthermore, every b ∈ C satisfies

|b(z)− b(z′)| ≤ K ∥z − z′∥α for all z, z′ ∈ [0, 1]d−1,

some α ∈ (0, 1] and a constant K > 0.
C3) The margin condition is satisfied: There exist C, γ > 0, such that for all ϵ > 0,

µh

(
Bh

ϵ

)
≤ Cϵγ where Bh

ϵ :=
{
x ∈ [0, 1]d : dist (x, ∂Ωh) ≤ ϵ

}
is the ball of radius ϵ > 0 around ∂Ωh with respect to the Euclidean distance

dist (x, ∂Ωh) := inf
x′∈∂Ωh

∥x− x′∥ ,

and γ is called the margin exponent Christmann & Steinwart (2008); Kim et al. (2021).
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Additionally, we define the measure µ on Λ with marginal λ on [0, 1]d and

µ
(
[0, 1]d × {i}

)
= µh

(
[0, 1]d × {i}

)
= νi for all i ∈ {0, 1}. (3)

Under the above conditions, we establish lower bounds for the minimax error associated with the
problem of estimating binary classifiers when the learning set satisfies C1) on a function class C with
regularity C2), and the data distribution satisfies the margin condition C3); i.e., we lower bound the
following inf-sup expression

In(C ) := inf
A∈An(L2(λ))

sup
h∈HC

µh satisfies C3)

E
{xi}n

i=1

iid∼µh

∥A(Sh)− h∥2L2(µh)
, (4)

where Sh := ((xi, h(xi)))
n
i=1 is the sample of size n ∈ N, for a function h : [0, 1]d → {0, 1}, and

An(G) := {A : Λn → G : A is measurable} with G ⊆ L2(λ) := L2([0, 1]d, λ).

Remark 2. In particular, the margin condition C3) is satisfied when

fh(x) ≲

{
min

{
ϵγ

λ(Bh
ϵ )
, 1
}

if x ∈ Bh
ϵ

1 otherwise,

for almost every x ∈ [0, 1]d and for all ϵ > 0. Moreover, C3) holds when

fh(x) ≲ distγ (x, ∂Ωh) for almost every [0, 1]d.

1.2 ENTROPY

By Hurewicz & Wallman (1948); Kolmogorov & Tihomirov (1993), it is known that it is possible to
characterize the “mass” of sets in metric spaces through the scaling law of the number of balls nec-
essary to cover them with variable radii. Moreover, this characterization can be extended to spaces
of densities with respect to distances that are not necessarily a metric, such as the distance associated
with the Kullback-Leibler divergence or the Hellinger distance (see Yang & Barron (1999)). This
leads to the definition of the concept of ε-covering entropy (or ε-entropy of Kolmogorov) which
serves as a measure of complexity for sets, where a complex set is one that needs many elements to
cover it and a simple set does not.

Let X ≠ ∅ be a set and let ρ : X × X → [0,∞] be a distance function (without the need to be
symmetric or satisfy some form of triangle inequality). For a set ∅ ≠ K ⊂ X and ε > 0, it is said
that:

(N) G(ε) ⊆ X is an ε-net of K, when for all x ∈ K, there exists y ∈ G(ε) ⊂ X , such that
ρ(x, y) ≤ ε.

We define

VK,ρ(ε) := logmin {|Gε| : Gε satisfies (N)} as the ε-covering entropy of K. (5)

Moreover, a similar notion can be defined as follows.

(P) G(ε) ⊆ K is an ε-packing (or ε-distinguishable) set in K, when for all x1, x2 ∈ G(ε), it
holds that ρ(x1, x2) > ε.

We define (the ε-capacity in Kolmogorov & Tihomirov (1993))

MK,ρ(ε) := logmax {|Gε| : Gε satisfies (P)} as the ε-packing entropy of K. (6)

Indeed, when ρ is a metric, (5) and (6) are equivalent in the sense that (see Kolmogorov & Tihomirov
(1993) and (Petersen & Voigtlaender, 2021, Remark 3.10))

MK,ρ(2ε) ≤ VK,ρ(ε) ≤ MK,ρ(ε). (7)
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To conclude, we introduce the following distance functions between probability densities that will
be applied to the notions of entropy. We define the Hellinger distance ρH and the associated distance
of the Kullback-Leibler divergence ρKL, as follows. Let

Dµ :=

{
f : Λ → [0,∞) : f measurable and

ˆ
Λ

f dµ = 1

}
be the set of all probability densities functions (with respect to µ) on Λ. The distances ρH and ρKL,
between p, q ∈ Dµ are defined as

ρH(p, q) :=

(ˆ
Λ

(
√
p−√

q)2dµ

)1/2

and ρKL(p, q) :=

(ˆ
Λ

p log(p/q)dµ

)1/2

. (8)

1.3 ENTROPY BOUNDS FOR SOME FUNCTION CLASSES

We introduce some results on entropy bounds under the Lp norm with p ≥ 1, for classes of functions
previously studied in Guntuboyina & Sen (2013), Kolmogorov & Tihomirov (1993) and Petersen
& Voigtlaender (2021). Our goal is to apply Theorem 6 to classes such as C ⊂ C([0, 1]d−1; [0, 1])
in C1).

1.3.1 BARRON REGULAR FUNCTIONS

A function f : [0, 1]d−1 → R is said to be of Barron class (see Barron (1993); Caragea et al. (2023);
Petersen & Voigtlaender (2021)) with constant C > 0, if there are c ∈ [−C,C] and a measurable
function F : Rd−1 → C satisfyingˆ

Rd−1

|F (ξ)| sup
x∈[0,1]d−1

|⟨ξ,x⟩| dξ ≤ C and f(x) = c+

ˆ
Rd−1

(ei⟨x,ξ⟩ − 1) · F (ξ)dξ (9)

for all x ∈ [0, 1]d−1. The set of all these Barron functions is denoted as BC . Propositions 4.4 and
4.6 in Petersen & Voigtlaender (2021) state the following lemma.
Lemma 3. For all 0 < ε < 1,

ε−
2(d−1)
d+1 ≲ MBC ,L1([0,1]d−1)(ε) ≤ MBC ,L∞([0,1]d−1)(ε) ≲ ε−

2(d−1)
d+1 (1 + log(1/ε)).

1.3.2 α-HÖLDER CONTINUOUS FUNCTIONS

According to Clements (1963) and (Kolmogorov & Tihomirov, 1993, Sections §5, §9), let Hα be
the class of functions f from [0, 1]d−1 to [0, 1], that are bounded by a constant C and have all partial
derivatives of the order i ≤ k := β−α ∈ Z≥0 with the kth order derivatives satisfying the α-Hölder
condition with exponent α ∈ (0, 1], i.e.∣∣∣f (i)(x1)− f (i)(x2)

∣∣∣ ≤ L ∥x1 − x2∥α∞ := L

[
max

j∈{1,...,d−1}
|x1,j − x2,j |

]α
,

for some constant L > 0, where xi := (xi,1, . . . , xi,d−1) ∈ [0, 1]d−1, for i ∈ {1, 2}. Then,
Clements (1963) and (Kolmogorov & Tihomirov, 1993, §9-1) and Theorem V) imply the next result.

Lemma 4. For all α > 0 and p ∈ {1,∞}, VHα,Lp([0,1]d−1)(ε) ≈ ε−(d−1)/α.

1.3.3 CONVEX FUNCTIONS

We denote by CB([a, b]d−1) the set of all convex functions on [a, b]d−1 with a < b and d ≥ 2, that
are uniformly bounded by B. For this class of functions, the ε-covering entropy has been studied
when d = 2 in Dryanov (2009); by adding an uniformly Lipschitz condition in Bronshtein (1976);
and without extra conditions for all d ≥ 2, in Guntuboyina & Sen (2013). We present the following
lemma, which is a consequence of Theorems 3.1 and 3.3 in Guntuboyina & Sen (2013), for the case
that a = 0 and b = 1.
Lemma 5. For all p ∈ [1,∞), B > 0 and 0 < ε ≲ B, it is fulfilled that

VCB ,Lp([0,1]d−1)(ε) ≈ ε−(d−1)/2,

where CB := CB([0, 1]d−1) and d ≥ 2.
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1.4 PREVIOUS WORKS AND OUR CONTRIBUTION

Some related work on binary classifiers under the margin condition C3) can be found in: (Christ-
mann & Steinwart, 2008, Section 8), for SVMs where learning rates were sometimes as fast as n−1,
being n the number of data points; Kim et al. (2021), based on neural networks with hinge loss that
achieves fast convergence rates when d ≲ γ, particularly as fast as n−(q+1)/(q+2) when the margin
exponent γ → ∞, where q is a noise parameter; and Garcı́a & Petersen (2025), where it is found
that using ReLU neural networks, the strong margin conditions imply fast learning bounds that are
close to n−1(1 + log n). Furthermore, in Garcı́a & Petersen (2025); Kim et al. (2021), a regularity
condition is assumed on the decision boundary, where ∂Ω can be described by classes of functions
C satisfying condition C1) on the elements of some covering for the set Ω. In Kim et al. (2021),
the class of functions C ⊂ Hα is considered, and in Garcı́a & Petersen (2025), the class C = BC .
The last two works mentioned above, only provide upper bounds for the learning rate when binary
classifiers are approximated by neural networks under the margin condition. Our contribution now,
by finding minimax lower bounds for learning rates on binary estimators, is to confirm that these
learning rates are indeed optimal. It is important to highlight that the margin plays a main role
in the fast learning rates obtained in each function space, when γ is sufficiently large the curse of
dimensionality is overcome.

In Yang & Barron (1999), it was shown that through the entropy in density spaces defined with
distances as in (8), it is possible to determine lower bounds for the learning rate of binary estimators
(see Lemma 17). Then, in Petersen & Voigtlaender (2021), a relation between the distances (8) in a
specific set of densities and the norms L2(λ) (being λ the Lebesgue measure on [0, 1]d) in HC and
L1([0, 1]d−1) in C was demonstrated, thus adapting the main results of Yang & Barron (1999) to
function spaces C as in C1). However, the margin condition was not assumed in either Petersen &
Voigtlaender (2021) or Yang & Barron (1999).

In this paper, we use an argument to lower bound the minimax expression In(C ) in (4) based on
carefully constructing a particular family of probability densities (see Lemma (12)) over a subset of
the function class C , where the margin condition C3) is satisfied (see Remark 7). Thus, assuming
that conditions C1), C2), and C3) hold, our main results provide the following: In Theorem 6, under
certain conditions (11), a general lower bound for In(C ) is given when the class C has bounded
entropies (5) and (6) in the Lebesgue norm L1. In Corollary 8, we apply Theorem 6 when the class
C has entropy bounded in a particular way; then we obtain specific lower bounds for In(C ) that
depend on the sample size n, the parameters controlling the entropies, the margin exponent γ in C3)
and the α assumed in the regularity C2) of C . Finally, in Corollary 9, we provide explicit lower
bounds for C being:

• The Barron class, C = BC , for which we obtain in (13) lower bounds that, for all γ ≥ 3 (see
Remark 10) take the form

In(BC) ≳
[
n (1 + 2 log n)

(d+1)γ
2(d−1)

]− γ

γ+( 2(d−1)
d+1 ) ,

where 2(d − 1)/(d + 1) → 2 when d → ∞. While in Garcı́a & Petersen (2025) were obtained
upper bounds for the learning rate as

In(BC) ≲ n−γ/(2+γ)(1 + log n), for all γ > 0.

In conclusion, when γ ≥ 3, our lower bound matches the upper bound in Garcı́a & Petersen (2025)
up to logarithmic factors. For large dimension d, the exponent of n in both bounds is −γ/(2+ γ),
showing that the learning rate in Garcı́a & Petersen (2025) is asymptotically optimal.

• The α-Hölder continuous class, C = Hα, where in (14) we found for all γ ≥ 3α (see Remark
10), that

In(Hα) ≳ n− 1
1+(d−1)/γ , for all α ∈ (0, 1].

In contrast, under the noiseless assumption (see Remark 1), an upper bound was obtained in (Kim
et al., 2021, Theorem 3.4), as follows(

log3 n

n

) α
α+(d−1)/γ

, for all γ ≥ 1 and all α ∈ (0, 1].
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For values of α close to 1, the exponents of n in the lower and upper bounds become similar,
indicating that the corresponding learning rates are nearly the same, up to logarithmic factors. In
particular, for Lipschitz functions (α = 1), the learning rate is asymptotically optimal. However,
for small values of α, the lower and upper bounds themselves differ significantly.

• The Convex class, C = CB , for which in (15), we obtain for all γ ≥ 3 (see Remark 10),

In(CB) ≳ n− 2γ
2γ+(d−1) .

When γ is large, the lower bound yields learning rates similar to those obtained for general Lips-
chitz functions in the previous item (case α = 1).

2 MAIN RESULTS

In this section, we give the main results of our work. To begin with, we present the following
theorem on general bounds for the minimax expression (4).

Theorem 6. Let conditions C1), C2) and C3) hold. Let V,M : (0,∞) → [0,∞) be continuous from
the right and non-increasing. If for all ε ∈ (0, 1), γ̃ = max {2, γ/α− 1} and a constant c > 1, it is
satisfied that

VC ,L1

(
ε

2
γ̃+1 /

(
4γ̃2(2c)

2
γ̃+1

))
≤ V (ε) and MC ,L1

(
(4γ̃)ε

2
γ̃+1

)
≥ M(ε). (10)

Then, for every pair of sequences {εn}n∈N, {ε̃n}n∈N ⊂ (0,∞) satisfying

nε2n = V (εn) = (M(ε̃n)− 2 log 2) /4, (11)

we obtain ε̃2n ≤ (4εn)
2 and

In(C ) ≥
[

1

8(4γ̃)3

]
ε̃2n, (12)

with In(C ) as in (4).

Remark 7. For the proof of this theorem, we begin by defining a particular family of densities
(18) that satisfy margin condition C3) over the subset Cδ ⊆ C defined in Lemma 12. Then,
given that {xi}ni=1 is distributed according to the margin condition C3) with respect to a mea-
sure µh, in Lemma 13 we define a new class of densities PCδ

over µ for which the sample
Sh = ((xi, h(xi)))

n
i=1 is distributed. With this new set of densities PCδ

, we apply Lemma 17
((Petersen & Voigtlaender, 2021, Theorem 3.11), which is a simplified version of (Yang & Barron,
1999, Theorems 1 and 2)), with a similar argument to the one used in Petersen & Voigtlaender
(2021), to obtain our lower bound (12). However, to apply Lemma 17 to the density class PCδ

, it
was necessary to prove the results of Lemma 14 and Lemma 15.

As a consequence of the previous theorem, when the entropy of the space C with respect to the
Lebesgue L1 norm is bounded in a particular way, we obtain the following corollary.

Corollary 8. Let conditions C1), C2) and C3) hold. Let γ̃ = max {2, γ/α− 1}; a ≥ 1/2; and
In(C ) as in (4). Then, by cases:

I) If ε−a ≲ MC ,L1(ε) ≲ ε−a(1 + log(1/ε)), for all ε ∈ (0, 1). Then

In(C ) ≳
[
n (1 + 2 log n)

γ̃+1
a

]− 1

1+( a
γ̃+1 ) .

II) If VC ,L1(ε) ≈ ε−a, for all ε ∈ (0, 1). Then

In(C ) ≳ n
− 1

1+( a
γ̃+1 ) .

Finally, we apply the previous corollary to the spaces defined in Section 1.3 to obtain the next result.

Corollary 9. Let γ > 0 be the margin exponent in C3). Then, with the notation (4) and the notation
in Section 1.3, we obtain:

6
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I) For Barron regular functions,

In(BC) ≳
[
n (1 + 2 log n)

(d+1)max{3,γ}
2(d−1)

]− max{3,γ}

max{3,γ}+( 2(d−1)
d+1 ) . (13)

II) For α-Hölder continuous functions,

In(Hα) ≳ n− max{3α,γ}
max{3α,γ}+(d−1) , (14)

for all α ∈ (0, 1].

III) For convex functions,

In(CB) ≳ n− 2max{3,γ}
2max{3,γ}+(d−1) . (15)

Remark 10. In our results, the term max {3α, γ} appears, which we had to assume since the proof
of our main theorem is based on defining the particular family of densities given in (18), for which
one of the most important properties is that their square root is Lipschitz in b with respect to b on
the L2(λ) (see (20)).

In Kim et al. (2021) and Garcı́a & Petersen (2025), upper bounds on the learning rate of approxi-
mating, by deep neural networks, binary classifiers with decision boundary satisfying the regularity
condition C1) in function classes Hα and BC , respectively, were shown. See discussion of our results
in comparison with those of Kim et al. (2021) and Garcı́a & Petersen (2025) in Section 1.4.

Remark 11. The main results Theorem 6, Corollary 8 and Corollary 9 identify precise optimal
values for the learning rates of a binary classifier from noiseless samples, if a margin condition is
satisfied and the decision boundary stems from a general class of functions. There are considerable
limitations of these results that we would like to stress:

1. The established rates are understood in the inf-sup sense where all distributions that sat-
isfy the margin condition are considered. In practice, many more favorable conditions
on the data distribution may hold, which shows that the observed learning rates could be
considerably faster.

2. As mentioned in Remark 1 we consider here noiseless data. This assumption is crucial to
identify meaningful lower bounds, since it is otherwise unclear if the lower bounds stem
from the noise or from the properties of the decision boundary (see (Petersen & Voigtlaen-
der, 2021, Section 1.1, Point 1)). Still, noisy data appears extremely often in applications,
and that situation is not covered by our main results.

3. Our approach requires precise bounds on the covering numbers of the spaces that model
the decision boundary. We have described three such cases in this manuscript. However,
for many, more exotic spaces, such estimates may not exist.
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A AUXILIARY RESULTS

In this appendix, we present our auxiliary results used to prove Theorem 6.

Lemma 12. Let C satisfy C2) with α ∈ (0, 1] and K > 0. Then, the following statements hold.

1) For all x ∈ [0, 1]d,(
1

K̃
|b(x(d))− xd|

) 1
α

≤ dist (x, ∂Ωhb
) ≤ |b(x(d))− xd|, (16)

where

1 < K̃ := K̃(α) =

{√
1 +K2 if α = 1

max {2α, 2K} if α < 1.
(17)

2) Let δ ∈ (0, (4K̃)−
1
α ] and Cδ := {δb : b ∈ C }. Let f̃hb

: [0, 1]d → [0,∞) be defined by

f̃hb
(x) :=

{
|b(x(d))− xd|γ̃ if xd ≤ 1/2

C̃b if xd > 1/2,
(18)
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with γ̃ := max
{
2, γ

α − 1
}
, γ > 0 and

C̃b := 2

(
1−
ˆ
[0,1]d−1×[0,1/2]

|b(x(d))− xd|γ̃dx

)
. (19)

Then, Cδ ⊆ C and for all b ∈ Cδ , we obtain that f̃hb
is a Lebesgue density inducing a measure

µ̃hb
that satisfies the margin condition C3), with margin exponent γ and for all 0 < ϵ ≤ δ.

Moreover,
√

f̃hb
is Lipschitz in b with respect to b on the L2(λ) norm, namely∥∥∥∥√f̃hb1

−
√
f̃hb2

∥∥∥∥
L2(λ)

≤ (3/8)γ̃ ∥b1 − b2∥L2([0,1]d−1) , for all b1, b2 ∈ Cδ. (20)

Proof. By cases:

1) For all x′ ∈ ∂Ωhb
=
{
x ∈ [0, 1]d : b(x(d)) = xd

}
, and any x ∈ [0, 1]d,

∥x− x′∥2 =
∥∥∥x(d) − x′(d)

∥∥∥2 + |b(x′(d))− xd|2. (21)

Let t :=
∥∥x(d) − x′(d)

∥∥ and w := |b(x(d))− xd|. If w−Ktα ≤ 0, we get t2 ≥ (w/K)2/α, and

∥x− x′∥2 = t2 + |b(x′(d))− xd|2 ≥ (w/K)2/α. (22)

If w −Ktα ≥ 0, condition C2) implies

w = |b(x(d))− xd| ≤ |b(x′(d))− xd|+ |b(x(d))− b(x′(d))|

≤ |b(x′(d))− xd|+K
∥∥∥x(d) − x′(d)

∥∥∥α
= |b(x′(d))− xd|+Ktα,

therefore
∥x− x′∥2 = t2 + |b(x′(d))− xd|2 ≥ t2 + (w −Ktα)

2
. (23)

So, when α = 1, it follows that

∥x− x′∥2 ≥ (1 +K2)t2 − 2wKt+ w2

≥ 4w2(1 +K2)− (2wK)2

4(1 +K2)

=
w2

1 +K2
. (24)

Otherwise, α < 1 and we set a threshold t0 := (w/(2K))1/α to minimize the right hand side of
(23) on t. By cases:

• If t ≤ t0, we know that w −Ktα ≥ w −Ktα0 = w/2 > 0, therefore

∥x− x′∥2 ≥ t2 + (w −Ktα0 )
2
= t2 + (w/2)2 ≥ (w/2)2. (25)

• If t > t0, we obtain

∥x− x′∥2 ≥ t2 + (w −Ktα)
2 ≥ t2 > (w/(2K))2/α. (26)

Thus, (22), (24), (25) and (26), imply that

∥x− x′∥ ≥
(

1

K̃
|b(x(d))− xd|

) 1
α

,

with K̃ as in (17). Then, by the above inequality and identity (21), we arrive at(
1

K̃
|b(x(d))− xd|

) 1
α

≤ inf
x′∈∂Ωhb

∥x− x′∥ ≤ |b(x(d))− xd|,

where the upper bound was obtained given that (x1, . . . , xd−1, b(x
(d))) ∈ ∂Ωhb

.
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2) It follows from C2) that δb ∈ C for all b ∈ C , since δ < 1. So, Cδ ⊆ C .

For any b ∈ Cδ , to show that f̃hb
is a density function with respect to λ, we get

ˆ
[0,1]d

f̃hb
dλ =

ˆ
[0,1]d−1×[0,1/2]

f̃hb
dλ+

ˆ
[0,1]d−1×[1/2,1]

f̃hb
dλ

=

ˆ
[0,1]d−1×[0,1/2]

|b(x(d))− xd|γ̃dx+

ˆ
[0,1]d−1×[1/2,1]

C̃bdx

=

ˆ
[0,1]d−1×[0,1/2]

|b(x(d))− xd|γ̃dx+ (1/2)C̃b

= 1.

Now, for all b ∈ Cδ , we see that f̃hb
satisfies the margin condition C3) for all 0 < ϵ ≤ δ, as

follows. Using (16), we obtain that

xd − b(x(d)) ≤ |b(x(d))− xd| ≤ K̃ (dist (x, ∂Ωhb
))

α ≤ K̃ϵα ≤ K̃δα, for all x ∈ Bhb
ϵ .

Therefore,

xd ≤ K̃δα + b(x(d)) ≤ K̃δα + δ ≤ 2K̃δα ≤ 2K̃/(4K̃) = 1/2 for all x ∈ Bhb
ϵ .

Then, Bhb
ϵ ⊆ [0, 1]d−1 × [0, 1/2], and

µ̃hb
(Bhb

ϵ ) = µ̃hb
(Bhb

ϵ ∩ ([0, 1]d−1 × [0, 1/2]))

=

ˆ
B

hb
ϵ

|b(x(d))− xd|γ̃dλ

≤
ˆ
{x∈[0,1]d:|b(x(d))−xd|≤K̃ϵα}

|b(x(d))− xd|γ̃dλ

≤ (K̃ϵα)γ̃
ˆ
{x∈[0,1]d:|b(x(d))−xd|≤K̃ϵα}

1dλ

≤ K̃ γ̃ϵmax{2α,γ−α}(2K̃ϵα)

≤ 2K̃ γ̃+1ϵmax{3α,γ}

≤
(
2K̃ γ̃+1

)
ϵγ .

This proves that condition C3) is satisfied.

Moreover, as a consequence of the mean value theorem, it is well known that

||u|β − |v|β | ≤ βmax{|u|, |v|}β−1||u| − |v||
≤ β|u− v| for all u, v ∈ [−1, 1] and β ≥ 1. (27)

So, we apply (27) by cases:

• Let gb(x) := |b(x(d))− xd|γ̃/2. Then, for all b1, b2 ∈ Cδ and all x ∈ [0, 1]d,

|gb1(x)− gb2(x)| =
∣∣∣|b1(x(d))− xd|γ̃/2 − |b2(x(d))− xd|γ̃/2

∣∣∣
≤ (γ̃/2)|b1(x(d))− b2(x

(d))|.

Therefore,ˆ
[0,1]d−1×[0,1/2]

|gb1(x)− gb2(x)|
2
dx ≤ (γ̃/2)2

ˆ
[0,1]d−1×[0,1/2]

|b1(x(d))− b2(x
(d))|2dx

= (γ̃2/8) ∥b1 − b2∥2L2([0,1]d−1) .

Thus, gb is Lipschitz with respect to b on their respective L2 norms.
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• For all b1, b2 ∈ Cδ ,

1

4

∣∣∣C̃b1 − C̃b2

∣∣∣2 =

(ˆ
[0,1]d−1×[0,1/2]

(
g2b2(x)− g2b1(x)

)
dx

)2

≤
ˆ
[0,1]d−1×[0,1/2]

(gb2(x)− gb1(x))
2
(gb2(x) + gb1(x))

2
dx

≤ 4

ˆ
[0,1]d−1×[0,1/2]

|gb2(x)− gb1(x)|
2
dx

≤ (γ̃2/2) ∥b1 − b2∥2L2([0,1]d−1) .

Also, (√
C̃b1 −

√
C̃b2

)2

≤ 1

4

(√
C̃b1 +

√
C̃b2

)2(√
C̃b1 −

√
C̃b2

)2

=
1

4

∣∣∣C̃b1 − C̃b2

∣∣∣2 ,
since for all i ∈ {1, 2},

C̃bi ≥ 2

(
1−
ˆ
[0,1]d−1×[0,1/2]

1dx

)
= 1. (28)

Then, (√
C̃b1 −

√
C̃b2

)2

≤ (γ̃2/2) ∥b1 − b2∥2L2([0,1]d−1) .

Using the items above, we conclude that∥∥∥∥√f̃hb1
−
√
f̃hb2

∥∥∥∥2
L2(λ)

=

ˆ
[0,1]d−1×[0,1/2]

|gb1(x)− gb2(x)|
2
dx+

ˆ
[0,1]d−1×[1/2,1]

(√
C̃b1 −

√
C̃b2

)2

dx

≤ (γ̃2/8) ∥b1 − b2∥2L2([0,1]d−1) + (γ̃2/4) ∥b1 − b2∥2L2([0,1]d−1)

≤ (3/8)γ̃2 ∥b1 − b2∥2L2([0,1]d−1) , for all b1, b2 ∈ Cδ.

Therefore (20) is fulfilled.

Lemma 13. Let PCδ
:= {ph : h ∈ HCδ

}, where

ph(x, y) :=

{
h(x)f̃h(x)/ν1 if y = 1

(1− h(x)) f̃h(x)/ν0 if y = 0,
(29)

and f̃h is a Lebesgue density that defines a measure µ̃h as in (18). Then, ph is a density function
with respect to the measure µ as in (3). Furthermore,

x ∼ µ̃h if only if (x, h(x)) ∼ ph (with respect to µ). (30)

Proof. For all h ∈ HCδ
, we know that ph ∈ Dµ, sinceˆ

Λ

ph(x, y)dµ = ν0

ˆ
[0,1]d

ph(x, 0)dλ+ ν1

ˆ
[0,1]d

ph(x, 1)dλ

=

ˆ
[0,1]d

(1− h(x)) dµ̃h +

ˆ
[0,1]d

h(x)dµ̃h

=

ˆ
[0,1]d

1dµ̃h = 1.

11
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In addition, for (x, h(x)) ∈ M ⊂ Λ and x ∼ µ̃h, we have that

ˆ
[0,1]d

1M (x, h(x))dµ̃h =

ˆ
[0,1]d

1M (x,1Ωh
(x))dµ̃h

=

ˆ
[0,1]d\Ωh

1M (x, 0)dµ̃h +

ˆ
Ωh

1M (x, 1)dµ̃h

=

ˆ
[0,1]d

1M (x, 0) (1− 1Ωh
(x)) dµ̃h +

ˆ
[0,1]d

1M (x, 1)1Ωh
(x)dµ̃h

=

ˆ
[0,1]d

1M (x, 0) (1− h(x)) dµ̃h +

ˆ
[0,1]d

1M (x, 1)h(x)dµ̃h

= ν0

ˆ
[0,1]d

1M (x, 0)ph(x, 0)dλ+ ν1

ˆ
[0,1]d

1M (x, 1)ph(x, 1)dλ

=

ˆ
Λ

1M (x, y)ph(x, y)dµ,

equivalent to (x, h(x)) ∼ ph with respect to µ and (30) is satisfied.

Lemma 14. Let h1, h2 ∈ HCδ
be defined by b1, b2 ∈ Cδ , respectively. Then,

∥h1 − h2∥2L2(µ̃hi
) =

1

γ̃ + 1
∥b1 − b2∥γ̃+1

Lγ̃+1([0,1]d−1)
for all i ∈ {1, 2}, (31)

with µ̃hi and γ̃ as in Lemma 12. Moreover, for all ph1 , ph2 ∈ PCδ
, we have that

∥h1 − h2∥2L2(µ̃hi
) ≤ ρ2H(ph1

, ph2
) ≤ 2γ̃2 ∥b1 − b2∥L1([0,1]d−1) , (32)

for all i ∈ {1, 2}.

Proof. For all i ∈ {1, 2}, we know that bi ∈ Cδ and therefore bi(x
(d)) ≤ δ for all x(d) ∈ [0, 1]d−1.

Also, δ ∈ (0, (4K̃)−
1
α ], so δ ≤ (4K̃)−1 < 1/2. Then, by definition (1),

G1,2 :=
{
x ∈ [0, 1]d : h1(x) ̸= h2(x)

}
=
{
x ∈ [0, 1]d : h1(x) = 0 ∧ h2(x) = 1

}
∪
{
x ∈ [0, 1]d : h1(x) = 1 ∧ h2(x) = 0

}
=
{
x ∈ [0, 1]d : b2(x

(d)) ≤ xd < b1(x
(d))
}
∪
{
x ∈ [0, 1]d : b1(x

(d)) ≤ xd < b2(x
(d))
}

=

{
x ∈ [0, 1]d : min

i∈{1,2}

{
bi(x

(d))
}
≤ xd < max

i∈{1,2}

{
bi(x

(d))
}
< 1/2

}
⊆ [0, 1]d−1 × [0, 1/2]. (33)

Furthermore, h1 and h2 are indicator functions, thus |h1 − h2| = 1G1,2
, and using (33), we get

∥h1 − h2∥2L2(µ̃hi
) =

ˆ
[0,1]d

|h1 − h2|2f̃hi
dλ

=

ˆ
G1,2

|bi(x(d))− xd|γ̃dx

=
1

γ̃ + 1

ˆ
[0,1]d−1

|b1(x(d))− b2(x
(d))|γ̃+1dx(d)

=
1

γ̃ + 1
∥b1 − b2∥γ̃+1

Lγ̃+1([0,1]d−1)
for all i ∈ {1, 2}.
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From the above identity, it follows (31). Moreover, hi =
√
hi and 1 − hi =

√
1− hi, for all

i ∈ {1, 2}. Hence,

ρ2H(ph1
, ph2

)− 2 = −2

ˆ
Λ

√
ph1

ph2
dµ

= −2

[ˆ
[0,1]d×{1}

√
ph1

ph2
dµ+

ˆ
[0,1]d×{0}

√
ph1

ph2
dµ

]

= −2

[ˆ
[0,1]d

√
f̃h1 f̃h2

(√
h1h2 +

√
(1− h1)(1− h2)

)
dλ

]

= 2

[ˆ
[0,1]d

√
f̃h1 f̃h2 (h1 − 2h1h2 + h2 − 1) dλ

]

= 2

[ˆ
[0,1]d

√
f̃h1

f̃h2

(
(
√
h1 −

√
h2)

2 − 1
)
dλ

]

= 2

[ˆ
[0,1]d

√
f̃h1

f̃h2
(|h1 − h2| − 1) dλ

]
.

We see that

2− 2

ˆ
[0,1]d

√
f̃h1

f̃h2
dλ =

ˆ
[0,1]d

f̃h1
dλ− 2

ˆ
[0,1]d

√
f̃h1

f̃h2
dλ+

ˆ
[0,1]d

f̃h2
dλ

=

ˆ
[0,1]d

(√
f̃h1

−
√

f̃h2

)2

dλ.

Then the above two identities imply

ρ2H(ph1
, ph2

) = 2

ˆ
[0,1]d

√
f̃h1

f̃h2
|h1 − h2| dλ+

ˆ
[0,1]d

(√
f̃h1

−
√
f̃h2

)2

dλ. (34)

Now we bound show (32) by cases:

• Upper bound: For all i ∈ {1, 2}, we know that f̃hi
≤ 3, since (19) and (28) implies

|bi(x(d))− xd|γ̃ ≤ 1 ≤ Cb ≤ 2

(
1 +

ˆ
[0,1]d−1×[0,1/2]

|bi(x(d))− xd|γ̃dx

)
≤ 3.

We use (20), (33) and (34), to obtain

ρ2H(ph1
, ph2

) ≤ 6

ˆ
[0,1]d

|h1 − h2| dλ+

∥∥∥∥√f̃h1
−
√
f̃h2

∥∥∥∥2
L2(λ)

≤ 6

ˆ
G1,2

1 dλ+ γ̃2 ∥b1 − b2∥2L2([0,1]d−1)

= 6 ∥b1 − b2∥L1([0,1]d−1) + (3/8)γ̃2 ∥b1 − b2∥2L2([0,1]d−1) ,

and we know that |b1(z)− b2(z)| ≤ 1 for all z ∈ [0, 1]d−1, then

ρ2H(ph1
, ph2

) ≤ (6 + (3/8)γ̃2) ∥b1 − b2∥L1([0,1]d−1) ≤ 2γ̃2 ∥b1 − b2∥L1([0,1]d−1) .
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• Lower bound: By (33), (34) and as |h1 − h2| = 1G1,2
, we get

ρ2H(ph1 , ph2) = 2

ˆ
G1,2

√
f̃h1 f̃h2 dλ+

ˆ
([0,1]d\G1,2)∪G1,2

(√
f̃h1 −

√
f̃h2

)2

dλ

=

ˆ
G1,2

(f̃h1
+ f̃h2

)dλ+

ˆ
([0,1]d\G1,2)

(√
f̃h1

−
√
f̃h2

)2

dλ

≥
ˆ
[0,1]d

|h1 − h2|2f̃hi
dλ

= ∥h1 − h2∥2L2(µ̃hi
) , for all i ∈ {1, 2}.

Lemma 15. Under the conditions C1), C2) and C3), let C (ξ) ⊆ Cδ ⊆ C be a ξ-packing set as in
(P), with respect to the L1 norm, and ξ ∈ (0, 1). Let

C ξ :=
{
ξγ̃b : b ∈ C (ξ)

}
⊆ C (ξ) and PC ξ :=

{
phb

∈ PCδ
: b ∈ C ξ

}
,

with γ̃ = max {2, γ/α− 1} as in Lemma 12. Then,

In(C ) ≥ 1

(4γ̃)3

[
inf

E∈An(Dµ)
sup

p′∈PCξ

E
S

iid∼ p′
ρ2H(E(S), p′)

]
, (35)

where In(C ) is defined in (4). Moreover,

VPCξ ,ρH
(ε) ≤ VC ,L1

(
ε

2
γ̃+1 /(4γ̃2)

)
and MPCξ ,ρH

(ε) ≥ MC ,L1

(
(4γ̃)ε

2
γ̃+1

)
, (36)

for all ε > 0.

Proof. We begin by bounding In(C ) from below. In order to show that

4In(C ) ≥ Ĩn(Cδ) := inf
A∈An(HCδ

)
sup

h∈HCδ
µh has density as in (18)

E
{xi}n

i=1

iid∼µh

∥A(Sh)− h∥2L2(µh)
(37)

is satisfied, we introduce (Petersen & Voigtlaender, 2021, Lemma 3.2).

Lemma 16. Let (X, ρ) be a metric space, with distance function ρ, and let ∅ ̸= M ⊂ X be
separable. Then for each ε > 0 there exist a measurable map πε : X → M satisfying ρ(x, πε(x)) ≤
ε+ ρ(x,M) for all x ∈ M .

By condition C2), Cδ is separable with respect to the L2 norm, the continuous map Cδ → L2(λ)
defined by b → h = 1b(x(d))≤xd

implies that HCδ
is separable. Then, for any B ∈ An

(
L2(λ)

)
and

ε > 0, Lemma 16 implies that there exists a map πε : L
2(λ) → HCδ

such that

∥B(Sh)− πε(B(Sh))∥L2(µh)
≤ ε+ inf

h∈HCδ

∥B(Sh)− h∥L2(µh)
≤ ε+ ∥B(Sh)− h∥L2(µh)

,

for all h ∈ HCδ
and µh as in C3). Therefore,

Ĩn(Cδ) ≤ sup
h∈HCδ

µh has density as in (18)

E
{xi}n

i=1

iid∼µh

∥πε(B(Sh))− h∥2L2(µh)

≤ sup
h∈HCδ

µh satisfies C3)

E
{xi}n

i=1

iid∼µh

∥πε(B(Sh))− h∥2L2(µh)

≤ sup
h∈HCδ

µh satisfies C3)

E
{xi}n

i=1

iid∼µh

(
∥πε(B(Sh))−B(Sh)∥L2(µh)

+ ∥B(Sh)− h∥L2(µh)

)2
≤ sup

h∈HCδ
µh satisfies C3)

E
{xi}n

i=1

iid∼µh

(
ε+ 2 ∥B(Sh)− h∥L2(µh)

)2
,
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where ε → 0, implies

Ĩn(Cδ) ≤ 4 sup
h∈HCδ

µh satisfies C3)

E
{xi}n

i=1

iid∼µh

∥B(Sh)− h∥2L2(µh)
.

Furthermore, B was arbitrary and Cδ ⊂ C , so

Ĩn(Cδ) ≤ 4 inf
B∈An(L2(λ))

sup
h∈HCδ

µh satisfies C3)

E
{xi}n

i=1

iid∼µh

∥B(Sh)− h∥2L2(µh)
≤ 4In(C ),

and we obtain (37).

Since C (ξ) ⊆ Cδ , it follows from (18) and the same argument used to get (37) with Lemma 16, that

4Ĩn(Cδ) = 4 inf
A∈An(HCδ

)
sup

hb∈HCδ

E
{xi}n

i=1

iid∼µ̃hb

∥A(Shb
)− hb∥2L2(µ̃hb

)

≥ inf
A∈An(HC(ξ))

sup
hb∈HC(ξ)

E
{xi}n

i=1

iid∼µ̃hb

∥A(Shb
)− hb∥2L2(µ̃hb

) ,

where A ∈ An(HC (ξ)) implies A(·) ∈ HC (ξ), and there exists a unique bA ∈ C (ξ) such that
A(·) = hbA(·) . Then, by Lemma 14, we get

∥A(Shb
)− hb∥2L2(µ̃hb

) =
1

γ̃ + 1

∥∥∥bA(Shb
) − b

∥∥∥γ̃+1

Lγ̃+1([0,1]d−1)
≥ 1

2γ̃

∥∥∥bA(Shb
) − b

∥∥∥γ̃+1

L1([0,1]d−1)
.

Therefore,

(8γ̃)Ĩn(Cδ) ≥ inf
bA∈C (ξ)

sup
b∈C (ξ)

E
{xi}n

i=1

iid∼µ̃hb

∥∥∥bA(Shb
) − b

∥∥∥γ̃+1

L1([0,1]d−1)
. (38)

By hypothesis, C (ξ) is a ξ-packing set as in (P), with respect to the L1 norm, which means that∥∥∥bA(Shb
) − b

∥∥∥
L1([0,1]d−1)

> ξ, for all bA, b ∈ C (ξ). (39)

Then, by (38) and (39), together with C ξ =
{
ξγ̃b : b ∈ C (ξ)

}
, we obtain

(8γ̃)Ĩn(Cδ) ≥ inf
bA∈C (ξ)

sup
b∈C (ξ)

E
{xi}n

i=1

iid∼µ̃hb

∥∥∥bA(Shb
) − b

∥∥∥
L1([0,1]d−1)

ξγ̃

= inf
bA∈C (ξ)

sup
b∈C (ξ)

E
{xi}n

i=1

iid∼µ̃hb

∥∥∥ξγ̃bA(Shb
) − ξγ̃b

∥∥∥
L1([0,1]d−1)

= inf
bA∈C ξ

sup
b∈C ξ

E
{xi}n

i=1

iid∼µ̃hb

∥∥∥bA(Shb
) − b

∥∥∥
L1([0,1]d−1)

. (40)

From (32),
2γ̃2

∥∥∥bA(Shb
) − b

∥∥∥
L1([0,1]d−1)

≥ ρ2H(phbA(Shb
)
, phb

),

for all bA, b ∈ C ξ, i.e. for all phbA(Shb
)
, phb

∈ PC ξ . We define the map E ∈ An(PC ξ) such that

E(·) := pA(·) = phbA(·)
, and (30), (40) imply

(16γ̃3)Ĩn(Cδ) ≥ inf
E∈An(PCξ )

sup
phb

∈PCξ

E
Shb

iid∼phb

ρ2H(E(Shb
), phb

)

≥ inf
E∈An(Dµ)

sup
p′∈PCξ

E
S

iid∼p′
ρ2H(E(S), p′), (41)

since An(PC ξ) ⊆ An(PCδ
) ⊆ An(Dµ). In conclusion, (35) follows from (37) and (41).

Now we continue with the second part of the lemma, showing that (36) holds as follows. From
Lemma 14 we have that

1

2γ̃
∥b1 − b2∥γ̃+1

L1([0,1]d−1) ≤ ρ2H(phb1
, phb2

) ≤ 2γ̃2 ∥b1 − b2∥L1([0,1]d−1) , (42)

15
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for all phb1
, phb2

∈ PCδ
. Using the same argument as in (39) and the right hand side of (42), we

obtain

ρ2H(phb1
, phb2

) ≤ 2γ̃2 ∥b1 − b2∥L1([0,1]d−1)

= 2γ̃2ξγ̃ ∥b′1 − b′2∥L1([0,1]d−1)

≤ 2γ̃2 ∥b′1 − b′2∥
γ̃+1
L1([0,1]d−1) ,

for all phb1
, phb2

∈ PC ξ and all b′1, b
′
2 ∈ C (ξ) associated with b1, b2 ∈ C ξ. Therefore,

MPCξ ,ρH
(ε) ≤ MC (ξ),L1

(
ε

2
γ̃+1 /(2γ̃2)

)
≤ MC ,L1

(
ε

2
γ̃+1 /(2γ̃2)

)
for all ε > 0. (43)

Moreover, from the left hand side of (42),

1

2γ̃
∥b1 − b2∥γ̃+1

L1([0,1]d−1) ≤ ρ2H(phb1
, phb2

),

for all phb1
, phb2

∈ PC ξ , and

VPCξ ,ρH
(ε) ≥ VC ξ,L1

(
(2γ̃)ε

2
γ̃+1

)
≥ VC ,L1

(
(2γ̃)ε

2
γ̃+1

)
for all ε > 0. (44)

Then, (7), (43) and (44) imply

VC ,L1

(
(2γ̃)ε

2
γ̃+1

)
≤ VPCξ ,ρH

(ε) ≤ MPCξ ,ρH
(ε) ≤ MC ,L1

(
ε

2
γ̃+1 /(2γ̃2)

)
,

for all ε > 0. Finally, from (7) and the above inequality, we conclude that

VPCξ ,ρH
(ε) ≤ MC ,L1

(
ε

2
γ̃+1 /(2γ̃2)

)
≤ VC ,L1

(
ε

2
γ̃+1 /(4γ̃2)

)
and

MPCξ ,ρH
(ε) ≥ VC ,L1

(
(2γ̃)ε

2
γ̃+1

)
≥ MC ,L1

(
(4γ̃)ε

2
γ̃+1

)
,

for all ε > 0. So, (36) is fulfilled.

B PROOF OF THE MAIN RESULTS

B.1 PROOF OF THEOREM 6

To begin with, we present (Petersen & Voigtlaender, 2021, Theorem 3.11), which is a simplified
version of (Yang & Barron, 1999, Theorems 1 and 2).
Lemma 17. Let ∅ ≠ P ⊂ Dµ, and let V,M : (0,∞) → [0,∞) be continuous from the right,
non-increasing, and with the following properties:

1. VP,ρKL
(ε) ≤ V (ε) for all ε > 0;

2. (εn)n∈N ⊂ (0,∞) is chosen such that ε2n = V (εn)/n for all n ∈ N;

3. M(ε) ≤ MP,ρH
(ε) for all ε > 0;

4. M(ε) > 2 log 2 for ε > 0 small enough;

5. (ε̃n)n∈N ⊂ (0,∞) is chosen such that M(ε̃n) = 4nε2n + 2 log 2 for all n ∈ N .

Then
ε̃2n/8 ≤ inf

E∈An(Dµ)
sup
p′∈P

E
S

iid∼p′
ρ2H(E(S), p′) ≤ 2ε2n. (45)

Remark 18. Let ∅ ̸= P ⊂ Dµ. In (Petersen & Voigtlaender, 2021, Page 15) it was shown that
VP,ρKL

(ε) ≤ VP,ρH
(ε/(2c)) for all 0 < ε < 1 and a suitable absolute constant c > 1. Then,

item 1 in Lemma 17 is fulfilled when VP,ρH
(ε/(2c)) ≤ V (ε).
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Now, by hypothesis (10), Remark 18 and Lemma 15, it follows that

VPCξ ,ρKL
(ε) ≤ VPCξ ,ρH

(ε/(2c)) ≤ VC ,L1

(
ε

2
γ̃+1 /

(
4γ̃2(2c)

2
γ̃+1

))
≤ V (ε) and

MPCξ ,ρH
(ε) ≥ MC ,L1

(
(4γ̃)ε

2
γ̃+1

)
≥ M(ε) for all ε > 0. (46)

Therefore, Lemma 17 holds with P = PC ξ , since items 1 and 3 are satisfied with (46), and items 2,
4, and 5 are satisfied with (11). Then, using (35) and (45), we conclude that

In(C ) ≥ 1

(4γ̃)3

[
inf

E∈An(Dµ)
sup

p′∈PCξ

E
S

iid∼ p′
ρ2H(E(S), p′)

]
≥
[

1

8(4γ̃)3

]
ε̃2n

and (12) is satisfied.

B.2 PROOF OF COROLLARY 8

We consider each case as follows:

I) For all ε ∈ (0, 1), ε−a ≲ MC ,L1(ε) ≲ ε−a(1 + log(1/ε)). So, (7) implies

VC ,L1(ε) ≲ ε−a(1 + log(1/ε)) and ε−a ≲ MC ,L1(ε).

To use Theorem 6, we set ε̃n, εn ∈ (0, 1),

V (ε) ≈
(
ε

2
γ̃+1

)−a (
1 + log

(
ε−

2
γ̃+1

))
≳ VC ,L1

(
ε

2
γ̃+1

)
and

M(ε) ≈
(
ε

2
γ̃+1

)−a

≲ MC ,L1

(
ε

2
γ̃+1

)
,

such that (10) is satisfied. From (11),

nε2n ≈
(
ε

2
γ̃+1
n

)−a(
1 + log

(
ε
− 2

γ̃+1
n

))
≈

((
ε̃

2
γ̃+1
n

)−a

− 2 log 2

)
/4. (47)

Also, a ≥ 1/2 and ε̃n ≤ 4εn. Then,

n ≳ 4nε2n + 2 log 2 ≈
(
ε̃

2
γ̃+1
n

)−a

≳ ε
− 1

γ̃+1
n . (48)

From (47) and (48),

nε2n ≲

(
ε

2
γ̃+1
n

)−a

(1 + 2 log n) , i.e. (ε2n)
1+ a

γ̃+1 ≲ n−1 (1 + 2 log n) .

Thus, ε2n ≲
[
n−1 (1 + 2 log n)

] 1

1+( a
γ̃+1 ) . By (47),(

ε̃
2

γ̃+1
n

)−a

≈ 4nε2n + 2 log 2 ≲ n
[
n−1 (1 + 2 log n)

] 1

1+( a
γ̃+1 ) + 2 log 2

≲ n
[
n−1 (1 + 2 log n)

] 1

1+( a
γ̃+1 ) .

Therefore,

ε̃2n ≳ n
− 1

( a
γ̃+1 )

[
n−1 (1 + 2 log n)

]− 1

(1+( a
γ̃+1 ))( a

γ̃+1 )

= n
− 1

1+( a
γ̃+1 ) (1 + 2 log n)

− 1

(1+( a
γ̃+1 ))( a

γ̃+1 ) ,

and (12) implies

In(C ) ≳

[
n (1 + 2 log n)

1

( a
γ̃+1 )

]− 1

1+( a
γ̃+1 )

.

17
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II) We know that VC ,L1(ε) ≈ ε−a, for all ε ∈ (0, 1). Then, to use Theorem 6, we choose

M(ε) ≈ V (ε) ≈
(
ε

2
γ̃+1

)−a

,

such that (10) is satisfied. So, (11) implies(
ε2n
)1+( a

γ̃+1 ) ≈ n−1, i.e. ε2n ≈ n
− 1

1+( a
γ̃+1 ) .

Thus, using the above inequality and (11),(
ε̃

2
γ̃+1
n

)−a

≈ 4nε2n + 2 log 2 ≲ n
1− 1

1+( a
γ̃+1 ) = n

( a
γ̃+1 )

1+( a
γ̃+1 )

and

ε̃2n ≳ n
− 1

1+( a
γ̃+1 ) .

In conclusion, from (12), it follows

In(C ) ≳ n
− 1

1+( a
γ̃+1 ) .

B.3 PROOF OF COROLLARY 9

We split the proof into the following cases:

I) It is well known that the space of Barron regular functions is Lipschitz, therefore BC sat-
isfies C2) with α = 1. Furthermore, from Lemma 3, we have that item I) of Corollary 8
holds with a = 2(d− 1)/(d+ 1). Then,

In(BC) ≳

[
n (1 + 2 log n)

max{3,γ}

( 2(d−1)
d+1 )

]− max{3,γ}

max{3,γ}+( 2(d−1)
d+1 )

.

II) By definition, the α-Hölder continuous space satisfies C2). Then, with Lemma 4, we obtain
that item II) of Corollary 8 is satisfied with a = (d− 1)/α. Therefore,

In(Hα) ≳ n− max{3,γ/α}
max{3,γ/α}+(d−1)/α .

III) We know that CB([0, 1]d−1) is the set of all convex functions on [0, 1]d−1 that are uniformly
bounded by B. Therefore, CB is Lipschitz and condition C2) is fulfilled with α = 1. Then,
Lemma 5 implies that item II) of Corollary 8 holds with a = (d− 1)/2. Thus,

In(CB) ≳ n− 2max{3,γ}
2max{3,γ}+(d−1) .
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