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ABSTRACT

We study classification problems using binary estimators where the decision
boundary is described by horizon functions and where the data distribution sat-
isfies a geometric margin condition. We establish lower bounds for the minimax
learning rate over broad function classes with bounded Kolmogorov entropy in
Lebesgue norms. A key novelty of our work is the derivation of lower bounds
on the worst-case learning rates under a geometric margin condition—a setting
that is almost universally satisfied in practice but remains theoretically challeng-
ing. Moreover, our results deal with the noiseless setting, where lower bounds are
particularly hard to establish. We apply our general results to classification prob-
lems with decision boundaries belonging to several function classes: for Barron-
regular functions, Holder-continuous functions, and convex functions with strong
margins, we identify optimal rates close to the fast learning rates of O(n~1) for
n € N samples.

1 INTRODUCTION

How well can we solve classification problems with complex decision boundaries in deep learning?
A lot of emphasis has been put on the noise in the problem. However, in practice, data sets may
have very strong margins (see between the classes, which makes learning much simpler (see
e.g. Figure[I). The presence of a margin seriously complicates the identification of lower bounds on
learning success. This is intuitively clear, since in the extreme case, where certain regions between
the classes almost surely do not contain any data points, many decision boundaries are valid.

In this manuscript, we overcome these issues and present lower bounds on learning under margin
conditions.

For n € N samples, an estimator can be defined as a measurable function f : A™ — F and a binary
classifier can be seen as an indicator function 1o : X — {0,1}, where A := X x {0,1} for some
set X containing a sequence {x;}!; that belongs to a sample ((z;, Lo(x;))), € A", Fisa
measurable space, and 2 C X is the decision set.

Remark 1. It is clear from the definition above, that the classifiers considered in this work are
not corrupted by noise. This is an important assumption if we want to resolve the precise role
of the regularity of the decision boundary and the margin conditions. Indeed, even the presence
of low noise could yield vastly different lower bounds, because the learning problem then requires
resolving the noise and this complication can mask the role of the decision boundary and the margin.
An extended discussion of this is given in (Petersen & Voigtlaender, 2021, Section 1.1, Point 1).
For a quick argument, we highlight, e.g., Stone| (1982)), where it was obtained that the optimal
learning rate, to learn a function f € C*([0,1]%) with || f|| o« < 1 and noise defined as a parameter
e N(0,02) for o > 0, is of the order of O(n=*/ kD)) and decays slower than n='/%. On
the other hand, in|Krieg & Sonnleitner{(2023), where the same problem is considered without noise,

learning rates of the order of O(n=*/%) were obtained, in some cases faster than n=".

1.1 CONDITIONS

In this paper, we study classification learning problems using binary estimators, when F :=
L%(]0,1]4); X := [0,1]¢ and the following conditions are fulfilled:
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FASHION MNIST CIFAR-10

Figure 1: Geometric margin in common classification problems. The top row shows a two dimen-
sional embedding on the first two principle components and a decision boundary identified by a
support vector machine. Clearly MNIST [Lecun et al.|(1998) and Fashion MNIST
exhibit a strong margin between some classes. For the CIFAR-10 data Krizhevsky|(2009) the margin
is not visible in the two dimensional embedding. In the second row, we show the class probabilities
predicted by a support vector classifier, which again shows extremely strong margin for MNIST
and Fashon MNIST, but also reveals that the CIFAR-10 data exhibits a margin, albeit a weaker one.
Which lower bounds on learning can be found in the presence of such various types of margins will
be demonstrated in our main results Theorem [6] Corollary [§]and Corollary 0]

C1) € can be described by horizon functions: We define the general horizon function associated
with b € € C C([0,1]%71;[0,1]) as

hy - 0,1]% — {0,1},

xr = (IL‘l,...,IEd) — lb(w(d))gzda (D)
where (@ .= (z1,...,24—1). Then it is fulfilled that

Q=Q(h) = ={z 0,1 h(x)=1} with he Hy:={h:beE}, (2

where Hy is the set of general horizon functions associated to % |Petersen & Voigtlaender|

@021). So, 1g,, = h.

Moreover, A is equipped with a probability measure gy, such that py, ([0,1]% x {i}) =

v; €10,1], fori € {0,1} and vy + 11 = 1; {@; }1 4 “d ih, Where h € He, and py, is the
marginal distribution of [0, 1]% admitting a density function f;, with respect to the Lebesgue
measure \.

C2) Regular boundary: % is convex with 0 € ¥. Furthermore, every b € € satisfies
b(z) —b(z")| < K|z —2'||" forall z,z' €]0,1]97!,

some « € (0, 1] and a constant K > 0.
C3) The margin condition is satisfied: There exist C,y > 0, such that for all € > 0,

Lh (Bé’) < Ce" where B"':= {w € [0,1])¢ : dist (x,0Q5) < 6}
is the ball of radius € > 0 around 9€2;, with respect to the Euclidean distance

dist (z, 00,) = m'ie%fsz |z — 2’|,
h

and ~y is called the margin exponent /Christmann & Steinwart| (2008)); Kim et al.|(2021).
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Additionally, we define the measure g on A with marginal A on [0, 1]¢ and
p([0,1] x {i}) = pp, ([0,1] x {i}) =v; forall i€ {0,1}. 3)

Under the above conditions, we establish lower bounds for the minimax error associated with the
problem of estimating binary classifiers when the learning set satisfies|C1)|on a function class ¢ with
regularity [C2)] and the data distribution satisfies the margin condition[C3)} i.e., we lower bound the
following inf-sup expression

T,.(€) = inf E wa |[A(SK) — Rl , 4
()= ealteo hilg')f@] (i, A0 = Al @
W, satisfies

where Sy, := ((x;, h(z;)));-, is the sample of size n € N, for a function & : [0, 1] — {0,1}, and
An(G) :={A: A" = G: Ais measurable} with G C L?(\) := L*([0,1]%, ).
Remark 2. In particular, the margin condition|C3)\is satisfied when

. eV . h
fn(@) < {mm {sm1} ween
1

otherwise,
for almost every x € [0,1]¢ and for all € > 0. Moreover, holds when

ful(x) < dist? (x,09,)  for almost every [0, 1]%.

1.2 ENTROPY

By Hurewicz & Wallman| (1948)); Kolmogorov & Tihomirov|(1993), it is known that it is possible to
characterize the “mass” of sets in metric spaces through the scaling law of the number of balls nec-
essary to cover them with variable radii. Moreover, this characterization can be extended to spaces
of densities with respect to distances that are not necessarily a metric, such as the distance associated
with the Kullback-Leibler divergence or the Hellinger distance (see |Yang & Barron| (1999)). This
leads to the definition of the concept of e-covering entropy (or e-entropy of Kolmogorov) which
serves as a measure of complexity for sets, where a complex set is one that needs many elements to
cover it and a simple set does not.

Let X # @ beasetandlet p : X x X — [0,00] be a distance function (without the need to be
symmetric or satisfy some form of triangle inequality). For aset ) # K C X and € > 0, it is said
that:

(N) G(e) C X is an e-net of K, when for all z € K, there exists y € G(¢) C X, such that
p(z,y) <e.

We define
Vi p(€) := logmin {|G,| : G, satisfies[N)]} as the e-covering entropy of K. 5)
Moreover, a similar notion can be defined as follows.

(P) G(¢) C K is an e-packing (or e-distinguishable) set in K, when for all 1,22 € G(e), it
holds that p(z1,z2) > €.

We define (the e-capacity in Kolmogorov & Tihomirov|(1993))
Mk ,(¢) :==logmax {|G.| : G. satisfies[(P)]} as the e-packing entropy of K. (6)

Indeed, when p is a metric, (3] and (6)) are equivalent in the sense that (see[Kolmogorov & Tihomirov
(1993) and (Petersen & Voigtlaender, |2021, Remark 3.10))

MK,p(Qe) < VK,p(a) < MK,p(5)~ (7)
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To conclude, we introduce the following distance functions between probability densities that will
be applied to the notions of entropy. We define the Hellinger distance pz and the associated distance
of the Kullback-Leibler divergence pg,, as follows. Let

D, = {f : A — [0,00) : f measurable and / fdp = 1}
A

be the set of all probability densities functions (with respect to p) on A. The distances py and pg .,
between p, g € D, are defined as

pu(p,q) = (/A(\/ﬁ— \/ZJ)QdH)l/Z and  prr(p,q) = (Aplog(p/q)du>l/2. (8)

1.3 ENTROPY BOUNDS FOR SOME FUNCTION CLASSES

We introduce some results on entropy bounds under the L? norm with p > 1, for classes of functions
previously studied in |Guntuboyina & Sen| (2013), [Kolmogorov & Tihomirov| (1993) and [Petersen
& Voigtlaender| (2021). Our goal is to apply Theorem@to classes such as ¢ C C([0,1]%71;1]0,1])

in[CD)}
1.3.1 BARRON REGULAR FUNCTIONS

A function f : [0, 1]d_1 — R is said to be of Barron class (see[Barron|(1993)); Caragea et al.|(2023));
Petersen & Voigtlaender| (2021)) with constant C' > 0, if there are ¢ € [—C, C] and a measurable
function F' : R~ — C satisfying

[ F@ sw_ [gallde<c md f@)=ct [ (@01 Fea o)
Rd—1 z€[0,1]d-1 Rd—1

for all z € [0,1]%1. The set of all these Barron functions is denoted as B¢. Propositions 4.4 and
4.6 in Petersen & Voigtlaender| (2021)) state the following lemma.

Lemma 3. Forall0 <e <1,

_2(d—-1)

_Z(dfl)
e T S Mp 10,1141 (€) < Mpg poo(o,1e-1)(€) S e 7 (14 1log(1/e)).

1.3.2 «o-HOLDER CONTINUOUS FUNCTIONS

According to |Clements| (1963)) and (Kolmogorov & Tihomirov, 1993, Sections §5, §9), let H,, be
the class of functions f from [0, 1]~ to [0, 1], that are bounded by a constant C and have all partial
derivatives of the order ¢ < k := 3 —«a € Z>( with the kth order derivatives satisfying the a-Holder
condition with exponent o € (0, 1], i.e.

[e3

FO@1) = fO(@2)| < Ly —ao|lS =L jegrax lwg =gl
for some constant L > 0, where @; = (7;1,...,%;4-1) € [0,1]%71, for i € {1,2}. Then,

Clements|(1963)) and (Kolmogorov & Tihomirov,|1993| §9-1) and Theorem V) imply the next result.
Lemma 4. Foralla > 0andp € {1,00}, Vi 1r([0,1)4-1)(€) = g=(d=D/e,

1.3.3 CONVEX FUNCTIONS

We denote by C([a,b]~1) the set of all convex functions on [a, b]?~! with @ < b and d > 2, that
are uniformly bounded by B. For this class of functions, the e-covering entropy has been studied
when d = 2 in Dryanov| (2009); by adding an uniformly Lipschitz condition in |Bronshtein| (1976);
and without extra conditions for all d > 2, in|/Guntuboyina & Sen|(2013). We present the following
lemma, which is a consequence of Theorems 3.1 and 3.3 in Guntuboyina & Sen|(2013)), for the case
thata = 0and b = 1.

Lemma 5. Forallp € [1,00), B> 0and 0 < ¢ < B, it is fulfilled that

VCB,LP([()’l]d—l) (5) ~ 5*@71)/27

where Cp = Cp([0,1]¢ 1) and d > 2.
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1.4 PREVIOUS WORKS AND OUR CONTRIBUTION

Some related work on binary classifiers under the margin condition [C3)| can be found in: (Christ-
mann & Steinwart, |2008}, Section 8), for SVMs where learning rates were sometimes as fast as n L,
being n the number of data points; Kim et al.|(2021), based on neural networks with hinge loss that
achieves fast convergence rates when d < =, particularly as fast as n~(2+1)/(¢+2) when the margin
exponent v — 00, where ¢ is a noise parameter; and |Garcia & Petersen| (2025), where it is found
that using ReLL.U neural networks, the strong margin conditions imply fast learning bounds that are
close to n~1 (1 + logn). Furthermore, in|Garcia & Petersen| (2025)); |[Kim et al.| (2021), a regularity
condition is assumed on the decision boundary, where 02 can be described by classes of functions
€ satisfying condition on the elements of some covering for the set €. In Kim et al,| (2021),
the class of functions ¥ C H,, is considered, and in|Garcia & Petersen|(2025), the class € = B¢.
The last two works mentioned above, only provide upper bounds for the learning rate when binary
classifiers are approximated by neural networks under the margin condition. Our contribution now,
by finding minimax lower bounds for learning rates on binary estimators, is to confirm that these
learning rates are indeed optimal. It is important to highlight that the margin plays a main role
in the fast learning rates obtained in each function space, when ~ is sufficiently large the curse of
dimensionality is overcome.

In Yang & Barron| (1999), it was shown that through the entropy in density spaces defined with
distances as in (8)), it is possible to determine lower bounds for the learning rate of binary estimators
(see Lemma . Then, in [Petersen & Voigtlaender| (2021)), a relation between the distances ina
specific set of densities and the norms L?(\) (being A the Lebesgue measure on [0, 1]%) in H¢ and
L*([0,1]471) in ¢ was demonstrated, thus adapting the main results of |[Yang & Barron| (1999) to
function spaces % as in However, the margin condition was not assumed in either |[Petersen &
Voigtlaender| (2021) or|Yang & Barron| (1999).

In this paper, we use an argument to lower bound the minimax expression Z,,(%) in @) based on
carefully constructing a particular family of probability densities (see Lemma (12)) over a subset of
the function class ¢, where the margin condition [C3)|is satisfied (see Remark[7). Thus, assuming
that conditions[CI)} [C2)] and [C3)|hold, our main results provide the following: In Theorem|[6] under
certain conditions (T1)), a general lower bound for Z,, (%) is given when the class ¢ has bounded
entropies (3)) and (6) in the Lebesgue norm L!. In Corollary we apply Theorem@when the class
% has entropy bounded in a particular way; then we obtain specific lower bounds for Z,,(%) that
depend on the sample size n, the parameters controlling the entropies, the margin exponent +y in[C3)|
and the o assumed in the regularity of €. Finally, in Corollary O] we provide explicit lower
bounds for € being:

e The Barron class, 4 = B¢, for which we obtain in @]) lower bounds that, for all v > 3 (see
Remark [I0) take the form

1,(56) 2 [n1 + 21og ) 525] T

where 2(d — 1)/(d + 1) — 2 when d — oo. While in|Garcia & Petersen| (2025)) were obtained
upper bounds for the learning rate as

Z,(Be) Sn~/ (1 4 logn), forall ~ > 0.

In conclusion, when v > 3, our lower bound matches the upper bound in|Garcia & Petersen|(2025)
up to logarithmic factors. For large dimension d, the exponent of n in both bounds is —/(2 + ),
showing that the learning rate in|Garcia & Petersen| (2025)) is asymptotically optimal.

* The a-Holder continuous class, 4 = H,, where in (14) we found for all v > 3« (see Remark

[TO), that

In(Ha) 20~ 1+<di1>/v, forall « € (0,1].

In contrast, under the noiseless assumption (see Remark [I), an upper bound was obtained in (Kim|
et al.,|2021, Theorem 3.4), as follows

log® n\ FFE@-T77
(Og n) , forall y>1 andall « € (0,1].
n
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For values of « close to 1, the exponents of n in the lower and upper bounds become similar,
indicating that the corresponding learning rates are nearly the same, up to logarithmic factors. In
particular, for Lipschitz functions (o = 1), the learning rate is asymptotically optimal. However,
for small values of «, the lower and upper bounds themselves differ significantly.

¢ The Convex class, € = Cp, for which in (]E]), we obtain for all v > 3 (see Remark @),

I,(Cp) = n~ FH e,

When 7 is large, the lower bound yields learning rates similar to those obtained for general Lips-
chitz functions in the previous item (case o = 1).

2 MAIN RESULTS

In this section, we give the main results of our work. To begin with, we present the following
theorem on general bounds for the minimax expression ().

Theorem 6. Let conditions andhold. Let V,M : (0,00) — [0, 00) be continuous from
the right and non-increasing. If for all ¢ € (0,1), ¥ = max {2,v/«a — 1} and a constant ¢ > 1, it is
satisfied that

Vig 11 (aﬁ/ (4%2(2(;)%)) <V(e) and Mg p: ((4&)5%) > M), (10)
Then, for every pair of sequences {€y, } nen, {€n }nen C (0, 00) satisfying
ne? =Vie,) = (M(E,) —2log?2) /4, (11)
we obtain 2 < (4e,)* and
1
Z.(¢) > | 22, 12
> [gamy] % 1

with I,,(€) as in (@).

Remark 7. For the proof of this theorem, we begin by defining a particular family of densities
(18) that satisfy margin condition over the subset 65 C € defined in Lemma Then,
given that {x;}?_, is distributed according to the margin condition with respect to a mea-
sure [, in Lemma we define a new class of densities Py, over p for which the sample
Sn = ((xi, h(x;))),_, is distributed. With this new set of densities Py, we apply Lemma
((Petersen & Voigtlaender, 2021, Theorem 3.11), which is a simplified version of (Yang & Barron|
1999, Theorems 1 and 2)), with a similar argument to the one used in |Petersen & Voigtlaender
(2021)), to obtain our lower bound @) However, to apply Lemma @ to the density class Py, it
was necessary to prove the results of Lemma[I4|and Lemma|[I3]

As a consequence of the previous theorem, when the entropy of the space ¢ with respect to the
Lebesgue L' norm is bounded in a particular way, we obtain the following corollary.

Corollary 8. Let conditions [C2)|and [C3)| hold. Let 5 = max{2,v/a —1}; a > 1/2; and
Z,.(€) as in @). Then, by cases:

I) Ife™* S Mg pi(e) Se (1 +1og(1l/e)), foralle € (0,1). Then

Z,(¢) 2 [n (1+2logn) ail} C(5) |

II) If Vg 11(e) = e~ foralle € (0,1). Then

Finally, we apply the previous corollary to the spaces defined in Section[T.3]to obtain the next result.

Corollary 9. Let vy > 0 be the margin exponent in[C3)| Then, with the notation @) and the notation
in Section[I.3] we obtain:
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I) For Barron regular functions,

B max{3,~7}
I.(Bc) 2 [n(1+ Qlogn)i‘“i?{;’iﬁ%w max(3. b+ (24 ) (13)
IT) For a-Holder continuous functions,
_ max{3a,7}
In('Ha) Z n~ max{3a,7}+(d—1) , (14)
Sforall o € (0,1].
I1I) For convex functions,
T, (Cp) 2 n~ Tt i=n | (15)

Remark 10. In our results, the term max {3, vy} appears, which we had to assume since the proof
of our main theorem is based on defining the particular family of densities given in (I8)), for which
one of the most important properties is that their square root is Lipschitz in b with respect to b on

the L*(\) (see (20)).

In Kim et al.,| (2021) and |Garcia & Petersen| (2025), upper bounds on the learning rate of approxi-
mating, by deep neural networks, binary classifiers with decision boundary satisfying the regularity
condition@]in function classes H,, and B¢, respectively, were shown. See discussion of our results
in comparison with those of |Kim et al.| (2021) and |Garcia & Petersen| (2025) in Section (1.4

Remark 11. The main results Theorem [} Corollary [8| and Corollary [9) identify precise optimal
values for the learning rates of a binary classifier from noiseless samples, if a margin condition is
satisfied and the decision boundary stems from a general class of functions. There are considerable
limitations of these results that we would like to stress:

1. The established rates are understood in the inf-sup sense where all distributions that sat-
isfy the margin condition are considered. In practice, many more favorable conditions
on the data distribution may hold, which shows that the observed learning rates could be
considerably faster.

2. As mentioned in Remark[I|we consider here noiseless data. This assumption is crucial to
identify meaningful lower bounds, since it is otherwise unclear if the lower bounds stem
Jfrom the noise or from the properties of the decision boundary (see (Petersen & Voigtlaen-
den, 2021, Section 1.1, Point 1)). Still, noisy data appears extremely often in applications,
and that situation is not covered by our main results.

3. Our approach requires precise bounds on the covering numbers of the spaces that model
the decision boundary. We have described three such cases in this manuscript. However,
for many, more exotic spaces, such estimates may not exist.
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A AUXILIARY RESULTS

In this appendix, we present our auxiliary results used to prove Theorem 6]
Lemma 12. Let € satisfywith a € (0,1] and K > 0. Then, the following statements hold.

1) Forallx € [0,1]¢,

1

(o)~ ) < dist (.060) < 1) ~ 2], (16)
where
~  ~ . [VI+K? ifa=1
L< K= K(a) = {max{?a,QK} ifa <1 17
2) Let§ € (0,(4K) "] and €5 := {8b: b € €}. Let fn, : [0,1]2 — [0, 00) be defined by
o @) — gl if g <1)2
fun (@) = {éb if 24> 1/2, (19
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with” :=max {2, 2 — 1}, v > 0 and

Cy =2 17/ (D) — 24 da | . (19)
[0,1]4-1x[0,1/2]

Then, 65 C € and for all b € 65, we obtain that fhb is a Lebesgue density inducing a measure
h, that satisfies the margin condition with margin exponent v and for all 0 < ¢ < 6.

Moreover, \/ fhb is Lipschitz in b with respect to b on the L?(\) norm, namely

W7 -7,

Proof. By cases:

3/8 v ||b1 - bQHLZ [0,1]4=1) » fOr(lll bl,bg S %5. (20)

1) Forallz’ € 09, = {x € [0,1]¢ : b(z¥) = 24}, and any x € [0, 1]%,
e —2'||” = Hw(d) — a:'(d)H2 + \b(az'(d)) —x4)?. 21)
Lett := ||2(® — &/ @ and w := |[b(xD) — z4]. If w — Kt* < 0, we get t? > (w/K)?/*, and
lz — '[|* = 2 + |p(a’ V) — 2qf? > (w/K). (22)
If w — Kt* > 0, condition [C2)|implies
w=[b(@) — 24| < (@) — za| + () — b= )]
< 0" ™) — wal + K ||z

= [b(2" ") = | + K17,
therefore
Iz — || = 2 + [b(x’ V) — 242 > 2 + (w — Kt*)2. (23)
So, when o« = 1, it follows that
|z —2'||° > (1 + K — 2wKt + w?
4w?(1 + K?) — (2wK)?
= i1+ K2)

w2

= 24

e (24)

Otherwise, o < 1 and we set a threshold ¢y := (w
(23) on t. By cases:

o Ift < to, we know that w — Kt* > w — Kt§ = w/2 > 0, therefore

/(2K))/* to minimize the right hand side of

e — 2’| > 2+ (w— Kt$)? =2 + (w/2)% > (w/2)% (25)
e Ift > tgy, we obtain
o — | > £+ (w— Kt*)? > 2 > (w/(2K))*/. (26)

Thus, 22)), (24), 23) and (26), imply that
1 &
rz—x 2<~b9:(d) —l’d) ,
| 2 { Zb@) = zdl

with K as in (T7). Then, by the above inequality and identity (ZI)), we arrive at

1

1 >
— (d)y _ < _ 2 < (d)y _
(o)~ )" < it Ja =o'l < o)~ .

where the upper bound was obtained given that (21, ..., 241, b(x(¥)) € 0Qy,.
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2) It follows from[C2)|that 6b € ¢ for all b € €, since § < 1. So, 65 C €.

For any b € %5, to show that fhb is a density function with respect to A, we get

/ fhbdAz/ fhbdwr/ FrydA
[0,1]4 [0,1]9-1x[0,1/2] [0,1]9=1 x[1/2,1]

= / (2 D) — 247 dx + / Cyda
[0,1]4-1x[0,1/2] [0,1)4-1x[1/2,1]

b(z D) — z4]Tda + (1/2)C,,
[0,1]4=1x[0,1/2]

1.

Now, for all b € €5, we see that fhb satisfies the margin condition mfor all 0 < € < 4, as
follows. Using (I6), we obtain that

24— b@ @) < |b(x @) — z4] < K (dist (z,0,))* < Ke* < K§*, forall e BM.
Therefore,
2q < K6 +b(x?) < K6® + 0 < 2K6* < 2K/(4K)=1/2 forall x e BM.
Then, B" C [0,1]971 x [0,1/2], and
finy (BE®) = fin, (B 0 ([0, 1] x [0,1/2]))
_ /B b(@@) — za[idr

<

bz @) — zq7dA
/{me[o,1]d;|b(m<d>)wd|<i€ea}| ( ) d

< (Ke¥) / 1dA
{mE[O,l]d:|b(m(d))—md|§f(éa}

< }—?ﬁemax@a,v—a} (2‘[?604)
< 2[’Ev7y'+16max{3a,’y}

< (2[~( %'1) €.
This proves that condition [C3)|is satisfied.
Moreover, as a consequence of the mean value theorem, it is well known that

[lul® = [0]] < Bmax{]ul, [o[}7~{Ju] - [v]|
< PBlu—wv| forall w,ve[-1,1] and B >1. 27)

So, we apply (27) by cases:
o Let gy(x) := |b(z®) — 24|7/2. Then, for all by, by € € and all z € [0,1]%,
196, (@) = go, ()] = |[b1 (@) = 242 — |bo (') — 24|/
< G/ () ~ ba(a D).

Therefore,

/ (@) — g2 < (5/2)* [ ()~ ()
[0,1]4-1x[0,1/2] [0,1]4-1x[0,1/2]
= (3/8) |11 — b2||iz([o,1]d71) :

Thus, gy is Lipschitz with respect to b on their respective L? norms.

10
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e Forall by, by € G5,
2
1~ ~ |2 2 2
1 |G G| = (67, (@) — g7, (@) de
[0,1]9-1x[0,1/2]

< / (900 (@) — s (2))° (952 () + g ())? o
[0,1]4=1 x [0,1/2]

<4 / 196, () — g, (2)|? dee
[O,l]‘l*1 x[0,1/2]

< (F/2) by — ball 32 o1y -

(Vo) <L (Vo ) ()

11~ ~ 2
- ~|c, —C
4“’1 b2

Also,

)

Cy, > 2 1_/ ldx | =1.
[0,1]4=1%[0,1/2]
(Von ~Va) < @i -l

Using the items above, we conclude that

H\/fhb1 \/ o,
L2(\)
2 /= /
= g, (T) — g, (T d:B+/ ( Cp, — CbQ)
/[o,ﬂdlx[o,uz]' (@) @)l [0,1)4-1 x[1/2,1]

< (?2/8) ||bl - b2||i2([0,1]d*1) + 62/4) Hbl - b2||L2([0,1]d*1)
< (3/8)7” [Iby — ball72(o a1y, forall by, by € ;.
Therefore (20) is fulfilled.

since for all ¢ € {1,2},

Then,

Lemma 13. Let Py, := {pp, : h € Hyg,}, where

T . () fn(z )/Vl ify=1
i) = {(1—h( ) fn(®) /v ify =0,

(28)

(29)

and fh is a Lebesgue density that defines a measure [iy, as in (I8). Then, py, is a density function

with respect to the measure pu as in (3). Furthermore,

x ~ fip, ifonlyif (x,h(x)) ~ py (with respect to p).

Proof. For all h € He,, we know that p;, € D,,, since

/ph(w,y)du = 1/0/ (2, O)d)\—l—ul/ (z,1)dA
A [0,1]d [0, 1]d
[ a-nh@)din+ [ ()
[0,1]¢ [0,1]4

:/ 1dfip, = 1.
[0,1]4

11

(30)
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In addition, for (x, h(x)) € M C A and x ~ [i5,, we have that

/ Ly (. h())dfin = / 1y (@, 1o, (2))dhn
[0,1]4

[0,1]¢

- / 1os (2, 0) i + / Ty (2, 1)din
[0,1]9\Qp, Qp

= / ]lM(il:, 0) (1 — ]1Qh (w)) dﬁh + / ]lM(iL‘, 1)]lQh (:B)dﬁh
[0,1]¢ [0,1]¢

[ i@ @ - h@) i+ [ L Db@)dn
[0,1]¢ [0,1]¢

- / Lo (, 0)pn (, 0)dA + 11 / Lo (@, Dpn (@, 1)dA
[0,1]¢ [0,1]¢

= /1; ]]_]\[(237 y)ph(ma y)d/l',

equivalent to (z, h(x)) ~ pp, with respect to p and (30) is satisfied. O
Lemma 14. Let hq, ho € Hy, be defined by by, by € 65, respectively. Then,

1 5 .
||h1 - h2||i2(ﬁh,i) = ﬁ ||b1 - bQHE—"’V_}»l([O’l]d—l) fOi‘(lll 1€ {1,2}, (31)

with iy, and 7 as in Lemma Moreover, for all py,, , pn, € Pg;, we have that
2 .
lhy = P2l Lo, ) < Prr(PhysPha) < 257 [1b1 = b2l i o, 1ja-1) (32)

foralli e {1,2}.

Proof. Foralli € {1,2}, we know that b; € %5 and therefore bi(x(@) < § forall (@ € [0,1]9-1.
Also, § € (0, (4K)=],50 8 < (4K)~! < 1/2. Then, by definition (T),
Gio={z €[0,1]*: hi(x) # ha(z)}
={z € [0,1]*: hi(x) =0 A ho(x) =1} U {z € [0,1]? : hy(z) = 1 A ho(z) = 0}
= {x €0,1]%: by(x?) < 24 < bl(m(d))} U {:c € 0,1)4: by (D) <2y < bg(a:(d))}
_ d. (e < (D)
{w € [0,1] 1€H{1i%} {bl(a: )} <zy < iéri}i};} {bz(w )} < 1/2}
C [0,1)471 x [0,1/2]. (33)

Furthermore, h; and hy are indicator functions, thus |h; — hy| = 1, ,, and using (33), we get

[h1 — hQHiZ(ﬁh.) = / |l — hol? fa, dX
’ [0,1]¢

:/ |b; (D) — 247 da
Gi,2

1 _
- ﬁ [0,1]¢~1 ‘bl(m(d)) B bg(cc(d))ﬂﬂda:(d)

1 5 .
== b1 — b2||1ﬂ1([071]d,1) forall ie {1,2}.

12
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From the above identity, it follows (3I). Moreover, h; = v/h; and 1 — h; = /1 — h;, for all
i € {1, 2}. Hence,

p%](phlvphg) —2= _2/ vV PhyPhy dl"
A

= -2 [/ \/Ph,Phsy dp +/ \/Ph1Phy dp
[0,1]4x{1} [0

A]4x{0}

= [ /H Vi (\/hlhz /= )T = 2) dA]
=2 /[01 Vi Foa (0 m—mv-l)w}
2 /[ VT T (11— h2|—1>dA].

s

s

We see that

2_2/ \/flde)\:/ fldA—Q/ \/flfzdwr/ FhadA
o ¥ o o ¥ o
2
-/ (\/fhl—\/fm) aA
[0,1]¢

Then the above two identities imply

P (Phy s Phy) = 2/[ ; \ i Py — h2|d>\+/[
0,1

0,1]¢

<\/f7 @)QdA. (34)

Now we bound show (32) by cases:

« Upper bound: Forall i € {1,2}, we know that f;,, < 3, since (T9) and (28) implies

bs (D) — 247 <1< Cp <2 (1 +/
[

0,1]4-1x[0,1/2]

|bs (D) — xdﬁda:) <3.

We use (20), (33) and (34), to obtain

P (Phy s Phy) < 6/[ |h1 — ha|dX\ + H\/ fro —/ fh2
01

)

L2(N)
< 6/ 1d)\+§2 161 —b2||L2([0,1]d—1)
Gi,2
~ 2
=61b1 — b2||L1([0,1]d*1) +(3/8)7° |11 — b2HL2([071]d*1) ’
and we know that |b; (2) — be(2)| < 1forall z € [0, 1], then

Pir(PhysPhy) < (64 (3/8)7%) b1 — ball 1o 1a-1) < 272 161 — b2l 11 0,171y -

13
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* Lower bound: By (33), (34) and as |hy — ha| = 1¢, ,, we get

o) =2 [ Ve [ (Vi i)
:/c;l,z(ﬁlJrﬁQ)d)\Jr/ol]d\Gu (\/f: @)2@

2/ \hy — hal? fa,dA
[0,1)¢
:||h17h2|@2(ﬁ}_), forall ie {1,2}. O

Lemma 15. Under the condmonsm C2) andm IC3)| let € (&) C €5 C € be a &-packing set as in
with respect to the L' norm, and & € . Let

¢ = {g% be %(5)} CE(€) and Peyc = {pn, € Pg, :be ),

with”y = max {2,v/a — 1} as in Lemmal[I2} Then,

L,(€) > (4;)3 [Eejgfpu)psg;p EE wa P (E(S),P)| (35)
where IL,,(€) is defined in @). Moreover,
Vo con(€) < Vs (77/(7%)  and M, pu(€) 2 Mgpr (49)e757), (36)
foralle > 0.
Proof. We begin by bounding Z,, (%) from below. In order to show that
AT, () > T, (65) = ped% S E oy, [4(S) - W2a,, G

Jup, has density as in {T8)
is satisfied, we introduce (Petersen & Voigtlaender, 2021, Lemma 3.2).

Lemma 16. Letr (X, p) be a metric space, with distance function p, and let ) # M C X be
separable. Then for each ¢ > 0 there exist a measurable map 7. : X — M satisfying p(x, . (z)) <
e+ p(x, M) forall x € M.

By condition |C2), € is separable with respect to the L? norm, the continuous map €5 — L?()\)
defined by b — h = 1j(50))<,, implies that Hy; is separable. Then, for any B € A, (L*(\)) and
e > 0, Lemmal|16|implies that there exists a map 7. : L?(\) — Hy, such that

I1B(Sn) = me(B(Sk)l 2,y <€+ mf(gs I1B(Sk) = bl 2,y < €+ 1B(Sh) = bl L2,y »

for all h € He; and ju, as in[C3)] Therefore,

7,.(%;) < su E i m-(B(S1)) — hl?
2(%) < heHE)g(; (i}, P Im=(B(Sh) ||L2(Hh)
Jup, has density as in {T8)
< su E ii T (B(S —h ]
S O L SR
uhsalisﬁesb

IN

2
o B (Ime(BS0) = Bl gy + 1B = bl

Hh smsﬁes@

2
E ( 211B(S)) — h ) ,
hzl;:[l:; {mi}?zl’\glth et ” ( h) HL?(#h)

s salisﬁes@

IN

14
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where ¢ — 0, implies

T.(%) <4 sup E wa |B(SK) — R|? .
(¢5) < heHl{; (@, |1 B(Sn) HL2(H,L)
Kh sa(isﬁesb
Furthermore, B was arbitrary and %5 C %, so
T.(%) <4  inf E wa | B(SR) = |2 < 4T, (%),
(%) < BeAN L) netty, (@i, 1B(Sn) = ALz, < 42n(%)
“h salisﬁesb
and we obtain (37).
Since ¢'(§) C €. it follows from (T8) and the same argument used to get (37) with Lemmal[l6] that
4%,: Cs) =4 inf sup E i A(S h
( 5) AE.AW,(H%’(;) hbefigs {mi}?zl'\tjﬁhb || ( hb) b||L2 #h )
> mf su E iid__ A S h )
= AEAn,(H(g‘(g)) hbGHg(g) {mi};‘zlr\fﬂhb H ( hb) bHL2 /“L )

where A € A, (Hg()) implies A(-) € Hee), and there exists a unique by € %(&) such that
A(*) = Iy, Then, by Lemma|T4} we get

9 1 F+1 F+1
IA(Shs) = hollze ) = F+1 HbA(S"b) B b’ LA+1([0,1]4- 1) HbA(Shb) B ‘ £1([0,1]4-1)
Therefore,
e F+1
(8Y)Zn(€5) > bAleI3§<g) b:};(g) (o, ‘bmshb) b‘ o) (38)

By hypothesis, € () is a £-packing set as in with respect to the L! norm, which means that

> ¢, forall by,be €(E). (39)

HbA(S"b) B b’ L1([0,1]9-1)

Then, by (38) and (39), together with * = {£7b: b € ¥(£) }, we obtain

ST(@) 2 inf s B bacs,,) —b) g
BNIE) 2, o o Erae, 4, 11PAS0) =V 1y g yar) ©
= inf su H - :Yb‘
b0 oo By 0, 16704600 =8 g amy
— inf E .. b fb’ . 40
pae P B e, 104Gk T g 1pasy 0

From (32),

~92 2
2y HbA(Shb) - b‘ > pH(pth(Shb> ’phb)7

L1([0,1]4=1)

for all by, b € €%, i.e. for all Phy, s, ,Phy € Pge. We define the map E € Ay (Pee) such that
hy
E() = pac) = Pn, > and (30), (@0) imply

16 4 inf su E . 2 (E(Sh,),
(165*)Z0(%5) = R R iy gy, P (E(Sha) Pro)
> inf sup E . p%(E(S), D), 41
E€A,(D,) plepl;s SNdp/PH( (S),p")

since A, (Pye) C Ay, (Py;) € An(Dy). In conclusion, (33) follows from and ({1).

Now we continue with the second part of the lemma, showing that (36) holds as follows. From
Lemma [[4] we have that

1 1
% [b1 — b2||ﬁ (0101 < Pi Phyy s Phiy) < 257 (11 = ball 1 o 1701y - (42)

15
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for all p, ,pn,, € Pg,. Using the same argument as in (39) and the right hand side of @#2), we
obtain

Pt Pn, Do) < 277 (101 = ball 1 o 1101
= 25257 Hb/1 - bl2||L1([0,1]d*1)
~ F+1
< 252 1B} = by 74 fo 171y
for all pn, ,pn,, € Pee and all by, bh € €(€) associated with by, by € €. Therefore,
2 ~
Mp e pu(€) < Mig(e), 10 (6”1 / (272))
< My 11 <5T /(252)) forall &> 0. 43)
Moreover, from the left hand side of (42),
1 F+1
ﬁ [[b1 — bZHZT([o_,l]d—l) < p%—](phblvphbz)7
for all pp, ,pn,, € Pge, and
Vb e.pu (&) = Vige 1 (m)g%) > Vi o1 ((za)g%) forall &> 0. (44)
Then, (7), @3) and {@4) imply
Vie.or (@0e7) < Vi (€) < Mg 1y (€) < Mg o (757 /(277))
for all € > 0. Finally, from (7) and the above inequality, we conclude that
Vb eon () < Ma,a (677 /(27%)) < Vig o (77 /(45))  and
~ =2 ~ =2
M pu(&) 2 Vi, (9eTT) = Mg, (49)e77)

for all ¢ > 0. So, (36) is fulfilled. O

B PROOF OF THE MAIN RESULTS

B.1 PROOF OF THEOREM[@]

To begin with, we present (Petersen & Voigtlaender, 2021, Theorem 3.11), which is a simplified
version of (Yang & Barron, |1999| Theorems 1 and 2).

Lemma 17. Let ) # P C D, and let V,M : (0,00) — [0,00) be continuous from the right,
non-increasing, and with the following properties:

1. Vp pr(€) <V (e) foralle > 0;

2. (en)nen C (0,00) is chosen such that €2 = V (¢,,) /n for all n € N;

3. M(e) < Mp ,, () forall e > 0;

4. M(e) > 2log?2 for e > 0 small enough;

5. (En)nen C (0,00) is chosen such that M (g,) = 4ne? + 2log 2 foralln € N.
Then

=2 : 2 / 2
8 < f sup E_iia E(S),p') < 2¢;. 45
En/8 < EE}lI:(Du) ps’lg)? Sf\jp’pH( (8).7) < 22, @

Remark 18. Let ) # P C D,,. In (Petersen & Voigtlaender, 2021, Page 15) it was shown that
VP (€) < Vpoo,(e/(2¢)) for all 0 < € < 1 and a suitable absolute constant ¢ > 1. Then,

item|l|in Lemma sfulﬁlled when Vp ., (e/(2¢)) <V (e).

16



Under review as a conference paper at ICLR 2026

Now, by hypothesis (T0), Remark [T8]and Lemma|[T3] it follows that
Vo semen(2) < Vi, eon(6/(20) < Vi (771 / (452207 ) < V(o) and

~ =2
Mp, o pu(€) = Mg 11 ((4y)m ) > M(e) forall &> 0.

(46)

Therefore, Lemma[T7] holds with P = P, since items[T]and 3] are satisfied with (@6), and items 2]

[] and[3]are satisfied with (TT). Then, using (33) and (@3)), we conclude that
L =

1
7, inf E .u p4(E(S),p)| > |——
n(€) > )3 [EejE(Du)p/i%?gg s P (E(S) p)] > {8(47)3} &,

and (T2) is satisfied.

B.2 PROOF OF COROLLARY [§]

We consider each case as follows:
I) Foralle € (0,1),e™* < My 1(e) S e (1 +1og(1/¢)). So, (7) implies

Ve ri(e) Se (1 +1og(l/e)) and e < Mg ().
To use Theorem|[f] we set &,,, e, € (0,1),
2 —a 2
V(e) = (5“1) (1 + log (5_ 5“)) 2 Ve (5“1) and
2 —a 2
M(e)~ (e77) 7§ Mg (s77)
such that (T0) is satisfied. From (TT)),

2\ "¢ _2 2\ "¢
ne? ~ (5%“) (1 + log (en ”“)) 2 (Eﬁ“) —2log2 | /4.

Also, a > 1/2 and €,, < 4¢,,. Then,

2\ ¢
n24n52+210g2% (5,1*1) = en

From (@7) and (483),

2.\
ne? < (5%“) (14 2logn), ie. (e

-

Thus, €2 < [n™! (1+2logn)] +(541) . By @7),

.

1+(

2\ @
<€~{{“) ~ dnel +2log2 Sn[n”' (1 + 2logn)]

Snin'(1+2logn)] (5%

Therefore,
1 N S
2>n (3%1) [n_l (14 2log n)} (+(541))(581)
1 I S
—n (%) (14 2logn) (1+(5410)) (5%1) ,
and (12) implies
] )

2)“‘# < nt (1+2logn).

1) + 2log 2

(47)

(48)
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IT) We know that Vg 1(e) = e~ forall e € (0,1). Then, to use Theorem@ we choose
M(e) = V() ~ (5%)7 ,

such that (T0) is satisfied. So, (TT)) implies

(si)H(ﬁ)%n_l, e, 2mn ).

Thus, using the above inequality and (TT),

2\
(&Z“) ~ dne? +2log2 <n

and

B.3 PROOF OF COROLLARY [9]
We split the proof into the following cases:

I) It is well known that the space of Barron regular functions is Lipschitz, therefore B¢ sat-
isfies with o = 1. Furthermore, from Lemma [3| we have that item [I)] of Corollary
holds with a = 2(d — 1)/(d 4 1). Then,

ax{3,v} |~ maxmﬁ}d
max s 2(d—1
2 dl))‘| max{3n}+( (d+1))

T,(Be) 2 |n (1 + 2logn) (a

I1) By definition, the a-Hélder continuous space satisfies Then, with Lemma we obtain
that item [IT)] of Corollary [§]is satisfied with @ = (d — 1)/c. Therefore,

max{3,y/a}

In(Ha) 2 n_ max{3,y/a}+(d—1)/a

IIT) Weknow that Cg([0, 1]971) is the set of all convex functions on [0, 1]9~! that are uniformly
bounded by B. Therefore, Cp is Lipschitz and condition@ is fulfilled with o« = 1. Then,
Lemmal5]implies that item [IT)] of Corollary [8|holds with a = (d — 1) /2. Thus,

_ 2max{3,v}
In(CB) Z n~ Zmax{3,7}+(d—1)

18
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