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ABSTRACT

Training transformer language models requires vast amounts of text and com-
putational resources. This drastically limits the usage of these models in niche
domains for which they are not optimized, or where domain-specific training data
is scarce. We focus here on the clinical domain because of its limited access to
training data in common tasks, while structured ontological data is often readily
available. Recent observations in model compression of transformer models show
optimization potential in improving the representation capacity of attention heads.
We propose KIMERA (Knowledge Injection via Mask Enforced Retraining of
Attention) for detecting, retraining and instilling attention heads with comple-
mentary structured domain knowledge. Our novel multi-task training scheme ef-
fectively identifies and targets individual attention heads that are least useful for a
given downstream task and optimizes their representation with information from
structured data. Due to its multi-task nature KIMERA generalizes well, thereby
building the basis for an efficient fine-tuning. KIMERA achieves significant per-
formance boosts on seven datasets in the medical domain in Information Retrieval
and Clinical Outcome Prediction settings. We apply KIMERA to BERT-base to
evaluate the extent of the domain transfer and also improve on the already strong
results of BioBERT in the clinical domain.

1 INTRODUCTION

Transformer models like BERT (Devlin et al., 2019) and its derivatives outperform other models in
many NLP benchmarks and have achieved widespread acceptance. Due to the general nature of pre-
training data, these models often lack specific domain knowledge or vocabulary and under-perform
in even broad domains like the medical one (Lee et al., 2020). One option to impart this domain
knowledge is to use structured data in the form of knowledge graphs. Additionally, recent findings
in model compression have shown that these large transformer models contain redundancies in their
components Michel et al. (2019); Sanh et al. (2019). We propose KIMERA, a novel re-training
method for effective knowledge injection in transformer models which enhances these redundant
parameters with the help of structured domain knowledge.

First, we detect the redundant attention heads in these transformer models, by using the findings
of model pruning. This allows KIMERA to leave the relevant components of the model untouched
while improving the more irrelevant ones. We retrain and specialize these redundant components
in a Multi-Task training scheme enabling the model to abstract information from the structured
knowledge sources. We use common tasks from the Knowledge Graph Completion field to facilitate
this training.

Focusing on the clinical domain, we choose Clinical Answer Passage Retrieval(CAPR) and
Clinical Outcome Prediction(COP) as downstream tasks. Medical knowledge graphs like UMLS
(Bodenreider, 2004) contain commonly known medical knowledge like disease-symptom or drug
interactions, while clinical notes often represent the current health state of a particular patient.
Therefore, both can effectively complement each other for a deep patient representation. We
evaluate the effects of KIMERA on BERT and BioBERT (Lee et al., 2020). BioBERT serves as a
strong baseline that is trained with domain data, and our method manages to further improve on its
results.
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Figure 1: A) KIMERA consists of three phases: I A target transformer model is fine-tuned and a
head-mask is computed identifying the model redundancies. II The computed head-mask is then
used in conjunction with a multi-task training scheme based on knowledge graph completion tasks.
This retraining aims to transfer domain knowledge to the attention heads identified as redundant.
III The retrained model is fine-tuned on the domain-specific task to culminate the domain transfer.
B) Examples of KG retraining tasks. I and II Entity Prediction with a Masked Language Mod-
elling objective. III Relation Prediction with a multiple class classification objective, and IV Triplet
Classification with a binary classification objective.

The contributions of this paper are as follows:

• Applying model compression-based analysis for targeted retraining of attention heads

• A novel Multi-Task retraining scheme based on Knowledge Graph Completion to integrate
structured knowledge

• Experiments on 5 different strategies to employ our method

• An evaluation on domain adaptation to the medical domain in 8 downstream tasks over
both BERT-base and BioBERT

• We publish PyTorch code1 and plan to upload trained models to huggingface.co

The remainder of this paper is structured as follows: Section 2 illustrates KIMERA’s process; 3
introduces the downstream tasks and Knowledge Graphs that we use in our experiments, Section 4
discusses the experiments and results on these tasks, Section 5 showcases related work and finally,
Section 6 discusses potential future work and conclusions. The appendix shows in Section A.1 a
discussion and analysis on the actual impact the retraining has on the model, as well as information
about the datasets we used in A.2, our hyperparameter optimization in A.3 and an evaluation of
KIMERA on General Language Understanding in A.4

2 METHODOLOGY

An overview of our method is depicted in Figure 1 A). We start with a pre-trained transformer
model, a domain-specific knowledge graph, and a downstream task within that domain that we
desire to improve on. KIMERA is composed of three major steps:

1. Compute the attention head importance of a fine-tuned model on the downstream task
we intend to improve on.

2. Retrain the less essential heads (using the attention mask generated in step 1) of a pre-
trained model using a multi-task knowledge graph generation scheme.

3. Fine-tune and evaluate the retrained model on the downstream task.

1https://anonymous.4open.science/r/kg-transformers/README.md
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2.1 COMPUTE ATTENTION HEAD IMPORTANCE

This first step enables the detection of the parameter redundancy that we aim to re-purpose. We
start with the model fine-tuned on a downstream task that we intend to improve on. We use recent
findings in transformer pruning to identify a subset of the model parameters (attention heads) that
can be targeted in the subsequent retraining step. Specifically, we follow Michel et al. (2019) in
their computation of the head importance and head pruning mask, where they modify multi-head-
attention MHAtt(Vaswani et al., 2017) into

MHAtt(x, q) =
Nh∑
h=1

ξhAtt(x, q) (1)

whereAtt is the vanilla attention, x is a sequence of d-dimensional vectors, and q is a d-dimensional
query vector. This proposed modification of the Multi-Head-Attention adds ξh as a binary control
variable that turns on or off a specific attention head h. Based on this modification Michel et al.
(2019) introduce a score of the relevance of each attention head.

Ih = Ex∼X

∣∣∣∂L(x)
∂ξh

∣∣∣ (2)

This importance score of each head Ih approximates the expected absolute sensitivity of the loss in
the downstream task L(x) to ξh, i.e. the sensitivity to having a specific head enabled for a subset
of the training or validation data X . In practice Ih is approximated by accumulating the absolute
of the gradients w.r.t the parameter ξh for each of the samples in X , then it is normalized resulting
in a value ranging from 0 to 1. Based on the importances Ih, the computation of the pruning mask
follows an iterative ablation of a proportion ρ of the attention heads, setting their corresponding ξh
to 0. This process halts once a threshold τ of the overall performance is reached. The result of this
process is a pruned fine-tuned model and a mask of L layers × M attention heads with values in
{0, 1} which we denote Mhard, where 0 implies a redundant head and 1 an attention-head that is
relevant for the downstream task.

Since our intention is not to compress the model, we diverge from Michel et al. (2019) by discarding
the pruned model, only retaining Mhard for our retraining in step 2. Our main contribution here lies
in interpreting these redundancies not as something to be cut away, but instead as something to be
repurposed. Specifically, we use these masks to selectively weigh the retraining of the network:

W lh
i+1 =W lh

i − η(1−mlh)∇L (3)

where W lh
i is one of the (Q,K, V ) attention matrices or the weight matrix of the dense output layer

(O) for the attention head h in layer l at training iteration i, ∇L is the loss gradient applied during
the backward pass, η is the general learning rate and mlh is the mask value of head h at layer l. We
explore the following three settings for this learning rate adaptation.

Discrete learning rate adaptation. This involves selectively freezing attention heads using
directly the information of the pruning (hard) mask. In this case the values mlh are strictly in
{0, 1}. Following our retraining step in equation 3, these values are inverted, yielding a non zero
learning rate only for the unimportant heads that could be pruned. With this we aim to keep the
most important heads untouched and focus only on retraining and improving the unimportant heads.

Soft attention-head mask. To address the fact that partially freezing specific heads during
the retraining could yield two sub-networks within the model that result in a disjointed representa-
tion, we slightly modify the computation of the head-mask. Here we also iteratively score the heads
with Ih. However, we omit the pruning of the unimportant heads in each iteration, and instead
of setting their ξh to 0 we set it to the last normalized Ih that would have made them pruning
candidates, retaining their importance in the resulting soft mask. This guarantees that the values
of the attention of the unimportant heads are not entirely removed in the forward pass, but rather
weighted according to their importance. We similarly stop the process once the overall performance
of the network on the downstream task has reached a proportion τ of the metric. The resulting mask
Msoft can be used as a soft weighting of the learning rate in our retraining step (3).

Weighing the forward pass. In addition to selectively weighing the backward pass, we ex-
plore applying the attention-head masks in the forward pass during retraining. Forward pass
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predictions are then only calculated using non-masked heads. This is to control the level of isolation
of the targeted heads as a sub-network. In conjunction with the masks, we treat this behavior as
another hyper-parameter of the retraining stage.

2.2 RETRAINING

This step uses a pre-trained model, an attention mask computed in the previous step, and a knowl-
edge graph, resulting in a model that can be fine-tuned on the final downstream task. We follow
a multi-task training scheme with tasks based on knowledge graph triplets. We adopt the common
Knowledge Graph Completion tasks of entity prediction, relation prediction, and triplet classifica-
tion, e.g. Bordes et al. (2011); Socher et al. (2013); Yao et al. (2019), and apply them in this novel
way. These tasks are intended to specialize the redundant or unimportant attention heads into the
domain of the knowledge base.

Multitask Training Scheme. We follow a multi-task scheme to force the target models to gen-
eralize by having a combination of multiple competing losses. We explore two different settings.
First, we attempt to improve existing pre-trained transformer models, namely BERT or BioBERT,
by retraining them. In the second setting, we train BERT from scratch exclusively on the knowledge
graph completion tasks to measure the extent of the complementary information added by a knowl-
edge graph. In each task, we target a single knowledge graph triplet denoted in a directed graph by
(s, r, o): subject node, relation edge, and object node, respectively. We adopt three link prediction
tasks focusing each on completing one of these s, r, or o triplet elements, and a fourth task validating
the plausibility of the whole triplet. Figure 1 B) depicts examples for these tasks. Each input row
depicted in this figure is embedded as a single input sequence, with separator tokens between the
columns.

Entity Prediction. We frame entity prediction as a Masked Language Modelling task (Devlin et al.,
2019). In our multi-task setting, this results in two tasks: given (s, r) or (r, o), o or s have to be
generated correspondingly. In contrast to Devlin et al. (2019), we mask and predict all tokens of o
or s. In both cases, this generation results in a sequence of tokens denoting the model’s predictions
for the masked component. The loss being optimized is token-wise cross-entropy over the model
vocabulary.

Relation Prediction. In this task, given (s, o), the objective is to predict r. While this task could also
be modeled with a (masked) language modeling objective similar to the Entity Prediction tasks, we
opt to implement this task as a multi-class classification since, in our case, the number of relations
in the graph is very small compared to BERT’s vocabulary. This simplifies the task substantially.

Triplet Classification. This task tests if a graph triplet is a valid triplet present in the knowledge
graph. Given a triplet (s, r, o), this task involves a binary classification to determine its plausibil-
ity. We take valid samples directly from the knowledge graph and generate an equal amount of
invalid samples by replacing one of the three components with the same component from a different
randomly selected triplet.

Multitask model architecture. To implement this multi-task setting we use the encoder part of the
transformer model, pool the output, and add linear layers, one for each task. These output layers
have the same size as the hidden size of the transformer model used. We experiment with different
pooling techniques as hyper-parameters, e.g. [CLS] token for BERT, average pooling, max pooling,
and a learned pooling method using an additional linear layer.

Optimization Objective. During training, we sample batches randomly from all tasks and compute
the main loss as a weighted sum of losses corresponding to each one of the tasks

L = α1L1 + α2L2 + ...+ αnLn (4)

where α1, ..., αn are scalar loss weights which are regarded as hyperparameters, and L1, ...,Ln are
the per-task loss functions, namely Categorical Cross Entropy in all tasks. This weighted sum over
the tasks is to weigh difficult tasks more strongly to prevent overfitting on some of the simpler tasks.
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2.3 FINE-TUNING

This is the final step proposed in KIMERA and it involves extracting the encoder from the retrained
model and fine-tuning it on the final downstream task as is common practice, yielding a model with
specific domain knowledge.

3 DATASETS AND DOWNSTREAM TASKS

Ideally, the knowledge graph that we instill into a language model has (1) large amounts of comple-
mentary information to the language model and (2) relevant information for solving the downstream
task. The performance of our retraining method relies on the combination of knowledge graph,
language model, downstream task fitting appropriately. We leave metrics and an algorithm for auto-
matically evaluating the fitness of such a combination to future work. To establish the adaptability
of our method, we choose eight datasets from the clinical domain with challenging tasks such as
zero shot-retrieval and extreme multi-class classification on hundreds of classes. Table A2 shows an
overview of those datasets. The clinical domain in particular exhibits issues like limited training data
due to privacy and regulatory issues, and idiosyncratic language, which may highlight insufficien-
cies in BERT’s capabilities Kalyan & Sangeetha (2020). Additionally, there is reasonable structured
data available for this domain in the form of UMLS(Bodenreider, 2004). It is for these reasons that
we decide on the clinical domain to evaluate KIMERA. We specifically highlight the clinical domain
as a subset of the general biomedical domain which is closely concerned with direct patient care.
We choose our tasks in favor of common tasks such as Named Entity Recognition and Relation
Extraction since in a clinical setting doctors do not find this type of information extraction suffi-
cient. Instead, they deem complex downstream tasks such as patient cohort retrieval and outcome
prediction more useful Miotto et al. (2016); Topol (2019).

3.1 KNOWLEDGE GRAPHS

We combine three knowledge graphs into one dataset: UMLS(Bodenreider, 2004), HSDN(Zhou
et al., 2014), and the graph from Rotmensch et al. (2017). We gather ∼2.5M knowledge graph
triplets with 43 unique relation types. We limit the sequence length of nodes to 100 tokens and edges
to 10 tokens, and pad accordingly. This is done to optimize computation speed while truncating
< 0.1% of triplets.

UMLS(Bodenreider, 2004) The Unified Medical Language System is an aggregation of dif-
ferent medical knowledge sources. This work specifically focuses on UMLS’ Metathesaurus, which
contains diseases, symptoms, medications, etc., as well as relations between them. From the 80
million relationship triples in UMLS, we filter for relevant relation types, samples that are not
missing one of the three field, and finally choose to keep only well-populated sub-relations with
more than 10k sample triplets. Thus we end up with ∼600k triples, which build our training corpus.
HSDN(Zhou et al., 2014) is constructed from ∼7M PubMed(Sayers et al., 2018) bibliographic
records. MeSH(Medical Subject Headings)(Lowe & Barnett, 1994) metadata is used to identify
symptom and disease terms. The co-occurrence of at least one symptom and one disease term is
then utilized to filter the PubMed records further. From these records, symptom-disease relations
are then extracted, resulting in ∼150k triplets.
Rotmensch et al. (2017) create a knowledge graph from electronic medical records collected
between 2008 and 2013 from a trauma center and tertiary academic teaching hospital. Concepts are
extracted by applying UMLS as well as other sources to these records. The graph is then constructed
by a set of three probabilistic models which relate symptoms and diseases. The resulting graph
contains ∼3k symptom-disease triplets.

3.2 CLINICAL ANSWER PASSAGE RETRIEVAL(CAPR)

Retrieving documents and passages from clinical documents is an important task in the medical
domain. We evaluate our models on the answer passage retrieval task of Arnold et al. (2020) in a
zero-shot setting and across four different datasets. The zero-shot setting puts an even higher burden
on each individual model since each model is evaluated as-is, and not fine-tuned to these datasets.
In particular, we only train the models on the WikiSectionQA dataset described below and evaluate
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them on 3 other datasets, MedQuad, HealthQA, and Mimic-III. In each of the datasets, the plain text
sections are used as candidates for the retrieval. The queries are tuples of a Named Entity and an
Aspect. As the aspect, we choose the heading of each section. We evaluate our models using the
Cross Encoder Architecture (Humeau et al., 2020), which calculates matching scores over the joint
sequence of all query and passage pairs. In this setting, we generate only one attention-head mask
for all four tasks. This mask is generated on a dataset that is combined from separately held out
parts of the test sets of each of the datasets.

MedQuad (Abacha & Demner-Fushman, 2019) is a QA dataset that consists of ∼50k Question-
Answer pairs from 12 National Institute of Health(NIH) websites. It spans 37 question types that
cover topics such as Treatment, Diagnosis, and Side Effects.
HealthQA Zhu et al. (2019) is created from articles from the health-services website Patient. The
articles comprise diverse health domains such as child health, mental health, details about treat-
ments, and others. In total it consists of ∼1k articles with an average of 6 sections per article.
Mimic-III Johnson et al. (2016) is a database of health-related data, associated with over 40k pa-
tients who stayed in critical care units. We focus on their discharge summaries, which are longer
than the typical maximum sequence length of BERT models and are therefore truncated to 376 to-
kens. We annotate Name Entities for this dataset using TASTY NERArnold et al. (2016) and again
use section headings as aspects.
WikiSectionQA (Arnold et al., 2020) consists of Wikipedia articles relating to the medical domain,
diseases in particular. Both Entity and Aspect annotations are provided, by utilizing Wikidata ids of
Entities and section headings. It also provides annotations for 27 normalized aspect classes.

3.3 CLINICAL OUTCOME PREDICTION(COP)

We adopt the admission notes dataset by van Aken et al. (2021) for the Clinical Outcome Prediction
tasks. They are based on special filtering of Mimic-III’s discharge summaries that simulate patient
information at the time of admission. This is achieved by only keeping the following sections: Chief
complaint, (History of) Present illness, Medical history, Admission Medications, Allergies, Physical
exam, Family history, Social history. In particular, this filtering hides all information about the
course and outcome of treatment of the patient during their stay.

In-hospital Mortality Prediction Task (MP) This task is a binary classification task, in which the
model determines whether a patient deceased during the hospital stay or not. The data is heavily
imbalanced with 90% of patients surviving their stay.
Length of Stay Prediction Task (LOS) Here the model classifies a patient’s stay at the hospital into
4 classes regarding the length of their stay: < 3 days, 3− 7 days, 1− 2 weeks, 2+ weeks.
Diagnosis Prediction Task (DIA) In this extreme multi-label classification task the model is tasked
with assigning ICD-9 diagnosis codes to a patient. Instead of 4-digit codes, we reduce the problem
to 3-digit codes, which results in 1266 ICD-9 codes with a power-law distribution.
Procedures Prediction Task (PRO) This task follows the diagnosis prediction task, being a multi-
label task utilizing 3-digit ICD-9 codes. There are 711 procedure codes that we use from Mimic-III.

4 EXPERIMENTS AND RESULTS

Our Experiments and Baselines are based on either BERT-base or BioBERT. For BioBERT we
choose dmis-lab/biobert-v1.1 from the huggingface transformers repository (Wolf et al., 2020), and
for BERT-base experiments we choose the best model out of BERT-base-uncased and BERT-base-
cased. For the Clinical Answer Passage Retrieval, we find that hyperparameter optimization does
not have a significant impact, and manually choose reasonable values from several trials. In contrast,
Clinical Outcome Prediction is very sensitive to hyperparameters. Therefore we carry out a thorough
hyperparameter optimization based on HyperOpt (Bergstra et al., 2013) for all evaluated models.
Table A3 depicts the full scope of our optimization process. All KIMERA models are trained on
the full set of knowledge graph triplets and for a maximum of 5 epochs, but most models converged
after a single epoch. Although the parameter α could weigh partially the loss on the tasks, in
our experiments it was only used discretely to enable or disable distinct tasks. We find in our
experiments that it is usually most beneficial to keep all αn at 1 and leave the exploration of soft
weightings to further research. On a single Nvidia V100 GPU, one epoch takes 18 hours. We
choose the head masks resulting from the best base model, calculated with performance threshold
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τ ∈ [0.95, 0.98, 0.99] and a per step pruning ratio ρ = 0.1. An exploration of the effect of the
selective retraining of attention heads with KIMERA is done in A.1. Additionally we probe the
general language capabilities of KIMERA in A.4.

Model MedQuad HealthQA Mimic-III Wiki MP LOS DIA PRO

R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5 AUROC AUROC AUROC AUROC

BERT-base 52.63 60.80 40.30 81.82 59.74 72.07 35.44 77.66 81.13 70.40 82.08 85.84
BERT-base(pruned) 50.71 60.45 39.92 78.12 61.96 72.64 35.23 75.12 81.07 70.14 80.21 83.48
KIMERA scratch 32.88 74.17 31.23 83.45 23.63 41.77 20.63 59.85 75.75 65.74 51.1 64.91
KIMERA no-mask 64.68 92.33 49.01 80.31 65.68 79.78 50.38 80.44 81.63 69.55 82.47 85.91
KIMERA hard-mask 71.94 94.52 50.53 82.71 67.13 80.52 51.73 80.72 81.88 69.02 82.59 85.95
KIMERA soft-mask 70.33 93.81 49.50 81.69 67.94 81.82 51.25 81.31 81.20 68.11 82.35 85.49
KIMERA b+f 70.41 93.91 49.22 80.99 68.07 80.43 50.81 81.24 65.72 55.36 81.45 84.21

BioBERT 78.86 97.06 62.07 91.59 64.89 78.81 61.31 90.69 82.55 71.59 82.81 86.36
KIMERA BioBERT 79.74 97.93 64.14 92.26 65.22 79.02 62.48 94.32 82.87 71.42 83.56 88.44

Table 1: Results on CAPR across four datasets using the Cross Encoder architecture(left) and four
COP tasks(right). Top part shows scores for models based on BERT-base, bottom part scores for
models on BioBERT. KIMERA improves on both BERT-base and BioBERT performance, with the
exception of the LOS task.

4.1 MODELS AND BASELINES

We focus on the BERT architecture and the domain specific BioBERT, we explore different
variations of KIMERA.

BERT Base. BERT (Devlin et al., 2019) We focus on the smaller BERT-base and choose
from the English pre-trained models and use the best of BERT-base-uncased and BERT-base-cased
for each task.

BERT Base(pruned). This BERT Base model is created via the pruning scheme of Michel
et al. (2019). The authors showed that this model sometimes outperforms BERT-Base solely due
to pruning. Therefore, we include this baseline to confirm that the improvements of our methods
cannot be achieved solely by pruning.

BioBERT (Lee et al., 2020) follows the same architecture as BERT-base-cased. This model
is pre-trained on PubMed, and is a state of the art medical language model. This model was trained
for 23 days on 8 V100 GPUs, which is up to 50-250 times slower than using KIMERA to create a
domain-specific model.

KIMERA no-mask, hard-mask, soft-mask make use of different types of masks during the
retraining step. no-mask uses no mask at all, whereas hard-mask and soft-mask explore the
corresponding discrete and soft learning rate adaptation proposed in 2.1.

KIMERA from-scratch. We investigate the KG retraining as the sole pre-training step. We
randomly initialize BERT-base apply the multi-task KG training, before fine-tuning on the down-
stream tasks.

KIMERA b+f. We base KIMERA b+f on KIMERA hard-mask, but apply the mask both in
the backward and forward pass as discussed in 2, which leads to a strict isolation between frozen
and unfrozen heads.

KIMERA BioBERT follows KIMERA hard-mask but uses BioBERT as a base model, and
not BERT-base . We seek to investigate if KIMERA can be used for efficient domain transfer as
well as for improving already domain-specific models with additional structured data.

4.2 CLINICAL ANSWER PASSAGE RETRIEVAL

For the clinical passage retrieval tasks we choose to calculate only one Attention Mask ahead of
retraining over all the tasks jointly instead of calculating individual masks for each task, due to
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the zero-shot setting of this benchmark. Table 1 reports results in these tasks. The Cross Encoder
shows significant performance differences between models. Most notably KIMERA hard-mask and
KIMERA soft-mask outperform BERT-base across all tasks with a margin of up to 20% in R@1
and up to 35% in R@5. Even KIMERA no-mask achieves notable performance boosts. This can
be ascribed to the functioning domain transfer with the help of information from UMLS. We also
evaluate our methodology on BioBERT and manage to overcome it in all the retrieval tasks, sug-
gesting that KIMERA serves as well to further specialize BioBERT in the medical domain. In the
case of Mimic-III, BioBERT is only marginally ahead of BERT-base. KIMERA only beats both of
them by a few percentage points, in contrast to the other tasks. One reason for this could be that
domain-specific data is less relevant than for the other tasks.

In general, using an attention-head mask during the re-training does lead to a performance increase
over our no-mask approach. However, none of the masking strategies is clearly better than the
others. KIMERA from-scratch generally under-performs in all of the retrieval tasks. This reinforces
the fact that the information contained in UMLS is only complementary and not a replacement to
the general language knowledge of a pre-trained model. In general, simply pruning the model did
not improve performance for these tasks with the exception of Mimic-III. This demonstrates that the
performance increases we observe for KIMERA do not stem from the pruning alone.

4.3 CLINICAL OUTCOME PREDICTION

For this benchmark an attention mask is generated for each of the tasks individually. In contrast
to the Passage Retrieval tasks, the Clinical Outcome Prediction setting shows significantly lower
variance in the performance between models. van Aken et al. (2021) highlight numerical errors as
one of the major error classes in these tasks, emphasizing that their evaluated models do not follow
medical reasoning, but focus on statistical observations. This fact in combination with the already
strong performance of the base architecture of BERT-base could account for the small variance.

As shown by Table 1, KIMERA BioBERT achieves the best results with the exception of the Length
of Stay task. Similarly, when applying KIMERA to BERT-base we achieve consistent improve-
ments. The different masking strategies of KIMERA performed closely without any particular one
standing out as the best. The results of KIMERA from-scratch confirm the complementary nature
of the UMLS data we found also in the Passage Retrieval tasks. The pruned BERT-base model did
not provide performance benefits in these tasks either.

For both the Mortality Prediction and Length of Stay task the back+forward approach performed
significantly worse. Given the almost equal performance to other KIMERA models in other tasks,
we deem these as outliers that are caused by an insufficient amount of hyper-parameter optimization.

The Length of Stay task stands out as the only downstream task, including the results of the Clinical
Answer Passage Retrieval, where KIMERA did not achieve improvements.

5 RELATED WORK

Our work stands separate from Graph Neural Networks where the focus lies on creating graph em-
beddings, these are orthogonal to our approach. We base our findings on recent advancements in
three different areas of research: model compression, domain transfer, and Knowledge Graph Com-
pletion/Generation.
Model Compression is an area of research focused on retaining the original performance of a given
model while reducing the number of its parameters. Notable examples are See et al. (2016), who
among others popularized pruning techniques in NLP and specifically NMT, and Sanh et al. (2019),
who use a student-teacher approach (Knowledge Distillation) to yield a smaller but powerful BERT
model. Most closely related to our work are Michel et al. (2019) with an analysis of the efficacy
of attention heads. The authors successfully prune a substantial number of attention heads, while
retaining, or in some cases even improving, on the original network’s performance. We follow their
method to determine the importance of attention heads concerning our downstream tasks, but instead
utilize it to boost performance and inject new knowledge.
Domain Adaptation. While Transfer Learning (Pan & Yang, 2009) is common for transformer
networks due to widely available pre-trained models, domain transfer is a more narrow sub-field.
Xu et al. (2019) demonstrate the efficacy of a post-training or retraining step while Du et al. (2020)
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create two retraining tasks: domain distinguishing, and target domain masked language model-
ing. Instead of relying on self-supervised tasks on raw text, our retraining is based on structured
data and knowledge graph completion. We target specifically the medical domain. Bapna & Firat
(2019) explore domain adaptation in the field of Neural Machine Translation. Their solution adds
feedforward-based adapter layers into the network, that contain domain-specific knowledge. Our
work instead focuses on implicitly merging domain-specific and general knowledge in the network,
rather than adding separate modules.
Medical Language Models. There has been a surge in NLP research specifically concerned with
the medical domain. BioBERT (Lee et al., 2020), demonstrates how domain-specific models can
be created via pre-training directly on domain-specific data. Chakraborty et al. (2020) and others
follow the same approach utilizing different pre-training corpora. In contrast, we explore leveraging
already trained general-purpose pre-trained transformers and re-purposing them for niche domains.
Thus, we substantially ease the requirements of data and computational resources in comparison to
aforementioned models. Zhang et al. (2020) and Hao et al. (2020) train models using UMLS, but do
so with significantly different training objectives, and evaluate on the biomedical domain instead of
the clinical one.
Structured Knowledge Integration attempts to enhance results in NLP tasks by explicitly query-
ing external Knowledge Graphs or adding complementary architectural modifications to language
models. Zhao et al. (2020), Bosselut & Choi (2019), Liu et al. (2020), Zhong et al. (2019) and others
make use of explicit sub graphs, which are sometimes dynamically generated. Zhang et al. (2019)
align entities and integrate their matching embedding of a knowledge graph introducing an addi-
tional objective to mask language modelling at pre-training. Peters et al. (2019),He et al. (2020) and
Wang et al. (2020) train additional transformer-based sub-networks specialized on KG information,
and which are used in addition to or are integrated into other networks. In contrast to these works,
KIMERA works entirely on the existing architecture of a pre-trained transformer language model. It
does not integrate additional modules nor parameters and does not require access to the knowledge
graph once the retraining has been completed, containing its knowledge only implicitly.
Knowledge injection involves specializing the knowledge of language models during the training
process. Faruqui et al. (2015) refine word representations with an objective function, which opti-
mizes words that are close in a knowledge graph to be close in the embedding vector space. Ye et al.
(2019) incorporate commonsense knowledge into transformers via pre-training by constructing a
multiple-choice Question Answering dataset from a knowledge graph. Zhang et al. (2020) focus on
UMLS, however use Concept Alignment as a training objective, integrating PubMed and other med-
ical literature. Furthermore, Wang et al. (2021) and Hao et al. (2020) inject factual knowledge from
UMLS and Wikidata, by adding additional objectives to common transformer pre-training. Closest
to our work, Kim et al. (2020) use a multi-task setting to solve two knowledge graph completion
tasks and a graph-triple ranking objective in a re-training scheme. As opposed to these works,
KIMERA uses a specific multi-task intermediate retraining scheme, which is based on Knowledge
Graph Completion/Generation, driven by a selective freezing of the attention heads.
Knowledge Graph Generation focuses on extending knowledge graphs by generating new triplets.
Petroni et al. (2019), Yao et al. (2019) and Bosselut et al. (2019) demonstrate the Knowledge Graph
Generation capabilities of Transformers in particular. We build on these works, by using this gener-
ation as an intermediate step to ground the knowledge into the language model and improve down-
stream task objectives. Joulin et al. (2017) propose a fastText-based architecture for node generation,
while also combining it with a question answering objective. We extend these tasks with a triplet
classification objective and apply them in a different setting to a pre-trained transformer.

6 CONCLUSION

We propose a novel training methodology for improving pre-trained Language Models and adapting
them to the clinical domain. Further, we demonstrate the efficacy of utilizing structured knowledge
from clinical knowledge graphs in a domain adaptation training scenario via knowledge graph gen-
eration. We explore different strategies for freezing attention heads during retraining and achieve a
significant and consistent improvement over strong baseline models. Our careful experiments con-
firm our hypothesis that KIMERA adequately compensates for limited training data and domain
knowledge. It makes large transformer models adaptable with limited effort and our results show
that KIMERA manages to improve on the already strong biomedical baseline of BioBERT.
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Choi. COMET: commonsense transformers for automatic knowledge graph construction. In Anna
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A APPENDIX

A.1 DISCUSSION AND ANALYSIS

We inspect qualitatively the effects of our selective retraining of the attention heads for the Clinical
Answer Passage Retrieval setting. We do this for our KIMERA hard-mask experiment.

Model Downstream Redundancy Figure A1 A presents the mask for freezing the important
(yellow) heads and retraining the unimportant (purple) heads. The most noticeable aspect of this
mask is the high number of heads that are rendered as unimportant, namely 102 heads or 70.8% of
the model. This high level of redundancy is compatible with the performance gains we see for this
task after applying KIMERA.

Figure A1: Attention head importance with and
without KIMERA for the CAPR task. A) Head
mask used for retraining. B) and C) present
the head importances Ih before and after using
KIMERA, respectively. Our method results in
relatively higher and more homogeneous impor-
tance of the heads.

Figure A2: Importance changes per layer for the
CAPR task. A) Average importance Ih per layer
before and after KIMERA. B) Number of re-
trained heads that saw an improvement or de-
crease in their importance after KIMERA. C)
Number of frozen heads that saw an improvement
or decrease in importance with our method. On
average the importance increases per layer, the
retrained heads present an overall increase in im-
portance. In contrast, the frozen heads are more
mixed in their importance change.

Heads Ih Before KIMERA Ih After KIMERA

Frozen 0.60 0.53
Retrained 0.17 0.37

Table A1: Mean importance scores Ih before and after KIMERA for the frozen and retrained heads
of the model in the CAPR task. The importance score more than doubles for the retrained heads
while it moderately decreases for the frozen heads.

Head relevance improvement. In parallel, Figure A1 B and C show the attention-head importance
scores, the former corresponds to the fine-tuned BERT-base and the latter to the KIMERA
hard-mask using A for the retraining step. It can be seen that the general head-attention importance
shown after KIMERA tends to be higher on average (yellow) and more homogeneous. We expand
on this by analyzing the mean improvement of the importance scores Ih per layer which is shown
in Figure A2 A). All the layers present an overall increase in importance w.r.t. the downstream
task. Furthermore, we count the number of heads that increase or decrease in importance, but now
accounting for the retrained and frozen heads separately; this is shown in Figure A2 B) and C)
accordingly. For the retrained heads, the positive increase of importance is dominant across all
layers. This is true not only for their count, but also for the retrained-average importance score Ih
shown in Table A1, which more than doubles from 0.17 to 0.37. In contrast, the split of frozen heads
that increase or decrease in importance is more mixed, and we notice only a moderate decrease of
their average importance scores from 0.60 to 0.53 after applying KIMERA. This behavior supports
the intuition that not only the model has become better at the downstream task, but also that the
retrained heads have become more relevant for this improvement.
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Limitations. Our proposed methodology is only suitable in the case of domain transfer
when the underlying multi-head transformer model underperforms significantly on a benchmark.
This is evident in the stark contrast between the gains achieved by KIMERA in the CAPR and COP
tasks. The main factors behind this are the level of redundancy of the model for the task, which we
gauge by the head-masks, and how complementary the target Knowledge Graph is. The latter is an
open question that we leave for further work.

A.2 DATASET INFORMATION

Dataset # Samples # Classes

Clinical Answer Passage Retrieval
Wikipedia(Train) 51,299 -
Wikipedia(Eval) 4,367 -
HealthQA 3,762 -
Medquad 1,060 -
Mimic-III 213,788 -

Clinical Outcome Prediction
Mortality 48,745 2
Length of Stay 48,745 4
Diagnosis 48,745 1266
Procedures 48,745 711

Table A2: Properties of Downstream Datasets.

A.3 HYPERPARAMETER OPTIMIZATION

Parameter Parameter Space

Masking Step
ρ 0.1
τ 0.95, 0.98, 0.99

Retraining Step
Learning Rate [5e-5, 3e-6]
αn 0, 1
Warm-up Steps [1000, training steps/2]
Epochs [3, 5]
Patience 3
Dropout Last Layer 0.1, 0.25, 0.8
Dropout Hidden Layers 0.1, 0.25
Dropout Attention 0.1, 0.25

COP Fine-tuning Step
Learning Rate [3e-5, 1e-6]
Warm-up Steps [100, training steps/2]
Dropout [0.1, 0.5]
Batch Size [1×16, 8×16 ]

CAPR Fine-tuning Step
Batch Size [1×8, 8×8]
Learning Rate 3e-4, 3e-5

Table A3: Hyperparameter considerations for the different steps of KIMERA. While only minimal
HPO was necessary for most steps, we find that the clinical outcome prediction tasks require exten-
sive HPO, in order to reach state-of-the-art results. Learning Rate and Warm-up Steps turned out to
be the most impactful parameters.
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A.4 GENERAL LANGUAGE UNDERSTANDING (GLUE)

We evaluate BERT-base, BioBERT, and two distinct versions of KIMERA, no-mask and hard-mask
on GLUE in order to determine their general language capabilities. The results are detailed in Table
A4. The KIMERA models used here are from the CAPR tasks, i.e. the head masks used for their re-
training come from this clinical setting and not from GLUE fine-tuned models. We use this rationale
in order to ensure a fair comparison between KIMERA and BioBERT in how their improved domain
knowledge comes at the expense of general language ability. As expected, BERT-base outperforms
the biomedically trained BioBERT across all tasks with its pre-training focused on general language
understanding. Furthermore, the comparison between KIMERA no-mask and KIMERA hard-mask
shows that the hard-mask version, where only a subset of the attention heads have been retrained, is
consistently superior to the non-mask version. This supports our intuition that the masking process
enables the model to retain more of its language ability during the transfer learning process. Notably,
KIMERA outperforms even BERT-base in 3 of the GLUE tasks. While we expected KIMERA with
clinical training to perform slightly worse than BERT-base since the knowledge graph task data does
not contain proper grammar in its triplets and therefore skews language perception, the results show
that for CoLA, QQP and WNLI tasks this training is particularly beneficial and leads to significant
improvements over BERT-base.

Single-sentence Similarity and paraphrase Inference
Model CoLA SST-2 MRPC STS-B QQP MNLI QNLI RTE WNLI Mean

BERT-base 59.05 93.34 89.37 88.79 89.84 85.12 91.78 69.31 49.30 79.54

BioBERT 43.70 91.28 88.51 88.15 89.59 83.97 90.84 67.50 32.39 75.10
KIMERA no-mask 60.17 92.20 87.71 88.12 89.53 84.49 90.35 67.50 60.17 80.02
KIMERA hard-mask 62.06 93.00 88.93 88.53 90.63 84.65 91.15 69.12 62.05 81.13

Table A4: We report the results of the GLUE benchmark with 4 sample models on the validation
set. We choose the best score between 10 seeds for each task. We show that KIMERA consistently
outperforms BioBERT on all tasks, and manages substantial improvements over the general lan-
guage model BERT-base in 3 tasks, most significantly in the WNLI task. KIMERA also achieves
the highest mean score of tested models.
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