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Abstract—Wearable devices have begun to incorporate 
machine learning models to assist with detection of various cardiac 
conditions. In this work, we developed a multi-task convolutional 
neural network to simultaneously predict 75 diagnostic, form and 
rhythm statements from 10-s duration, 12-lead ECGs. The model, 
originally developed off-line in TensorFlow, was converted to the 
FlatBuffers format for on-edge AI using the LiteRT toolset. Post-
training quantization was used to compare different numerical 
precisions in terms of model size, model performance and 
inference time. Classifier performance for the 12-lead 
configuration was consistent between the 32-bit floating point 
model (“float32” baseline), the dynamic range quantized model 
(DR) and the float16 model (p=0.92) with an average macro AUC 
score of 0.893 with all output statements considered. A large 
degradation in classification performance was observed for 8-bit 
integer quantization (int8) which yielded an average macro AUC 
score of 0.513 for the 12-lead configuration across all statements. 
To address class imbalance, minority classes were removed. 
Reducing the number of statements to 41 classes increased macro 
F1 score by an average of 72.6% (to a mean value about 0.358) for 
the float32, float16 and DR quantized models. 
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I. INTRODUCTION 

Since 1921, the United States Centers for Disease Control 
and Prevention has identified heart disease as the leading 
cause of death in the United States. This trend continues over 
100 years later with a 2024 report noting that 48.6% of 
individuals in the United States have some type of 
cardiovascular disease such as coronary heart disease, heart 
failure, stroke and/or high blood pressure. Over time, 
improvements in diagnostics and available treatments have 
helped to reduce morbidity and mortality [1]. In recent years, 
clinical and consumer grade wearable devices have also come 
to play a role in the detection of some cardiovascular concerns 
through remote monitoring of the electrocardiogram (ECG). 
Clinical grade wearables, such as Holter monitors and event 
monitors, have enabled remote patient monitoring over the 
span of a few hours and in some cases up to a month, 
potentially capturing irregularities in the electrical activity of 

the heart. These devices allow clinicians to record intermittent 
irregularities/arrhythmias that may not have been present 
during an in-office patient visit. With the increased available 
ECG data also comes greater interpretation burden on the 
clinicians. To alleviate this burden, machine learning and AI 
tools have been implemented to assist.  

There are many classification models found in the 
literature and integrated into consumer devices; many of these 
models focus on the binary classification of abnormal or not, 
while most others focus on detecting a specific condition or 
small group of conditions. While these classifiers are helpful 
in identifying a concern and will hopefully lead to appropriate 
interventions, they are limited in their diagnostic contribution 
and often require further testing. With the advent of machine 
learning and AI, deeper machine learning models have 
become more widely available, which in turn enables more 
complex classifiers that may provide more information about 
possible conditions. However, adoption of such models is 
limited by their large computational and memory costs. This 
work investigates the impact of standard post-training 
quantization approaches on the performance of a multi-task 
convolutional neural network (MT-CNN) trained to identify 
ECG statements from three distinct groups of conditions from 
the multi-label PTB-XL dataset [2], [3], [4], for different 
number of inputs (ECG leads) and outputs (classes 
considered). The goal of this work is to show that existing 
post-training quantization approaches are sufficient in 
enabling effective, multi-task, on-device classification of 
ECG statements without compromising performance. The use 
of post-training quantization without calibration or retraining 
provides a valuable performance baseline that can inform 
future deployment or optimization efforts.  

II. RELATED WORKS  

Numerous algorithms have been proposed over the years to 
aid in the interpretation of ECG signals. Since its release, the 
MIT-BIH arrhythmia dataset has enabled researchers to 



develop algorithms and machine learning models to identify 
different arrythmias. Other datasets, both private and public, 
such as the PTB and PTB-XL, cover conditions beyond 
arrhythmias [2], [5]. In conjunction with the growth of wearable 
and IoT devices, these models are becoming more 
computationally efficient, enabling on-edge computation which 
comes with benefits such as improved security, reduced 
reliance on wireless networking and longer-term monitoring for 
clinical and consumer applications.  

Xie and Lin proposed a novel model called YOLO-
ResTinyECG for arrhythmia detection using ECG images [6]. 
Their model incorporates YOLO object detection with a 
lightweight residual network and utilizes a weighted cross-
entropy loss function during training to improve classification 
of minority arrhythmia classes. Their models were trained to 
detect 6 or 9 possible arrhythmias with varying window lengths 
and then deployed to a Jetson Nano Development Kit 
(NVIDIA, Santa Clara, USA). They achieved a mean average 
precision (mAP) of 92.35% (F1 score of 0.89) for a 6 class 
detector and a mAP of 90.2% (F1 score of 0.82) for a 9 class 
detector. The aims of their work align with the work described 
herein, but focus on arrhythmia-only detection, while our work 
also includes form and diagnostic classification.   

Kim et al. [7] utilized the MIT-BIH arrhythmia and PTB 
diagnostic datasets to train a CNN model to detect normal or 
“abnormal” ECG in a real-time embedded system using the 
Arduino Nano BLE Sense development kit. Their model 
consists of two CNN blocks (a convolutional layer, max. 
pooling and dropout) followed by a flattening layer and then 
two dense layers. To convert their model to run on a 
microcontroller, the authors used TensorFlow Lite for 
Microcontrollers, the toolset preceding LiteRT (LiteRT was 
used in this work). Their 27 kB lite model achieved an accuracy 
of 97% when tested on the PTB test data. Their work 
demonstrates the ability to run a lightweight CNN model in an 
embedded environment, but is limited in the information output 
from the model as no specific details are provided.  

In this work, a MT-CNN was trained and then quantized 
using LiteRT to evaluate its ability to classify all 75 statements 
in the multi-label PTB-XL dataset for a resource constrained 
environment such as wearables or remote patient monitoring 
devices. While many prior works have focused on the 
classification of fewer classes, such as the classification of only 
arrhythmias [6] or normal vs. “abnormal” [7], this model is able 
to classify diagnostic, form and rhythm statements. In a 
wearable ECG monitoring system, minimizing the number of 
physical electrode connections to the subject can make the 
system easier to wear, so this model was also trained for 3 
different combinations of ECG leads to study the influence of 
using a reduced ECG lead set on model size, inference time and 
classification performance. Additionally, to address class 
imbalance, minority classes were excluded, and performance 
was re-considered. Evaluation of lead- and class-subsets are 
practical steps towards on-device deployment to an embedded 
wearable device in which a reduced lead set is more accessible. 
LiteRT was used to quantize and evaluate the model since it 
enables the deployment of TensorFlow models to a large set of 
possible target environments such as Raspberry Pi, 

microcontrollers, or iOS and Android [8].  

III. METHODS 

A. Data Used  

The publicly-available PTB-XL dataset consists of 21,837 
12-lead ECGs measured from 18,885 patients [2], [3], [4]. The 
PTB-XL recordings were sampled at 500 Hz over a 10 second 
duration. This ECG dataset was annotated by up to two 
cardiologists and contains ECG statements spanning 44 
diagnostic (e.g., normal, hypertrophy, myocardial infarction), 19 
form (e.g., abnormal QRS, digitalis-effect) and 12 rhythm 
categories (e.g., atrial fibrillation, sinus tachycardia, atrial 
flutter). Four of the form statements overlap with the diagnostic 
statements. In this work, the train (80%), validation (10%) and 
test split (10%) recommended by the authors of  [3] was used as 
they provided splits that balanced label, age and sex distribution. 
All leads were standardized to zero mean and unit variance.  

B. Classification Model Architecture 

A MT-CNN was used to classify the statements in the PTB-
XL dataset. The MT-CNN consists of six shared convolutional 
blocks (with filter sizes of {128, 128, 256, 256, 128, 128}) built 
from a convolutional layer, batch normalization layer and 
rectified linear unit (ReLU) activation function. Following the six 
convolutional blocks is a global average pooling layer. After this 
pooling layer, the model splits into the tasks of classifying the 44 
diagnostic, 19 form and 12 rhythm statements. Each output path 
consists of two dense layers, the first utilizes a ReLU activation 
and the second utilizes a sigmoid activation function to generate 
the likelihood of each statement. The number of parameters 
varies based on the number of inputs and outputs, ranging from 
1,709,741 for the model with 3 inputs and 41 outputs up to 
1,728,971 for the model with all inputs and outputs. When 
training the model, the ADAM optimizer was used with a 
learning rate of 0.001 to train over 30 epochs with a batch size of 
128. The focal loss function was used to address class imbalance 
at the algorithmic level [9]. Training was conducted using an 
NVIDIA A100-SXM4-80GB graphics processing unit.  

C. Varying Number of Input Leads and Number of Outputs  

A clinical ECG recording typically uses a standardized set of 
12-leads measured using electrodes placed across the upper body 
to ensure sufficient spatial measurement resolution [10]. In a 
clinical setting, capturing a 12-lead ECG usually takes only a few 
minutes. While 12-lead ECGs can provide a quick, non-invasive 
look at the electrical activity of the heart, they can be 
cumbersome to capture outside of the clinical setting. For clinical 
grade remote patient monitors such as the Holter monitor or event 
monitors, and consumer wearables, it is common to acquire only 
a subset of ECG leads or a single lead. In such devices, 
computational resources may be constrained and, practically, it 
is inconvenient for users to have multiple wires connected to their 
chest while trying to perform day-to- day activities. In this study, 
the classification model was trained for three different sets of 
ECG inputs: a full 12-lead; a 5-lead subset consisting of Leads I, 
II, V1, V3, and V6; and a 3-lead subset consisting of Leads I, II, 
and V2. Selection of these lead subsets was made based on 



preliminary model analysis in which it was observed that the 
classification performance was maintained as the number of 
inputs was reduced from 12-leads down to as few as 3-leads [11]. 

To address class imbalance in the PTB-XL dataset, the 
classes with the fewest samples were then excluded when 
training the model. Removal of underrepresented classes was 
pursued as it is a conservative approach to address class 
imbalance in the absence of additional training data. The use of 
data augmentation, data resampling or more robust training 
schemes could alleviate the effects of class imbalance but at the 
risk of introducing bias into the model. Model performance was 
compared with all outputs, 56 outputs (smallest 8 diagnostic, 4 
form and 3 rhythm classes removed) and 41 outputs (smallest 
16 diagnostic, 8 form and 6 rhythm classes removed). A 
minimum of 50% of the original outputs were retained.  

D. Model Quantization and Evaluation  

Post-training quantization was employed to compare the 
model performance achieved at various levels of precision. 
When using post-training quantization, the model was trained 
without any awareness of the intent to quantize and the saved 
model was quantized during conversion to the FlatBuffer model 
format for on-edge computing [8], [12]. Three quantization 
schemes were tested: dynamic range (DR), float16 and integer 
(int8) quantization. DR quantization converts weights to 8-bit 
integers statically at conversion time. The activations are stored 
as floating point values but are dynamically quantized to 8-bit 
precision during inference if required. Float16 quantization 
quantizes the original 32-bit floating point weights to 16-bit 
floating point weights, effectively cutting the model size in half. 
Int8 quantization converts 32-bit floating point weights and 
activations to the nearest 8-bit fixed point numbers. The 
unquantized LiteRT model was our measure of baseline 
performance. This model maintains the default TensorFlow 
precision of 32-bit floats but in the LiteRT FlatBuffer format [8].  

The quantized models were evaluated in Python using the 
LiteRT Python Interpreter. To measure the classifier’s test set 
performance after quantization, the macro area under the receiver 
operating characteristic curve (AUC) was computed for each 
task. The change in macro F1 score was used to assess the impact 
of reducing the number of possible outputs as macro AUC scores 
are less sensitive to class imbalance [13]. To evaluate the 
influence of quantization, the model size in bytes and average 
inference time were also considered. Inference time was 
measured as the time required to run a single model invocation.  

Statistical analyses were performed for each input-output 
combination considered for the class-wise AUC scores and 
inference times achieved during each test run. The Kolmogorov-
Smirnov test indicated that the class-wise AUC scores and 
inference times were not normally distributed for any input-
output configurations (p < 0.001), so the Friedman test compared 
model class-wise AUC scores and inference times (separately) 
for the four quantization schemes considered. All instances of the 
Friedman test indicated statistically significant differences 
between the four quantization schemes considered when testing  

Fig. 1. Heatmap of the Macro AUC Scores for each configuration considered 

the class-wise AUC scores and inference times (p < 0.001). Thus, 
post hoc pair-wise comparisons were performed using the  
Wilcoxon signed-rank test with Bonferroni-Holm correction. 
Results were statistically significant for a p-value less than 0.05. 

IV. RESULTS 

A. Classification Performance  

As shown in Fig. 1, the macro AUC scores for each output 
of the MT-CNN showed little to no change between the 32-bit 
model, the float16 quantized model and DR quantized model. 
No statistically significant differences were found in the 
pairwise comparisons of these 3 quantization schemes (p > 
0.185) with the exception of the float32 and DR models for the 
{5-lead, 41 output} model (p = 0.045). When quantized to int8 
precision, the macro AUC score dropped to ~0.5 indicating 
poor classification performance. Statistically significant 
differences were observed for all pair-wise comparisons of the 
int8 models to the other 3 quantizations (p < 0.001).  

Macro AUC scores are not as sensitive to class imbalance 
as macro F1 scores. To assess the impact of removing the 
classes with the fewest samples, the change in macro F1 score 
was considered when removing ~20% of classes as well as 
when removing ~40% of classes. Results from the int8 
quantization were excluded due to the model’s poor 
performance at this precision. For the 12-lead models (Fig. 2), 
the macro F1 score increased by an average of 37.88% across 
the three output categories (from 0.149 to 0.198 for diagnostic, 
0.129 to 0.182 for form, and 0.341 to 0.474 for rhythm) for the 
32-bit, float16 and DR quantization when the number of outputs 
was reduced from 75 to 56. When the number of outputs was 
further reduced from all outputs down to 41, the macro F1 score 
increased by 72.6% (from 0.149 to 0.262 for diagnostic, 0.129 
to 0.215 for form and 0.341 to 0.594 for rhythm). 

B. Model Size and Inference Time 

Model size decreased with decreasing model precision. The 
average model size (±standard deviation) for the 32-bit models 
is 6.549±0.028 Mb. The average model size of the float16 
quantized models is roughly half that of the 32-bit model at 
3.283±0.014 Mb. For the DR and int8 quantized models, the 
average model size is roughly a quarter of the 32-bit model at  



TABLE I.  INFERENCE TIME, IN MILLISECONDS (MEAN±STANDARD 
DEVIATION OF 2198 TEST RUNS) 

Inputs/ 
Outputs 

Quantization 
None Float16 DR Int8 

12/All 150±4 148±2 135±1 149±1 
12/56 147±2 147±2 134±2 148±2 
12/41 148±2 148±2 134±2 148±2 
5/All 148±4 147±1 134±1 148±1 
5/56 198±3 201±3 35±1 44±1 
5/41 198±3 202±4 35±1 44±1 
3/All 203±5 213±3.8 36±1 43±1 
3/56 197±2 202±2 35±2 43±2 
3/41 201±5 204±4 37±1 44±1 

1.6668±0.007 Mb and 1.681±0.007 Mb, respectively. 

Table I contains the average (±standard deviation) inference 
times for each model configuration. Statistically significant 
differences were detected between the inference times for all 
pair-wise comparisons of quantizations for each input and 
output scheme (p < 0.001). On average, the smaller DR and int8 
models ran faster than the 32-bit float and float16 models.  

V. DISCUSSION & CONCLUSIONS 

To determine the feasibility of adapting the MT-CNN for a 
resource constrained application, such as a wearable ECG 
monitor, the model was quantized to study the impact on 
classification performance, model size and inference time. 
Classifier performance was maintained when numerical 
representation was compressed using the float16 and dynamic  
range post-training quantization, and the model’s memory 
footprint was noticeably reduced. For applications in which 
memory is constrained, the DR model would likely be the most 
suitable as it provided the same level of classifier performance 
with the smallest model size. In comparison to the model in [7] 
which uses 27 kB/output, our DR model uses 22 kB/output. In 
terms of inference time, on average, smaller models had shorter 
inference times, but this trend may have been influenced by 
simultaneous processes running on the testing machine. 

To improve overall model performance, a more robust data 
pre-processing stage should be considered. The inclusion of this 
stage can work to reduce noise from sources such as powerline 
interference, baseline wander and motion artifact, which can be 
detrimental in a wearable system [14]. Additionally, 
performance improvement may also come with techniques such 
as SMOTE or the augmentation of new and diverse training data 
to increase the number of samples for underrepresented classes 
and minimize class imbalance. In terms of quantization, there 

are two additional approaches that could be used to improve 
performance, particularly for int8 quantization, quantization 
aware training (QAT) and mixed quantization. QAT can be 
employed during model training to mirror inference time 
quantization which introduces some quantization error while the 
model is learning. QAT typically results in higher accuracy 
models when deployed, at the expense of a more complex 
training process. With mixed quantization, only certain layers 
may be quantized or distinct layers quantized to different 
precision depending on what is suitable for that operation. This 
technique would require further experimentation. 

 In this work, the influence of quantization was explored on 
a MT-CNN ECG classification model to determine whether the 
model could be deployed to a wearable or embedded application 
while maintaining the ability to classify the PTB-XL’s 44 
diagnostic, 19 form and 12 rhythm statements. It was observed 
that the macro AUC score remained relatively stable (0.893) 
across the 32-bit, float16 quantized and DR quantized models. 
When using int8 quantization, the macro AUC dropped to about 
0.5. In terms of model size, float16 quantization cut the model 
size in half and dynamic range quantization cut the model size 
to a quarter in comparison to the 32-bit model. With respect to 
inference time, the average inference time decreased with model 
size. Future work can explore the impact of different test 
environments or look to improve performance of the quantized 
model with the use of QAT or mixed quantization.  
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Fig. 2.  Comparison of macro F1 scores for the rhythm task  


