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Abstract—Wearable devices have begun to incorporate
machine learning models to assist with detection of various cardiac
conditions. In this work, we developed a multi-task convolutional
neural network to simultaneously predict 75 diagnostic, form and
rhythm statements from 10-s duration, 12-lead ECGs. The model,
originally developed off-line in TensorFlow, was converted to the
FlatBuffers format for on-edge Al using the LiteRT toolset. Post-
training quantization was used to compare different numerical
precisions in terms of model size, model performance and
inference time. Classifier performance for the 12-lead
configuration was consistent between the 32-bit floating point
model (“float32” baseline), the dynamic range quantized model
(DR) and the float16 model (p=0.92) with an average macro AUC
score of 0.893 with all output statements considered. A large
degradation in classification performance was observed for 8-bit
integer quantization (int8) which yielded an average macro AUC
score of 0.513 for the 12-lead configuration across all statements.
To address class imbalance, minority classes were removed.
Reducing the number of statements to 41 classes increased macro
F1 score by an average of 72.6% (to a mean value about 0.358) for
the float32, float16 and DR quantized models.

Keywords—ECG interpretation, Embedded Machine Learning,
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I. INTRODUCTION

Since 1921, the United States Centers for Disease Control
and Prevention has identified heart disease as the leading
cause of death in the United States. This trend continues over
100 years later with a 2024 report noting that 48.6% of
individuals in the United States have some type of
cardiovascular disease such as coronary heart disease, heart
failure, stroke and/or high blood pressure. Over time,
improvements in diagnostics and available treatments have
helped to reduce morbidity and mortality [1]. In recent years,
clinical and consumer grade wearable devices have also come
to play arole in the detection of some cardiovascular concerns
through remote monitoring of the electrocardiogram (ECG).
Clinical grade wearables, such as Holter monitors and event
monitors, have enabled remote patient monitoring over the
span of a few hours and in some cases up to a month,
potentially capturing irregularities in the electrical activity of
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the heart. These devices allow clinicians to record intermittent
irregularities/arrhythmias that may not have been present
during an in-office patient visit. With the increased available
ECG data also comes greater interpretation burden on the
clinicians. To alleviate this burden, machine learning and Al
tools have been implemented to assist.

There are many classification models found in the
literature and integrated into consumer devices; many of these
models focus on the binary classification of abnormal or not,
while most others focus on detecting a specific condition or
small group of conditions. While these classifiers are helpful
in identifying a concern and will hopefully lead to appropriate
interventions, they are limited in their diagnostic contribution
and often require further testing. With the advent of machine
learning and AI, deeper machine learning models have
become more widely available, which in turn enables more
complex classifiers that may provide more information about
possible conditions. However, adoption of such models is
limited by their large computational and memory costs. This
work investigates the impact of standard post-training
quantization approaches on the performance of a multi-task
convolutional neural network (MT-CNN) trained to identify
ECG statements from three distinct groups of conditions from
the multi-label PTB-XL dataset [2], [3], [4], for different
number of inputs (ECG leads) and outputs (classes
considered). The goal of this work is to show that existing
post-training quantization approaches are sufficient in
enabling effective, multi-task, on-device classification of
ECG statements without compromising performance. The use
of post-training quantization without calibration or retraining
provides a valuable performance baseline that can inform
future deployment or optimization efforts.

II. RELATED WORKS

Numerous algorithms have been proposed over the years to
aid in the interpretation of ECG signals. Since its release, the
MIT-BIH arrhythmia dataset has enabled researchers to



develop algorithms and machine learning models to identify
different arrythmias. Other datasets, both private and public,
such as the PTB and PTB-XL, cover conditions beyond
arrhythmias [2], [5]. In conjunction with the growth of wearable
and IoT devices, these models are becoming more
computationally efficient, enabling on-edge computation which
comes with benefits such as improved security, reduced
reliance on wireless networking and longer-term monitoring for
clinical and consumer applications.

Xie and Lin proposed a novel model called YOLO-
ResTinyECG for arrhythmia detection using ECG images [6].
Their model incorporates YOLO object detection with a
lightweight residual network and utilizes a weighted cross-
entropy loss function during training to improve classification
of minority arrhythmia classes. Their models were trained to
detect 6 or 9 possible arrhythmias with varying window lengths
and then deployed to a Jetson Nano Development Kit
(NVIDIA, Santa Clara, USA). They achieved a mean average
precision (mAP) of 92.35% (F1 score of 0.89) for a 6 class
detector and a mAP of 90.2% (F1 score of 0.82) for a 9 class
detector. The aims of their work align with the work described
herein, but focus on arrhythmia-only detection, while our work
also includes form and diagnostic classification.

Kim et al. [7] utilized the MIT-BIH arrhythmia and PTB
diagnostic datasets to train a CNN model to detect normal or
“abnormal” ECG in a real-time embedded system using the
Arduino Nano BLE Sense development kit. Their model
consists of two CNN blocks (a convolutional layer, max.
pooling and dropout) followed by a flattening layer and then
two dense layers. To convert their model to run on a
microcontroller, the authors used TensorFlow Lite for
Microcontrollers, the toolset preceding LiteRT (LiteRT was
used in this work). Their 27 kB lite model achieved an accuracy
of 97% when tested on the PTB test data. Their work
demonstrates the ability to run a lightweight CNN model in an
embedded environment, but is limited in the information output
from the model as no specific details are provided.

In this work, a MT-CNN was trained and then quantized
using LiteRT to evaluate its ability to classify all 75 statements
in the multi-label PTB-XL dataset for a resource constrained
environment such as wearables or remote patient monitoring
devices. While many prior works have focused on the
classification of fewer classes, such as the classification of only
arrhythmias [6] or normal vs. “abnormal” [7], this model is able
to classify diagnostic, form and rhythm statements. In a
wearable ECG monitoring system, minimizing the number of
physical electrode connections to the subject can make the
system easier to wear, so this model was also trained for 3
different combinations of ECG leads to study the influence of
using a reduced ECG lead set on model size, inference time and
classification performance. Additionally, to address class
imbalance, minority classes were excluded, and performance
was re-considered. Evaluation of lead- and class-subsets are
practical steps towards on-device deployment to an embedded
wearable device in which a reduced lead set is more accessible.
LiteRT was used to quantize and evaluate the model since it
enables the deployment of TensorFlow models to a large set of
possible target environments such as Raspberry Pi,

microcontrollers, or iOS and Android [8].

III. METHODS

A. Data Used

The publicly-available PTB-XL dataset consists of 21,837
12-lead ECGs measured from 18,885 patients [2], [3], [4]. The
PTB-XL recordings were sampled at 500 Hz over a 10 second
duration. This ECG dataset was annotated by up to two
cardiologists and contains ECG statements spanning 44
diagnostic (e.g., normal, hypertrophy, myocardial infarction), 19
form (e.g., abnormal QRS, digitalis-effect) and 12 rhythm
categories (e.g., atrial fibrillation, sinus tachycardia, atrial
flutter). Four of the form statements overlap with the diagnostic
statements. In this work, the train (80%), validation (10%) and
test split (10%) recommended by the authors of [3] was used as
they provided splits that balanced label, age and sex distribution.
All leads were standardized to zero mean and unit variance.

B. Classification Model Architecture

A MT-CNN was used to classify the statements in the PTB-
XL dataset. The MT-CNN consists of six shared convolutional
blocks (with filter sizes of {128, 128, 256, 256, 128, 128}) built
from a convolutional layer, batch normalization layer and
rectified linear unit (ReLU) activation function. Following the six
convolutional blocks is a global average pooling layer. After this
pooling layer, the model splits into the tasks of classifying the 44
diagnostic, 19 form and 12 rhythm statements. Each output path
consists of two dense layers, the first utilizes a ReLU activation
and the second utilizes a sigmoid activation function to generate
the likelihood of each statement. The number of parameters
varies based on the number of inputs and outputs, ranging from
1,709,741 for the model with 3 inputs and 41 outputs up to
1,728,971 for the model with all inputs and outputs. When
training the model, the ADAM optimizer was used with a
learning rate of 0.001 to train over 30 epochs with a batch size of
128. The focal loss function was used to address class imbalance
at the algorithmic level [9]. Training was conducted using an
NVIDIA A100-SXM4-80GB graphics processing unit.

C. Varying Number of Input Leads and Number of Outputs

A clinical ECG recording typically uses a standardized set of
12-leads measured using electrodes placed across the upper body
to ensure sufficient spatial measurement resolution [10]. In a
clinical setting, capturing a 12-lead ECG usually takes only a few
minutes. While 12-lead ECGs can provide a quick, non-invasive
look at the electrical activity of the heart, they can be
cumbersome to capture outside of the clinical setting. For clinical
grade remote patient monitors such as the Holter monitor or event
monitors, and consumer wearables, it is common to acquire only
a subset of ECG leads or a single lead. In such devices,
computational resources may be constrained and, practically, it
is inconvenient for users to have multiple wires connected to their
chest while trying to perform day-to- day activities. In this study,
the classification model was trained for three different sets of
ECG inputs: a full 12-lead; a 5-lead subset consisting of Leads I,
II, V1, V3, and V6; and a 3-lead subset consisting of Leads I, II,
and V2. Selection of these lead subsets was made based on



preliminary model analysis in which it was observed that the
classification performance was maintained as the number of
inputs was reduced from 12-leads down to as few as 3-leads [11].

To address class imbalance in the PTB-XL dataset, the
classes with the fewest samples were then excluded when
training the model. Removal of underrepresented classes was
pursued as it is a conservative approach to address class
imbalance in the absence of additional training data. The use of
data augmentation, data resampling or more robust training
schemes could alleviate the effects of class imbalance but at the
risk of introducing bias into the model. Model performance was
compared with all outputs, 56 outputs (smallest 8 diagnostic, 4
form and 3 rhythm classes removed) and 41 outputs (smallest
16 diagnostic, 8 form and 6 rhythm classes removed). A
minimum of 50% of the original outputs were retained.

D. Model Quantization and Evaluation

Post-training quantization was employed to compare the
model performance achieved at various levels of precision.
When using post-training quantization, the model was trained
without any awareness of the intent to quantize and the saved
model was quantized during conversion to the FlatBuffer model
format for on-edge computing [8], [12]. Three quantization
schemes were tested: dynamic range (DR), float16 and integer
(int8) quantization. DR quantization converts weights to 8-bit
integers statically at conversion time. The activations are stored
as floating point values but are dynamically quantized to 8-bit
precision during inference if required. Floatl6 quantization
quantizes the original 32-bit floating point weights to 16-bit
floating point weights, effectively cutting the model size in half.
Int8 quantization converts 32-bit floating point weights and
activations to the nearest 8-bit fixed point numbers. The
unquantized LiteRT model was our measure of baseline
performance. This model maintains the default TensorFlow
precision of 32-bit floats but in the LiteRT FlatBuffer format [8].

The quantized models were evaluated in Python using the
LiteRT Python Interpreter. To measure the classifier’s test set
performance after quantization, the macro area under the receiver
operating characteristic curve (AUC) was computed for each
task. The change in macro F1 score was used to assess the impact
of reducing the number of possible outputs as macro AUC scores
are less sensitive to class imbalance [13]. To evaluate the
influence of quantization, the model size in bytes and average
inference time were also considered. Inference time was
measured as the time required to run a single model invocation.

Statistical analyses were performed for each input-output
combination considered for the class-wise AUC scores and
inference times achieved during each test run. The Kolmogorov-
Smirnov test indicated that the class-wise AUC scores and
inference times were not normally distributed for any input-
output configurations (p <0.001), so the Friedman test compared
model class-wise AUC scores and inference times (separately)
for the four quantization schemes considered. All instances of the
Friedman test indicated statistically significant differences
between the four quantization schemes considered when testing
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Fig. 1. Heatmap of the Macro AUC Scores for each configuration considered
the class-wise AUC scores and inference times (p < 0.001). Thus,
post hoc pair-wise comparisons were performed using the

Wilcoxon signed-rank test with Bonferroni-Holm correction.
Results were statistically significant for a p-value less than 0.05.

IV. RESULTS

A. Classification Performance

As shown in Fig. 1, the macro AUC scores for each output
of the MT-CNN showed little to no change between the 32-bit
model, the floatl6 quantized model and DR quantized model.
No statistically significant differences were found in the
pairwise comparisons of these 3 quantization schemes (p >
0.185) with the exception of the float32 and DR models for the
{5-lead, 41 output} model (p = 0.045). When quantized to int8
precision, the macro AUC score dropped to ~0.5 indicating
poor classification performance. Statistically significant
differences were observed for all pair-wise comparisons of the
int8 models to the other 3 quantizations (p < 0.001).

Macro AUC scores are not as sensitive to class imbalance
as macro F1 scores. To assess the impact of removing the
classes with the fewest samples, the change in macro F1 score
was considered when removing ~20% of classes as well as
when removing ~40% of classes. Results from the int8
quantization were excluded due to the model’s poor
performance at this precision. For the 12-lead models (Fig. 2),
the macro F1 score increased by an average of 37.88% across
the three output categories (from 0.149 to 0.198 for diagnostic,
0.129 to 0.182 for form, and 0.341 to 0.474 for rhythm) for the
32-bit, float16 and DR quantization when the number of outputs
was reduced from 75 to 56. When the number of outputs was
further reduced from all outputs down to 41, the macro F1 score
increased by 72.6% (from 0.149 to 0.262 for diagnostic, 0.129
to 0.215 for form and 0.341 to 0.594 for rhythm).

B. Model Size and Inference Time

Model size decreased with decreasing model precision. The
average model size (+standard deviation) for the 32-bit models
is 6.549+0.028 Mb. The average model size of the floatl6
quantized models is roughly half that of the 32-bit model at
3.28340.014 Mb. For the DR and int8 quantized models, the
average model size is roughly a quarter of the 32-bit model at



TABLE L. INFERENCE TIME, IN MILLISECONDS (MEAN£STANDARD

DEVIATION OF 2198 TEST RUNS)

Inputs/ Quantization

Outputs None Floatl6 DR Int8
12/All 15044 14842 135+1 149+1
12/56 147+2 147+2 13442 148+2
12/41 14842 14842 13442 14842
5/All 14844 147+1 134+1 148+1
5/56 198+3 201+3 35+1 44+1
5/41 19843 20244 35+1 44+1
3/All 203+5 213+3.8 36+1 43+1
3/56 197+2 202+2 3542 43+2
3/41 20145 20444 37«1 44+1

1.6668+0.007 Mb and 1.681+0.007 Mb, respectively.

Table I contains the average (+standard deviation) inference
times for each model configuration. Statistically significant
differences were detected between the inference times for all
pair-wise comparisons of quantizations for each input and
output scheme (p <0.001). On average, the smaller DR and int8
models ran faster than the 32-bit float and float16 models.

V. DISCUSSION & CONCLUSIONS

To determine the feasibility of adapting the MT-CNN for a
resource constrained application, such as a wearable ECG
monitor, the model was quantized to study the impact on
classification performance, model size and inference time.
Classifier performance was maintained when numerical
representation was compressed using the floatl6 and dynamic
range post-training quantization, and the model’s memory
footprint was noticeably reduced. For applications in which
memory is constrained, the DR model would likely be the most
suitable as it provided the same level of classifier performance
with the smallest model size. In comparison to the model in [7]
which uses 27 kB/output, our DR model uses 22 kB/output. In
terms of inference time, on average, smaller models had shorter
inference times, but this trend may have been influenced by
simultaneous processes running on the testing machine.

To improve overall model performance, a more robust data
pre-processing stage should be considered. The inclusion of this
stage can work to reduce noise from sources such as powerline
interference, baseline wander and motion artifact, which can be
detrimental in a wearable system [14]. Additionally,
performance improvement may also come with techniques such
as SMOTE or the augmentation of new and diverse training data
to increase the number of samples for underrepresented classes
and minimize class imbalance. In terms of quantization, there
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Fig. 2. Comparison of macro F1 scores for the rhythm task
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are two additional approaches that could be used to improve
performance, particularly for int8 quantization, quantization
aware training (QAT) and mixed quantization. QAT can be
employed during model training to mirror inference time
quantization which introduces some quantization error while the
model is learning. QAT typically results in higher accuracy
models when deployed, at the expense of a more complex
training process. With mixed quantization, only certain layers
may be quantized or distinct layers quantized to different
precision depending on what is suitable for that operation. This
technique would require further experimentation.

In this work, the influence of quantization was explored on
a MT-CNN ECG classification model to determine whether the
model could be deployed to a wearable or embedded application
while maintaining the ability to classify the PTB-XL’s 44
diagnostic, 19 form and 12 rhythm statements. It was observed
that the macro AUC score remained relatively stable (0.893)
across the 32-bit, float16 quantized and DR quantized models.
When using int8 quantization, the macro AUC dropped to about
0.5. In terms of model size, floatl6 quantization cut the model
size in half and dynamic range quantization cut the model size
to a quarter in comparison to the 32-bit model. With respect to
inference time, the average inference time decreased with model
size. Future work can explore the impact of different test
environments or look to improve performance of the quantized
model with the use of QAT or mixed quantization.

REFERENCES

[1]  American Heart Association, “More than half of U.S. adults don’t know
heart disease is leading cause of death, despite 100-year reign,” News
Release, Jan. 2024.

[2] P. Wagner, N. Strodthoff, R.-D. Bousseljot, W. Samek, and T.
Schaeftter, “PTB-XL, a large publicly available electrocardiography
dataset (version 1.0.3).” PhysioNet, Nov. 09, 2022. [Online]. Available:
https://physionet.org/content/ptb-x1/1.0.3/

[3] P. Wagner et al., “PTB-XL: A Large publicly available ECG dataset,”
Sci Data, vol. 7, 2020.

[4] A.L. Goldberger et al., “PhysioBank, PhysioToolkit, and PhysioNet:
Components of a new research resource for complex physiologic
signals,” Circulation, vol. 101, no. 23, pp. €215-¢220, 2000.

[51 R.-D. Bousseljot, “PTB Diagnostic ECG Database.” PhysioNet, Sep.
25,2004. [Online]. Available: https://physionet.org/content/ptbdb/1.0.0/

[6] Y.-L. Xie and C.-W. Lin, “YOLO-ResTinyECG: ECG-based
lightweight embedded Al arrhythmia small object detector with pruning
methods,” Expert Systems with Applications, vol. 263, Nov. 2024.

[71 E.Kim, J. Kim, J. Park, H. Ko, and Y. Kyung, “TinyML-Based
Classification in an ECG Monitoring Embedded System,” Computers,
Materials & Continua, vol. 75, no. 1, pp. 1751-1764, Feb. 2023.

[8] LiteRT overview. (Mar. 04, 2025). Google. Accessed: Mar. 15, 2025.
[Online]. Available: https://ai.google.dev/edge/litert

[9] T.-Y.Lin, P. Goyal, R. Girshick, K. He, and P. Dollar, “Focal Loss for
Dense Object Detection,” IEEE Trans. on Pattern Anal. Mach. Intell.,
vol. 42, no. 2, pp. 318-327, 2020.

[10] D. G. Strauss and D. D. Schocken, Marriott’s Practical
Electrocardiography, 13th ed. Wolters Kluwer Health, 2021.

[11] K. Rajotte, “Design and Development of Intelligent, Low-Power,
Wireless Wearable Sensors for Biopotential Measurement,” Worcester
Polytechnic Institute, 2025.

[12] TensorFlow, Quantization aware training comprehensive guide. (Mar.
09, 2025). Google.

[13] J. Brownlee, “Model Evaluation,” in Imbalanced Classification with
Python Choose Better Metrics, Balance Skewed Classes, and Apply
Cost-Sensitive Learning, 1.2., Machine Learning Mastery, 2020.

[14] L. Sornmo and P. Laguna, “ECG Signal Processing,” in Bioelectrical
signal processing in cardiac and neurological applications, 1st ed.,
Elsevier Academic Press, 2005.



