
Consistent Coding Problem Synthesis with Reflective Analysis

Anonymous ACL submission

Abstract001

Large Language Models (LLMs) have shown002
great promise in educational applications, e.g.,003
generating coding exercises for programming004
instruction. However, two major challenges005
remain in automatic coding exercise synthesis:006
(1) the generated solution code often fails to007
pass all test cases, and (2) there is no automatic008
metric to assess the conceptual relevance or009
pedagogical quality of the synthesized prob-010
lems. In this paper, we present a three-stage011
framework for educational coding problem syn-012
thesis. First, we perform Chain-of-Thought-013
based Reflective Analysis, incorporating Error014
Analysis and Concept Analysis, to improve the015
pedagogical quality of generation. Second, we016
introduce an iterative code refinement to ensure017
the generated solution passes a Code Check.018
Third, we propose a Concept Check procedure019
to automatically evaluate the conceptual align-020
ment between the input and the synthesized021
problem. Experiments show that our methods022
significantly improve both code and concept023
consistency, providing a reliable pipeline for024
automatic coding problem synthesis.025

1 Introduction026

Large Language Models (LLMs) demonstrate sig-027

nificant potential in educational applications. For028

instance, they can perform teaching-assistant-like029

question answering (Hicke et al., 2023) and provide030

multi-modal feedback on diagrams (Li et al., 2024a;031

Jurenka et al., 2024). Prior research has explored032

automatic distractor generation for multiple-choice033

questions in math and coding (Scarlatos et al., 2024;034

Lee et al., 2025), while language learning studies035

have personalized exercises using knowledge states036

and difficulty levels (Cui and Sachan, 2023).037

Given LLMs’ proficiency in solving program-038

ming and math problems (Chen et al., 2021; Jain039

et al., 2024; Li et al., 2024b), synthesizing high-040

quality, adaptive coding problems emerges as a041

valuable yet under-explored area (Chen et al., 2024;042

Figure 1: Our Generation-Evaluation framework

Fan et al., 2023). This task involves generating 043

problem statements, solution code, and test cases 044

(Frankford et al., 2024), with two critical chal- 045

lenges: code consistency and concept consistency. 046

During generation, ensuring consistency be- 047

tween the solution code and its associated test cases 048

is critical. If the reference solution fails to pass all 049

provided test cases, revisions to either the code or 050

the test cases are required. Prior work has shown 051

that the pass rate declines as problem difficulty in- 052

creases (TA et al., 2023). New benchmarks like 053

TestCase-Eval also highlight the significance of 054

this code consistency problem (Yang et al., 2025b). 055

Therefore, we define code consistency as: solution 056

code passing all test cases. 057

Beyond code consistency, quality evaluation of 058

generated problems presents another major bottle- 059

neck. Existing quality assessments rely on costly 060

expert annotations (Sarsa et al., 2022), which are 061

costly and infeasible at scale. Moreover, such eval- 062

uations offer only coarse-grained judgments and 063

are insensitive to learner skill levels. ExGen in- 064

troduced the difficulty level as a criterion for the 065

synthesized problem (TA et al., 2023). Therefore, 066

we focus on concept consistency to evaluate the 067

quality of synthesized coding problems. 068

In this paper, we propose a three-step method 069

to improve consistency and pedagogical quality in 070

coding problem generation (Figure 2). In the first 071

1

Figure 2: Three-stages pipeline for consistent problem synthesis. Reflective analysis synthesizes the problem by
analyzing the concept or the error code before generation. Code Check requires repeatedly refining the code to
achieve consistency. Concept Check requires the generated problem to conceptually match the input problem.

step, Reflective Analysis is applied to guide the072

LLM toward more accurate and instructional gener-073

ation. Reflective Analysis aims to prompt the LLM074

with both Concept Analysis and Error Analysis075

tasks, encouraging deeper reasoning over the input076

problem before generating new exercises. In the077

second step, Code Check is performed to refine the078

inconsistency between the generated code and the079

test cases. We adapt a multi-agent framework to080

iteratively improve the correctness of synthesized081

code. In the final step, we introduce a Concept082

Matching metric to evaluate the similarity in cod-083

ing concept between the input problem and the084

synthesized problem.085

Our experimental results show that the proposed086

framework improves both concept consistency and087

code consistency. The Concept Matching of the088

synthesized problem increased by around 20% -089

30% in Precision and Recall. The Pass All Rate090

of the synthesized solution code and test cases in-091

creases by 20%–30% compared to baselines, with092

enhanced conceptual consistency. This result ac-093

cords with the code similarity increase, demonstrat-094

ing the effectiveness of our metrics.095

2 Methods096

2.1 Concept Consistency097

We propose Chain-of-Thought-based Reflective098

Analysis to enhance the concept consistency of099

the generated problems. As shown in Figure 2, Re-100

flective Analysis consists of two types of analyses:101

Concept Analysis. Given an input problem, we102

prompt the LLM to identify a list of high-level al-103

gorithmic concepts (e.g., “dynamic programming”, 104

“depth-first search”, “greedy”). For each concept, 105

the model is further instructed to explain how it 106

could be applied to solve the problem. A new prob- 107

lem is then generated using this concept-aware rea- 108

soning as context, promoting conceptual alignment 109

between the original and synthesized tasks. 110

Error Analysis. To identify unmastered con- 111

cepts, we utilize erroneous code submissions as 112

auxiliary signals. Given an input problem and an 113

incorrect solution, the LLM is prompted to analyze 114

the underlying cause of the error. The resulting 115

analysis is then used to guide problem generation, 116

encouraging the model to focus on algorithmic rea- 117

soning rather than surface-level text similarity. Fur- 118

ther details and prompt examples for both analyses 119

are provided in Appendix A. 120

To evaluate the concept consistency between the 121

input problem and the generated problem, we pro- 122

pose the Concept Matching metric, which com- 123

pares the sets of concepts extracted from both 124

problems and quantitatively measures their align- 125

ment. The detailed formulation is introduced in 126

Section 3.3, and we discuss the effectiveness of 127

this metric in Section 4.1. 128

2.2 Code Consistency 129

Prior studies have investigated code-test consis- 130

tency as a proxy for problem validity, primarily 131

by reporting the percentage of problems where 132

the sample solution passes all provided test cases 133

(Sarsa et al., 2022; TA et al., 2023). However, these 134

works typically stop at evaluation and do not pro- 135

pose methods for repairing inconsistent problems. 136

2

Iterative and self-reflective generation is com-137

monly used in generation tasks. In the domain138

of code generation, multi-round refinement is also139

widely studied. CodeTree Li et al., 2024c proposes140

a tree search strategy that models the trajectory of141

reasoning, solving, and debugging. Socratic Hu-142

man Feedback (SoHF) (Chidambaram et al., 2024)143

leverages Socratic questioning to elicit informa-144

tive human feedback during multi-turn generation.145

MapCoder (Islam et al., 2024) and CodeSim (Islam146

et al., 2025) introduce agents with different tasks147

to enhance code generation.148

We designed a multi-agent system that enables149

iterative refinement of codes and test cases, as150

shown in Figure 2, step 2. In this system, we have151

three agents: a Coder agent (LLM agent), a Judger152

(Python script running in local environment), and a153

Debugger (LLM agent).154

After the code is generated, the Judger executes155

the code through test cases in a local environment156

and verifies the results. If the code does not match157

the test cases, the Debugger then provides revision158

feedback to the Coder to re-generate a new solution159

code. In case of the test cases not being consistent160

with the problem, when we found the sample code161

failed on 1 – 2 same test cases every time, we will162

consider the test cases being wrong and prompt the163

LLM to re-generate these test cases. The iteration164

may loop multiple times, and we use Code Check165

Pass@k to represent a k-times iteration in table 1.166

3 Experiments167

3.1 Experimental Setup168

We conduct experiments to evaluate the effective-169

ness of Error Analysis, Concept Analysis, and code170

refinement in improving the quality of coding prob-171

lem synthesis. Our focus is on assessing whether172

our method improves the concept and code consis-173

tency of generated problems.174

Baseline In all scenarios, we incorporate one-175

shot prompting as a baseline. Our prompts are176

shown in appendix G. For the scenario w/o error177

code submission, we also use retrieval augmented178

generation (RAG) (Wang et al., 2025) as a base-179

line. In RAG, we use the input problem to search180

for a similar problem in the dataset, with cosine-181

similarity by its vector embedding, and we prompt182

the LLM with the retrieved problem. For the em-183

bedding model, we used an open-source model in184

Huggingface (E): thenlper/gte-large.185

Model Choice We conduct our experiment on 186

both a closed-source model, OpenAI’s GPT-4.1 187

(version released on April 14, 2025)—-and an open- 188

source model Qwen3-235B (Yang et al., 2025a). 189

3.2 Dataset 190

CodeChef we use a dataset of 26,663 code 191

submissions to 352 programming problems from 192

CodeChef. We sample 999 incorrect submissions, 193

proportionally distributed across three major error 194

types: Wrong Answer, Time Limit Exceeded, and 195

Runtime Error. To ensure broader coverage, we 196

cap the number of submissions per problem at five, 197

resulting in 279 unique problems and an average 198

of 3.58 submissions per problem. These examples 199

provide diverse failure cases for error analysis. Full 200

statistics are shown in Table 2. In the experiment, 201

we used the first 100 problems with submissions. 202

3.3 Metrics 203

Concept Matching To evaluate concept consis- 204

tency, we define a new metric: Concept Matching. 205

We take the concepts for the input problem as the 206

ground truth, and take the concepts for the syn- 207

thesized problem as the prediction. We use the 208

precision and recall for the appearance indicators 209

of the method keywords as our metric. 210

Code Check To evaluate code consistency, we 211

adopt the percentage of synthesized problems 212

whose solution code passed all their test cases. The 213

solution code and the test cases are synthesized 214

separately; therefore, the Pass All metric reflects 215

how the synthesis process is consistent with itself. 216

Here, the Pass@k means the percentage of passed 217

problems with k iterations of code refinement. 218

Code Similarity We use the code similarity be- 219

tween the solution code from the input problem 220

and the synthesized problem. This serves as a qual- 221

ity that measures whether the synthesized problem 222

tests the same set of knowledge as the input prob- 223

lem. We use an embedding-based code similarity 224

model from Huggingface (E): intfloat/e5-mistral- 225

7b-instruct (Wang et al., 2023, 2022). 226

4 Results 227

We report results across three metrics: Con- 228

cept Matching, Code Check, and Code Similar- 229

ity. We examine the impact of Error Analysis 230

(EA), Concept Analysis (CA), and their combi- 231

nation (EA+CA). 232

3

Method Concept Matching ↑ Code Check ↑ Code Similarity ↑
Precision Recall Pass@0/Pass@3 Pass@0/Pass@3

GPT-4.1

Direct Prompt 0.29 0.30 8%/23% 0.79/0.82
RAG 0.35 0.34 12%/33% 0.78/0.83
Error Code 0.54 0.53 15%/25% 0.80/0.84
Error Code + EA 0.65 0.66 14%/29% 0.84/0.85
Error Code + CA 0.77 0.75 18%/32% 0.79/0.83
Error Code + EA+CA 0.67 0.71 17%/35% 0.83/0.87

Qwen3

Direct Prompt 0.36 0.38 15%/23% 0.77/0.78
RAG 0.42 0.49 16%/22% 0.76/0.77
Error Code 0.42 0.42 14%/25% 0.82/0.82
Error Code + EA 0.68 0.67 25%/30% 0.86/0.85
Error Code + CA 0.60 0.69 20%/28% 0.78/0.79
Error Code + EA+CA 0.63 0.60 22%/28% 0.84/0.83

Table 1: Main results on GPT-4.1 and Qwen3. We compare three types of inputs: raw prompts, RAG, and error
code. Our proposed reasoning modules, EA (Error Analysis) and CA (Concept Analysis), are applied on top of
error code inputs and yield consistent improvements across all metrics.

4.1 Concept Matching233

As shown in Table 1, adding EA and/or CA in-234

creases both precision and recall as compared to235

baseline in both models. For Precision, GPT-4.1236

achieved 0.54 with Error Code as context, but in-237

creased by 42.5% with Concept Analysis. Simi-238

larly, Qwen3 achieved at most 61% improvement239

in Precision utilizing Error Analysis. Recall shows240

a similar trend to Precision. This demonstrates the241

effectiveness of our Reflective Analysis in improv-242

ing concept consistency.243

4.2 Code Check244

As shown in Table 1, multi-round code refinement245

generally improves the Pass All rate by 5%-15%.246

For GPT4.1, the Pass All rate increased by at most247

20% with EA, CA, and 3-round code refinement.248

For Qwen3, adding EA and/or CA can also im-249

prove the Pass All rate by around 5%. Interestingly,250

inputting EA only surpasses inputting EA and CA251

together in Qwen3, which might be caused by gen-252

eration stability in handling long context. Code253

Check result also accords roughly with the code254

similarity. Therefore, our pipeline can effectively255

improve the code consistency in generation.256

5 Conclusion 257

We study the consistency of coding problem syn- 258

thesis with LLMs at the generation and evaluation 259

stages. In the generation stage, we propose Reflec- 260

tive Analysis methods to augment the concept con- 261

sistency between a reference problem and its gener- 262

ated counterpart, based on the analysis of concepts 263

and error code. We further introduce a multi-agent 264

framework to improve the code consistency within 265

the synthesized code and test cases. In the evalua- 266

tion stage, we conduct Code Check and Concept 267

Check to automatically evaluate the code consis- 268

tency and the concept consistency. We conduct 269

experiments on a proprietary and an open-source 270

LLM with case analysis. The results demonstrated 271

that our methods improve the generation consis- 272

tency and evaluation efficiency of coding problem 273

synthesis. 274

Limitations 275

Test Case generalization Code generation is cur- 276

rently explored more than test case generation. We 277

consider revising the code in a loop with the as- 278

sumption that the test case is correct. If the code 279

can not pass all test cases, this can also indicate that 280

certain test cases are incompatible. In some cases, 281

both the test cases and the code may not correctly 282

describe the problem, making it hard to diagnose. 283

4

LLM restriction Due to the use of LLM, we can284

not restrict the method name with a pre-defined285

category set. This might include some unwanted286

method names that might influence the accuracy of287

Concept Matching.288

Efficiency consideration for Multi-agent In our289

paper, we constructed a multi-agent system to re-290

vise the code in a loop. On one hand, this might291

be inefficient in time for larger-scale tasks. On the292

other hand, to maintain the complete history of the293

multi-agent generation might be costly in terms of294

token length.295

Ethics Statement296

We release our code under the MIT license. The297

experiments use the intfloat/e5-mistral-7b-instruct298

model, available on Hugging Face under a Cre-299

ativeML license. The benchmark data is based on300

the Codeforces problem set, which is publicly ac-301

cessible for research and educational use. We do302

not observe significant ethical issues induced by303

our methods.304

References305

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming306
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-307
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,308
Greg Brockman, Alex Ray, Raul Puri, Gretchen309
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-310
try, Pamela Mishkin, Brooke Chan, Scott Gray,311
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz312
Kaiser, Mohammad Bavarian, Clemens Winter,313
Philippe Tillet, Felipe Petroski Such, Dave Cum-314
mings, Matthias Plappert, Fotios Chantzis, Eliza-315
beth Barnes, Ariel Herbert-Voss, William Hebgen316
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie317
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,318
William Saunders, Christopher Hesse, Andrew N.319
Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan320
Morikawa, Alec Radford, Matthew Knight, Miles321
Brundage, Mira Murati, Katie Mayer, Peter Welinder,322
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya323
Sutskever, and Wojciech Zaremba. 2021. Evaluating324
large language models trained on code.325

Mingda Chen, Xilun Chen, and Wen tau Yih. 2024.326
Few-shot data synthesis for open domain multi-hop327
question answering.328

Subramanian Chidambaram, Li Erran Li, Min Bai, Xi-329
aopeng Li, Kaixiang Lin, Xiong Zhou, and Alex C.330
Williams. 2024. Socratic human feedback (SoHF):331
Expert steering strategies for LLM code generation.332
In Findings of the Association for Computational333
Linguistics: EMNLP 2024, pages 15491–15502, Mi-334
ami, Florida, USA. Association for Computational335
Linguistics.336

Peng Cui and Mrinmaya Sachan. 2023. Adaptive and 337
personalized exercise generation for online language 338
learning. 339

Aysa Xuemo Fan, Ranran Haoran Zhang, Luc Paquette, 340
and Rui Zhang. 2023. Exploring the potential of 341
large language models in generating code-tracing 342
questions for introductory programming courses. 343

Eduard Frankford, Ingo Höhn, Clemens Sauerwein, and 344
Ruth Breu. 2024. A survey study on the state of the 345
art of programming exercise generation using large 346
language models. 347

Yann Hicke, Anmol Agarwal, Qianou Ma, and Paul 348
Denny. 2023. Ai-ta: Towards an intelligent question- 349
answer teaching assistant using open-source llms. 350
Accessed: 06 May 2025. 351

Md. Ashraful Islam, Mohammed Eunus Ali, and 352
Md Rizwan Parvez. 2024. Mapcoder: Multi-agent 353
code generation for competitive problem solving. 354

Md. Ashraful Islam, Mohammed Eunus Ali, and 355
Md Rizwan Parvez. 2025. Codesim: Multi- 356
agent code generation and problem solving through 357
simulation-driven planning and debugging. 358

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia 359
Yan, Tianjun Zhang, Sida Wang, Armando Solar- 360
Lezama, Koushik Sen, and Ion Stoica. 2024. Live- 361
codebench: Holistic and contamination free evalua- 362
tion of large language models for code. 363

Irina Jurenka, Markus Kunesch, Kevin R McKee, 364
Daniel Gillick, Shaojian Zhu, Sara Wiltberger, Shub- 365
ham Milind Phal, Katherine Hermann, Daniel Kasen- 366
berg, Avishkar Bhoopchand, et al. 2024. Towards 367
responsible development of generative ai for educa- 368
tion: An evaluation-driven approach. arXiv preprint 369
arXiv:2407.12687. 370

Yooseop Lee, Suin Kim, and Yohan Jo. 2025. Gener- 371
ating plausible distractors for multiple-choice ques- 372
tions via student choice prediction. 373

Hai Li, Chenglu Li, Wanli Xing, Sami Baral, and Neil 374
Heffernan. 2024a. Automated feedback for student 375
math responses based on multi-modality and fine- 376
tuning. In Proceedings of the 14th Learning Ana- 377
lytics and Knowledge Conference, LAK ’24, page 378
763–770, New York, NY, USA. Association for Com- 379
puting Machinery. 380

Jia Li, Ge Li, Yunfei Zhao, Yongmin Li, Huanyu Liu, 381
Hao Zhu, Lecheng Wang, Kaibo Liu, Zheng Fang, 382
Lanshen Wang, Jiazheng Ding, Xuanming Zhang, 383
Yuqi Zhu, Yihong Dong, Zhi Jin, Binhua Li, Fei 384
Huang, Yongbin Li, Bin Gu, and Mengfei Yang. 385
2024b. DevEval: A manually-annotated code gener- 386
ation benchmark aligned with real-world code repos- 387
itories. In Findings of the Association for Compu- 388
tational Linguistics: ACL 2024, pages 3603–3614, 389
Bangkok, Thailand. Association for Computational 390
Linguistics. 391

5

http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2305.13691
http://arxiv.org/abs/2305.13691
http://arxiv.org/abs/2305.13691
https://doi.org/10.18653/v1/2024.findings-emnlp.908
https://doi.org/10.18653/v1/2024.findings-emnlp.908
https://doi.org/10.18653/v1/2024.findings-emnlp.908
http://arxiv.org/abs/2306.02457
http://arxiv.org/abs/2306.02457
http://arxiv.org/abs/2306.02457
http://arxiv.org/abs/2306.02457
http://arxiv.org/abs/2306.02457
http://arxiv.org/abs/2310.15317
http://arxiv.org/abs/2310.15317
http://arxiv.org/abs/2310.15317
http://arxiv.org/abs/2310.15317
http://arxiv.org/abs/2310.15317
http://arxiv.org/abs/2405.20183
http://arxiv.org/abs/2405.20183
http://arxiv.org/abs/2405.20183
http://arxiv.org/abs/2405.20183
http://arxiv.org/abs/2405.20183
http://arxiv.org/abs/2311.02775
http://arxiv.org/abs/2311.02775
http://arxiv.org/abs/2311.02775
http://arxiv.org/abs/2405.11403
http://arxiv.org/abs/2405.11403
http://arxiv.org/abs/2405.11403
http://arxiv.org/abs/2502.05664
http://arxiv.org/abs/2502.05664
http://arxiv.org/abs/2502.05664
http://arxiv.org/abs/2502.05664
http://arxiv.org/abs/2502.05664
http://arxiv.org/abs/2403.07974
http://arxiv.org/abs/2403.07974
http://arxiv.org/abs/2403.07974
http://arxiv.org/abs/2403.07974
http://arxiv.org/abs/2403.07974
http://arxiv.org/abs/2501.13125
http://arxiv.org/abs/2501.13125
http://arxiv.org/abs/2501.13125
http://arxiv.org/abs/2501.13125
http://arxiv.org/abs/2501.13125
https://doi.org/10.1145/3636555.3636860
https://doi.org/10.1145/3636555.3636860
https://doi.org/10.1145/3636555.3636860
https://doi.org/10.1145/3636555.3636860
https://doi.org/10.1145/3636555.3636860
https://doi.org/10.18653/v1/2024.findings-acl.214
https://doi.org/10.18653/v1/2024.findings-acl.214
https://doi.org/10.18653/v1/2024.findings-acl.214
https://doi.org/10.18653/v1/2024.findings-acl.214
https://doi.org/10.18653/v1/2024.findings-acl.214

Jierui Li, Hung Le, Yingbo Zhou, Caiming Xiong, Sil-392
vio Savarese, and Doyen Sahoo. 2024c. Codetree:393
Agent-guided tree search for code generation with394
large language models.395

Sami Sarsa, Paul Denny, Arto Hellas, and Juho396
Leinonen. 2022. Automatic generation of program-397
ming exercises and code explanations using large398
language models. In Proceedings of the 2022 ACM399
Conference on International Computing Education400
Research - Volume 1, pages 27–43. ACM.401

Alexander Scarlatos, Wanyong Feng, Digory Smith, Si-402
mon Woodhead, and Andrew Lan. 2024. Improving403
automated distractor generation for math multiple-404
choice questions with overgenerate-and-rank.405

Nguyen Binh Duong TA, Hua Gia Phuc Nguyen, and406
Swapna Gottipati. 2023. Exgen: Ready-to-use exer-407
cise generation in introductory programming courses.408
In Proceedings of the International Conference on409
Computers in Education (ICCE). Accessed May410
2025.411

Liang Wang, Nan Yang, Xiaolong Huang, Binxing412
Jiao, Linjun Yang, Daxin Jiang, Rangan Majumder,413
and Furu Wei. 2022. Text embeddings by weakly-414
supervised contrastive pre-training. arXiv preprint415
arXiv:2212.03533.416

Liang Wang, Nan Yang, Xiaolong Huang, Linjun Yang,417
Rangan Majumder, and Furu Wei. 2023. Improving418
text embeddings with large language models. arXiv419
preprint arXiv:2401.00368.420

Zora Zhiruo Wang, Akari Asai, Xinyan Velocity Yu,421
Frank F. Xu, Yiqing Xie, Graham Neubig, and Daniel422
Fried. 2025. CodeRAG-bench: Can retrieval aug-423
ment code generation? In Findings of the Association424
for Computational Linguistics: NAACL 2025, pages425
3199–3214, Albuquerque, New Mexico. Association426
for Computational Linguistics.427

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang,428
Binyuan Hui, Bo Zheng, Bowen Yu, Chang Gao,429
Chengen Huang, Chenxu Lv, Chujie Zheng, Dayi-430
heng Liu, Fan Zhou, Fei Huang, Feng Hu, Hao Ge,431
Haoran Wei, Huan Lin, Jialong Tang, Jian Yang,432
Jianhong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi433
Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai434
Dang, Keqin Bao, Kexin Yang, Le Yu, Lianghao435
Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang,436
Peng Wang, Qin Zhu, Rui Men, Ruize Gao, Shixuan437
Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao438
Yin, Xingzhang Ren, Xinyu Wang, Xinyu Zhang, Xu-439
ancheng Ren, Yang Fan, Yang Su, Yichang Zhang,440
Yinger Zhang, Yu Wan, Yuqiong Liu, Zekun Wang,441
Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan442
Qiu. 2025a. Qwen3 technical report.443

Zheyuan Yang, Zexi Kuang, Xue Xia, and Yilun Zhao.444
2025b. Can llms generate high-quality test cases445
for algorithm problems? testcase-eval: A systematic446
evaluation of fault coverage and exposure.447

6

http://arxiv.org/abs/2411.04329
http://arxiv.org/abs/2411.04329
http://arxiv.org/abs/2411.04329
http://arxiv.org/abs/2411.04329
http://arxiv.org/abs/2411.04329
https://doi.org/10.1145/3501385.3543957
https://doi.org/10.1145/3501385.3543957
https://doi.org/10.1145/3501385.3543957
https://doi.org/10.1145/3501385.3543957
https://doi.org/10.1145/3501385.3543957
http://arxiv.org/abs/2405.05144
http://arxiv.org/abs/2405.05144
http://arxiv.org/abs/2405.05144
http://arxiv.org/abs/2405.05144
http://arxiv.org/abs/2405.05144
https://doi.org/10.58459/icce.2023.953
https://doi.org/10.58459/icce.2023.953
https://doi.org/10.58459/icce.2023.953
https://aclanthology.org/2025.findings-naacl.176/
https://aclanthology.org/2025.findings-naacl.176/
https://aclanthology.org/2025.findings-naacl.176/
http://arxiv.org/abs/2505.09388
http://arxiv.org/abs/2506.12278
http://arxiv.org/abs/2506.12278
http://arxiv.org/abs/2506.12278
http://arxiv.org/abs/2506.12278
http://arxiv.org/abs/2506.12278

Appendix448

A Chain of Thought Structure449

Listing 1: Concept Analysis
{
"methods": [

{
"method": "Dynamic Programming",
"instruction": "For each cell,

track the maximum number of
pawns the knight can capture
if it reaches that cell,
updating only when moving
rightward due to the knight'
s move restrictions."

},
{

"method": "Array",
"instruction": "Use a 2D array

to maintain state for each
cell (number of pawns
captured if the knight
reaches that cell),
iterating through allowed
knight moves efficiently."

},
{

"method": "Depth-first Search",
"instruction": "Optionally, try

all possible knight paths
recursively, updating a
maximum as paths are
explored (not ideal for the
largest cases but useful for
understanding)."

},
{

"method": "Greedy",
"instruction": "Although greedy

is sub-optimal here, you
could try always picking the
locally best pawn, but this
could miss the optimal
globally. Useful for
comparison or quick
heuristics."

}
]
},

450

451

Listing 2: Error Analysis
452

{ 453
"wrong_submission_code": "...", 454
"error_type": "time limit exceeded", 455
"mistake_analysis": [456

"First, the student defines three 457
solution methods: brute-force 458
recursion (alg), memoized 459
recursion (alg2), and a DP 460
approach (algdp).", 461

"Then, in main(), only algdp (the DP 462
approach) is used to process 463

each test case, but this DP 464
scans the board for every cell 465
from the last column to the 466
first, recalculating the maximal 467
moves inefficiently for every 468

cell, not just the relevant 469
knight's path.", 470

"However, the DP does not use proper 471
boundary checks and can 472

potentially revisit many cells 473
needlessly due to non-optimal 474
transitions and redundant 475
recomputation on large boards (N 476
up to 1000), which causes 477

excessive execution time.", 478
"Therefore, for large N, this 479

results in a TLE as the per-cell 480
computations are not minimized 481

or restricted to only reachable 482
cells from the knight's actual 483
position." 484
], 485

"misconception_breakdown": " 486
Initially, the student tries to 487
directly fill the DP table for 488
all board cells, assuming it 489
models the optimal paths. 490
However, they overlook the 491
importance of restricting DP 492
computation to only the cells 493
reachable from the knight\u2019s 494
actual position and do not 495

optimize transitions to avoid 496
redundant work. Thus, they 497
misunderstand how to efficiently 498
model and restrict state space 499

for DP in large constraint 500
problems." 501

}, 502
} 503504

7

B Dataset Detail505

This is the dataset statistics processed from the506

CodeChef dataset 1.

CodeChef Dataset Statistics Count

Total submissions 26,663
Total problems 352
Sampled incorrect submissions 999

– Wrong Answer (WA) 463
– Time Limit Exceeded (TLE) 287
– Runtime Error (NZEC) 249

Unique problems (after sampling cap) 279
Avg. submissions per problem 3.58
Max submissions per problem 5

Table 2: CodeChef dataset statistics used for training
and evaluating error-aware Chain-of-Thought (CoT)
generation.

507

C Executability of generated problem508

Method Successfully generated Code Runs Pass ≥ 1 Failed only 1 Pass All

GPT4.1 + Direct Prompt 89 95.5% 44.9% 11.2% 9.0%
GPT4.1 + RAG 87 87.4% 54.0% 17.2% 13.8%
GPT4.1 + Error Code 97 96.9% 70.1% 19.6% 16.2%
GPT4.1 + EA 89 96.6% 59.6% 10.1% 15.7%
GPT4.1 + CA 83 96.4% 72.3% 20.5% 21.7%
GPT4.1 + CA + EA 89 95.5% 65.2% 16.9% 19.1%

Table 3: Executability of GPT4.1 generation without refinement iteration. Percentages are calculated over
successfully generated samples, thus higher than the main table (Pass All / 100).

Method Successfully generated Code Runs Pass ≥ 1 Failed only 1 Pass All

Qwen3 + Direct Prompt 90 91.1% 67.8% 16.7% 17.2%
Qwen3 + RAG 92 88.1% 45.7% 14.1% 17.4%
Qwen3 + Error Code 95 89.5% 62.1% 28.4% 14.7%
Qwen3 + EA 99 85.8% 57.6% 18.2% 25.3%
Qwen3 + CA 93 93.5% 67.7% 19.4% 22.2%
Qwen3 + CA + EA 97 85.6% 58.8% 15.5% 22.7%

Table 4: Evaluation results of Qwen3-235B generation without refinement iteration. Percentages are calculated over
successfully generated samples, thus higher than the main table (Pass All/ 100).

1Data source: https://www.
kaggle.com/datasets/arjoonn/
codechef-competitive-programming

8

https://www.kaggle.com/datasets/arjoonn/codechef-competitive-programming
https://www.kaggle.com/datasets/arjoonn/codechef-competitive-programming
https://www.kaggle.com/datasets/arjoonn/codechef-competitive-programming

D Case Analysis509

Input Generated Output Concept Analysis

Input Problem ...on a 2D grid, ...determine the number of integer-
coordinate...Manhattan distance to all restaurants
is minimized

Math: The sum of Manhattan distances is mini-
mized at the median of coordinates.
Sort: Sorting is required to identify medians, espe-
cially for even N (to determine the valid coordinate
range).
Array: Use arrays to store x and y coordinates
independently and operate on them efficiently.

Problem Only Maintain a stack ... When query, remove the high-
est beauty score closest to the top

Stack: Simulate marble insertion/removal with
LIFO order.
Heap: Use a max-heap to track the highest beauty
marble.
Array: Maintain the order of insertions to deter-
mine how many marbles lie above the selected
one.
Hash Table: Use for deletion and verification in
the heap.

Concept Analysis ... minimize the total Manhattan distance Sort: X and Y coordinates are sorted to find medi-
ans.
Math: Manhattan distance minimization leads to
median selection; multiple medians may be valid.
Array: Coordinate arrays are used to support me-
dian detection and counting.

Table 5: Examples of generated answers by the model.

9

Input Generated Output Concept Analysis

Input Problem find M positive integers A1, A2, A3, ...,
AM, so that A1*A2*A3*...*AM would
be equal to N. You should maximize
the number M.

Math: "Find the prime factorization
of N. To maximize M, represent N as
a product with as many numbers >1
as possible, i.e., break N down into as
many factors >1 as possible.
Greedy: At each step, select the small-
est prime factor repeatedly to split N
into the maximum number of factors.
Divide and Conquer: Recursively split
N into smaller divisors, always trying to
break it down into more factors, but this
overlaps with recursive/greedy splitting
by the smallest factor.
Recursion: Recursively divide N by its
smallest divisor >1 as long as possible,
outputting the path of division as the
sequence of factors.

Error Type: Time Limit Exceeded
Mistake Analysis: ... trial division to
factor each number N...for very large
N (up to 10**1000), trial division be-
comes extremely slow.

write N as a sum A1 + A2 + ... +
AM(M ≥ 1, eachAi ≥ 1) so that
A1*A2*...*AM is as large as possible.
You must output both this maximum
product and the values of A1, ..., AM
that achieve it.

Greedy: "Repeatedly subtract 3 from
N, using as many 3s as possible, and
use 2s only when N mod 3 == 1 or 2;
this maximizes the product.
Math: "Notice that splitting N into as
many 3s as possible (and possibly one
or two 2s) gives the maximum product,
based on properties of numbers and ex-
ponentials.
Dynamic Programming:(Alternative
for smaller N) Try all partitions re-
cursively and memorize the maximum
product for each sum, but this is less
efficient for large N.

Error Type: Wrong Answer
Mistake Analysis: ...leaving potentially
large prime factors unprocessed if n >
10,000...

Your task is to split the integer N into
the sum of M positive integers B1, B2,
..., BM, ... so that B1 + B2 + ... + BM
= N. In addition, you should maximize
the possible value of M.

Greedy: "Assign as many 2s as possi-
ble to the sum, then possibly one larger
integer to account for the remainder.
This guarantees maximizing M since
2 is the smallest allowed value."
Math: "Determine how many times 2
fits into N (i.e., floor(N/2)) and adjust
the last element if N is odd, ensuring all
elements are greater than 1 and the sum
matches N."
Array: "Construct an array of 2’s of
length M, setting the last value to ac-
count for any leftover (e.g., 3 if N is
odd), ensuring all values are >1."

Table 6: Examples of generated answers by the model.

10

E Embedding Model Source510

The embedding model used in RAG is: https://511

huggingface.co/thenlper/gte-large.512

The embedding model in code similarity is513

intfloat/e5-mistral-7b-instruct.514

F Model Size and Budget515

We used the OpenAI API for GPT-4.1 from516

https://platform.openai.com/, the517

cost to finish the table result is around $31.44518

USD. We used the TogetherAI API for Qwen3519

235B from https://api.together.ai/,520

the cost to finish the table result is around $12.2521

USD.522

G Prompt523

This list is the prompt for our problem generation524

task. The placeholder “[PLACEHOLDER FOR525

INPUT DESCRIPTION]” will be replaced by the526

text to describe the input format in different tasks.527

H Ablation Study528

To determine whether the concept analysis method529

is needed in the scenario with error code submis-530

sion, we conduct an experiment that which the531

LLM is prompted with both concept analysis and532

error analysis.533

Listing 3: Problem Generation Prompt
534

YOU MUST FOLLOW THESE RULES: 535
Notice: There might be an existing 536

problem in Leetcode. Never present 537
an existing problem; try to generate 538
a new one 539

Generate one similar CODING EXERCISE 540
problem with the following. Notice 541
that you have: 542

543
[PLACEHOLDER FOR INPUT DESCRIPTION] 544

545
MUST INCLUDE: 546

- Problem Statement 547
- More than 3 test cases 548
Testcase in this format: 549
Input: `1 - 2 - 3` 550
Output: `-4` 551
- Sample Python solution: 552
Code must pass all Test cases 553

--------Here is one example -------- 554
{ 555

"problem_statement": "Chef is 556
fascinated by triangular numbers 557
, defined by the formula T(n) = 558
n*(n+1)/2. He wants to challenge 559
you to determine, given a very 560

large integer K, if K is a 561
triangular number.\n\nInput\n\ 562
nThe first line of the input 563
contains an integer T, the 564
number of test cases. Each of 565
the next T lines contains a 566
single integer K (given as a 567
string to allow up to 1000 568
digits).", 569

"test_cases": [570
{ 571

"inputs": "3\n6\n7\n28", 572
"outputs": "YES\nNO\nYES" 573

}, 574
{ 575

"inputs": "2\n0\n500500", 576
"outputs": "YES\nYES" 577

} 578
], 579
"code": "import sys\nimport math\n\ 580

ndef is_perfect_square(n):\n 581
if n < 0:\n return False\ 582
n x = int(n ** 0.5)\n 583
return x * x == n\n\ndef solve() 584
:\n T = int(sys.stdin. 585
readline())\n for _ in range(586
T):\n Kstr = sys.stdin. 587
readline().strip()\n K = 588
int(Kstr)\n s = 8*K + 1\n 589

sqrt_s = int(s ** 0.5)\n 590
if sqrt_s * sqrt_s != s: 591

\n print(\"NO\")\n 592
continue\n if 593

(sqrt_s - 1) % 2 == 0:\n 594
print(\"YES\")\n 595

else:\n print 596
(\"NO\")\n\nif __name__ == \" 597
__main__\":\n solve()\n" 598

} 599
600

--------Here are input -------- 601602

11

https://huggingface.co/thenlper/gte-large
https://huggingface.co/thenlper/gte-large
https://huggingface.co/thenlper/gte-large
intfloat/e5-mistral-7b-instruct
https://platform.openai.com/
https://api.together.ai/

	Introduction
	Methods
	Concept Consistency
	Code Consistency

	Experiments
	Experimental Setup
	Dataset
	Metrics

	Results
	Concept Matching
	Code Check

	Conclusion
	Chain of Thought Structure
	Dataset Detail
	Executability of generated problem
	Case Analysis
	Embedding Model Source
	Model Size and Budget
	Prompt
	Ablation Study

