Consistent Coding Problem Synthesis with Reflective Analysis

Anonymous ACL submission

Abstract

Large Language Models (LLMs) have shown
great promise in educational applications, e.g.,
generating coding exercises for programming
instruction. However, two major challenges
remain in automatic coding exercise synthesis:
(1) the generated solution code often fails to
pass all test cases, and (2) there is no automatic
metric to assess the conceptual relevance or
pedagogical quality of the synthesized prob-
lems. In this paper, we present a three-stage
framework for educational coding problem syn-
thesis. First, we perform Chain-of-Thought-
based Reflective Analysis, incorporating Error
Analysis and Concept Analysis, to improve the
pedagogical quality of generation. Second, we
introduce an iterative code refinement to ensure
the generated solution passes a Code Check.
Third, we propose a Concept Check procedure
to automatically evaluate the conceptual align-
ment between the input and the synthesized
problem. Experiments show that our methods
significantly improve both code and concept
consistency, providing a reliable pipeline for
automatic coding problem synthesis.

1 Introduction

Large Language Models (LLMs) demonstrate sig-
nificant potential in educational applications. For
instance, they can perform teaching-assistant-like
question answering (Hicke et al., 2023) and provide
multi-modal feedback on diagrams (Li et al., 2024a;
Jurenka et al., 2024). Prior research has explored
automatic distractor generation for multiple-choice
questions in math and coding (Scarlatos et al., 2024;
Lee et al., 2025), while language learning studies
have personalized exercises using knowledge states
and difficulty levels (Cui and Sachan, 2023).
Given LLMs’ proficiency in solving program-
ming and math problems (Chen et al., 2021; Jain
et al., 2024; Li et al., 2024b), synthesizing high-
quality, adaptive coding problems emerges as a
valuable yet under-explored area (Chen et al., 2024;

Generation

R

Concept Analysis
Error Analysis

—)

Problem & Wrong Code Generated Problem

Reflective Analysis

Evaluation
—®
g Q

Generated Problem

Code Check

Concept Check

Figure 1: Our Generation-Evaluation framework

Fan et al., 2023). This task involves generating
problem statements, solution code, and test cases
(Frankford et al., 2024), with two critical chal-
lenges: code consistency and concept consistency.

During generation, ensuring consistency be-
tween the solution code and its associated test cases
is critical. If the reference solution fails to pass all
provided test cases, revisions to either the code or
the test cases are required. Prior work has shown
that the pass rate declines as problem difficulty in-
creases (TA et al., 2023). New benchmarks like
TestCase-Eval also highlight the significance of
this code consistency problem (Yang et al., 2025b).
Therefore, we define code consistency as: solution
code passing all test cases.

Beyond code consistency, quality evaluation of
generated problems presents another major bottle-
neck. Existing quality assessments rely on costly
expert annotations (Sarsa et al., 2022), which are
costly and infeasible at scale. Moreover, such eval-
uations offer only coarse-grained judgments and
are insensitive to learner skill levels. ExGen in-
troduced the difficulty level as a criterion for the
synthesized problem (TA et al., 2023). Therefore,
we focus on concept consistency to evaluate the
quality of synthesized coding problems.

In this paper, we propose a three-step method
to improve consistency and pedagogical quality in
coding problem generation (Figure 2). In the first

/ Retrieval Augmented

\
Generation \\\ / Vi i
;] e V! —3 |
__________ Vi i
[~ E i ‘Solution” passes: 1 Solution passes N i o | i
(R ra
i | ey [{test coses? | (o) 1 et eoses @) 1 b :
" 5 ' rom e [R jdger] .. | "
i 2l - smrned L — A) Stetian " i
I) I n " Test Cases !
Il problem descrigion | Zero-Shot Generation Y ' ! 0 ;
I

"] Problem descrlpnon " H i ____________ H
" ' Solution 1 ’ Concept Andlysis “\ '
" : Test Cases :: N~ [N l Candidate |
i e R o r 11 B} Dynamic Programming” prblem 1

i i
n m | Ours . , E H xk E: E "Depth-first Search” ! ° i

' 1
it | — @ {‘} o Coder | pmm—p Debugser 1 [(ereesy’ l |
" ' s o n / !
1 Wrong code ' Erer Ay .. n SooIzIIIIIIIo '
| (Optional) H " " / Concept Andlysis ™ ; i
et bt ,: [N .) Candidate ;
' o Ay (et pns ! n @ g @ > it }Dynamic Programming” problem 2
1 ' [} 1 "y " '
\ | Time Uit Excoaded * | | DY0amic Pograming” i VI - Qo
\ 1"...DP scans the board for i |, "Deptl ! RN) \ ! » H |
N revery cell..." Y Greedy" | JARN l\ Gueue' i /
\ / .

Step 1: Reflective Analysis
Chain-of -Thoughts based Generation

Step 2: Code Check
Auto-Check test case and solution matches

Step 3: Concept Check
Efficiently check prefered problem

Figure 2: Three-stages pipeline for consistent problem synthesis. Reflective analysis synthesizes the problem by
analyzing the concept or the error code before generation. Code Check requires repeatedly refining the code to
achieve consistency. Concept Check requires the generated problem to conceptually match the input problem.

step, Reflective Analysis is applied to guide the
LLM toward more accurate and instructional gener-
ation. Reflective Analysis aims to prompt the LLM
with both Concept Analysis and Error Analysis
tasks, encouraging deeper reasoning over the input
problem before generating new exercises. In the
second step, Code Check is performed to refine the
inconsistency between the generated code and the
test cases. We adapt a multi-agent framework to
iteratively improve the correctness of synthesized
code. In the final step, we introduce a Concept
Matching metric to evaluate the similarity in cod-
ing concept between the input problem and the
synthesized problem.

Our experimental results show that the proposed
framework improves both concept consistency and
code consistency. The Concept Matching of the
synthesized problem increased by around 20% -
30% in Precision and Recall. The Pass All Rate
of the synthesized solution code and test cases in-
creases by 20%—-30% compared to baselines, with
enhanced conceptual consistency. This result ac-
cords with the code similarity increase, demonstrat-
ing the effectiveness of our metrics.

2 Methods

2.1 Concept Consistency

We propose Chain-of-Thought-based Reflective
Analysis to enhance the concept consistency of
the generated problems. As shown in Figure 2, Re-
flective Analysis consists of two types of analyses:

Concept Analysis. Given an input problem, we
prompt the LLM to identify a list of high-level al-

gorithmic concepts (e.g., “dynamic programming”,
“depth-first search”, “greedy”). For each concept,
the model is further instructed to explain how it
could be applied to solve the problem. A new prob-
lem is then generated using this concept-aware rea-
soning as context, promoting conceptual alignment
between the original and synthesized tasks.

Error Analysis. To identify unmastered con-
cepts, we utilize erroneous code submissions as
auxiliary signals. Given an input problem and an
incorrect solution, the LLM is prompted to analyze
the underlying cause of the error. The resulting
analysis is then used to guide problem generation,
encouraging the model to focus on algorithmic rea-
soning rather than surface-level text similarity. Fur-
ther details and prompt examples for both analyses
are provided in Appendix A.

To evaluate the concept consistency between the
input problem and the generated problem, we pro-
pose the Concept Matching metric, which com-
pares the sets of concepts extracted from both
problems and quantitatively measures their align-
ment. The detailed formulation is introduced in
Section 3.3, and we discuss the effectiveness of
this metric in Section 4.1.

2.2 Code Consistency

Prior studies have investigated code-test consis-
tency as a proxy for problem validity, primarily
by reporting the percentage of problems where
the sample solution passes all provided test cases
(Sarsa et al., 2022; TA et al., 2023). However, these
works typically stop at evaluation and do not pro-
pose methods for repairing inconsistent problems.

Iterative and self-reflective generation is com-
monly used in generation tasks. In the domain
of code generation, multi-round refinement is also
widely studied. CodeTree Li et al., 2024c proposes
a tree search strategy that models the trajectory of
reasoning, solving, and debugging. Socratic Hu-
man Feedback (SoHF) (Chidambaram et al., 2024)
leverages Socratic questioning to elicit informa-
tive human feedback during multi-turn generation.
MapCoder (Islam et al., 2024) and CodeSim (Islam
et al., 2025) introduce agents with different tasks
to enhance code generation.

We designed a multi-agent system that enables
iterative refinement of codes and test cases, as
shown in Figure 2, step 2. In this system, we have
three agents: a Coder agent (LLM agent), a Judger
(Python script running in local environment), and a
Debugger (LLM agent).

After the code is generated, the Judger executes
the code through test cases in a local environment
and verifies the results. If the code does not match
the test cases, the Debugger then provides revision
feedback to the Coder to re-generate a new solution
code. In case of the test cases not being consistent
with the problem, when we found the sample code
failed on 1—2 same test cases every time, we will
consider the test cases being wrong and prompt the
LLM to re-generate these test cases. The iteration
may loop multiple times, and we use Code Check
Pass@k to represent a k-times iteration in table 1.

3 Experiments

3.1 Experimental Setup

We conduct experiments to evaluate the effective-
ness of Error Analysis, Concept Analysis, and code
refinement in improving the quality of coding prob-
lem synthesis. Our focus is on assessing whether
our method improves the concept and code consis-
tency of generated problems.

Baseline In all scenarios, we incorporate one-
shot prompting as a baseline. Our prompts are
shown in appendix G. For the scenario w/o error
code submission, we also use retrieval augmented
generation (RAG) (Wang et al., 2025) as a base-
line. In RAG, we use the input problem to search
for a similar problem in the dataset, with cosine-
similarity by its vector embedding, and we prompt
the LLM with the retrieved problem. For the em-
bedding model, we used an open-source model in
Huggingface (E): thenlper/gte-large.

Model Choice We conduct our experiment on
both a closed-source model, OpenAl’s GPT-4.1
(version released on April 14, 2025)—-and an open-
source model Qwen3-235B (Yang et al., 2025a).

3.2 Dataset

CodeChef we use a dataset of 26,663 code
submissions to 352 programming problems from
CodeChef. We sample 999 incorrect submissions,
proportionally distributed across three major error
types: Wrong Answer, Time Limit Exceeded, and
Runtime Error. To ensure broader coverage, we
cap the number of submissions per problem at five,
resulting in 279 unique problems and an average
of 3.58 submissions per problem. These examples
provide diverse failure cases for error analysis. Full
statistics are shown in Table 2. In the experiment,
we used the first 100 problems with submissions.

3.3 Maetrics

Concept Matching To evaluate concept consis-
tency, we define a new metric: Concept Matching.
We take the concepts for the input problem as the
ground truth, and take the concepts for the syn-
thesized problem as the prediction. We use the
precision and recall for the appearance indicators
of the method keywords as our metric.

Code Check To evaluate code consistency, we
adopt the percentage of synthesized problems
whose solution code passed all their test cases. The
solution code and the test cases are synthesized
separately; therefore, the Pass All metric reflects
how the synthesis process is consistent with itself.
Here, the Pass @k means the percentage of passed
problems with k iterations of code refinement.

Code Similarity We use the code similarity be-
tween the solution code from the input problem
and the synthesized problem. This serves as a qual-
ity that measures whether the synthesized problem
tests the same set of knowledge as the input prob-
lem. We use an embedding-based code similarity
model from Huggingface (E): intfloat/e5-mistral-
7b-instruct (Wang et al., 2023, 2022).

4 Results

We report results across three metrics: Con-
cept Matching, Code Check, and Code Similar-
ity. We examine the impact of Error Analysis
(EA), Concept Analysis (CA), and their combi-
nation (EA+CA).

Method Concept Matching T | Code Check T | Code Similarity 1
Precision Recall Pass@0/Pass@3 Pass@0/Pass@3
GPT-4.1
Direct Prompt 0.29 0.30 8%/23% 0.79/0.82
RAG 0.35 0.34 12%1/33% 0.78/0.83
Error Code 0.54 0.53 15%/25% 0.80/0.84
Error Code + EA 0.65 0.66 14%/29% 0.84/0.85
Error Code + CA 0.77 0.75 18%/32% 0.79/0.83
Error Code + EA+CA 0.67 0.71 17%/35 % 0.83/0.87
Owen3
Direct Prompt 0.36 0.38 15%/23% 0.77/0.78
RAG 0.42 0.49 16%/22% 0.76/0.77
Error Code 0.42 0.42 14%1/25% 0.82/0.82
Error Code + EA 0.68 0.67 25%/30 % 0.86/0.85
Error Code + CA 0.60 0.69 20%1/28% 0.78/0.79
Error Code + EA+CA 0.63 0.60 22%/128% 0.84/0.83

Table 1: Main results on GPT-4.1 and Qwen3. We compare three types of inputs: raw prompts, RAG, and error
code. Our proposed reasoning modules, EA (Error Analysis) and CA (Concept Analysis), are applied on top of
error code inputs and yield consistent improvements across all metrics.

4.1 Concept Matching

As shown in Table 1, adding EA and/or CA in-
creases both precision and recall as compared to
baseline in both models. For Precision, GPT-4.1
achieved 0.54 with Error Code as context, but in-
creased by 42.5% with Concept Analysis. Simi-
larly, Qwen3 achieved at most 61% improvement
in Precision utilizing Error Analysis. Recall shows
a similar trend to Precision. This demonstrates the
effectiveness of our Reflective Analysis in improv-
ing concept consistency.

4.2 Code Check

As shown in Table 1, multi-round code refinement
generally improves the Pass All rate by 5%-15%.
For GPT4.1, the Pass All rate increased by at most
20% with EA, CA, and 3-round code refinement.
For Qwen3, adding EA and/or CA can also im-
prove the Pass All rate by around 5%. Interestingly,
inputting EA only surpasses inputting EA and CA
together in Qwen3, which might be caused by gen-
eration stability in handling long context. Code
Check result also accords roughly with the code
similarity. Therefore, our pipeline can effectively
improve the code consistency in generation.

5 Conclusion

We study the consistency of coding problem syn-
thesis with LL.Ms at the generation and evaluation
stages. In the generation stage, we propose Reflec-
tive Analysis methods to augment the concept con-
sistency between a reference problem and its gener-
ated counterpart, based on the analysis of concepts
and error code. We further introduce a multi-agent
framework to improve the code consistency within
the synthesized code and test cases. In the evalua-
tion stage, we conduct Code Check and Concept
Check to automatically evaluate the code consis-
tency and the concept consistency. We conduct
experiments on a proprietary and an open-source
LLM with case analysis. The results demonstrated
that our methods improve the generation consis-
tency and evaluation efficiency of coding problem
synthesis.

Limitations

Test Case generalization Code generation is cur-
rently explored more than test case generation. We
consider revising the code in a loop with the as-
sumption that the test case is correct. If the code
can not pass all test cases, this can also indicate that
certain test cases are incompatible. In some cases,
both the test cases and the code may not correctly
describe the problem, making it hard to diagnose.

LLM restriction Due to the use of LLM, we can
not restrict the method name with a pre-defined
category set. This might include some unwanted
method names that might influence the accuracy of
Concept Matching.

Efficiency consideration for Multi-agent In our
paper, we constructed a multi-agent system to re-
vise the code in a loop. On one hand, this might
be inefficient in time for larger-scale tasks. On the
other hand, to maintain the complete history of the
multi-agent generation might be costly in terms of
token length.

Ethics Statement

We release our code under the MIT license. The
experiments use the intfloat/e5-mistral-7b-instruct
model, available on Hugging Face under a Cre-
ativeML license. The benchmark data is based on
the Codeforces problem set, which is publicly ac-
cessible for research and educational use. We do
not observe significant ethical issues induced by
our methods.

References

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021. Evaluating
large language models trained on code.

Mingda Chen, Xilun Chen, and Wen tau Yih. 2024.
Few-shot data synthesis for open domain multi-hop
question answering.

Subramanian Chidambaram, Li Erran Li, Min Bai, Xi-
aopeng Li, Kaixiang Lin, Xiong Zhou, and Alex C.
Williams. 2024. Socratic human feedback (SoHF):
Expert steering strategies for LLM code generation.
In Findings of the Association for Computational
Linguistics: EMNLP 2024, pages 15491-15502, Mi-
ami, Florida, USA. Association for Computational
Linguistics.

Peng Cui and Mrinmaya Sachan. 2023. Adaptive and
personalized exercise generation for online language
learning.

Aysa Xuemo Fan, Ranran Haoran Zhang, Luc Paquette,
and Rui Zhang. 2023. Exploring the potential of
large language models in generating code-tracing
questions for introductory programming courses.

Eduard Frankford, Ingo Hohn, Clemens Sauerwein, and
Ruth Breu. 2024. A survey study on the state of the
art of programming exercise generation using large
language models.

Yann Hicke, Anmol Agarwal, Qianou Ma, and Paul
Denny. 2023. Ai-ta: Towards an intelligent question-
answer teaching assistant using open-source llms.
Accessed: 06 May 2025.

Md. Ashraful Islam, Mohammed Eunus Ali, and
Md Rizwan Parvez. 2024. Mapcoder: Multi-agent
code generation for competitive problem solving.

Md. Ashraful Islam, Mohammed Eunus Ali, and
Md Rizwan Parvez. 2025. Codesim: Multi-
agent code generation and problem solving through
simulation-driven planning and debugging.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia
Yan, Tianjun Zhang, Sida Wang, Armando Solar-
Lezama, Koushik Sen, and Ion Stoica. 2024. Live-
codebench: Holistic and contamination free evalua-
tion of large language models for code.

Irina Jurenka, Markus Kunesch, Kevin R McKee,
Daniel Gillick, Shaojian Zhu, Sara Wiltberger, Shub-
ham Milind Phal, Katherine Hermann, Daniel Kasen-
berg, Avishkar Bhoopchand, et al. 2024. Towards
responsible development of generative ai for educa-
tion: An evaluation-driven approach. arXiv preprint
arXiv:2407.12687.

Yooseop Lee, Suin Kim, and Yohan Jo. 2025. Gener-
ating plausible distractors for multiple-choice ques-
tions via student choice prediction.

Hai Li, Chenglu Li, Wanli Xing, Sami Baral, and Neil
Heffernan. 2024a. Automated feedback for student
math responses based on multi-modality and fine-
tuning. In Proceedings of the 14th Learning Ana-
lytics and Knowledge Conference, LAK ’24, page
763770, New York, NY, USA. Association for Com-
puting Machinery.

Jia Li, Ge Li, Yunfei Zhao, Yongmin Li, Huanyu Liu,
Hao Zhu, Lecheng Wang, Kaibo Liu, Zheng Fang,
Lanshen Wang, Jiazheng Ding, Xuanming Zhang,
Yuqi Zhu, Yihong Dong, Zhi Jin, Binhua Li, Fei
Huang, Yongbin Li, Bin Gu, and Mengfei Yang.
2024b. DevEval: A manually-annotated code gener-
ation benchmark aligned with real-world code repos-
itories. In Findings of the Association for Compu-
tational Linguistics: ACL 2024, pages 3603-3614,
Bangkok, Thailand. Association for Computational
Linguistics.

http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2305.13691
http://arxiv.org/abs/2305.13691
http://arxiv.org/abs/2305.13691
https://doi.org/10.18653/v1/2024.findings-emnlp.908
https://doi.org/10.18653/v1/2024.findings-emnlp.908
https://doi.org/10.18653/v1/2024.findings-emnlp.908
http://arxiv.org/abs/2306.02457
http://arxiv.org/abs/2306.02457
http://arxiv.org/abs/2306.02457
http://arxiv.org/abs/2306.02457
http://arxiv.org/abs/2306.02457
http://arxiv.org/abs/2310.15317
http://arxiv.org/abs/2310.15317
http://arxiv.org/abs/2310.15317
http://arxiv.org/abs/2310.15317
http://arxiv.org/abs/2310.15317
http://arxiv.org/abs/2405.20183
http://arxiv.org/abs/2405.20183
http://arxiv.org/abs/2405.20183
http://arxiv.org/abs/2405.20183
http://arxiv.org/abs/2405.20183
http://arxiv.org/abs/2311.02775
http://arxiv.org/abs/2311.02775
http://arxiv.org/abs/2311.02775
http://arxiv.org/abs/2405.11403
http://arxiv.org/abs/2405.11403
http://arxiv.org/abs/2405.11403
http://arxiv.org/abs/2502.05664
http://arxiv.org/abs/2502.05664
http://arxiv.org/abs/2502.05664
http://arxiv.org/abs/2502.05664
http://arxiv.org/abs/2502.05664
http://arxiv.org/abs/2403.07974
http://arxiv.org/abs/2403.07974
http://arxiv.org/abs/2403.07974
http://arxiv.org/abs/2403.07974
http://arxiv.org/abs/2403.07974
http://arxiv.org/abs/2501.13125
http://arxiv.org/abs/2501.13125
http://arxiv.org/abs/2501.13125
http://arxiv.org/abs/2501.13125
http://arxiv.org/abs/2501.13125
https://doi.org/10.1145/3636555.3636860
https://doi.org/10.1145/3636555.3636860
https://doi.org/10.1145/3636555.3636860
https://doi.org/10.1145/3636555.3636860
https://doi.org/10.1145/3636555.3636860
https://doi.org/10.18653/v1/2024.findings-acl.214
https://doi.org/10.18653/v1/2024.findings-acl.214
https://doi.org/10.18653/v1/2024.findings-acl.214
https://doi.org/10.18653/v1/2024.findings-acl.214
https://doi.org/10.18653/v1/2024.findings-acl.214

Jierui Li, Hung Le, Yingbo Zhou, Caiming Xiong, Sil-
vio Savarese, and Doyen Sahoo. 2024c. Codetree:
Agent-guided tree search for code generation with
large language models.

Sami Sarsa, Paul Denny, Arto Hellas, and Juho
Leinonen. 2022. Automatic generation of program-
ming exercises and code explanations using large
language models. In Proceedings of the 2022 ACM
Conference on International Computing Education
Research - Volume 1, pages 27-43. ACM.

Alexander Scarlatos, Wanyong Feng, Digory Smith, Si-
mon Woodhead, and Andrew Lan. 2024. Improving
automated distractor generation for math multiple-
choice questions with overgenerate-and-rank.

Nguyen Binh Duong TA, Hua Gia Phuc Nguyen, and
Swapna Gottipati. 2023. Exgen: Ready-to-use exer-
cise generation in introductory programming courses.
In Proceedings of the International Conference on
Computers in Education (ICCE). Accessed May
2025.

Liang Wang, Nan Yang, Xiaolong Huang, Binxing
Jiao, Linjun Yang, Daxin Jiang, Rangan Majumder,
and Furu Wei. 2022. Text embeddings by weakly-
supervised contrastive pre-training. arXiv preprint
arXiv:2212.03533.

Liang Wang, Nan Yang, Xiaolong Huang, Linjun Yang,
Rangan Majumder, and Furu Wei. 2023. Improving
text embeddings with large language models. arXiv
preprint arXiv:2401.00368.

Zora Zhiruo Wang, Akari Asai, Xinyan Velocity Yu,
Frank F. Xu, Yiqing Xie, Graham Neubig, and Daniel
Fried. 2025. CodeRAG-bench: Can retrieval aug-
ment code generation? In Findings of the Association
for Computational Linguistics: NAACL 2025, pages
3199-3214, Albuquerque, New Mexico. Association
for Computational Linguistics.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang,
Binyuan Hui, Bo Zheng, Bowen Yu, Chang Gao,
Chengen Huang, Chenxu Lv, Chujie Zheng, Dayi-
heng Liu, Fan Zhou, Fei Huang, Feng Hu, Hao Ge,
Haoran Wei, Huan Lin, Jialong Tang, Jian Yang,
Jianhong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi
Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai
Dang, Keqin Bao, Kexin Yang, Le Yu, Lianghao
Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang,
Peng Wang, Qin Zhu, Rui Men, Ruize Gao, Shixuan
Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao
Yin, Xingzhang Ren, Xinyu Wang, Xinyu Zhang, Xu-
ancheng Ren, Yang Fan, Yang Su, Yichang Zhang,
Yinger Zhang, Yu Wan, Yuqgiong Liu, Zekun Wang,
Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
Qiu. 2025a. Qwen3 technical report.

Zheyuan Yang, Zexi Kuang, Xue Xia, and Yilun Zhao.
2025b. Can llms generate high-quality test cases
for algorithm problems? testcase-eval: A systematic
evaluation of fault coverage and exposure.

http://arxiv.org/abs/2411.04329
http://arxiv.org/abs/2411.04329
http://arxiv.org/abs/2411.04329
http://arxiv.org/abs/2411.04329
http://arxiv.org/abs/2411.04329
https://doi.org/10.1145/3501385.3543957
https://doi.org/10.1145/3501385.3543957
https://doi.org/10.1145/3501385.3543957
https://doi.org/10.1145/3501385.3543957
https://doi.org/10.1145/3501385.3543957
http://arxiv.org/abs/2405.05144
http://arxiv.org/abs/2405.05144
http://arxiv.org/abs/2405.05144
http://arxiv.org/abs/2405.05144
http://arxiv.org/abs/2405.05144
https://doi.org/10.58459/icce.2023.953
https://doi.org/10.58459/icce.2023.953
https://doi.org/10.58459/icce.2023.953
https://aclanthology.org/2025.findings-naacl.176/
https://aclanthology.org/2025.findings-naacl.176/
https://aclanthology.org/2025.findings-naacl.176/
http://arxiv.org/abs/2505.09388
http://arxiv.org/abs/2506.12278
http://arxiv.org/abs/2506.12278
http://arxiv.org/abs/2506.12278
http://arxiv.org/abs/2506.12278
http://arxiv.org/abs/2506.12278

Appendix
A Chain of Thought Structure

Listing 1: Concept Analysis

Listing 2: Error Analysis

{
"methods": [
{
"method": "Dynamic Programming",
"instruction": "For each cell,
track the maximum number of
pawns the knight can capture
if it reaches that cell,
updating only when moving
rightward due to the knight'
s move restrictions."

"method": "Array",

"instruction": "Use a 2D array
to maintain state for each
cell (number of pawns
captured if the knight
reaches that cell),
iterating through allowed
knight moves efficiently."

"method": "Depth-first Search",
"instruction": "Optionally, try
all possible knight paths
recursively, updating a

maximum as paths are
explored (not ideal for the
largest cases but useful for
understanding) . "

"method": "Greedy",
"instruction": "Although greedy
is sub-optimal here, you
could try always picking the
locally best pawn, but this

could miss the optimal
globally. Useful for
comparison or quick
heuristics."

{

"wrong_submission_code": "...",

"error_type":

"time limit exceeded",

"mistake_analysis": [
"First, the student defines three

solution methods: brute-force
recursion (alg), memoized
recursion (alg2?2), and a DP
approach (algdp).",

"Then, in main(), only algdp (the DP

approach) is used to process
each test case, but this DP
scans the board for every cell
from the last column to the
first, recalculating the maximal
moves inefficiently for every
cell, not just the relevant
knight's path.",

"However, the DP does not use proper

boundary checks and can
potentially revisit many cells
needlessly due to non-optimal
transitions and redundant
recomputation on large boards (N
up to 1000), which causes
excessive execution time.",

"Therefore, for large N, this

results in a TLE as the per-cell
computations are not minimized

or restricted to only reachable

cells from the knight's actual

position."

] 14

"misconception_breakdown": "

by

Initially, the student tries to
directly fill the DP table for
all board cells, assuming it
models the optimal paths.
However, they overlook the
importance of restricting DP
computation to only the cells
reachable from the knight\u2019s
actual position and do not
optimize transitions to avoid
redundant work. Thus, they
misunderstand how to efficiently
model and restrict state space
for DP in large constraint
problems."

B Dataset Detail

This is the dataset statistics processed from the
CodeChef dataset '.

CodeChef Dataset Statistics Count
Total submissions 26,663
Total problems 352
Sampled incorrect submissions 999

— Wrong Answer (WA) 463

— Time Limit Exceeded (TLE) 287

— Runtime Error (NZEC) 249
Unique problems (after sampling cap) 279
Avg. submissions per problem 3.58
Max submissions per problem 5

Table 2: CodeChef dataset statistics used for training
and evaluating error-aware Chain-of-Thought (CoT)
generation.

C Executability of generated problem

Method Successfully generated Code Runs Pass >1 Failedonly1 PassAll
GPT4.1 + Direct Prompt 89 95.5% 44.9% 11.2% 9.0%
GPT4.1 + RAG 87 87.4% 54.0% 17.2% 13.8%
GPT4.1 + Error Code 97 96.9% 70.1% 19.6% 16.2%
GPT4.1 + EA 89 96.6% 59.6% 10.1% 15.7%
GPT4.1 + CA 83 96.4% 72.3% 20.5% 21.7%
GPT4.1 + CA+EA 89 95.5% 65.2% 16.9% 19.1%

Table 3: Executability of GPT4.1 generation without refinement iteration. Percentages are calculated over
successfully generated samples, thus higher than the main table (Pass All / 100).

Method Successfully generated Code Runs Pass >1 Failedonly1 Pass All
Qwen3 + Direct Prompt 90 91.1% 67.8% 16.7% 17.2%
Qwen3 + RAG 92 88.1% 45.7% 14.1% 17.4%
Qwen3 + Error Code 95 89.5% 62.1% 28.4% 14.7%
Qwen3 + EA 99 85.8% 57.6% 18.2% 25.3%
Qwen3 + CA 93 93.5% 67.7% 19.4% 22.2%
Qwen3 + CA + EA 97 85.6% 58.8% 15.5% 22.7%

Table 4: Evaluation results of Qwen3-235B generation without refinement iteration. Percentages are calculated over
successfully generated samples, thus higher than the main table (Pass All/ 100).

'Data source: https://www.
kaggle.com/datasets/arjoonn/
codechef-competitive-programming

https://www.kaggle.com/datasets/arjoonn/codechef-competitive-programming
https://www.kaggle.com/datasets/arjoonn/codechef-competitive-programming
https://www.kaggle.com/datasets/arjoonn/codechef-competitive-programming

D Case Analysis

Input

Generated Output

Concept Analysis

Input Problem

...on a 2D grid, ...determine the number of integer-
coordinate...Manhattan distance to all restaurants
is minimized

Math: The sum of Manhattan distances is mini-
mized at the median of coordinates.

Sort: Sorting is required to identify medians, espe-
cially for even N (to determine the valid coordinate
range).

Array: Use arrays to store x and y coordinates
independently and operate on them efficiently.

Problem Only

Maintain a stack ... When query, remove the high-
est beauty score closest to the top

Stack: Simulate marble insertion/removal with
LIFO order.

Heap: Use a max-heap to track the highest beauty
marble.

Array: Maintain the order of insertions to deter-
mine how many marbles lie above the selected
one.

Hash Table: Use for deletion and verification in
the heap.

Concept Analysis

... minimize the total Manhattan distance

Sort: X and Y coordinates are sorted to find medi-
ans.

Math: Manhattan distance minimization leads to
median selection; multiple medians may be valid.
Array: Coordinate arrays are used to support me-
dian detection and counting.

Table 5: Examples of generated answers by the model.

Input

Generated Output

Concept Analysis

Input Problem

find M positive integers Al, A2, A3, ...,
AM, so that A1*A2*A3* .. *AM would
be equal to N. You should maximize
the number M.

Math: "Find the prime factorization
of N. To maximize M, represent N as
a product with as many numbers >1
as possible, i.e., break N down into as
many factors >1 as possible.

Greedy: At each step, select the small-
est prime factor repeatedly to split N
into the maximum number of factors.
Divide and Conquer: Recursively split
N into smaller divisors, always trying to
break it down into more factors, but this
overlaps with recursive/greedy splitting
by the smallest factor.

Recursion: Recursively divide N by its
smallest divisor >1 as long as possible,
outputting the path of division as the
sequence of factors.

Error Type: Time Limit Exceeded
Mistake Analysis: ... trial division to
factor each number N...for very large
N (up to 10**1000), trial division be-
comes extremely slow.

write N as a sum Al + A2 + ... +
AM(M > 1,eachA; > 1) so that
A1*A2%.*AM is as large as possible.
You must output both this maximum
product and the values of Al, ..., AM
that achieve it.

Greedy: "Repeatedly subtract 3 from
N, using as many 3s as possible, and
use 2s only when N mod 3 == 1 or 2;
this maximizes the product.

Math: "Notice that splitting N into as
many 3s as possible (and possibly one
or two 2s) gives the maximum product,
based on properties of numbers and ex-
ponentials.

Dynamic Programming:(Alternative
for smaller N) Try all partitions re-
cursively and memorize the maximum
product for each sum, but this is less
efficient for large N.

Error Type: Wrong Answer

Mistake Analysis: ...leaving potentially
large prime factors unprocessed if n >
10,000...

Your task is to split the integer N into
the sum of M positive integers B1, B2,
.... BM, ... sothat Bl + B2 + ... + BM
= N. In addition, you should maximize
the possible value of M.

Greedy: "Assign as many 2s as possi-
ble to the sum, then possibly one larger
integer to account for the remainder.
This guarantees maximizing M since
2 is the smallest allowed value."

Math: "Determine how many times 2
fits into N (i.e., floor(N/2)) and adjust
the last element if N is odd, ensuring all
elements are greater than 1 and the sum
matches N."

Array: "Construct an array of 2’s of
length M, setting the last value to ac-
count for any leftover (e.g., 3 if N is
odd), ensuring all values are >1."

Table 6: Examples of generated answers by the model.

10

E Embedding Model Source

The embedding model used in RAG is: https://
huggingface.co/thenlper/gte-large.
The embedding model in code similarity is
intfloat/e5-mistral-7b-instruct.

F Model Size and Budget

We used the OpenAl API for GPT-4.1 from
https://platform.openai.com/, the
cost to finish the table result is around $31.44
USD. We used the TogetherAl API for Qwen3
235B from https://api.together.ai/,
the cost to finish the table result is around $12.2
USD.

G Prompt

This list is the prompt for our problem generation
task. The placeholder “[PLACEHOLDER FOR
INPUT DESCRIPTION]” will be replaced by the
text to describe the input format in different tasks.

H Ablation Study

To determine whether the concept analysis method
is needed in the scenario with error code submis-
sion, we conduct an experiment that which the
LLM is prompted with both concept analysis and
error analysis.

11

Listing 3: Problem Generation Prompt

YOU MUST FOLLOW THESE RULES:
Notice: There might be an existing
problem in Leetcode. Never present
an existing problem; try to generate
a new one
Generate one similar CODING EXERCISE
problem with the following. Notice
that you have:

[PLACEHOLDER FOR INPUT DESCRIPTION]

MUST INCLUDE:

- Problem Statement

- More than 3 test cases

Testcase in this format:

*xInput:*xx 1 - 2 — 37

*xOutput:*xx ~—-4°

- Sample Python solution:

Code must pass all Test cases
———————— Here is one example ————————
"problem_statement": "Chef is

fascinated by triangular numbers

, defined by the formula T(n)

n* (n+1) /2. He wants to challenge

you to determine, given a very

large integer K, if K is a

triangular number.\n\nInput\n\

nThe first line of the input
contains an integer T, the
number of test cases. Each of

the next T lines contains a

single integer K (given as a

string to allow up to 1000

digits) .",
"test_cases": |

{

"inputs": "3\n6\n7\n28",
"outputs": "YES\nNO\nYES"
}y
{
"inputs": "2\n0\n500500",
"outputs": "YES\nYES"

}
:| 14
"code": "import sys\nimport math\n\
ndef is_perfect_square(n) :\n
if n < 0:\n return False\
n X int (n *+x 0.5)\n
return x * x == n\n\ndef solve()
:\n T int (sys.stdin.
readline ()) \n for _ in range(
T) : \n Kstr sys.stdin.
readline () .strip () \n K
int (Kstr) \n s 8xK + 1\n
sqrt_s int (s ** 0.5)\n
if sqgrt_s * sqgrt_s != s:

\n print (\"NO\")\n
continue\n if
(sqrt_s - 1) % 2 == 0:\n
print (\"YES\")\n
else:\n print

(\"NO\")\n\nif _ name___ == \"
__main__\":\n solve () \n"

https://huggingface.co/thenlper/gte-large
https://huggingface.co/thenlper/gte-large
https://huggingface.co/thenlper/gte-large
intfloat/e5-mistral-7b-instruct
https://platform.openai.com/
https://api.together.ai/

	Introduction
	Methods
	Concept Consistency
	Code Consistency

	Experiments
	Experimental Setup
	Dataset
	Metrics

	Results
	Concept Matching
	Code Check

	Conclusion
	Chain of Thought Structure
	Dataset Detail
	Executability of generated problem
	Case Analysis
	Embedding Model Source
	Model Size and Budget
	Prompt
	Ablation Study

