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ABSTRACT

We introduce a new mechanistic interpretability method for gated neurons, based
on an analysis of their read-write functionality, and use it to gain a number of novel
insights into the inner workings of transformer models. First, our method allows us
to discover a class of neurons — weakening neurons — with surprising behavior: even
though there are few, they activate extremely often and have a large influence on
model behavior. Second, we show that nine different different LLMs have similar
patterns with respect to weakening neurons: weakening neurons appear mostly
in late layers whereas their counterparts, (conditional) strengthening neurons, are
very frequent in early-middle layers. Third, weakening neurons have a strong effect
on model output when gate values are negative — which is surprising since negative
gate values are not expected to encode functionality. Thus, for the first time, we
observe a mechanism important for transformer functionality that involves negative
gate values.

1 INTRODUCTION AND BACKGROUND

Despite recent progress in interpretability, there is still much that is unclear about how transformer-
based (Vaswani et al.|[2017)) large language models (LLMs) achieve their impressive performance.
Prior interpretability work has addressed the interpretation of MLP sublayers, and we follow this line
of research. We expand this work in two directions: First, much previous work analyzes neurons
based only on the contexts in which they activate (Voita et al., [2024) or based only on their output
weightsﬂ (Gurnee et al.;|2024). In contrast (inspired by ideas from |[Elhage et al. (2021)); |Gurnee et al.
(2024)), we put the read-write (RW) functionality of neurons in the center of our analysis, and classify
neurons according to the interactions between input and output weights. Second, we do this in the
context of gated activation functions (Shazeer, 2020), which are used in recent LLMs like OLMo,
Llama and Gemma, but so far lack an extensive analysis from the interpretability perspective.

This new approach allows us to gain a number of novel insights into the inner workings of these
models. In particular, we discover a small class of neurons — weakening neurons — with outsize
influence and often surprising behavior.

Our contributions are as follows: (i) We are the first to investigate read-write behavior of gated
neurons, using cosine similarities of weight vectors. (ii) Applying this method to nine LLMs, we
observe universal patterns: Early-middle layers contain many conditional strengthening neurons, and
late layers tend more towards weakening. (iii) Thanks to the RW perspective, we discover a small
class of neurons (weakening neurons), that is highly influential in often surprising ways: they activate
often (in the sense of having a gate value above zero), and they influence various metrics, even in
earlier layers where they are very rare. (iv) We introduce a new method of conditional ablation that
enables us to find which activations of a given neuron are responsible for a certain behavior. (v)
Applying this method to weakening neurons, we find that some of their effect is due to cases in which
their gate value is negative. Thus, for the first time, we observe a mechanism involving negative
values of the Swish activation function.

'We publish code at/https://anonymous.4open.science/r/RW_functionalities-4D32,
*We use “weight” to refer to a weight vector, not a scalar.
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Table 1: Six prototypical read-write (RW) functionalities.

| cos(Wgate;s Wout)| | >0 ~0
COS(wim wout)

>0 strengthening conditional
strengthening

<0 weakening conditional
weakening

~ 0 proportional orthogonal

change output

1.1 THEORETICAL FRAMEWORK

We follow the residual stream perspective of Elhage et al.|(2021). Individual model units read from
the residual stream and then update it by writing (adding) to it. In the case of an MLP neuron, it
detects certain directions in the residual stream (i.e., whether the current residual stream vector at
least approximately points in one of these directions in model space), corresponding to its weight
vectors on the input side; and then writes to a certain direction, corresponding to its output weight
vector.

A semantic interpretation is that a neuron detects a concept in the residual stream, and in turn
also writes a concept. This semantic interpretation is not a necessary assumption for our neuron
classification, but is helpful for building intuition and interpreting results.

1.2  GATED ACTIVATION FUNCTIONS

We work on gated activation functions like SWiGLU or GeGLU (Shazeer, |2020). Gated activation
functions are used widely, e.g., OLMo (Groeneveld et al., 2024) and Llama (Touvron et al.} 2023)) use
SwiGLU, and Gemma (Gemma, [2024) uses GeGLU. Here we briefly describe SwiGLU. GeGLU
replaces Swish with GeLU, but is otherwise identical. We describe single neurons as opposed to
whole MLP layers.

Traditional activation functions like ReLU take a single scalar as argument: zpo = ReLU(zi,). In
contrast, a gated activation function like SWiGLU takes two arguments:

Zpost = SWIGLU(Zgate, Tin) := SWish(Zgate) * Tin-
The scalars g and z;, are the dot products of the (normalized) residual stream (which we denote
Tnorm) With the neuron’s gate and linear input weight vectors, Wgae and wjy.
Finally, zpostwou (a rescaled version of the output weight vector) is added to the residual stream.
Fully written out: The neuron adds
Swish(Znorm - Weate) - (Tnorm - Win) * Wout )

to the residual stream.

2 METHOD

2.1 WEIGHT PREPROCESSING

We note two closely related theoretical properties of gated activation functions:

1. Positive vs negative activation. Strong activations can be either positive or negative: If zgye > 0
(i.e. Tnorm * Weare > 0), then i, (i.€. Tpom - win) can still be strongly positive or negative, because
wyy, is different from wgye. In the case 2gae > 0, xiy > 0, we get a strong positive activation. In the
case Tgae > 0, 7 < 0, we get a strong negative activation. So, depending on the context, a given
gated activation neuron can either add the output weight vector to the residual stream or subtract it.

2. Symmetry. Switching the signs of both w;, and w,y preserves behavior: In equation (1), if we
replace wi, by —wji, and Wy by — Wy, the two minus signs cancel out.
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We propose a weight preprocessing step to make interpretation of gated neurons more intuitive.
Specifically, we multiply wj, and wqy by the sign of cos(wgale, wiy ). By property (2) above, this
does not change neuron behavior.

The effect of this operation is that the two reading weight vectors, wg,e and wj,, now always have a
non-negative cosine similarity, i.e., they do not point in opposite directions. This makes it easier to
reason about what causes a neuron to activate. Additionally, it guarantees that two equivalent neurons
by property (2) will now also have the same weights.

2.2 READ-WRITE FUNCTIONALITIES

Our main research question is: What is the relationship between what a neuron reads and what it
writes? We address this question by computing the cosine similarity of input and output weights.
We present a taxonomy of prototypical RW functionalities in table[I]

When the output weight is similar enough to (one of) the detected directions, we speak of input
manipulation, as opposed to orthogonal output neurons which write to directions not detected in the
input. Intuitively, input manipulator neurons manipulate the concept that they detect. As special cases
of input manipulation, we define: (i) Strengthening and weakening neurons: cos(Wwin, W) ~ £1.
The neuron detects a direction and then adds it to / removes it from the residual stream. (ii) Conditional
strengthening / weakening neurons: wj, and woy are roughly collinear and wy, is orthogonal to
them. The neuron also strengthens / weakens the direction detected by its wy, vector, but will only
activate conditional on Wy being present in the residual stream. (iii) Proportional change neurons:
Woy 18 collinear to Wy, but is orthogonal to wi,. If Wy is present in the residual stream, then the
neuron writes a positive or negative multiple of this direction to the residual stream. This multiple is
proportional to the presence of wy, in the residual stream.

These prototypical classes are limited in scope: Many cosines will not be close to 0 or 1. For this
general case, this paper explores three options to understand neuron RW functionalities at different
levels of granularity: (1) Classify neurons according to the closest prototypical case (we choose a
threshold 7 = £0.5). (2) Plot the marginal distributions of the three cosine similarities. (3) Place
neurons in a scatter plot, based on their three weight cosines.

In (1), cos(wWin, Weate) May not always “match” the other two cosine similarities. For example, the two

reading weights may be orthogonal, but wg, = %wgate + %win; then both cosine similarities are

% > 0.5. We are mainly interested in RW behavior rather than comparing the two reading weights,

so we classify such cases based on cos(Win, Wour) and cos(Wgie, Wou). To signal the “mismatch” of
cos(Win, Weate ), We prepend atypical to the category’s name. In the above example, we will speak of
an atypical strengthening neuron.

2.3 RANDOM BASELINES

Given a cosine similarity between weight vectors, we want to test if it is significantly different from
random. To do so, we consider two different random baselines: (i) i.i.d. Gaussian vector entries (as
in a randomly initialized model), or (ii) a layer-specific baseline based on "mismatched cosines". We
describe both approaches in appendix [C|

In practice, we find that both baselines give quite similar 95% randomness ranges.

3  WHERE TO FIND WEAKENING NEURONS

In this section we investigate which RW functionalities actually appear in LLMs, and in which layers.
Strikingly, our results are consistent across models. Across models, we find that there is a small
but (as we will see later) influential number of weakening neurons, mostly in late layers. Other RW
functionalities appear in other ranges: in particular, early-middle layers of all models contain a lot of
conditional strengthening neurons.

Concretely, we apply our method to 12 LLMs: Gemma-2-2B, Gemma-2-9B (Gemma|(2024), Llama-2-
7B, Llama-3.1-8B, Llama-3.2-1B, Llama-3.2-3B [Touvron et al.| (2023), OLMo-1B, OLMo-7B-0424
(Groeneveld et al., 2024), Mistral-7B (Jiang et al.,|2023), Qwen2.5-0.5B, Qwen2.5-7B (Yang et al.,
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Figure 1: Median of cos(wj,, Woy) by layer (x-axis) for 9 models of 2B to 9B parameters. For all
models, the value is positive in the beginning and negative in the end, indicating that early-middle
layers “strengthen” directions they find in the residual stream whereas later layers tend more towards

“weakening” them.
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Figure 2: Distribution of neurons by layer and category.
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Figure 3: Fine-grained analysis of neuron RW behavior in three layers of Llama-3.2-3B, based on
the configuration of their three weight vectors in parameter space. Each subplot represents a layer,
each dot a neuron. The red lines mark the 95% randomness regions for each of the three cosine
values. (There is a dotted line for variant (i) and a dashed line for variant (ii) in section@ but they
are almost the same.)

We see that many neurons are outside the randomness regions, indicating that they manipulate their
input in some way. Purple dots at the top of the plots are conditional strengthening neurons. Lighter

dots in the bottom left corner are weakening neurons.
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2024), Yi-6B (01.AI et al) 2025). These models use SwiGLU, except for Gemma, which uses
GeGLU.

To demonstrate our finding in more detail, we present three representative plots. (See appendix [G] for
more.) Figure shows the median value of cos(wi,, Woy) across all layers of the nine larger models
(2B and above). Here the common pattern is especially visible: In early-middle layers of all models,
a majority of neurons has a cos(wj,, Wy ) high above zero, indicating strengthening; in late layers,
still for all models, this median cosine similarity goes slightly below zero, indicating a majority of
weakening neurons.

Our other two plots focus on Llama-3.2-3B, but appendix |G| contains many similar plots for other
models, and the patterns we describe here are universal. Figure 2] shows RW class distribution across
layers. In figure[3] we plot the distribution of neurons in a few selected layers, by displaying each
neuron as a point with cos(Wgate, Wout) indicated on the x-axis, cos(Win, Wou) On the y-axis and
coS(Wgate, Win) as its color.

Input manipulation. First, we see that a large proportion of neurons are input manipulators (i.e.,
they are not orthogonal output neurons): In figure [2] these are 25% of all neurons, and as much
as 50% in early-middle layers (layers 7—1 IE]). What is more, ﬁgure shows that even the neurons
classified as "orthogonal output" often belong to clusters that are centered above/below the horizontal
line. Their weight cosine similarities often exceed the significance threshold. E.g., in layer 14, there
are many neurons whose cos(wiy, Woy) (y-axis) is below 0.5 but above the significance threshold.
This suggests that even the "orthogonal output" neurons perform input manipulation to some extent.
This finding is universal.

Different RW functionalities. Weakening neurons represent a large share of the (relatively few)
input manipulators in late layers. They form a somewhat separate cluster in figure 3] (in the bottom-
left corner of the rightmost subplot). Another important input manipulator class in late layers is
proportional change. In contrast, across all models, early middle layers are dominated by conditional
strengthening. In fact, the majority of input manipulators (more than 80% in Llama) belong to just
this one class.

This general pattern of strengthening-then-weakening holds across models, as figure[T| shows at one
glance. In figure[3](and figure [34]in the appendix), the pattern manifests as a large cluster of neurons,
centered clearly above the x-axis in most layers, but moving below it in the last few layers.

While the above patterns are universal, some other models display additional patterns: for example
OIMo-7B and especially OLMo-1B display a large number of conditional weakening neurons in
middle-late layers. See appendix [G]

In summary, we find across models that conditional strengthening dominates in early-middle layers,
but in late layers we find more weakening neurons.

4 ABLATION EXPERIMENTS

Since model training produced so many input manipulator neurons, we hypothesize that they must
contribute to model performance in an important way. We now test this hypothesis by ablating
neurons based on their RW functionality. We find that weakening neurons have the highest effect on
the metrics that we tested — this is completely unexpected since weakening neurons are a very small
class of a few hundred neurons.

In this and the following sections, the experiments involve running a model on a dataset. Therefore,
to save resources, we focus on a single model: We choose OLMo-7B, because its training dataset,
Dolma (Soldaini et al., [2024), is publicly available and its RW functionalities mostly follow the
typical patterns. As a dataset, we use a random subset of 20M tokens from Dolmah except for
attribute rate, where we follow the setup of |Geva et al.| (2023).

3We use zero-based (Python-style) indexing throughout the paper.
“The size of 20M tokens follows Voita et al.} 2024,
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Figure 4: Effect on attribute rate of ablating all 243 weakening neurons (weakening243), or 243
random neurons from the same layers (weakening243_baseline). The effect of weakening neurons is
clearly visible, already from layer ~ 10 onward, even though weakening neurons are few and mostly
in late layers.
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Figure 5: Effect on entropy of various neuron activations. E.g., in ~ 10° next-token predictions,
weakening neurons decrease the entropy by about 10 nats, whereas they increase it much more rarely.
"Weakening baseline" denotes random neurons from the same layers as weakening neurons. The
bottom four plots describe the results of conditional ablations (section[4.2). E.g., "gate+_post+"
describes the effect of those activations in which Zgae > 0 and zpes > 0.
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4.1 EXPLORING RW CLASSES AND METRICS

‘We run the model on our dataset and record various metrics, such as the loss. In each run we ablate a
number of neurons from a different RW class, or (as a baseline) the same number of random neurons
from the same layers. This enables us to observe the effect of various RW classes on these metrics.
The baseline verifies if effects are due to the layers rather than RW classes.

The main metrics we consider are attribute rate (Geva et al., |2023) and entropy of the output
distribution. For simplicity we choose zero ablation, i.e., ablating a neuron means setting its activation
to zero. We justify our choices in appendix [D}

We find that ablating weakening neurons has a large effect on both metrics, and this effect is not
seen with other classes or with other neurons from the same layers.

For attribute rate, the effect is most visible in layers ~ 10 and onward. See figure ] This is
particularly interesting since there are very few weakening neurons in these early-middle layers.

The case of entropy is also striking: Figure [5]shows that ablating weakening neurons makes the
output distribution flatter; in other words weakening neurons make the output distribution sharper.
We would expect the opposite: removing information from the residual stream should make it less
informative and therefore flatten the output distribution.

4.2 CONDITIONAL ABLATIONS

We now further investigate the effect of weakening neurons on entropy. We use conditional ablations:
We zero out only some activations of each neuron, based on the signs of the corresponding Zgae
and x;,. Specifically, we consider the following four conditions (the definitions assume our weight
preprocessing, cf. section [2;1']): (1) gae > 0, zin > 0, leading to Tpose > 05 (1) Tgae > 0,30 < 0,
leading t0 Zpost < 0; (iil) Tgare < 0, Zin < 0, leading t0 Tpost > 0; (iV) Tgare < 0, i > 0, leading to
Lpost < 0.

We find that the sharpening effect of weakening neurons is largely due to case (iii): In figure[5] only
case (iii) (bottom left subplot) shows entropy effects similar to those of weakening neurons as a
whole. This is surprising, but also solves the mystery we encountered earlier (i.e., we expected
weakening neurons to flatten the distribution, but in reality they sharpen it).

It is surprising for two reasons: First, these negative xg, activations are relatively rare in weakening
neurons (as we will see in section[3). Second, negative gate values are relatively small (whereas
positive values can be arbitrarily large). Researchers previously hypothesized that these negative
activations might play a role in the internal mechanisms of neural networks (see e.g. (Gurnee et al.}
2023E]), but so far this has been speculation only. Our results show for the first time that this effect
indeed occurs empirically and that it can have a strong effect on the behavior of transformer-based
models.

Our finding is also explanatory: When gy < 0, the usual neuron behavior gets a minus sign in front,
so that weakening neurons take on a strengthening behavior. (In the prototypical case wyy ~ —Wip,
when the neuron detects the presence of wyy,, it will now write —woy = — — Wi, = Wi, instead of
wiy.) Thus, in these cases, a neuron can further increase the score of a high-scoring token, or decrease
the score of a token with large negative score, and thus indeed make the output distribution sharper.

5 WEAKENING NEURONS ACTIVATE OFTEN

Our findings from section [ raise the question of how often weakening neurons activate, i.e., how
often their gate value is positive. In fact, Gurnee et al.|(2024) found a negative correlation between
activation frequency and cos(wiy, Wou) — but in @ GELU model. We now investigate whether a
similar phenomenon occurs with gated activation functions.

>They assumed that GELU (or equivalently, Swish) is “essentially the same activation as a ReLU”, and said
they “would be particularly excited to see future work exhibiting [...] case studies” of mechanisms involving
negative values of such an activation function.
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Figure 6: Two-dimensional histogram of activation frequency (x-axis) vs. cos(Wiy, Woy) (y-axis).

For the results, see figure[6|and additional figures and tables in appendix [G] Consistent with Gurnee
et al.| (2024), we find that the many (conditional) strengthening neurons activate very rarely, and
(conditional) weakening neurons activate very often. In fact, in most layers there is an almost
linear negative relationship between cos(wi,, wou) and activation frequency: correlations are at least
—0.71 in all layers except the last two (which have —0.29 and +4-0.29).

The last layer displays a different pattern (rightmost subplot in figure [6). Here the correlation is
positive (4-0.29), and we can distinguish two clusters of neurons: One cluster has a medium-negative
cos(Wip, Wey ) (around —0.3) and activates very rarely; another one is much more spread out (both
in terms of cos(win, Woy ) and activation frequency), centers at a weaker negative cosine similarity
(—0.1 to —0.2) and activates a bit more than half of the time. The presence of these two clusters
leads to the slightly positive correlation. Comparing with the other plots suggests that the first cluster
mostly corresponds to weakening neurons and atypical proportional change neurons.

We do not find such striking patterns with gate-out or gate-in similarities.

It seems that each conditional strengthening neuron is responsible only for a narrow domain, perhaps
a specific set of tokens. In any case, this result is another indication that weakening neurons have
a disproportionately large influence on model behavior. Note however that activation frequencies
do not fully explain their effect, since we found that even their negative gate values are influential
(sectionfd).

6 RELATED WORK

There is a large body of work on interpretability of transformer-based LLMs. |[Elhage et al.| (2021))
introduce the notion of residual stream. |[nostalgebraist| (2020), Belrose et al.| (2023) propose to
interpret residual stream states as intermediate guesses about the next token; [Rushing & Nandal (2024)
discuss this as the iterative inference hypothesis. On a similar note, many works hypothesize that
directions in model space can correspond to concepts; |Park et al.| (2024) discuss this as the linear
representation hypothesis. Lad et al.|(2024) define stages of inference. Similar to our work, |[Elhelo &
Geva (2024)) investigate input-output functionality of heads (instead of neurons).

Much research has attempted to understand individual neurons. |Geva et al. (2021) present them as
a key-value memory. Other neuron analysis work includes (Miller & Neo, |2023}; [Niu et al.| [2024).
The focus on individual neurons has been criticized. Morcos et al.| (2018)) find that in good models,
neurons are not monosemantic (but for image models, not LLMs). Millidge & Black|(2022)) compute
a singular value decomposition (SVD) of layer weights and often find interpretable directions that
do not correspond to individual neurons. [Elhage et al.| (2022) argue that interpretable features are
non-orthogonal directions in model space and can be superposed. This corresponds to sparse linear
combinations of neurons in MLP space. Taking the middle ground, Gurnee et al.|(2023) argue
that interpretable features correspond to sparse combinations of neurons, but this includes 1-sparse
combinations, i.e., individual neurons.

Several works classify neurons based on the contexts in which they activate (Voita et al., [2024;
Gurnee et al., [2024). For example, |Voita et al.|(2024) find foken detectors that suppress repetitions.
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Gurnee et al.|(2024) also define functional roles of neurons based on their output weight vector, such
as suppression neurons that suppress a specific set of tokens. They note that suppression neurons
seem to activate “when it is plausible but not certain that the next token is from the relevant set”.
Stolfo et al.| (2024) also investigate some output-based neuron classes.

Researchers have paid less attention to the input-output perspective. (Gurnee et al. (2024) compute
cosine similarities between input and output weights for GPT-2 (Radford et al.,[2019), but do not
interpret their results. [Elhage et al.[(2021) mention the idea of input-output analysis (negative cosines
between input and output weights “may also be mechanisms for conditionally deleting information”,
footnote 7), but do not follow up on this remark. Note also that input-output analysis for gated
activation functions adds complexity because, in addition to input and output weight vectors, the
gating mechanism is crucial for RW functionality.

7 CONCLUSION

We explore the read-write perspective for investigating gated neurons in LLMs. Our method com-
plements prior interpretability approaches and provides new insights into the inner workings of
LLMs.

In particular, we have discovered that one relatively small RW class, weakening neurons, has an
outsize impact on model behavior, including aspects as different as attribute rate (part of factual
recall), and next-token entropy. We have also introduced a new analysis method, conditional ablation,
which enables to find out which activations of a neuron are responsible for a given behavior. This
method has shown that part of the impact of weakening neurons is due to a mechanism involving
negative gate values; we are the first to observe such a mechanism.

Beyond weakening neurons, we have observed that a large share of neurons exhibit other significant
RW interactions. In particular, early-middle layers are dominated by conditional strengthening
neurons. This finding is particularly significant since it is universal across models.

Our findings open up new research questions in mechanistic interpretability, and we hope that our
study will inspire further investigations. In particular, a better understanding of weakening neurons
is crucial for interpreting LLMs overall. Investigating the many conditional strengthening neurons
in more detail could also lead to valuable insights. In upcoming work, we plan to investigate the
evolution of RW functionalities during model training. Later on, we would also like to go beyond the
analysis of single neurons and address the question of how neurons work together within and across
RW classes.
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A LIMITATIONS

We focus on a parameter-based interpretation of single neurons. This has the advantage of being
simple and efficient, but is also inherently limited in scope. Accordingly, our method is not designed
to replace other neuron analysis methods, but to complement them.
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The mathematical similarities of weights are insightful, but they should not be taken as one-to-one
representations of semantic similarity. We find cases in which close-to-orthogonal vectors represent
very similar concepts (double checking, appendix [E).

Finally, while our findings are highly significant and relevant, we do not yet fully understand the
reasons behind them.

B DEONTOLOGY STATEMENTS

B.1 LICENSES AND LANGUAGES OF MODELS AND DATA

Gemma. To download the model one needs to explicitly accept the terms of use. NLP research is
explicitly listed as an intended usage. Primarily English and code |(Gemmal (2024).

Llama. Inference code and weights under an ad hoc license. There is also an “Acceptable Use
Policy”. Our work is well within those terms. Languages mostly include English and programming
languages, but also Wikipedia dumps from “bg, ca, cs, da, de, en, es, fr, hr, hu, it, nl, pl, pt, ro, ru, sl,
sr, sv, uk” [Touvron et al. (2023)).

OLMo and Dolma. Training and inference code, weights (OLMo), and data (Dolma) under Apache
2.0 license. “The Science of Language Models” is explicitly mentioned as an intended use case.
Dolma is quality-filtered and designed to contain only English and programming languages (though
we came across some French sentences as well, see table 3)) [Groeneveld et al.| (2024)); [Soldaini et al.
(2024).

Mistral. Inference code and weights are released under the Apache 2.0 license, but accessing them
requires accepting the terms, Languages are not explicitly mentioned in the paper, but clearly include
English and code Jiang et al.|(2023)).

Qwen. Inference code and weights under Apache 2.0 license. Supports “over 29 languages, includ-
ing Chinese, English, French, Spanish, Portuguese, German, Italian, Russian, Japanese, Korean,
Vietnamese, Thai, Arabic, and more” |[Yang et al.[(2024)).

Yi. Inference code and weights under Apache 2.0 license. Trained on English and Chinese (01.Al
et al. (2025).

B.2 COMPUTATIONAL COMPLEXITY

All our experiments can be run on a single NVIDIA RTX A6000 (48GB). We use TransformerLens
Nanda & Bloom|(2022). A colleague kindly provided us with ja version that also supports OLMo.

The main analysis, computing the weight cosines, needs less than a minute per model.

The most expensive part was the activation-based analysis in appendix [F.1} We needed a single run of
~ 25 h to store the max/min activating examples for all neurons, and then ~ 45 s per neuron (= 5
min) to recompute its activations on the relevant texts and visualize them.

Another expensive part is computing the randomness regions based on mismatched cosines (sec-
tion and appendix . The time complexity is O(n?) in the number of neurons per layer, since we
have to consider every pair of neurons. Since however we found that this baseline is hardly different
from the more "naive" Gaussian one, we suggest that future work could just leave out this step.

Finally, our weight processing makes model loading last about a minute. A possible solution in future
work would be to save the preprocessed weights.

B.3 LLM USE

We used LLM assistants to help with programming.

C RANDOM BASELINES

Here we describe our two baselines: random initialization and mismatched cosines.
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Figure 7: Equivalent of figure 3] for the randomly initialized OLMo-7B model (training checkpoint
0). Whatever doesn’t look like this, is significant.
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In a randomly initialized model, all cosine similarities would be very close to zero: In n dimensions,
absolute cosine similarities behave like 1/+/n (Vershynin, [2025| p. 68). More precisely, the cosines
follow a beta distribution with parameters (dmodel — 1) /2, (dmoder — 1) /2, rescaled to the range [—1, 1] E]
Taking, e.g., dmnogel = 4096 (as e.g. in OLMo-7B), we get a 95% randomness range of approximately
[—0.03,0.03]. This is empirically confirmed on the first training checkpoint of OLMo-7B-0424

(figure[7).

Inspired by work on outlier dimensions in the activations of Transformers (Ethayarajhl2019;|Kovaleva
et al., 2021; Timkey & van Schijndel, 2021} [Dettmers et al., | 2022; |Sun et al., [2024), we suspected
that a similar phenomenon might be at work in the weights, making cosine similarities artificially
high. To account for this possibility, we construct a second baseline specific to each model layer: We
compute all the (e.g.) cos(wi,, Weu) Of a layer, even if the two weights belong to different neurons.
If a cosine similarity is higher than most of these mismatched cosines, it is likely not due to an outlier
dimension common to all neurons of the layer, but reflects something specific to this neuron.

D ABLATION EXPERIMENTS

D.1 HYPOTHESES AND CHOICE OF METRICS

We originally had two hypotheses (which turned out to be wrong, see section [):

* We hypothesized that conditional strengthening neurons might contribute to subject en-
richment \Geva et al.| (2023)), a crucial step of factual recall that involves MLPs writing
appropriate attributes for the given subject. Both phenomena occur in roughly the same
layers, and similar wj, and w,,, could correspond to related concepts.

* We expected that weakening neurons would make the output distribution flatter, i.e. increase
the entropy. This could happen by reducing the probability of high-ranking tokens (weaken-
ing directions corresponding to tokens) or by increasing the probability of very low-ranking
tokens (weakening directions corresponding to negations of tokens).

This is why we tested the two metrics of attribute rate (a proxy of subject enrichment) and entropy.
We additionally considered the loss, and, following |Gurnee et al., 2024 analysis of entropy neurons,
rank of the correct token and scale of the final hidden state.

D.2 NUMBER OF NEURONS TO ABLATE

In preliminary experiments, we tried ablating 24 or 243 neurons in each run, which is the number of
strengthening or weakening neurons in OLMo, respectively. Ablating 24 neurons (of any class) did
not have a clear impact on any metric (including loss), so we sticked with 243, which has a visible
impact on the loss, but does not break the model altogether. For this reason we exclude strengthening
neurons from most of our experiments, since there are only 24 of them.

D.3 DETAILS ON ATTRIBUTE RATE

Our investigation of attribute rate closely follows |Geva et al.[(2023). It requires a dataset of subject-
attribute mappings that we didn’t have access to. In order to replicate this dataset, we closely followed
the procedure described in their paper, which assumes attributes are tokens that appear in the same
Wikipedia paragraph as the subject (excluding stopwords). We used the Wikipedia dump from
October 20, 2021, instead of October 13, since there is an official dump made at this date[] To
improve replicability, we publish our complete code as well as our subject-attribute dataset.

6https://stats.stackexchanqe.com/questions/85916/distributionfoffscala
r-products-of-two-random-unit-vectors—-in-d-dimensions
"A list of dumps by date is available at https://archive.org/search?query=subject,
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Table 2: Overview of prediction/suppression neurons chosen for case studies in appendix [F.1]

Neuron RW category COS(Waate, Win)  COS(Waate, Wout)  COS(Win, Wout)
28.4737 | strengthening 0.5290 0.5048 0.7060
28.9766 | conditional strengthening 0.4764 0.4119 0.5982
31.9634 | weakening -0.7164 0.7218 -0.8542
29.10900 | conditional weakening 0.4988 -0.4992 -0.5775
30.10972 | proportional change -0.4543 0.5814 -0.4182
29.4180 | orthogonal output -0.0272 -0.4057 0.0669

E DOUBLE CHECKING

In our case studies, we observe that many neurons have the property of double checking: The two
reading weight vectors (wg,e and wj,) are approximately orthogonal, but still intuitively represent
the same concept.

We characterize double checking as follows: The sets of meaningful vectors most similar t0 wgae and
wiy have a high overlap. More formally, let U = {u, ..., uq,,, } be the set of unembedding vectors;
then

arg max cos(u, Weye) ~ arg max cos(u, Win).
uclU uelU

This phenomenon is possible because random vectors in high dimensions are “lone stars” (Vershynin,
2025, p. 68). If this is the case for the unembedding vectors, it is plausible that we can find
Waae, Win that are reasonably similar to a u; but not to any other u;. These W, Wwin can even
be (approximately) orthogonal to each other, as in the following three-dimensional toy example:
Uy = (17 0, 0)7 Uz = (07 1, O)a Wgate = (17 0, 1)3 Win = (13 0, 71)

However the phenomenon is unlikely to occur in random vectors, and hence is a significant finding:
If choosing wgqe, wi, Tandomly, we would expect them to be approximately orthogonal to all
unembedding vectors; and even if both were somewhat similar to an unembedding, we certainly
wouldn’t expect it to be the same unembedding for both.

We would also not naively expect this phenomenon in a trained network: If the role of both wg,. and
wjy is to detect a concept (e.g. a token prediction) represented by a vector u, then we would get the
best performance with wgye = Wiy = u, i.€., Weaee, Win Would not be orthogonal.

Double checking is therefore likely to be a useful feature for the model. We hypothesize that
this is because it shrinks the region in model space that activates the neuron positively. If (say)
Win = Weae = (1,0), the neuron activates whenever the (normalized) residual input « satisfies
x - (1,0) > 0; this happens on the whole half-space z; > 0. If however wgye = (1,0) and
win = (0, 1), the neuron activates positively only in the first quadrant (z1, 2o > 0).

This behavior thus enables more precise concept detection. This may explain why conditional neurons
are more frequent than their unconditional counterparts.

F CASE STUDIES

F.1 CASE STUDY OF A WEAKENING NEURON

We now qualitatively examine a weakening neuron in more detail, showing that these neurons can
have a quite complex behavior. In appendix [ we detail the methods, including how we chose the
neuron, and present many more case studies from various RW functionalities.

To analyze the neuron, we combine the RW perspective with two well-established neuron analysis
methods: projecting weights to vocabulary space (nostalgebraist, [2020; |Geva et al., 2022} |Dar et al.,
2023} \Gurnee et al., 2024} [Voita et al., |2024), and finding text examples which strongly activate the
neuron (Dalvi et al.}[2019;|Geva et al.,[2021; [Nanda, [2022; |Voita et al., [2024; |Gurnee et al., 2024)@

8We separately publish code and data for the second method at ht tps: //anonymous . 4open. scienc
e/r/neuroscope-B446
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Table 3: Description of the weight vectors of the selected prediction neurons, by top tokens or simi-
larity to wqy. The question mark, ?, signals unknown unicode characters. The last column presents
the (shortened) text samples on which the respective neuron activates most strongly (positively or

negatively).
Neuron,
RW class
28.4737
strengthening

28.9766
conditional
strengthen-
ing

31.9634
weakening

29.10900
conditional
weakening

30.10972
proportional
change

29.4180
orthogonal
output

Wgate

N Wout

pos: neg:

well far
well high

~X —Wout

pos: neg:
today these
nowa-  these

days

= Wout

pos: neg:
here there

therein we

Win

~ Wout

~ Wout

~N —Wout

~ —Wout
pos: neg:
when timing
when dates
pos: ? neg:
here

in
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Wout

pos:
review
Re-

view

pos:
well
well

pos:
again
Again

pos:
these
These

neg:
when
when

neg:
there
there

Top activations

pos (13.75): Download
EBOOK |[...] Description of
the book [...] \n -> Reviews
neg (-2.25): The answer’s at
the bottom of this -> post
pos (18.63): Could have
saved myself some time. Oh
>, well

neg (-3.66): Seek to under-
stand them more -> fully
pos (3.48): the areas of the
doorjamb where the door ->
often

neg (-5.12): jumping off
the roof of his Los Ange-
les apartment building. ->
Meanwhile

pos (12.79): social media
tools change and come and
go at the drop of a hat -> .
neg (-2.18): la couleur de sa
robe et -> le

pos (6.14): puts you on mul-
tiple webpages at -> as soon
as

neg (-2.67): Take pleasure
in the rest of the new year.
-> You

pos (2.31): without any con-
sideration being issued or
paid there -> for

neg (-14.41): here or ->
there
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Table 4: Description of the weight vectors of the selected profotypical neurons, by top tokens or sim-
ilarity to wey. The question mark, ?, signals unknown unicode characters. The last column presents
the (shortened) text samples on which the respective neuron activates most strongly (positively or

negatively).
Neuron, Waate Win Wout Top activations
RW class
25.9997 R Wout R Wout pos: neg: pos (10.45): when Stannis
strengthening S Choco- gives his opinion on Janos
S late -> Slynt
Cour | neg (-0.72): said owner
Hieu Than, -> who
5.10602 pos: neg: R Woy pos: neg: pos (1.56): a big-time rocker,
conditional | ¢ deep as ating playing aren -> as
strengthen- | as hum t their | neg (-0.68): workers don ->
ing 't
31.7117 R —Wout R —Wout pos: neg: pos (7.27): deux projets de
weakening by ani décision figurant -> dans
by iw neg (-5.23): Take pleasure
in the rest of the new year.
-> You
23.6543 pos: neg: X —Wout pos: neg: pos (1.06): High-value and
conditional | the ham Op rom sub-high-value -> areas
weakening | a aden AB c neg (-0.99): :basis and ->
:sub-category
25.7415 . Wour pos: neg: pos: neg: pos (2.36): 180 °C ( -> 350
proportional berry a ? Nine | °F)
change rod the Hart  jin neg (-1.55): // @Compo-
nent({ \n // -> selector

‘We choose neuron 31.9634@ It is also a prediction neuron in the sense of (Gurnee et al., [2024), which
indicates that it directly promotes a specific set of tokens.

Our analysis can be summarized as follows: This neuron produces "again" when the residual stream
contains "minus again"; but the examples activating the neuron do not have an obvious semantic
relationship to again.

More specifically, the weight-based analysis indicates that w, of this neuron is closest to forms of
again. Judging by the weights, the neuron activates negatively when the residual stream contains
information both for and against predicting again, and then weakens the again direction. It activates
positively when the residual stream contains the “minus again” direction, and then weakens that
direction.

Surprisingly, despite its strong positive cosine similarity (cos(Wgate, Win) = 0.7164), the neuron often
activates negatively. On the negative side, strong activations are often on punctuation, and the actual
next token is often meanwhile or instead (instead of again). The neuron may ensure only these tokens
are predicted, and not the relatively similar again. On the positive side, the activations do not have
any obvious semantic relationship to again. We hypothesize that sometimes the residual stream ends
up near “minus again” for semantically unrelated reasons (there are many more possible concepts
than dimensions, so the corresponding directions cannot be fully orthogonal; see [Elhage et al., 2022);
in these cases the neuron would reduce the unjustified presence of this “minus again” direction. There
are also weaker positive activations when again is a plausible continuation, e.g., on the token once. In
these cases, again is already weakly present in the residual stream before the last MLP. Accordingly,
Swish(Wgae - Tnorm) is Weakly negative (but distinct from 0), and wjy - Znorm < 0, Which leads to a
positive activation and thus reinforces again.

The notation is "layer.neuron", with zero-based indexing. The model — still OLMo-7B — has 32 layers, so
this neuron is in the final layer.

18



Under review as a conference paper at ICLR 2026

In contrast to this neuron, strengthening neuron 28.4737 is also a prediction neuron (it also directly
promotes a specific set of tokens), but its read-write behavior is much more straightforward: It further
promotes review when the residual stream already indicates that this is the obvious next token.

These two case studies show that even when the output weights are highly interpretable, strengthening
and weakening have a very different overall behavior, and the weakening behavior is much more
complex.

F.2 NEURON CHOICE

We used two different methods to find interesting neurons:

First, we selected among prediction neurons in the sense of (Gurnee et al. (2024)). These are defined
as neurons whose cos(Wpy, woy) has a high kurtosis; in other words, they boost predictions of a
small set of tokens while leaving other token scores virtually unchanged. Specifically, from each
discrete RW class we chose the neuron with the highest kurtosis. This first method guarantees finding
interpretable neurons in terms of output behavior, though not necessarily an interpretable overall
behavior. See table 2] for an overview of neurons chosen by this method.

A downside is that prediction neurons tend to appear in later layers only. Therefore this neuron
choice does not help understand what happens in early layers, especially why there are so many
conditional strengthening neurons. We therefore also use a second method: We just select the
most prototypical neuron from each class. For example, for conditional strengthening, we take the
neuron with the highest cos(wiy, Wou:) among those neurons whose cos(Wgate, Wout) 18 Within the
randomness range (section [2.3]and appendix [C). This method led to choosing the neurons 5.10602
(conditional strengthening), 23.6543 (conditional weakening), 25.7415 (proportional change), 25.9997
(strengthening), 31.7117 (weakening).

F.3 METHODS

Additionally to our RW analysis, we use two well-established neuron analysis methods:

First, we project neuron weights to vocabulary space with the unembedding matrix Wy, and inspect
high-scoring tokens.

Second, we find text examples on which the neurons are strongly activated (positively or negatively).
For each neuron we save the 16 strongest positive and negative activations, respectively.

F.4 RESULTS AND ANALYSIS FOR PREDICTION NEURONS

See table 3]

Strengthening neuron 28.473 predicts review (and related tokens) if activated positively, which
happens if review is already present in the residual stream. The maximally positive activations are in
standard contexts that continue with review or similar, such as the newline after the description of an
e-book (the next paragraph often is the beginning of a review).

Conditional strengthening neuron 28.9766’s RW functionality concerns well and similar tokens.
28.9766 promotes them if activated positively, which happens when both wg,. and wyj, indicate that
well is represented in the residual stream. This is a case of double checking. The maximally positive
activation in our sample occurs on Oh, in a context in which Oh, well makes sense (and is the actual
continuation).

Weakening neuron 31.9634. See appendix

Conditional weakening neuron 29.10900. Gate and linear input weight vectors act as two indepen-
dent ways of checking that these is not present in the residual stream (i.e., a case of double checking).
At the same time, they check for predictions like foday, nowadays. When such predictions are present,
the neuron promotes these. This is a plausible choice in these cases because of the expression these
days. An example is social media tools change and come and go at the drop of a hat. (This sentence
talks about a characteristic of current times, so these days would indeed be a plausible continuation.)

19The notation is "layer.neuron", with zero-based indexing.
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Proportional change neuron 30.10972 predicts the token when if activated negatively. This happens
if when is absent from the residual stream (gate condition) and is proportional to the presence of time-
related tokens (-wj,). An example for a large negative activation is puts you on multiple webpages
at Conversely, if when is absent, and time-related tokens are absent too, the neuron activates
positively and suppresses when further.

Orthogonal output neuron 29.4180 predicts there (positive activation) if the residual stream contains
a component that we interpret as “complement of place expected” (e.g., here, therein). Both wgye and
wi, check for (different aspects of) this component being present, another case of double checking.
The largest positive activation is on here or.

Overall, these neurons all promote a specific set of tokens (we chose them that way), but under very
different circumstances. The (conditional) strengthening neurons are the most straightforward to
interpret, because their input and output clearly correspond to the same concept. In contrast, weaken-
ing neurons inherently involve (an apparent) conflict between the intermediate model prediction and
what the neuron promotes.

F.5 RESULTS AND ANALYSIS FOR PROTOTYPICAL EXAMPLES

See table 4l
Strengthening neuron 25.9997.

Conditional strengthening neuron 5.10602 activates on those tokens that often start negated auxil-
iary verbs: don, aren, won, didn. Correspondingly, the top token of Wiy wgy is ¢ (but interestingly not
an apostrophe). On the other hand, w;, detects alternative predictions: ate, ating etc. (as in donate)
lead to a negative activation, and as (as in arenas) leads to a positive activation. Correspondingly
the strongest positive activations are on the aren of arenas (but the strongest negative activations are
not always in a donate context, perhaps because both don’t and donate can appear in the same slots).
These alternative predictions are then strengthened by wy.

Weakening neuron 31.7117.
Conditional weakening neurons 23.6543.

Proportional change neuron 25.7415.

F.6 MORE CASE STUDIES

These are various neurons that popped out to us as possibly interesting, for not very systematic
reasons, for example because they strongly activated on a specific named entity. All of them are in
OLMo-7B. We present them by RW class. For most of these case studies we did only a quick and
dirty weight-based analysis. In some cases we also tried W (input embeddings) instead of Wy,
(unembeddings) for the logit-lens style analysis.

F.6.1 CONDITIONAL STRENGTHENING NEURONS

0.1480: wgye, —Win, —Woy all have tokens similar to box (when using Wg). Activates on Xbox.

4.1940: country appears in w;j, among many other things. When using W, Philippines and Manila
appear in wqy. Activates on Philippines.

4.3720: gate seems country/government related. When using Wg, we find woy, Weae contain some
country names. Activates on Denmark.

4.4801: Muhammad appears in the gate vector. Activates on Muhammad.

""The actual sentence ends with as soon as and comes from a now-dead webpage. We
also found one occurrence of at when in what seems to be a paraphrase of the same text, on
https://www.docdroid.net/RgxdGS5s/fantastic-tips-for-bloggers-of-all-amountsoystcpdf-pdf . We suspect that
both texts are machine-generated paraphrases of an original text containing at once (when and as soon as can be
synonyms of once in other contexts), and that the model has (also) seen a paraphrased version with at when. In
fact many of the largest negative activations are on at in contexts calling for at once.
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4.5772: predicts ian as in Egyptian. When using W g, all three weight vectors contain Egypt. Activates
on Egypt.

4.6517 has a very Ireland (or Celtic nations) related gate vector. The interpretations of the other two
weights are less obvious, but Irish and Dublin appear in wj, among many other things, and UK and
London appear in —wqy¢ (Ireland is emphatically not in the UK!) When using Wg, Ireland appears
among the top tokens of all three weight vectors. Activates on Ireland.

4.6799: When using W, Vietnam is among the tokens corresponding to —wy. Activates on Vietnam
4.7667: all three weights related to consoles in different ways. Activates on Xbox

4.9983: w,, is related to electronic devices, wy, either electronic devices or sports (surfing may
belong to both), wgye is also mostly related to electronic devices. When using Wg, we find woy
contains iPhone as a top token. Activates on iPhone.

4.10859: When using Wg, we find wgge, Wou include Thailand as a top token, wey, additionally
Buddha, Buddhist. Activates on Thailand.

4.10882: When using Wg, we find —wy contains lfaly, —wiy, Weae additionally contain Rome.
Activates on Ifaly.

4.10995: Boston appears in gate and Massachusetts in —w;,. When using Wg, we find —woy, Weate
contain Massachusetts and Boston, —wj;, contains Boston. Activates on Massachusetts.

22.2589: wgye and —wy, recognize tokens like Islam, Muhammad and others related to the Arabo-
Islamic world. The same goes for —wy (as it is similar to wy,). Activates on Muhammad.

24.4880: For all three weight vectors the first four tokens (but not more) are Philippine-related (even
though the gate vector is actually not very similar to the others). The gate vector also reacts to other
geographical names, which may have in common that they are associated with non-"white” (Black,
Asian or Latin) people in the US sense (Singapore, Malaysian, Nigerian, Seoul, Pacific, Kerala,
Bangkok, but also (Los) Angeles and Bronx). Activates on Philippines.

24.6771: wgae, —Win, —Woy all correspond to capitalized first names. Activates on Muhammad.

25.2723: Some tokens associated with wj, and wy,; are possible completions for th (th-ousand,
th-ought, th-orn. When using W, in all three weights there are a few th tokens, but also with ph and
similar. Activates on Thailand.

25.10496: —w;,, —woy correspond to tokens starting with v (upper or lower case, with or without
preceding space). wgye On the other hand seems to react to appropriate endings for tokens starting
in v: vol-atility, v-antage, v-intage, vel-ocity, V-ancouver. When using Wg, we also find all three
weight-vectors are very v-heavy. Activates on Vietnam.

F.6.2 WEAKENING NEURONS

30.9996: Downgrades weird tokens if present / promotes frequent English stopwords if absent. Also
an attention deactivation neuron for 15 heads in layer 31.

F.6.3 PROPORTIONAL CHANGE NEURONS

25.7032: Some tokens associated with wgue and woy; are possible completions for x or ex (X-avier,
x-yz, ex-cel, ex-ercise. When using Wg, both x and box (with variants) appear in all three weight
vectors. Activates on Xbox.

25.8607: All three vectors correspond to tokens related to cities. Moreover, —w,,; seems to corre-
spond to non-city places, such as national governments or villages. wj, is actually not that similar
0 Waate, Wout (in terms of cosine similarities), but all three correspond to city-related tokens. When
using W, in all three weights there are a few city-related tokens. Activates on Paris. We may think
of the two input directions as two largely independent ways of checking that “it’s about a city” (this is
a recurring phenomenon that we describe in appendix [E). When the gate activates but the linear input
does not confirm it’s about a city, the output promotes closely related but non-city interpretations (for
example Paris actually refers to the French government in some contexts).
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29.8118: Partition neuron, highest variance of all proportional change neurons. Also an attention
deactivation neuron for 4 heads (0,2,11,15) in layer 30.

31.5490: Activates on Muhammad. W reacts to various Asian names and Asian-sounding subwords,
wj, to surnames as opposed to other English words starting with space and uppercase letter. woy,
corresponds to more Asian stuff (mostly subwords) as opposed to English surnames.

31.6275: Mostly promotes two-letter tokens (no preceding space, typically uppercase). —wy, typically
lowercase single letters. —wgye mostly lowercase two-letter tokens. “If no lowercase two-letter
tokens, promote uppercase two-letter tokens proportionally to absence of lowercase single letters" ?

31.8342: This is an -of- neuron: wgae and wey; correspond to -o(t)- suffixes, —wjy, to various -oz- stuff.
Judging by the weight similarities, we expect that w,y, is typically activated negatively: downgrade
-o(1)- suffixes if present in the residual stream. Activates on Egypt.

F.6.4 ORTHOGONAL OUTPUT NEURONS

0.1758: When using Wg, all three weight vectors’ top tokens are famous web sites, including
YouTube. Activates on YouTube.

0.3338: When using W g, we find especially wgae and —wyy,, but also —wy, are similar to smartphone-
related tokens. Activates on iPhone.

0.3872: When using Wg, we find especially wg,e, but also —wji, and —wey correspond to city
names. Activates on Paris.

0.7829: When using Wg, we find wj,, wey and to a lesser extent wgye correspond in large part to
software names. Activates on iTunes.

0.7966: When using W g, the weight vectors mostly correspond to tokens starting with th. Activates
on Thor.

29.2568: w,y Asian (Thai?) sounding syllables vs. (Asian) geographic names in English and other
stuff; wy, reacts to Thailand and Asian (geography) stuff as opposed to (mostly) US stuff; wg,e pretty
much the same. Activates on Thailand.

29.3327: wgy mostly reacts to city names (Paris being the most important one), -w;, countries
and cities, especially in continental Europe (France and Paris on top) as opposed to stuff related to
the former British Empire. Relevant is —w,, which corresponds to pieces of geographical names
and especially rivers in France (Se-ine, Rh-one / Rh-ine, Mar-ne, Mos-elle... Norm-andie, Nancy,
commun...). Wgae and -wy, also react to river(s). Activates on Paris.

29.4101: wgye and wy, react to YouTube (top token!), wq, downgrades it (almost bottom token) and
promotes subscrib*, views, channels etc. Activates on YouTube.

29.6417: Downgrades recording and similar. wgye and wj, are also similar and involve iTunes.
Activates on iTunes.

29.9734: w,q reacts to the East in a broad sense as opposed to the West (Iran, Kaz-akhstan, Kash-mir,
Ukraine...), wi, mostly to male first names without preceding space. wg, seems to produce word
pieces that could begin a foreign name. Activates on Muhammad.

30.2667: w,qe reacts to suffixes (for adjectives derived from place names) like en, ian, ians, basically
the same for w;, and wey. Activates on Muhammad.

30.3143: w,qy reacts to words related to entities that are authoritative for various reasons (officials,
authorities, according, researchers, spokesman, investigators...). —wj, reacts to uncertainty (report-
edly, according... allegedly... accused). —wqy, 18 again police, authorities, officials, court but with
no preceding space. Activates on Philippines. What authorities and uncertainty have to do with the
Philippines is unclear.

30.3883: wgy and —wj, react to Virginia and Afghanistan, among others (in the case of wgy: as
opposed to other geographical names with no preceding space associated with the South and the sea);
—wWey 1s activated and promotes all variants of af (and ghan) but downgrades Virginia etc. Activates
on Afghanistan.
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Table 5: Activation frequencies by RW class. The second column represents random neurons taken
from the same layers.

true  baseline
strengthening 0.265 0.480
atypical strengthening 0.163 0.276
conditional strengthening 0.132 0.370
atypical conditional strengthening | 0.100 0.219
proportional change 0.368 0.296
atypical proportional change 0.344 0.338
orthogonal output 0.373 0.236
weakening 0.691 0.384
atypical weakening 0.727 0.353
conditional weakening 0.708 0.301
atypical conditional weakening 0.665 0.469

30.4577: Seems to be related to rugby: wg, and slightly less obviously wj, react to rugby-related
tokens (midfielder, quarterback...); woy, promotes different tokens that upon reflection could be
related to rugby as well. Activates on Ireland.

30.5372: Promotes natural and related, downgrades inst tokens. wyj, reacts to wildlife etc. as opposed
to institute etc, Wgye T€ACS tO institute as opposed to natural. Activates on Massachusetts (in which
situation it promotes Institute, which makes sense because of MIT).

30.8535: —wqy is one in all variants, Wgye 100, Wi, splits one, ones and the equivalent Chinese
characters, on the positive side, from One, I, ONE on the negative side (and many other things on
both sides). Activates on Xbox. Presumably this happens because One is a possible prediction (Xbox
One), and presumably the output reinforces that.

31.2135: orthogonal output, on the conditional strengthening side (weak conditional strengthening,
one of the neurons on the vertical axis). wgye reacts to single letters or symbols as opposed to some
English content words without preceding space; wj, and wq, mostly Chinese or Japanese characters
as opposed to some Latin diacritics and other weird stuff. Language choice? “If it’s not English and
single letters are floating around, make sure to choose the right language / character set."

31.10424: wgye, —Win, Wou correspond to score in the top tokens, which is downgraded if present.
Activates on Paris. No idea what’s happening here.

G MORE PLOTS

These final figures show additional results:

* Table[5|and figures[8]to[T0]show more results on activation frequencies: by discrete classes,
on all layers, and plotted against cos(Wgie; Win) OF COS(Weate, Wout)-

* Figures|[IT]to[I3]show that ablating 243 neurons from other classes than weakening does not
have any effect on attribute rate.

* Figures [[4]to[21] show the effect of various ablations on entropy, loss, rank and scale.

* From figure 22} we show our analyses of RW functionalities by layer (section[3)) for all the
models we investigated.

Regarding the last point, we note a few additional patterns that appear only in some of these models:

* In Yi and the OLMo models, the prevalence of conditional strengthening neurons starts
even earlier, at the very first layer. A particularly interesting example is Yi: In layer O an
enormous 68% of all neurons are conditional strengthening, then almost none, then there
is a second wave around layers 11-17 (out of 32) which have around 25% of conditional
strengthening neurons each.

* In some models, especially the OLMo ones, there is a non-negligible number of conditional
weakening neurons. They tend to appear in middle-to-late layers, shortly after the conditional
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Frequency of gate>0 vs. Cos(Wip, Wey) in allenai/OLMo-7B-0424-hf
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Figure 11: Attribute rate when ablating 243 conditional strengthening neurons.
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Figure 14: Effect on entropy when ablating 24 neurons from various RW classes.

strengthening wave. The clearest example is OLMo-1B, with a peak of 1418 conditional
weakening neurons out of 8192 (17%) in layer 9 out of 16.

The following patterns could be random, but still show that the model has not learned something:

* For almost all neurons the cosine similarities are still clearly below 1 (the dots do not fill out
the edges in figure[3). This echoes and extends [Gurnee et al.] (2024)’s findings that in GPT2
the IO cosine similarity is approximately bounded by +0.8. In other words, we almost
never get the prototypical cases of conditional strengthening / weakening etc., as defined in
section 2] This might be an effect of randomness (strong cosine similarities are less likely),
but could also suggest that even input manipulator neurons add some novel information to
the residual stream.

* We also observe that for the vast majority of neurons, COS(wgate7 wiy) A 0: This can be seen
in the boxplots in the appendix, as well as the purple color in figure 3} Thus most neurons
operate on two input directions in the residual stream (not a single one), resulting in higher
expressivity and more complex semantics. If not random, this could be related to double
checking; see appendix [E]
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Figure 21: Effect on scale of last hidden state when ablating 243 neurons from various RW classes.
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Figure 28: Equivalent of figure [3]for OLMo-7B-0424
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Figure 33: Equivalent of figure 3] for Llama-3.2-1B
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Figure 34: Equivalent of figure [3|for Llama-3.2-3B (same model but all layers)
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Figure 35: Equivalent of figure 3| for Mistral-7B
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Figure 36: Equivalent of figure 3] for Qwen2.5-0.5B
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Figure 37
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Figure 38: Equivalent of figure 3] for Yi-6B
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