
HARRIS: Hybrid Ranking and Regression Forests
for Algorithm Selection

Lukas Fehring1, Jonas Hanselle1, Alexander Tornede2
1 Department of Computer Science, Paderborn University, Germany

2 Institute of Artificial Intelligence, Leibniz University Hannover, Germany
fehring2@mail.upb.de, jonas.hanselle@upb.de, tornede@tnt.uni-hannover.de

Abstract

It is well known that different algorithms perform differently well on an instance
of an algorithmic problem, motivating algorithm selection (AS): Given an instance
of an algorithmic problem, which is the most suitable algorithm to solve it? As
such, the AS problem has received considerable attention resulting in various
approaches – many of which either solve a regression or ranking problem under
the hood. Although both of these formulations yield very natural ways to tackle
AS, they have considerable weaknesses. On the one hand, correctly predicting
the performance of an algorithm on an instance is a sufficient, but not a necessary
condition to produce a correct ranking over algorithms and in particular ranking
the best algorithm first. On the other hand, classical ranking approaches often
do not account for concrete performance values available in the training data,
but only leverage rankings composed from such data. We propose HARRIS-
Hybrid rAnking and RegRessIon foreSts - a new algorithm selector leveraging
special forests, combining the strengths of both approaches while alleviating their
weaknesses. HARRIS’ decisions are based on a forest model, whose trees are
created based on splits optimized on a hybrid ranking and regression loss function.
As our preliminary experimental study on ASLib shows, HARRIS improves over
standard algorithm selection approaches on some scenarios showing that combining
ranking and regression in trees is indeed promising for AS.

1 Introduction

To this day, there are competitions on solving hard instances of the SAT (boolean satisfiability
problem) problem [10, 7]. In these competitions, one deals with a set of problems with the goal of
solving them faster than the competitors. Here, the participants rarely use one algorithm to solve
all problem instances. Instead, they utilize so-called algorithm selectors, often featuring machine
learning models at their core, to predict the performance of different algorithms on the instance to
select the one presumably performing best. In practice, most algorithm selectors either leverage a
regression [23, 2, 8] or a ranking [3, 6, 20] model to predict the best algorithm.

Unfortunately, both ranking and regression models feature considerable drawbacks when used at
the core of a selector. While creating a ranking across algorithms according to their predicted
performance does indeed yield the correct ranking as long as the predictions are correct, such a
ranking can also be created without correctly estimating the performance. More precisely, correct
performance predictions are a sufficient, but not a necessary criterion to create a correct ranking
across the algorithms. Correspondingly, one may wonder whether solving a regression problem
might not be much harder than what is required. From this perspective, ranking models are a more
intuitive solution. However, they often do not take the concrete performance values, which are
usually present as training data, into account, but are trained based on rankings created from these.

6th Workshop on Meta-Learning at NeurIPS 2022, New Orleans.

Correspondingly, these ranking models are trained based on qualitative comparisons losing the actual
quantitative information contained in the precise performance evaluations. As such, they lack the
means to quantify how close two algorithms are in a predicted ranking and thus are more susceptible
to problems arising from algorithms with actually very similar performance.

In this paper, we propose a new algorithm selector leveraging a machine learning model trained
based on a composite loss with both a ranking and regression component, dubbed HARRIS. In
particular, the core of HARRIS is formed by a random forest, whose trees are formed according to
splits optimized on the aforementioned composite loss. By doing so, HARRIS combines the strengths
of both ranking and regression models while alleviating their weaknesses.

2 The Algorithm Selection Problem

In Algorithm Selection (AS) [15], we aim to find the best algorithm Ai from a set of candidate
algorithms {A1, ..., Ak} = A for a problem instance I ∈ I from a problem instance space I.
Formally, we seek to find a mapping, called algorithm selector s : I → A, which maximizes a
costly-to-evaluate performance measure m : A × I → R. Correspondingly, the optimal selector,
called an oracle, is defined as

s∗(I) ∈ argmax
A∈A

E[m(A, I)] . (1)

As the performance measure m is costly to evaluate, an exhaustive enumeration over the set of
algorithms to choose the best performing one is no practical solution. This holds especially for
constraint satisfaction problems, where one is finally interested in the solution to the instance, which
is obtained as a result of the first algorithm run anyway. As a solution to this, most AS approaches
leverage machine learning to learn a surrogate performance measure m̂ : A× I → R mimicking the
original performance measure m, while, in contrast to the original performance measure, being cheap
to evaluate. Using such a surrogate m̂, selectors can be constructed as s(I) = argmax

A∈A
m̂(A, I).

To learn such surrogates, we assume that we can represent instances in terms of features, which are
at least somewhat correlated with the performance of one or multiple of the algorithms. Formally,
these features are computed by a feature function g : I → X and we will write xI ∈ X , when we
want to address the features of instance i ∈ I. When considering the algorithmic problem of SAT,
such features could be, for example, the number of clauses or the number of variables. Moreover, we
assume that we are given some prior evaluations of the performance measure m for at least some of
the algorithms on some training instances Itrain ⊂ I , which we can use for learning. More formally,
we assume training data with labels yI = [m(I, A1), . . . ,m(I, Ak)] ∈ Rk where Ai ∈ A, i.e.,

Dtrain = {(xI ,yI)|I ∈ Itrain} . (2)

3 From Pure Ranking or Regression to Hybrid Ranking and Regression

In practice, the surrogate performance measure m̂ is often implemented as a regression or ranking
model based on a loss function ℓ : Rk × Rk → R, where we assume rankings to be represented as
a k-dimensional real-valued vector for simplicity. While the first kind of models is trained using a
regression loss function such as the mean squared error, which is aimed at minimizing the differences
between the predicted algorithm performances m̂(·, ·) and the true performances m(·, ·) on the
training data D making it a quantitative approach. Contrary to that, ranking models are trained based
on ranking losses such as the (inverse of the) Spearman correlation [17], which tries to maximize the
correlation between the ranking across the algorithms imposed by the predicted latent utility values
m̂(·, ·) and the ranking imposed by the true performances m(·, ·) making it a qualitative approach.

Recall that both of these approaches have a significant disadvantage: On the one hand, regression
approaches try to predict the performance of an algorithm on an instance as accurately as possible,
solving a, perhaps, harder problem than necessary as we are actually just interested in correctly
ranking the algorithms. On the other hand, ranking approaches often ignore the concrete performance
evaluations available in the training data and instead focus only on the ground truth ranking imposed
by such values and correspondingly, ignore valuable data.

2

This problem has been discussed before in [9] in the context of AS (and earlier in a more general
setting in [16]), who advocate leveraging hybrid ranking and regression loss functions

ℓλ(y, ŷ) = λℓregression(y, ŷ) + (1− λ)ℓranking(y, ŷ) (3)

composed of a convex combination of a regression loss function ℓregression : Rk × Rk → R and a
ranking loss function ℓranking : Rk × Rk → R. Here, λ ∈ [0, 1] is a hyperparameter controlling
how strong the two loss functions influence the hybrid loss. The underlying idea is to leverage the
strengths of the two approach classes, i.e., focusing on the ranking problem while also incorporating
the precise performance information available in the training data and as such, eliminate their main
weaknesses in the context of AS. The authors of [9] found that training simple linear models and
neural networks to predict latent utility values for algorithms based on such a hybrid loss function
can indeed be beneficial and in particular, that values of 0 < λ < 1 can yield the best performance.

4 Hybrid Ranking and Regression Forests

Building upon the successful work [9], in this work, we generalize the idea of training models based
on such a hybrid loss function to tree-based models, known to be very effective in AS [21]. We build
forests of hybrid trees, detailed in the following, analogously to standard random forests [4].

Recall that decision trees [5] are trained by splitting the training data Dtrain recursively into two
subsets, i.e., nodes D+

train,D
−
train based on a feature until a stopping criterion is reached and hence,

that particular node is not split further. Such a leaf node is assigned a label computed from the
associated dataset. In our case, we associate two labels with each node: First, a regression label
ŷregression
D ∈ Rk obtained by averaging the labels in the associated dataset D and second, a ranking

label ŷranking
D ∈ Rk obtained by computing a consensus ranking through Borda’s method [13].

We choose splits, consisting of a feature f∗ ∈ F, where F is the set of features, and a split point p∗, to
minimize the weighted sum of the resulting dataset’s losses wrt. the corresponding node labels, i.e.

(f∗, p∗) ∈ argmin
(f,p)∈F×R

|D+
train|

|Dtrain|
· L(D+) +

|D−
train|

|Dtrain|
· L(D−) . (4)

These losses quantify the homogeneity of labels in the dataset and are calculated as a convex
combination of ranking and regression losses L(D) = λLranking(D) + (1 − λ)Lregression(D)
where L(D) = 1

|D|
∑

(xI ,yI)∈D ℓ(yI , ŷD) and ŷD either corresponds to the ranking or regression
label depending on whether ℓ is a ranking or regression loss function. We solve the optimization
problem in Equation 4 by a simple enumeration of all possible features and splitting points imposed
by the training data and choosing the best one. We utilize the mean squared error over all algorithms
and instances as a regression loss Lregression as in [9]. As a ranking loss, we leverage the Spearman
correlation turned into a loss function by subtracting it from 1, as we found this to work best in
preliminary experiments. For the same reason we leverage the depth of a tree as a stopping criterion.

At prediction time, we propagate the instance down the tree until a leaf node l with Dl is reached.
Based on label ŷregression

Dl
we finally return the algorithm performing best according to this label.

Since the choice of split is dependent on the utilized loss functions, their behavior is the dominant
factor in the model’s quality. However, we found that not all ranking loss functions are well suited
for Hybrid Forests and a mismatch in the scale of ranking and regression losses can result in one loss
dominating the other thereby mitigating the impact of λ. To solve this we scaled the losses to the unit
interval by scaling the performance data and dividing the ranking loss by the maximum possible loss.
Moreover, the performance of HARRIS heavily depends on the right choice of λ.

5 Evaluation

We assess the quality of HARRIS with an experimental evaluation on a small subset of the ASLib
benchmark [2]. All experiments were run on Intel Xeon E5-2695 v3 @ 2.30GHz CPU and 64 GB
RAM. To set our results into context, we evaluate against ISAC [11], random forest regressor (RFR)

3

that predicts each algorithms performance with a random forests, and SATzilla’11 [22] as done in
several recent works [21, 18, 19]. In the interest of reproducibility, all code is available at 1.

The quality of each approach is evaluated using 10-fold cross validation with Kendall’s Tau-b [12]
and PAR10 [2]. Kendall’s Tau quantifies the correlation between two rankings, where 1 indicates a
perfect and −1 an inverse correlation. The PAR10 score corresponds to the runtime of the selected
algorithm, if it is below a threshold C and 10 · C otherwise. This threshold C is provided by the
benchmark and corresponds to an upper bound on the runtime.

Table 1: Quality of the best known HARRIS configuration and competitors quantified with PAR10.

HARRIS ISAC RFR SATScenario Name
CSP-Minizinc-Time-2016 476.97 ±661.60 1194.64 ±592.74 1044.55 ±886.96 1058.08 ±1184.75
MIP-2016 1728.82 ±1649.62 2975.35 ±3205.29 4332.53 ±3320.56 2989.38 ±2836.52
QBF-2016 1382.08 ±328.42 1704.74 ±757.74 1722.20 ±836.78 1607.81 ±627.32
CPMP-2015 4891.47 ±1205.64 6094.06 ±1972.29 5634.73 ±2181.76 5152.87 ±1521.40
ASP-POTASSCO 209.47 ±59.07 348.57 ±133.53 178.81 ±52.20 236.48 ±74.78
MAXSAT12-PMS 795.44 ±399.61 1067.84 ±700.12 631.14 ±425.60 553.61 ±371.80
QBF-2011 2464.69 ±721.31 3271.56 ±1270.76 1865.75 ±804.27 1520.36 ±630.32
SAT12-HAND 2150.58 ±497.06 2587.54 ±484.89 1552.95 ±264.20 1135.70 ±204.81
SAT12-ALL 2476.95 ±202.07 1999.36 ±321.40 1144.46 ±280.86 1349.94 ±173.25
Average Rank 2.11 3.56 2.33 2.00

Table 1 displays the PAR10 scores averaged across all folds of each approach on the corresponding
scenario including the standard deviation. Bold letters indicate the best performance. Note that the
performances shown for HARRIS are optimistic as they correspond to the best performance achieved
by varying λ in steps of 0.1 and the tree depth in {2, 4, 6, 8.10}. Thus, they can only serve to get
an idea of what HARRIS is capable of, if λ can be tuned correctly. According to the average rank,
HARRIS is the second best approach.

0.0 0.2 0.4 0.6 0.8 1.0

2000

2500

3000

3500

4000

PA
R1

0

MIP-2016

0.0 0.2 0.4 0.6 0.8 1.0

500

600

700

800

900

1000

1100

1200

PA
R1

0

CSP-Minizinc-Time-2016

0.0 0.2 0.4 0.6 0.8 1.0
600

800

1000

1200

1400

1600

1800

2000

PA
R1

0

MAXSAT12-PMS

Hybrid Forests, stop at depth 4
Hybrid Forests, stop at depth 8
Hybrid Forests, stop at depth 10
Random Forest Regressor

Figure 1: Visulisation of λ’s impact on the quality of HARRIS

Figure 1 visualizes the change in quality of HARRIS with fixed depth for varying λ in the PAR10
metric. The results indicate that while λ strongly impacts the overall model quality, there are
scenarios for which HARRIS is the superior/inferior model. More figures can be found in the
appendix (Section 7).

6 Conclusion

In this work, we proposed a hybrid ranking and regression tree-based approach to AS called, HARRIS.
Conceptually, HARRIS alleviates the weaknesses of pure ranking and regression AS solutions. In a
prototypical experimental study, we showed that with appropriately set hyperparameters, HARRIS
can outperform existing algorithm selectors on some scenarios. In future work, we plan to investigate
whether tuning these hyperparameters automatically via means of hyperparameter optimization [1]
yields good values on a scenario as suggested in [14]. Moreover, we plan to investigate other options
for combining regression and ranking loss functions, for example, by working with probabilistic loss
functions as this alleviates possible problems related to different scales.

1Github link: https://github.com/LukasFehring/HARRIS-Hybrid_rAnking_and_RegRessIon_foreSts

4

Acknowledgements

This work was supported by the German Research Foundation (DFG) within the Collaborative
Research Center “On-The-Fly Computing” (SFB 901/3 project no. 160364472).

References
[1] Bernd Bischl, Martin Binder, Michel Lang, Tobias Pielok, Jakob Richter, Stefan Coors,

Janek Thomas, Theresa Ullmann, Marc Becker, Anne-Laure Boulesteix, Difan Deng, and
Marius Lindauer. “Hyperparameter Optimization: Foundations, Algorithms, Best Practices
and Open Challenges”. In: CoRR abs/2107.05847 (2021). arXiv: 2107.05847. URL: https:
//arxiv.org/abs/2107.05847.

[2] Bernd Bischl, Pascal Kerschke, Lars Kotthoff, Marius Lindauer, Yuri Malitsky, Alexandre
Fréchette, Holger H. Hoos, Frank Hutter, Kevin Leyton-Brown, Kevin Tierney, and Joaquin
Vanschoren. “ASlib: A benchmark library for algorithm selection”. In: Artificial Intelligence
237 (2016), pp. 41–58. DOI: 10.1016/j.artint.2016.04.003. URL: https://doi.org/
10.1016/j.artint.2016.04.003.

[3] Pavel Brazdil and Carlos Soares. “A Comparison of Ranking Methods for Classification
Algorithm Selection”. In: ECML 2000: Proceedings of the 11th European Conference on
Machine Learning. Vol. 1810. Lecture Notes in Computer Science. Springer, 2000, pp. 63–74.
DOI: 10.1007/3-540-45164-1_8. URL: https://doi.org/10.1007/3-540-45164-
1%5C_8.

[4] Leo Breiman. “Random Forests”. In: Mach. Learn. 45.1 (2001), pp. 5–32. DOI: 10.1023/A:
1010933404324. URL: https://doi.org/10.1023/A:1010933404324.

[5] Leo Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and Regression
Trees. Wadsworth, 1984. ISBN: 0-534-98053-8.

[6] Tiago Cunha, Carlos Soares, and André C. P. L. F. de Carvalho. “A label ranking approach
for selecting rankings of collaborative filtering algorithms”. In: SAC 2018: Proceedings of
the 33rd Annual ACM Symposium on Applied Computing. ACM, 2018, pp. 1393–1395. DOI:
10.1145/3167132.3167418. URL: https://doi.org/10.1145/3167132.3167418.

[7] Nils Froleyks, Marijn Heule, Markus Iser, Matti Järvisalo, and Martin Suda. “SAT Competition
2020”. In: Artificial Intelligence 301 (2021), p. 103572. DOI: 10.1016/j.artint.2021.
103572. URL: https://doi.org/10.1016/j.artint.2021.103572.

[8] Jonas Hanselle, Alexander Tornede, Marcel Wever, and Eyke Hüllermeier. “Algorithm Selec-
tion as Superset Learning: Constructing Algorithm Selectors from Imprecise Performance
Data”. In: PAKDD 2021: Proceedings of the 25th Pacific-Asia Conference. Vol. 12712. Lecture
Notes in Computer Science. Springer, 2021, pp. 152–163. DOI: 10.1007/978-3-030-
75762-5_13. URL: https://doi.org/10.1007/978-3-030-75762-5%5C_13.

[9] Jonas Hanselle, Alexander Tornede, Marcel Wever, and Eyke Hüllermeier. “Hybrid Ranking
and Regression for Algorithm Selection”. In: KI 2020: Proceedings of the 43rd German
Conference on AI. Vol. 12325. Lecture Notes in Computer Science. Springer, 2020, pp. 59–72.
DOI: 10.1007/978-3-030-58285-2_5. URL: https://doi.org/10.1007/978-3-
030-58285-2%5C_5.

[10] Marijn J. H. Heule, Matti Järvisalo, and Martin Suda. “SAT Competition 2018”. In: J. Satisf.
Boolean Model. Comput. 11.1 (2019), pp. 133–154. DOI: 10.3233/SAT190120. URL: https:
//doi.org/10.3233/SAT190120.

[11] Serdar Kadioglu, Yuri Malitsky, Meinolf Sellmann, and Kevin Tierney. “ISAC - Instance-
Specific Algorithm Configuration”. In: ECAI 2010: Proceedings of the 19th European Confer-
ence on Artificial Intelligence. Vol. 215. Frontiers in Artificial Intelligence and Applications.
IOS Press, 2010, pp. 751–756. DOI: 10.3233/978-1-60750-606-5-751. URL: https:
//doi.org/10.3233/978-1-60750-606-5-751.

[12] Maurice G Kendall. “The treatment of ties in ranking problems”. In: Biometrika 33.3 (1945),
pp. 239–251.

[13] Shili Lin. “Rank aggregation methods”. In: Wiley Interdisciplinary Reviews: Computational
Statistics 2.5 (2010), pp. 555–570.

5

https://arxiv.org/abs/2107.05847
https://arxiv.org/abs/2107.05847
https://arxiv.org/abs/2107.05847
https://doi.org/10.1016/j.artint.2016.04.003
https://doi.org/10.1016/j.artint.2016.04.003
https://doi.org/10.1016/j.artint.2016.04.003
https://doi.org/10.1007/3-540-45164-1_8
https://doi.org/10.1007/3-540-45164-1%5C_8
https://doi.org/10.1007/3-540-45164-1%5C_8
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1145/3167132.3167418
https://doi.org/10.1145/3167132.3167418
https://doi.org/10.1016/j.artint.2021.103572
https://doi.org/10.1016/j.artint.2021.103572
https://doi.org/10.1016/j.artint.2021.103572
https://doi.org/10.1007/978-3-030-75762-5_13
https://doi.org/10.1007/978-3-030-75762-5_13
https://doi.org/10.1007/978-3-030-75762-5%5C_13
https://doi.org/10.1007/978-3-030-58285-2_5
https://doi.org/10.1007/978-3-030-58285-2%5C_5
https://doi.org/10.1007/978-3-030-58285-2%5C_5
https://doi.org/10.3233/SAT190120
https://doi.org/10.3233/SAT190120
https://doi.org/10.3233/SAT190120
https://doi.org/10.3233/978-1-60750-606-5-751
https://doi.org/10.3233/978-1-60750-606-5-751
https://doi.org/10.3233/978-1-60750-606-5-751

[14] Marius Lindauer, Holger H. Hoos, Frank Hutter, and Torsten Schaub. “AutoFolio: An Automat-
ically Configured Algorithm Selector”. In: Journal of Artificial Intelligence Research 53 (2015),
pp. 745–778. DOI: 10.1613/jair.4726. URL: https://doi.org/10.1613/jair.4726.

[15] John R. Rice. “The Algorithm Selection Problem”. In: Adv. Comput. 15 (1976), pp. 65–118.
DOI: 10.1016/S0065-2458(08)60520-3. URL: https://doi.org/10.1016/S0065-
2458(08)60520-3.

[16] D. Sculley. “Combined regression and ranking”. In: SIGKDD 2010: Proceedings of the 16th
ACM International Conference on Knowledge Discovery and Data Mining. ACM, 2010,
pp. 979–988. DOI: 10.1145/1835804.1835928. URL: https://doi.org/10.1145/
1835804.1835928.

[17] C. Spearman. "General Intelligence" Objectively Determined and Measured. Studies in individ-
ual differences: The search for intelligence. East Norwalk, CT, US: Appleton-Century-Crofts,
1961. DOI: 10.1037/11491-006.

[18] A. Tornede, M. Wever, and E. Hüllermeier. “Towards Meta-Algorithm Selection”. In: Workshop
on Meta-Learning (MetaLearn 2020) @ NeurIPS 2020. 2020.

[19] Alexander Tornede, Lukas Gehring, Tanja Tornede, Marcel Wever, and Eyke Hüllermeier.
“Algorithm selection on a meta level”. In: Machine Learning (2022), pp. 1–34.

[20] Alexander Tornede, Marcel Wever, and Eyke Hüllermeier. “Extreme Algorithm Selection
with Dyadic Feature Representation”. In: DS 2020: Proceedings of the 23rd International
Conference on Discovery Science. Vol. 12323. Lecture Notes in Computer Science. Springer,
2020, pp. 309–324. DOI: 10.1007/978-3-030-61527-7_21. URL: https://doi.org/
10.1007/978-3-030-61527-7%5C_21.

[21] Alexander Tornede, Marcel Wever, Stefan Werner, Felix Mohr, and Eyke Hüllermeier.
“Run2Survive: A Decision-theoretic Approach to Algorithm Selection based on Survival
Analysis”. In: ACML 2020: Proceedings of The 12th Asian Conference on Machine Learn-
ing. Vol. 129. Proceedings of Machine Learning Research. PMLR, 2020, pp. 737–752. URL:
http://proceedings.mlr.press/v129/tornede20a.html.

[22] Lin Xu, Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. “Hydra-MIP: Automated
algorithm configuration and selection for mixed integer programming”. In: RCRA workshop
on experimental evaluation of algorithms for solving problems with combinatorial explo-
sion@IJCAI 2011 (2011), pp. 16–30.

[23] Lin Xu, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. “The Design and Analysis
of an Algorithm Portfolio for SAT”. In: CP 2007: Proceedings of the 13th International
Conference on Constraint Programming. Vol. 4741. Lecture Notes in Computer Science.
Springer, 2007, pp. 712–727. DOI: 10.1007/978-3-540-74970-7_50. URL: https:
//doi.org/10.1007/978-3-540-74970-7%5C_50.

6

https://doi.org/10.1613/jair.4726
https://doi.org/10.1613/jair.4726
https://doi.org/10.1016/S0065-2458(08)60520-3
https://doi.org/10.1016/S0065-2458(08)60520-3
https://doi.org/10.1016/S0065-2458(08)60520-3
https://doi.org/10.1145/1835804.1835928
https://doi.org/10.1145/1835804.1835928
https://doi.org/10.1145/1835804.1835928
https://doi.org/10.1037/11491-006
https://doi.org/10.1007/978-3-030-61527-7_21
https://doi.org/10.1007/978-3-030-61527-7%5C_21
https://doi.org/10.1007/978-3-030-61527-7%5C_21
http://proceedings.mlr.press/v129/tornede20a.html
https://doi.org/10.1007/978-3-540-74970-7_50
https://doi.org/10.1007/978-3-540-74970-7%5C_50
https://doi.org/10.1007/978-3-540-74970-7%5C_50

7 Appendix

Benchmark Scenarios

As mentioned in the paper, we evaluated the competitors performances with the ASlib [2] benchmark.
However, we were not able to evaluate on all scenarios but just a subset of them. Key properties of
them are shown in Table 2.

Table 2: Properties of the benchmark scenarios used for model evaluation.
Scenario Problem Instances Algorithms Features Unsolved Instances Proportion Unsolved Instances Proportion Missing Evaluation Cutoff
ASP-POTASSCO ASP 1294 11 138 82 0.06 0.20 600.0
CPMP-2015 CPMP 527 4 22 0 0.00 0.28 3600.0
CSP-Minizinc-Time-2016 CSP 100 20 95 17 0.17 0.50 1200.0
MAXSAT12-PMS MAXSAT12 876 6 37 129 0.15 0.41 2100.0
MIP-2016 MIP 218 5 143 0 0.00 0.20 7200.0
QBF-2011 QBF 1368 5 46 314 0.23 0.55 3600.0
QBF-2016 QBF 825 24 46 55 0.07 0.36 1800.0
SAT12-HAND SAT12 767 31 115 229 0.30 0.67 1200.0
SAT12-INDU SAT12 1167 31 115 209 0.18 0.50 1200.0

An instance is unsolved if no candidate algorithm solves the instance before the cutoff is reached. An
evaluation of some algorithm on an instance is missing if the algorithm does not finish it’s calculation
before the cutoff is reached.

Further Evaluation Results

In the paper we were only able to give a brief overview over the results of our evalaution. Further
resutls are shown in the following figures.

Figure 2 shows the results of our PAR10 evaluation for all considered scenarios.

0.00 0.25 0.50 0.75 1.00

600

800

1000

1200

PA
R1

0

CSP-Minizinc-Time-2016

0.00 0.25 0.50 0.75 1.00

2000

2500

3000

3500

4000

PA
R1

0

MIP-2016

0.00 0.25 0.50 0.75 1.00

1400

1600

1800

2000

2200

2400

2600

PA
R1

0

QBF-2016

0.00 0.25 0.50 0.75 1.00

5000

5500

6000

6500

PA
R1

0

CPMP-2015

0.00 0.25 0.50 0.75 1.00

200

250

300

350

400

PA
R1

0

ASP-POTASSCO

0.00 0.25 0.50 0.75 1.00
600

800

1000

1200

1400

1600

1800

2000

PA
R1

0

MAXSAT12-PMS

0.00 0.25 0.50 0.75 1.00

2000

3000

4000

5000

6000

7000

8000

9000

PA
R1

0

QBF-2011

0.00 0.25 0.50 0.75 1.00
1500

2000

2500

3000

3500

4000

PA
R1

0

SAT12-HAND

0.00 0.25 0.50 0.75 1.00

1500

2000

2500

3000

PA
R1

0

SAT12-ALL

Hybrid Forests, stop at depth 4
Hybrid Forests, stop at depth 8

Hybrid Forests, stop at depth 10
Random Forest Regressor

Figure 2: Quality Comparison of different HARRIS configurations with the Random Forest Regressor.
The model quality is quantified with PAR10.

Figure 3 shows the results of our Kendall’s Tau-b evaluation for all considered scenarios.

7

0.00 0.25 0.50 0.75 1.00

0.46

0.48

0.50

0.52

0.54

Ke
nd

al
l'T

au
-b

CSP-Minizinc-Time-2016

0.00 0.25 0.50 0.75 1.00

0.57

0.58

0.59

0.60

0.61

0.62

0.63

Ke
nd

al
l'T

au
-b

MIP-2016

0.00 0.25 0.50 0.75 1.00
0.20

0.25

0.30

0.35

0.40

Ke
nd

al
l'T

au
-b

QBF-2016

0.00 0.25 0.50 0.75 1.00
0.225

0.250

0.275

0.300

0.325

0.350

0.375

Ke
nd

al
l'T

au
-b

CPMP-2015

0.00 0.25 0.50 0.75 1.00

0.18

0.20

0.22

0.24

0.26

0.28

0.30

Ke
nd

al
l'T

au
-b

ASP-POTASSCO

0.00 0.25 0.50 0.75 1.00

0.40

0.45

0.50

0.55

0.60

0.65

0.70

Ke
nd

al
l'T

au
-b

MAXSAT12-PMS

0.00 0.25 0.50 0.75 1.00
0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

Ke
nd

al
l'T

au
-b

QBF-2011

0.00 0.25 0.50 0.75 1.00

0.20

0.25

0.30

0.35

0.40

Ke
nd

al
l'T

au
-b

SAT12-HAND

0.00 0.25 0.50 0.75 1.00

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

Ke
nd

al
l'T

au
-b

SAT12-ALL

Hybrid Forests, stop at depth 2
Hybrid Forests, stop at depth 4
Hybrid Forests, stop at depth 6

Hybrid Forests, stop at depth 8
Hybrid Forests, stop at depth 10
Random Forest Regressor

Figure 3: Quality Comparison of different HARRIS combinations with the Random Forest Regressor.
The model quality is quantified with the Kendall’s Tau metric.

Figure 4 shows the results of our evaluation of different tree depths in terms of the PAR10 number of
the resulting algorithm selector.

2 4 6 8 10
tree depth

800

900

1000

1100

1200

PA
R1

0

CSP-Minizinc-Time-2016

2 4 6 8 10
tree depth

2000

2500

3000

3500

4000

PA
R1

0

MIP-2016

2 4 6 8 10
tree depth

1400

1600

1800

2000

2200

2400

2600

PA
R1

0

QBF-2016

2 4 6 8 10
tree depth

5000

5500

6000

6500

7000

PA
R1

0

CPMP-2015

2 4 6 8 10
tree depth

200

250

300

350

400

450

500

PA
R1

0

ASP-POTASSCO

2 4 6 8 10
tree depth

750

1000

1250

1500

1750

2000

PA
R1

0

MAXSAT12-PMS

2 4 6 8 10
tree depth

2000

4000

6000

8000

PA
R1

0

QBF-2011

2 4 6 8 10
tree depth

1500

2000

2500

3000

3500

4000

PA
R1

0

SAT12-HAND

2 4 6 8 10
tree depth

1500

2000

2500

3000

PA
R1

0

SAT12-ALL

Hybrid Forests, = 0.0
Hybrid Forests, = 0.2
Hybrid Forests, = 0.4

Hybrid Forests, = 0.8
Hybrid Forests, = 1.0
Random Forest Regressor

Figure 4: Evaluation of the stopping criterion’s impact on the overall model quality. Note that the
results indicate that HARRIS might improve for increasing depth on some scenarios.

8

	Introduction
	The Algorithm Selection Problem
	From Pure Ranking or Regression to Hybrid Ranking and Regression
	Hybrid Ranking and Regression Forests
	Evaluation
	Conclusion
	Appendix

