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ABSTRACT

Discrete diffusion or flow models could enable faster and more controllable se-
quence generation than autoregressive models. We show that naı̈ve linear flow
matching on the simplex is insufficient toward this goal since it suffers from dis-
continuities in the training target and further pathologies. To overcome this, we
develop Dirichlet flow matching on the simplex based on mixtures of Dirichlet
distributions as probability paths. In this framework, we derive a connection be-
tween the mixtures’ scores and the flow’s vector field that allows for classifier
and classifier-free guidance. Further, we provide distilled Dirichlet flow match-
ing, which enables one-step sequence generation with minimal performance hits,
resulting in O(L) speedups compared to autoregressive models. On complex
DNA sequence generation tasks, we demonstrate superior performance compared
to all baselines in distributional metrics and in achieving desired design targets
for generated sequences. Finally, we show that our guidance approach improves
unconditional generation and can generate DNA that satisfies design targets.

1 INTRODUCTION

Flow matching (FM) is a generative modeling framework that provides a simulation-free means of
training continuous normalizing flows between noise and data distributions (Lipman et al., 2022; Liu
et al., 2022; Albergo & Vanden-Eijnden, 2022) and generalizes diffusion models (Song et al., 2021).
Existing formulations have yet to treat discrete categorical data—a notable shortcoming considering
the many important applications such as biological sequence design (Avdeyev et al., 2023).

In this work, we introduce Dirichlet flow matching for generative modeling of discrete categorical
data. We frame such modeling as a transport problem between a uniform density over the probability
simplex and a finitely supported distribution over the vertices of the simplex. Naı̈vely, it may appear
more straightforward to define a noising process that linearly interpolates between data and noise, as
is the dominant approach in flow matching on Rn (Liu et al., 2022; Lipman et al., 2022; Pooladian
et al., 2023). However, we show that such an approach—which we call linear flow matching—suffers
from pathological behavior due to the contracting support of the resulting conditional probability
paths. We carefully engineer Dirichlet FM to avoid these shortcomings while admitting several
advantages properties such as conditioning on a target class via guidance class (Dhariwal & Nichol,
2021; Ho & Salimans, 2022). Additionally, we can distill the sampling process into a student model
and generate arbitrarily long sequences in a single forward pass.

We evaluate Dirichlet FM on three DNA sequence datasets with several complex tasks that pose
diverse challenges. First, we demonstrate that Dirichlet FM better generates promoter DNA sequences
with desired regulatory activity compared to baselines. Second, Dirichlet FM improves in capturing
DNA data distributions with an FBD (distributional similarity) of 1.9 vs. 36.0 in Melanoma DNA
and 1.0 vs. 25.2 in Fly Brain DNA. Third, we demonstrate that Dirichlet FM guidance can improve
unconditional sequence generation and generate cell-type specific enhancer DNA sequences that
improve upon the (experimentally validated) sequences of Taskiran et al. (2023). Lastly, distilled
Dirichlet FM generates sequences in a single step, resulting in orders-of-magnitude speedups with
minimal performance degradation.
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Figure 1: Overview of Dirichlet flow matching. Left: starting from uniform noise on the probability
simplex, we define conditional probability paths that approach a point mass at the vertex via a
one-parameter family of Dirichlet distributions. We view a sequence of tokens as a sequence of
simplices for which the probability path corresponds to noising tokens via superposition with all
other possible tokens (during inference, the simplices depend on each other through a joint denoiser).
Right: Comparison of the marginal probability paths and vector fields of Dirichlet and linear FM.
The vector fields of Dirichlet FM are smooth in time and space, unlike linear FM.

2 METHOD

Flow Matching on the Simplex. Let SK be the probability simplex in K-dimensional space:
SK = {x = (x1, . . . xK)T ∈ RK | 1Tx = 1,x ≥ 0}. Given a K-class categorical distribution
with probabilities pi,

∑K
i=1 pi = 1, we relax this distribution into continuous space by converting

it to a mixture of point masses at the vertices of Sk (with ei as the ith one-hot vector): pdata(x) =∑K
i=1 piδ(x − ei). We then define the noisy prior to be the uniform density on the simplex, or a

Dirichlet distribution with parameter vector α given by the all ones vector: q0(x) = Dir(x;α =
(1, . . . 1)T ) = Γ(K) Our objective is then to learn a vector field, using some choice of conditional
probability path (discussed later), to transport q0 to pdata. Typically, the neural network directly
parameterizes the vector field and is trained via the L2-like conditional flow-matching loss L(θ) =
E[∥ut(x | x1)− v̂(x, t; θ)∥2] where the expectation is taken over t ∼ U [0, 1],x1 ∼ pdata,x ∼ pt(· |
x1). However, we instead train a denoising classifier via a cross-entropy loss L(θ) = E[log p̂(x1 |
x; θ)]. At inference time, we then parameterize the vector field via

v̂(x, t; θ) =

K∑
i=1

ut(x | x1 = ei)p̂(x1 = ei | x; θ) (1)

It can be shown (Appendix A) that the two losses have the same minimizer, and thus, the cross-entropy
is a valid flow-matching objective. The advantages of this approach are twofold: (1) it ensures that
the learned vector field is restricted to the tangent plane of the simplex (i.e., the components sum to
zero), and (2) the conditional vector field does not need to be evaluated at training time.

For simplicity, our discussion focuses on modeling categorical data on the simplex. However, in
practice, we are interested in sequences of variables relaxed onto the multi-simplex SN

K . At inference
time, the simplices depend on each other through a learned denoiser that outputs token-wise logits
conditioned on all noisy inputs.

2.1 DESIGNING SIMPLEX FLOW MATCHING

See Section C.1 for background on flow matching. As it outlines, there are two options to define
a conditional probability path pt(x | x1) and corresponding vector field ut(x | x1) to train a flow
model. Interpolant perspective: Define an interpolant ψt(x0 | x1), which provides the density
pt(x | x1) implicitly but allows one to easily sample from it, and obtain the conditional vector
field trivially by taking the derivative ut = ∂tψt. Probability path perspective: Define pt(x | x1)
explicitly and solve for ut(x | x1) that satisfies the transport equation which can be non-trivial.

Following extant works on flow matching, the most natural way to proceed for the simplex would be
to follow the interpolant perspective and use the linear flow map employed in Lipman et al. (2022);
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Pooladian et al. (2023) ψt(x0 | x1) = (1 − t)x0 + tx1 and its vector field ut(x | x1) =
x1−x
1−t =

x1 − x0. Since SK is a Euclidean space, these operations remain well-defined, and the interpolant
transports all points on the simplex to x1 at t = 1 via straight paths. However, a pathological property
emerges when such conditional probability paths are marginalized over pdata(x1) over the course of
flow matching training:
Proposition 1. Suppose that a flow matching model is trained with the linear flow map. Then, for
all k = 2, . . .K and x ∼ pt(x), the converged model posterior p(x1 | x) ∝ pt(x | x1)pdata(x1) has
support over at most k − 1 vertices for times t > 1/k.

Figure 2: Pathological behavior of lin-
ear flow matching. Each color rep-
resents a conditional probability path
evolving over time toward its target ver-
tex. At t = 1/4, t = 1/3, and t = 1/2,
the region of overlap between 4, 3, and 2
conditional probability paths disappears,
respectively, corresponding to a shrink-
ing set of possible values of x1 | x for
any x.

Conceptually, this means that as the model transports sam-
ples on the simplex at t = 0 to the vertices of the simplex
at t = 1, it must eliminate or rule out a possible destination
vertex at each of the times 1

K ,
1

K−1 , . . .
1
2 , if not earlier.

As K becomes large, an increasingly large fraction of the
model capacity must be allocated to a smaller and smaller
fraction of the total time and trajectory length—indeed,
for all K, the posterior for times t > 1/2 reduces to the
argmax operator. Further, the marginal field is increas-
ingly discontinuous. We posit—and empirically verify in
Section 3—that these factors significantly hurt the perfor-
mance of linear FM. Upon examination of the marginal
probability paths (Figure 2), it becomes clear that this
pathological behavior is due to the shrinking support of
the conditional paths that arise from linear FM. To address
these issues, we instead turn to the probability path perspective and develop Dirichlet FM in the
following.

2.2 DIRICHLET FLOW MATCHING

Probability path pt(x | x1). Following the probability path perspective, we first define a conditional
probability path with t ∈ [0,∞) as:

pt(x | x1 = ei) = Dir(x;α = 1+ t · ei) (2)
When t = 0, this is equal to the uniform noise distribution. As t → ∞, the ith entry of the α
parameter vector increases while the others remain constant, concentrating the density towards a point
mass on the ith vertex, corresponding to the t = 1 boundary condition in standard flow matching.1
Hence, this family of Dirichlet distributions provides a conditional probability path with the required
boundary conditions while retaining support over the entire simplex, as desired.

0.00 0.25 0.50 0.75 1.00

Dirichlet FM (K = 4)

0.00 0.25 0.50 0.75 1.00

Linear FM

Figure 3: Vector field magnitudes of
the conditional flow field ut(x | x1 =
ei) as a function of xi (the ith element
of x) plotted for varying values of t. In
Dirichlet FM, the field vanishes at both
xi = 1 (i.e., the target vertex) and xi =
0 (the opposite face).

Vector field ut(x | x1). Since we have chosen a condi-
tional probability path directly rather than implicitly via an
interpolant, it is more difficult to obtain the corresponding
conditional vector field ut(x | x1). Indeed, there is an
infinite number of such fields that generate the desired
evolution of pt. Motivated by the basic form of the linear
FM, we generalize it via the following ansatz:

ut(x | x1 = ei) = C(xi, t)(ei − x) (3)
That is, the flow still points directly towards the target ver-
tex ei, but is rescaled by a xi-dependent factor. The con-
ditional vector field of linear FM satisfies this form with
C(xi, t) = 1/(1− t) dependent only on t; we introduce
the additional xi-dependence to control the contraction of
probability mass towards ei. In Appendix A.2, we derive
the C(xi, t), which gives rise to Dirichlet probability paths to be:

C(xi, t) = −Ĩxi
(t+ 1,K − 1)

B(t+ 1,K − 1)

(1− xi)K−1xti
(4)

1We continue to call the data sample x1, and in practice, integrate to some large fixed time (typically t = 8)
and take the argmax of the final model posterior.
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where Ĩx(a, b) = ∂
∂aIx(a, b) is a derivative of the regularized incomplete beta function Ix(a, b).

Figure 6 compares the magnitude of the resulting vector field with that of linear FM as a function
of distance from the target vertex. As anticipated, the field vanishes both at the target vertex and
on the (K − 2)-dimensional face directly opposite it instead of monotonically scaling with distance
from the target vertex as in linear FM. This second condition means the probability density is never
fully drawn away from the face and resolves the pathological behavior of linear FM. The resulting
probability paths and vector fields are visualized on the simplex in Figure 1; they are continuous and
smooth, unlike in linear FM.

2.3 GUIDANCE

A key attribute of iterative generative models is the ability to continuously and gradually bias the
generative process towards a class label with user-specified strength, a technique known as guidance
(Dhariwal & Nichol, 2021; Ho & Salimans, 2022). Initially proposed in the context of diffusion
models, where the generative process follows the score ŝ(x, t; θ) ≈ ∇x log pt(x) of the noisy data
distribution, guidance is implemented by taking a linear combination of the unconditional and
conditional score models ŝCFG(x, t, y; θ) = γŝ(x, t, y; θ) + (1 − γ)ŝ(x, t,∅; θ) with γ > 0 and
running the generative process with this adjusted score.

Relationship between flow and score. For the Dirichlet marginal probability path, the score can
be obtained from the model posterior via the denoising score-matching identity (Song & Ermon,
2019) ŝ(x, t; θ) =

∑K
i=1 st(x | x1 = ei)p̂(x1 = ei | x; θ) We can differentiate Equation 2 to obtain

a matrix equation ŝ = Dp̂, where Dij = δij
t
xi

. Here, D is a K ×K diagonal matrix dependent
on x, t and ŝ, p̂ ∈ Rn. (Technically, ŝ contains both on-simplex and off-simplex components, the
latter of which is ignored.) Meanwhile, the computation of the marginal flow (Equation 1) can also
be written as a very similar matrix equation v̂ = Up̂ where the entries of U are given by Equation 15.
Combining these, we obtain v̂ = UD−1ŝ where D is invertible since it is diagonal with nonnegative
entries. Thus, a linear relationship exists between the marginal flow and the score arising from the
same model posterior.

Classifier-free guidance. Suppose we have class-conditional and unconditional flow models
v̂(x, t, y; θ) and v̂(x, t,∅; θ). Since a linear combination of scores results in a linear combina-
tion of flows, we similarly implement guidance by integrating v̂CFG(x, t, y; θ) = γv̂(x, t, y; θ) +
(1− γ)v̂(x, t,∅; θ). Classifier guidance. In cases where a conditional flow model is unavailable,
we use the gradient of a noisy classifier to obtain a conditional score from an unconditional score
ŝ(x, t, y; θ) = ŝ(x, t,∅; θ) +∇x log p̂(y | x, t; θ) The conditional scores can then be converted into
a model posterior p̂ and then a marginal flow v̂ via v̂ = UD−1ŝ (see Appendix A).

2.4 DISTILLATION

The aim of distillation (Salimans & Ho, 2022; Song et al., 2023; Yin et al., 2023) is to reduce the
inference time of the iterative generative process by reducing the number of steps while retaining
sample quality. However, for discrete diffusion models (see Section C.2) or autoregressive language
models, no distillation techniques exist. For Dirichlet FM, inference is a deterministic ODE integration
defining a map between the prior and target distribution. Hence, we can distill the teacher model
(using 100 steps in our experiments) into a student model representing the map. For this, we sample
the teacher to obtain pairs of noise and training targets to supervise the student model.

3 EXPERIMENTS

Promoter DNA sequence design. We next assess the ability of Dirichlet FM to design DNA
promoter sequences conditioned on a desired promoter profile. The experimental setup and evaluation
closely follow that of DDSM (Avdeyev et al., 2023), for which data details are in Appendix B.2 and
implementation details in Appendix B.1. Following Avdeyev et al. (2023), we evaluate generated
sequences with the mean squared error (MSE) between their predicted regulatory activity and that of
the original sequence corresponding to the input profile. The regulatory activity is determined by the
promoter-related predictions of SEI (Chen et al., 2022). We compare Dirichlet FM with linear FM,
discrete diffusion methods, and a language model that autoregressively generates the base pairs.

4



Published at the GEM workshop, ICLR 2024

Table 1: Transcription profile condi-
tioned promoter DNA sequence gen-
eration. The MSE is between the pre-
dicted regulatory activity of the designed
sequence and the ground truth sequence.
NFE is the number of function evalua-
tions required for sampling. Numbers
with * are from Avdeyev et al. (2023).

METHOD MSE NFE

BIT DIFFUSION* .0395 100
D3PM-UNIFORM* .0375 100
DDSM* .0334 100
LANGUAGE MODEL .0333 1024

LINEAR FM .0281 100
DIRICHLET FM .0269 100
DIRICHLET FM DISTILLED .0278 1

Dirichlet FM improves upon Linear FM, which are the
only two methods that outperform the language model
baseline (Table 1). The second best method in this com-
parison is the distilled version of Dirichlet FM, which
retains almost the same performance. This means that our
distilled Dirichlet FM outperforms all other methods in
a single step, which is a 100× speedup compared to the
diffusion models and a 1, 024× speedup compared to the
language model.

3.1 ENHANCER DNA DESIGN

We now assess the performance of Dirichlet FM on DNA
enhancer sequences and design evaluations that quantify
both unconditional and conditional sample quality. Im-
plementation and architecture details are in Appendix
B.1. We evaluate on two enhancer sequence datasets from
fly brain cells (Janssens et al., 2022) and from human
melanoma cells (Atak et al., 2021) with labels for their cell classes (see Appendix B.2 for more data
details).

Table 2: Evaluation of unconditional enhancer gen-
eration. Each method generates 10k sequences, and
we compare their empirical distributions with the
data distribution using our Fréchet Biological distance
(FBD) analogous to FID for image generative models.
NFE refers to number of function evaluations. The
RANDOM SEQUENCE baseline shows the FBD for the
same number and length of sequences with uniform
randomly chosen nucleotides. DIRICHLET FM DIST.
refers to our one-step distilled model and DIRICH-
LET FM CFG to classifier-free guidance towards all
classes with their empirical frequencies.

HUMAN FLY
METHOD FBD FBD NFE

RANDOM SEQUENCE 622.8 876 –
LANGUAGE MODEL 36.0 25.2 500
LINEAR FM 19.6 15.0 100

DIRICHLET FM 5.3 15.2 100
DIRICHLET FM DIST. 6.1 15.8 1
DIRICHLET FM CFG 1.9 1.0 200

Metric. To score the similarity between a
data distribution and a generative model’s
distribution, we employ a metric similar to
the Fréchet inception distance (FID) that is
commonly used to evaluate image genera-
tive models (Heusel et al., 2017). We follow
this established principle and call our metric
Fréchet Biological distance (FBD). Hence,
we train a classifier model to predict cell
types and use its hidden representations as
embeddings of generated samples and data
distribution samples. Then, the FBD is cal-
culated as the Wasserstein distance between
Gaussians fit to embeddings from the two
distributions (10k each).

Q1: How well can Dirichlet FM capture
the sequence distribution? We compare
with an autoregressive language model (the
best baseline in the promoter design experi-
ments in Section 3) and with Linear FM. To
evaluate, we calculate the FBD between the
models’ generated sequences and the uncon-
ditional data distribution. Dirichlet FM outperforms the language model by a large margin on both
datasets and linear FM for human melanoma cell enhancer generation (Table 2). Moreover, distillation
minimally impacts FBD while speeding up inference by 3 orders of magnitude compared to the
language model and 2 to Dirichlet FM (distilled Dirichlet FM only requires 1 step). Such speedups,
compared to autoregressive models, make Dirichlet FM a promising direction for other applications
with high sequence lengths where inference times are important.

Q2: Can guided Dirichlet FM produce class-specific sequences and improve upon the state-
of-the-art? We condition Dirichlet FM on different target cell-type classes via guidance (Section
2.3). To quantify how well the generated sequences match the target class distribution, we use the
FBD between the generated distribution and the data distribution conditioned on the target class.
Additionally, we train a separate cell-type classifier and evaluate the probability it assigns to the target
class for a generated sequence.

Sequences of classifier-free guided Dirichlet FM for the cell-type perineurial glia
(PNG) have better FBD (Figure 4) than the sequences of Taskiran et al. (2023),
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of which several were experimentally validated as functioning enhancers (we show
this comparison only for the PNG class since their sequences are available for it).
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Figure 4: Classifier-free guidance for cell type
conditional enhancer design. We generate en-
hancers that are only active in cell class via
classifier-free guidance with varying γ. Shown
are 4 classes of the Fly Brain cell data. The left
y-axis FBD is computed between the generated
sequences and the data distribution conditioned
on the target class. For the first class, ”PNG”,
functional sequences of Taskiran et al. (2023) are
available, and we show their FBD. The right y-axis
PROB. refers to the target class probability of a
classifier for the generated sequences in percent.

For the other classes, guidance is similarly ef-
fective; by increasing the guidance factor γ, the
classifier probability for generated sequences
to belong to the target class can be improved
close to 100%, and the FBD improves signifi-
cantly until reaching a minimum (after the mini-
mum the diversity decreases and the FBD wors-
ens). The improvements with classifier guidance
(Appendix Figure 11) are still significant but
smaller.

Q3: Can guidance improve unconditional gen-
eration? We generate unconditional sequences
with classifier-free guided Dirichlet FM by first
sampling a class (based on its empirical fre-
quency) and then guiding toward that class. This
significantly improves sample quality compared
to unguided Dirichlet FM (Figure 9) and base-
lines (Table 2). Thus, guided Dirichlet FM via
the connection we derive between flow and score
reproduces the success in image diffusion mod-
els of enhancing sample quality via conditioning
(Rombach et al., 2022; Saharia et al., 2022). Fur-
thermore, like guidance for images (Xu et al.,
2023), the FBD first improves under increased
guidance (Figure 9) until reaching a minimum,
after which increased guidance deteriorates sam-
ple diversity and, therefore, FBD.

4 CONCLUSION
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Figure 5: Classifier-free guidance for
unconditional enhancer generation.
We generate unconditional sequences
with classifier-free guidance by sampling
the target class based on its empirical fre-
quency. We show the FBD between the
generated data and the full data distribu-
tion for varying levels of guidance γ.

We presented Dirichlet flow matching for modeling dis-
crete data via a generative process on the simplex. This
solves the pathological behavior of linear flow matching on
the simplex, which we identified. Compared with autore-
gressive methods or diffusion with discrete noise, Dirich-
let FM enables distillation and conditional generation via
guidance, which we derived via a connection between the
marginal flow and the scores of a mixture of Dirichlets.

Experimental results on important regulatory DNA se-
quence design tasks across 3 datasets demonstrate Dirich-
let FM’s effectiveness and utility for hard generative mod-
eling tasks over long sequences. The results confirm
Dirichlet FM’s superiority to linear FM and multiple
discrete diffusion approaches. Distilling Dirichlet FM
only marginally impacts performance while enabling one-
step generation, leading to multiple orders of magnitude
speedups compared to autoregressive generative models
for long sequences. Lastly, we demonstrated effective
class conditional generation via guided Dirichlet FM to
design cell-type specific enhancers - an important task for
gene therapies. Hence, Dirichlet FM is a flexible frame-
work (guidance, distillation) with strong performance for
biological sequence generation and a promising direction
for further discrete data applications.
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A METHOD DETAILS
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Dirichlet FM (K = 4)
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Linear FM

Figure 6: Vector field magnitudes of the conditional flow field ut(x | x1 = ei) as a function of
xi (the ith element of x) plotted for varying values of t. In Dirichlet FM, the field vanishes at both
xi = 1 (i.e., the target vertex) and xi = 0 (the opposite face).

Guidance. A key attribute of iterative generative models is the ability to continuously and gradually
bias the generative process towards a class label with user-specified strength, a technique known as
guidance (Dhariwal & Nichol, 2021; Ho & Salimans, 2022). Initially proposed in the context of
diffusion models, where the generative process follows the score ŝ(x, t; θ) ≈ ∇x log pt(x) of the
noisy data distribution, guidance is implemented by taking a linear combination of the unconditional
and conditional score models ŝCFG(x, t, y; θ) = γŝ(x, t, y; θ) + (1− γ)ŝ(x, t,∅; θ) with γ > 0 and
running the generative process with this adjusted score.

Distillation. The aim of distillation (Salimans & Ho, 2022; Song et al., 2023; Yin et al., 2023) is to
reduce the inference time of the iterative generative process by reducing the number of steps while
retaining sample quality. However, for discrete diffusion models (see Section C.2) or autoregressive
language models, no distillation techniques exist. For Dirichlet FM, inference is a deterministic ODE
integration defining a map between the prior and target distribution. Hence, we can distill the teacher
model (using 100 steps in our experiments) into a student model representing the map. For this, we
sample the teacher to obtain pairs of noise and training targets to supervise the student model.

Flow Matching with Cross-Entropy Loss For all t and x ∈ SK , at convergence our denoising
classifier satisfies

p̂(x1 | x) = pt(x | x1)pdata(x1)

pt(x)
(5)

Thus, if we parameterize the vector field via Equation 1, then we are assured that

v̂(x, t; θ) =

K∑
i=1

ut(x | x1 = ei)
pt(x | x1)pdata(x1)

pt(x)
= v(x, t; θ) (6)

Proof of Proposition 1
Proposition 1. Suppose that a flow matching model is trained with the linear flow map. Then, for
all k = 2, . . .K and x ∼ pt(x), the converged model posterior p(x1 | x) ∝ pt(x | x1)pdata(x1) has
support over at most k − 1 vertices for times t > 1/k.
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Proof. In linear flow matching, the explicit form of the conditional probability path is given by

pt(x | x1 = ei) =

{
[(1− t)K−1Γ(K)]−1 xi ≥ t

0 xi < t
(7)

Suppose for sake of contradiction that t > 1/k but pt(x | x1)pdata(x1) ̸= 0 for k′ ≥ k values of x1.
Without loss of generality, suppose that e1, . . . ek are k of those values. Then, by Equation 7, we
have xi ≥ t for i = 1, . . . k. Then

1Tx =

K∑
i=1

xi ≥
k∑

i=1

xi ≥ kt > k · 1
k
= 1 (8)

This contradicts the fact that x must lie on the simplex.

A.1 CLASSIFIER GUIDANCE

For classifier guidance, a direct application of v̂ via v̂ = UD−1ŝ is not possible because the classifier
gradients do not have the appropriate off-simplex components to ensure a valid model posterior (i.e.,
p̂ ∈ SK) when operated on by D−1. Instead, we modify v̂ = UD−1ŝ via D̃ =

(
I − 1

K11T
)
D

corresponding to projecting the score onto the tangent plane of the simplex (i.e., 1T ŝ = 0). As
now D is no longer invertible, we obtain the conditional model posterior from the score by solving
ŝ = D̃p̂ with the additional constraint 1T p̂ = 1 and—since the classifier in practice may result in
negative probabilities—project to the simplex via the algorithm of Wang & Carreira-Perpinán (2013).

A.2 DIRICHLET CONDITIONAL VECTOR FIELD

As preliminaries, we recall the definition of the multivariate beta function:

B(α1, . . . αK) =

∏K
i=1 Γ(αi)

Γ
(∑K

i=1 αi

) (9)

and that of the incomplete (two-argument) beta function:

B(x; a, b) =
∫ x

0

ta−1(1− t)b−1 dt (10)

with the identity B(a, b) = B(1; a, b).
We wish to construct a conditional flow ut(x | x1 = ei) which generates the evolution of the
conditional probability path

pt(x | x1 = ei) = Dir(x; 1, . . . αi = 1 + t, . . . 1) =
Γ(t+K)

Γ(t+ 1)
xti (11)

We choose the following ansatz for the functional form of ut:

ut(x | x1 = ei) = C(xi, t)(ei − x) (12)

i.e., (1) the flow points towards the target vertex ei and (2) the magnitude is scaled by a constant
dependent only on xi and t. Then consider the (K − 2)-dimensional hyperplane Ab of constant
xi = b which cuts through the simplex, separating it into two regions S1, S2 (Figure 7). We make the
following key observation:

The probability flux crossing the plane Ab is equal to the the rate of change of the total probability of
region S1.

Thus, we solve for the constant C(xi, t) in the ansatz by deriving these two quantities and setting
them equal to each other.

Q1: What is the probability mass of S1 and its rate of change?
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ei

Ab : xi = b

S1 : xi < b

S2 : xi > b

Figure 7: Conceptual derivation of the conditional vector field

The probability mass of S1 can be obtained by integrating the density over each hyperplane Ac

(defined by xi = c) for c < b and then integrating over all such hyperplanes. Since the density is a
constant proportional to xti = ct over each hyperplane, we obtain

pt(S1) ∝
∫ b

0

ct ·Vol(Ac) dc (13)

where Vol(Ac) refers to the volume of the intersection between the hyperplane and the simplex.
Since this region is defined by xi = c, the remaining entries of x must add up to 1 − c. Thus,
Ac can be viewed as a nonstandard probability simplex over K − 1 variables. The volume of this
(K − 2)-dimensional space is proportional to (1− c)K−2, giving

ρ(S1) ∝
∫ b

0

ct(1− c)K−2 dc = B(b; t+ 1,K − 1) (14)

Normalizing, we obtain

pt(S1) =

∫ b

0
ct(1− c)K−2 dc∫ 1

0
ct(1− c)K−2 dc

=
B(b; t+ 1,K − 1)

B(t+ 1,K − 1)
= Ib(t+ 1,K − 1) (15)

where I is the so-called regularized incomplete beta function and is well-known as the CDF of the
Beta distribution. Its derivative with respect to the first parameter is not available in closed form, but
we write it as

Ĩx(a, b) =
∂

∂a
Ix(a, b) =

∂

∂a

B(x; a, b)
B(a, b)

(16)

and thus obtain the rate of change of pt(S1) as Ĩb(t+ 1,K − 1).

Q2: What is the probability flux across the hyperplane Ab? The probability flux across Ab (into
S2) is given by

J =

∫∫
Ab

utpt · n̂ dA =

∫∫
Ab

pt · C(b, t)(ei − x) · n

∥n∥
dA (17)

The normal vector n points from the center of the face opposite ei, specified by xi = 0 and
xj = 1/(K − 1), j ̸= i, towards ei. Thus, the probability flux density is given by the dot product of

ei − x = (−x1, . . .xi = 1− b, . . .− xK)

n =

(
− 1

K − 1
, . . .xi = 1, . . .− 1

K − 1

)
(18)

Since
∑

j ̸=i xj = 1 − b, this dot product is equal to (1 − b)K/(K − 1). We also see that ∥n∥ =√
K/(K − 1). Importantly, the flux density is constant on the hyperplane A, so the total flux is given

by a simple product:

J = C(b, t) · pt · (1− b)

√
K

K − 1
Vol(Ab) (19)
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= C(b, t) ·
[

1√
K

Γ(t+K)

Γ(t+ 1)
bt
]
(1− b)

√
K

K − 1

√
K − 1

Γ(K − 1)
(1− b)K−2 (20)

= C(b, t) · (1− b)K−1bt

B(t+ 1,K − 1)
(21)

where (for this step only) we note that the volume of a simplex over K variables viewed as a
subset of RK is

√
K/Γ(K), giving the Dirichlet PDF an additional factor of 1/

√
K. Now setting

J = −∂tpt(S1) from above, we obtain

C(b, t) = −Ĩb(t+ 1,K − 1)
B(t+ 1,K − 1)

(1− b)K−1bt
(22)

Checking the transport equation. We check that ∇ · (ptut) = −∂pt/∂t:

∇ · (ptut) = −∇ ·
[
Γ(t+K)

Γ(t+ 1)
xti · Ĩxi

(t+ 1,K − 1)
B(t+ 1,K − 1)

(1− xi)K−1xti
(ei − x)

]
(23)

= −Γ(K − 1)∇ ·

[
Ĩxi

(t+ 1,K − 1)

(1− xi)K−1
(ei − x)

]
(24)

= −Γ(K − 1)

[
Ĩxi

(t+ 1,K − 1)

(1− xi)K−1
∇ · (ei − x) + (ei − x) · ∇ Ĩxi

(t+ 1,K − 1)

(1− xi)K−1

]
(25)

The divergence of x on the (K − 1)-dimensional space SK is K − 1. Also, the gradient of a function
dependently only on xi has nonzero component only in the xi direction.

= −Γ(K − 1)

[
Ĩxi(t+ 1,K − 1)

(1− xi)K−1
(1−K) + (1− xi)

∂

∂xi

Ĩxi(t+ 1,K − 1)

(1− xi)K−1

]
(26)

= −Γ(K − 1)

[
Ĩxi

(t+ 1,K − 1)

(1− xi)K−1
(1−K) + (1− xi)

(
Ĩxi

K − 1

(1− xi)K
+

1

(1− xi)K−1

∂Ĩxi

∂xi

)]
(27)

The first and second terms now cancel.

= −Γ(K − 1)

[
1

(1− xi)K−2

∂

∂xi
Ĩxi

(t+ 1,K − 1)

]
(28)

Substituting Equation 16 and interchanging the order of derivatives,

= −Γ(K − 1)

[
1

(1− xi)K−2

∂

∂t

1

B(t+ 1,K − 1)

∂

∂xi
B(xi; t+ 1,K − 1)

]
(29)

= − 1

(1− xi)K−2

∂

∂t

Γ(K − 1)

B(t+ 1,K − 1)
xti(1− xi)

K−2 (30)

= − ∂

∂t

Γ(t+K)

Γ(t+ 1)
xti = −∂pt

∂t
(31)

B EXPERIMENTAL DETAILS

B.1 TRAINING AND INFERENCE

Toy experiments. We train all models in Figure 10 for 450,000 steps with a batch size of 512 to
ensure that they have all converged and then evaluate the KL of the final step.

Promoter Design. We follow the setup of Avdeyev et al. (2023) and train for 200 epochs with a
learning rate of 5× 10−4 and early stopping on the MSE on the validation set. We communicated
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with Avdeyev et al. (2023) to ensure that we have the same training and inference setup as them,
and we build on their codebase to evaluate the generated sequences with the Sei regulatory activity
prediction model (Chen et al., 2022). Thus, we use 100 inference steps for our Dirichlet FM instead
of the 400 that they use in their code since they state that they used 100 integration steps for the
results in the paper, which is also stated in the paper. Under this setup, we obtain the performance
numbers for Linear FM and Dirichlet FM. We also ran the autoregressive language model in this
setup (except for the number of inference steps which does not apply). Meanwhile, the numbers we
report for Bit Diffusion, D3PM, and DDSM are taken from the DDSM paper (Avdeyev et al., 2023).

Enhancer Design. For both evaluations, on the human melanoma cell and the fly brain cell dataset,
we train for 800 epochs (convergence of validation curves is reached after approximately 300 for both
datasets). We use FBD for early stopping. For inference, we use 100 integration steps.

Classifier-free Guidance. For classifier-free guidance, we train with a conditioning ratio (the fraction
of times we train with a class label as input instead of the no-class token as input) of 0.7. During
inference, the inference Algorithm is changed in that two probability vectors p̂ are predicted, once
with class conditioning and once without class conditioning, which we sum together according to the
classifier free guidance equation. Then, we project the resulting probabilities onto the simplex since
negative values can arise for guidance factors γ > 1. For this purpose, we use the algorithm by Wang
& Carreira-Perpinán (2013).

Classifier Guidance. The noisy classifier that we train for classifier guidance has the same architec-
ture as our generative model, except that we sum the final representations and feed them into a 2-layer
feed-forward network that serves as classification head. For training, we use early stopping on the
accuracy and train for approximately 800 epochs. During inference, we use automatic differentiation
to obtain the classifier’s gradients with respect to the input points on the simplices. To perform classi-
fier guidance, we then convert the flow model output probabilities to scores as described in Section
2.3, obtain the guided score by adding the unconditional and the conditional scores, and convert the
obtained scores back to probabilities. These we project to the simplex (Wang & Carreira-Perpinán,
2013) from which we obtain the vector field for integration.

Classifier for FBD calculation. This classifier’s architecture is similar to that of the noisy classifier
for classifier guidance. However, it does not have any time conditioning and takes token embeddings
as input instead of points on the simplex. For training, we use early stopping on the accuracy and
train approximately 100 epochs.

The sequence embeddings that we use to calculate FBD are given by the hidden features after the
first layer of the classification head. The 4 classes that we choose for the cell type specific enhancer
generation are chosen as classes with a good tradeoff between the area under the receiver operator
characteristic curve and the area under the precision-recall curve.

Distillation. For distillation, we run inference with the teacher model for every training step of the
student model to obtain pairs of noise and training targets. With this, we train the student model on
approximately 6 billion sequences.

Computational requirements. We train on RTX A600 GPUs. Training in the enhancer gener-
ation setup for 200 epochs on sequences with length 500 takes 7 hours. Our largest model uses
approximately 8GB of RAM during training.

Architecture The architecture that we use for the promoter design experiments is the same as in
DDSM (Avdeyev et al., 2023). In our other experiments we replaced group norm with layer norm
in their architecture. The model consists of 20 layers of 1D convolutions interleaved with time
embedding layers (and class-type embedding layers for classifier-free guidance) and normalization
layers. We also experimented with Transformer architectures, which led to worse performance. All
models use this 20-layer architecture except for the classifier for the Fly Brain data, which has 5
layers.

B.2 DATA

Promoter Data. We use a dataset of 100, 000 promoter sequences with 1, 024 base pairs extracted
from a database of human promoters (Hon et al., 2017). Each sequence has a CAGE signal (Shiraki
et al., 2003) annotation available from the FANTOM5 promoter atlas (Forrest et al., 2014), which
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Figure 8: Histograms of cell type classes for fly brain cell enhancer sequence data and human
melanoma cell data.

indicates the likelihood of transcription initiation at each base pair (r ∈ R1024). Sequences from
chromosomes 8 and 9 are used as a test set, and the rest for training.

For the enhancer data of 104665 fly brain cell sequences (Janssens et al., 2022), we use the same split
as Taskiran et al. (2023), resulting in an 83726/10505/10434 split for train/val/test. Meanwhile, for the
human melanoma cell dataset of 88870 sequences (Atak et al., 2021), their split has 70892/8966/9012
sequences. It is noteworthy that these datasets contain ATAC-seq data (Buenrostro et al., 2013),
which means that not all sequences are guaranteed to be enhancers and actually enhance transcription
of a certain gene. ATAC-seq only measures the chromatin accessibility of the sequences in the cell
types, which is a necessary but not sufficient requirement for a sequence to be an enhancer. In Figure
8, we show histograms for the class distributions of both datasets. For the melanoma dataset, there is
little class imbalance.

C BACKGROUND

C.1 FLOW MATCHING

In flow matching (Lipman et al., 2022; Liu et al., 2022; Albergo & Vanden-Eijnden, 2022), we
consider a noisy distribution x0 ∼ q0 and data distribution x1 ∼ pdata and regress a neural network
against a vector field that transports q(x0) to pdata(x1). To do so, we define a conditional probability
path—a time-evolving distribution pt(x | x1), t ∈ [0, 1] conditioned on x1 with boundary conditions
p0(x | x1) = q(x) and p1(x | x1) ≈ δ(x−x1). We additionally assume knowledge of a conditional
vector field ut(x | x1) that generates pt(x | x1), i.e. satisfying the transport equation

∂

∂t
pt +∇ · (ptut) = 0 (32)

Then, the marginal probability path

pt(x) =

∫
pt(x | x1)pdata(x1) dx1 (33)

interpolates between noise p0 = q0 and data p1 ≈ pdata and is generated by the marginal vector field

vt(x) =

∫
ut(x | x1)

pt(x | x1)pdata(x1)

pt(x)
dx1 (34)

Thus, by learning and integrating a neural network v̂(x, t; θ) ≈ vt(x), we can generate data from
noisy samples x0 ∼ q. The core design decision is the choice of appropriate conditional probability
path pt(x | x1) and associated vector field ut(x | x1). Although it is possible to define these directly,
it is often simpler to instead define a conditional flow map ψt(x0 | x1) that directly transports x0 ∼ q
to the intermediate distribution pt(x | x1). The flow map immediately provides the corresponding
vector field:

ut(x | x1) =
d

dt
ψt(x0 | x1) (35)
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With this formulation, the required boundary conditions simplify to ψ0(x0 | x1) = x and ψ1(x0 |
x1) = x1. As advocated by several works (Liu et al., 2022; Lipman et al., 2022; Pooladian et al.,
2023; Tong et al., 2023), the flow map (also called interpolant) is often chosen to follow the
simplest possible path between the two endpoints—e.g., linear in Euclidean spaces and geodesic on
Riemannian manifolds (Chen & Lipman, 2023).

C.2 DISCRETE DIFFUSION MODELS

Existing discrete diffusion frameworks can be split into 4 categories. Firstly, simplex-based ap-
proaches frame discrete data as vertices of a simplex and generate it starting from a Dirichlet prior
over the whole simplex (Richemond et al., 2022; Floto et al., 2023). Among those, DDSM (Avdeyev
et al., 2023) is most related to our work and converges to a Dirichlet distribution via Jacobi diffusion
processes and the stick-breaking transform. We note that none of these simplex-based approaches
feature Dirichlet distributions as intermediate distributions of the noising process—a key aspect of
our approach.

The second class of discrete diffusion models fully relaxes discrete data into continuous space without
any constraints and uses, e.g., a standard Gaussian as prior (Han et al., 2022; Chen et al., 2023; Frey
et al., 2024). The third paradigm, established by D3PM (Austin et al., 2021), operates on discrete
samples of noise distributions constructed by injecting discrete noise into data (Campbell et al., 2022;
Igashov et al., 2024; Vignac et al., 2023). Lastly, latent discrete diffusion models train an additional
network to obtain continuous latents for which they train a conventional diffusion model (Dieleman
et al., 2022; Li et al., 2023).

C.3 PROMOTER AND ENHANCER DNA

DNA is a sequence with base pairs as tokens (3 billion for humans) and a vocabulary of 4 nucleotides
(A, T, C, G). Parts of DNA encode genes that are transcribed into mRNA and then translated to
functional proteins. Promoters and enhancers refer to noncoding portions of DNA that regulate the
expression level of these genes and play important roles in eukaryotic organisms such as humans
(Dunham et al., 2012; Luo et al., 2020). More specifically, a promoter for a gene is the DNA
sequence next to the gene where the transcriptional machinery binds and starts transcribing DNA
to mRNA (Haberle & Stark, 2018). Meanwhile, enhancers are sequences that can be distant in the
DNA sequence (millions of base pairs) but are close in 3D space (Panigrahi & O’Malley, 2021) and
regulate the recruitment of this transcriptional machinery. Unlike promoters, enhancers often regulate
transcription in specific cell types. Hence, while both types of DNA subsequences are important
for gene therapy (Whalen, 1994), the cell type specificity of enhancers enables targeting, e.g., only
cancer cells.

Designing enhancers. Recently Taskiran et al. (2023) and de Almeida et al. (2023) demonstrated
cell type-specific enhancer design via an optimization procedure starting from an initial sequence
guided by a cell-type activity classifier. However, such sequence designs may not follow the empirical
distribution of enhancers, which would be captured by a generative model. Our work sets the
foundation for more principled conditional sequence design by learning and drawing from conditional
data distributions.

D ADDITIONAL RESULTS

D.1 GUIDANCE TO IMPROVE unconditional GENERATION

We generate unconditional sequences with classifier-free guided Dirichlet FM by first sampling
a class (based on its empirical frequency) and then guiding toward that class. This significantly
improves sample quality compared to unguided Dirichlet FM (Figure 9) and baselines (Table 2). Thus,
guided Dirichlet FM via the connection we derive between flow and score reproduces the success in
image diffusion models of enhancing sample quality via conditioning (Rombach et al., 2022; Saharia
et al., 2022). Furthermore, like guidance for images (Xu et al., 2023), the FBD first improves under
increased guidance (Figure 9) until reaching a minimum, after which increased guidance deteriorates
sample diversity and, therefore, FBD.
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Figure 9: Classifier-free guidance for unconditional enhancer generation. We generate uncon-
ditional sequences with classifier-free guidance by sampling the target class based on its empirical
frequency. We show the FBD between the generated data and the full data distribution for varying
levels of guidance γ.
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Figure 10: Scaling to higher simplex dimensions. We train on simple categorical distributions
with an increasing number of categories K and measure the KL divergence between the generated
distributions (512k samples) and the training target distribution. Dirichlet FM scales to larger K
much better than linear FM.

D.2 SIMPLEX DIMENSION TOY EXPERIMENT

We first evaluate Dirichlet FM and linear FM in a simple toy experiment where the KL divergence
of the generated distribution to the target distribution can be evaluated under increasing simplex
dimensions. For this, we train both methods to reproduce a categorical distribution q(x) = Cat(K,a)
where the class probabilities a are sampled from a uniform Dirichlet a ∼ Dir(a;1). To evaluate, we
use the KL-divergence KL(p̃ ∥ q) where p̃ is the empirical distribution of 512, 000 model samples.

Figure 10 shows these KL-divergences for increasing sizes K of the categorical distribution. Dirichlet
FM is able to overfit on the simple distribution regardless of K. Meanwhile, Linear FM is unable to
overfit on simple categorical distributions as K increases, illustrating the practical implications of the
pathological probability paths and discontinuous vector fields as discussed in Section 2.1.

D.3 ANALYTICAL TOY EXPERIMENT FOR CLASSIFIER GUIDANCE.

As a toy experiment to demonstrate our classifier guidance procedure, we construct a distribution
conditioned on a binary random variable. The conditional distribution is a categorical distribution
over 20 classes. In this setup, the time-dependent class probabilities conditioned on a noisy point
on the simplex can be computed analytically. Thus, we can use them to obtain the vector field for
Dirichlet FM analytically. Furthermore, the class probabilities and the gradients of their logarithm
(the score) can be computed analytically. Hence, we can simulate classifier guided Dirichlet FM
analytically for this toy distribution.
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Figure 11: Evaluation for cell type specific enhancer design with classifier guidance. We condition
Dirichlet FM to generate sequences that are only active in a class of cell type via classifier guidance
with varying γ. Results are shown for 4 classes in the Fly Brain cell data. The left y-axis FBD is
computed between the generated sequences and the data distribution conditioned on the target class.
The right y-axis PROB. refers to the target class probability of a classifier for the generated sequences.

Figure 12: Simulation results for classifier guidance on a conditional categorical distribution
with an analytically tractable vector field. In blue, we show a histogram (with frequencies
normalized to density) of the generated classes for each class on the x-axis. In orange, we show
the true probabilities of the toy distribution conditioned on the same class that we use for classifier
guidance.
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Figure 13: Per class performance of the classifiers used for evaluation and FBD calculation. Shown
are scatter plots for each class of the fly brain data (left) and the human melanoma cell data (right)
between the area under the curve of the receiver operator characteristic (x-axis) and the area under
the precision-recall curve (y-axis). The scatter plots match the results of the classifiers of Atak et al.
(2021) and Janssens et al. (2022) closely.

The results in Figure 12 show a close match between the empirical distribution of the generated
data and the ground truth probabilities. This empirically confirms the effectiveness of our classifier
guidance procedure that relies on converting probabilities to scores and converting them back to
probabilities by solving a linear system of equations.

20


	Introduction
	Method
	Designing Simplex Flow Matching
	Dirichlet Flow Matching
	Guidance
	Distillation

	Experiments
	Enhancer DNA design

	Conclusion
	Method Details
	Classifier Guidance
	Dirichlet Conditional Vector Field

	Experimental details
	Training and Inference
	Data

	Background
	Flow Matching
	Discrete Diffusion Models
	Promoter and Enhancer DNA

	Additional Results
	Guidance to improve unconditional generation
	Simplex dimension toy experiment
	Analytical toy experiment for classifier guidance.


