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Abstract
Smart buildings generate vast streams of sensor
and control data, but facility managers often lack
clear explanations for anomalous energy usage.
We propose InsightBuild, a two-stage framework
that integrates causality analysis with a fine-tuned
large language model (LLM) to provide human-
readable, causal explanations of energy consump-
tion patterns. First, a lightweight causal infer-
ence module applies Granger causality tests and
structural causal discovery on building telemetry
(e.g., temperature, HVAC settings, occupancy)
drawn from Google Smart Buildings and Berke-
ley Office datasets. Next, an LLM—fine-tuned
on aligned pairs of sensor-level causes and tex-
tual explanations—receives as input the detected
causal relations and generates concise, actionable
explanations. We evaluate InsightBuild on two
real-world datasets (Google: 2017–2022; Berke-
ley: 2018–2020), using expert-annotated ground-
truth causes for a held-out set of anomalies. Our
results demonstrate that combining explicit causal
discovery with LLM-based natural language gen-
eration yields clear, precise explanations that as-
sist facility managers in diagnosing & mitigating
energy inefficiencies.

1. Introduction
Modern commercial buildings are equipped with hundreds
of sensors (e.g., temperature, CO2, occupancy) and actu-
ators (e.g., dampers, valve positions) that record minute-
by-minute data points on indoor environment and control
commands (Mohammadshirazi et al., 2022). While sophisti-
cated optimization controllers can adjust HVAC schedules
to reduce energy use, when an anomaly or spike in consump-
tion occurs, facility managers need clear explanations (Maw-
son & Hughes, 2021): “Why did energy use surge at 3 PM
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yesterday?” Traditional dashboards display raw time-series
charts (Moens et al., 2024), but they do not explain why
an event happened. Recent research has begun to explore
data-driven fault detection and simple rule-based alerts, yet
these often produce generic messages (“Possible HVAC
inefficiency”) that lack causal insight (Chen et al., 2023).
Whereas, Large Language Models (LLMs) have demon-
strated prowess at generating coherent explanations when
provided structured inputs. However, purely LLM-based
explanations risk producing plausible but inaccurate “hallu-
cinations” if they lack explicit causal grounding (Matarazzo
& Torlone, 2025; Naveed et al., 2023). In this work, we
propose InsightBuild—a two-stage system combining (1)
an explicit causal inference module to detect likely causal
drivers of an observed energy anomaly, and (2) an LLM
fine-tuned to translate these causal relations into natural lan-
guage. By explicitly discovering causality among building
variables (e.g., occupancy → zone temperature → energy
use), InsightBuild ensures explanations are rooted in the
underlying physical system, while the LLM component de-
livers human-readable insights.

We validate InsightBuild on two publicly available datasets:
the Google Smart Buildings dataset and the Berkeley Office
Building dataset . Our primary contributions are: (i) We
design a causal inference pipeline for building telemetry
that applies Granger causality tests on time-series features
and prunes spurious edges via structural discovery. (ii) We
construct a specialized fine-tuning corpus of (causal graph,
textual explanation) pairs from expert annotations, enabling
the LLM to learn mappings from discovered causes to con-
cise, actionable explanations. (iii) We demonstrate that
InsightBuild achieves significant gains in explanation accu-
racy and expert satisfaction compared to strong baselines,
over held-out anomalies in both datasets.

2. Related Work
Building Energy Forecasting and Anomaly Detection.
Traditional rule-based approaches are still widely used in
building energy monitoring, where fixed threshold rules are
employed to identify anomalies and generate simple ex-
planations (Karbasforoushha et al., 2024). However, these
methods lack adaptability to complex interactions between
variables such as occupancy, temperature, and HVAC dy-
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namics. Deep learning-based forecasting methods, such as
DeepAR (Salinas et al., 2020; Neogi), offer probabilistic
multivariate forecasts that have been applied for anomaly
detection in energy time-series, but they do not provide in-
terpretable causal explanations for the detected anomalies.
Similarly, nature-inspired (Neogi, 2019; Guha Neogi et al.,
2020) and physics-based (Guha Neogi & Goswami, 2021;
Kar & Neogi, 2020) approaches have also been applied in
various machine learning tasks. Though they often yield
strong predictive performance, they lack mechanisms to ex-
plain why a particular outcome occurs—highlighting the
broader need for interpretable causal frameworks like ours.

Causal Inference for Time-Series Data. Causal in-
ference provides a principled framework to move be-
yond correlation and derive explanatory relationships
among building variables. Classical methods like Granger
causality (Granger, 1969) and structural causal models
(SCM) (Glymour & Zhang, 2019) have long been applied in
time-series causal discovery. More recently, neural network-
based frameworks such as the Temporal Causal Discovery
Framework (TCDF) (Nauta et al., 2019) leverage convolu-
tional neural networks to directly infer time-lagged causal
relationships from multivariate sequences. Transformer-
based models such as the Causal Transformer (Zhu et al.,
2024; Zhang et al., 2025) further exploit attention mecha-
nisms to capture nonlinear dependencies. While effective in
detecting causal links, these models typically output causal
graphs rather than generating user-friendly explanations
suitable for facility operators.

LLMs for Reasoning and Explanation. Transformer-
based LLMs like GPT (Brown et al., 2020; OpenAI, 2023),
or LLaMA (Meta AI, 2025; Touvron et al., 2023) have
demonstrated strong reasoning abilities and zero-shot gen-
eralization in multiple domains (Kojima et al., 2022; Wei
et al., 2022). Recent studies show that vanilla LLMs (vLLM)
can generate plausible explanations when prompted, but
may hallucinate unsupported causal claims without explicit
grounding in domain data (Liu et al., 2023). Prior work also
shows that domain-specific fine-tuning can substantially
improve explanation accuracy and factual consistency.

Combining Causal Inference with LLMs. There has
been limited work at the intersection of causal inference and
LLM-based explanation generation. Our proposed frame-
work InsightBuild is, to our knowledge, the first to explic-
itly integrate statistically-grounded causal discovery (via
Granger causality and structural pruning) with LLM fine-
tuning to generate natural language explanations for build-
ing energy anomalies.

3. Methodology
In Figure 1, we present the workflow of the proposed
method, and in this section we explain them in details.

Time-series
Telemetry Preprocessing Causal Discovery

Module

Fine-tuned
LLM

Explanation
(Readable)

Figure 1. Overview of InsightBuild framework. Time-series data is
first preprocessed and fed into a causal discovery module. Detected
causal relations for a target anomaly are passed to a fine-tuned
LLM, which generates a human-readable explanation.

3.1. Data Preprocessing

We consider multi-dimensional time series {xi
t}, where

i indexes sensor or control variables (e.g., zone temper-
ature, damper position, occupancy count) and t denotes
time (hourly for Google; 15 min for Berkeley). Steps:

1. Missing Value Imputation: We apply forward-fill for
short gaps (≤ 2 intervals) and linear interpolation for
longer gaps. Variables with > 20% missing data are
excluded.

2. Alignment: All variables are resampled at a unified
hourly timestamp (Google) or 15 min (Berkeley) using
pandas’ resample(...).mean().

3. Normalization: Each sensor’s readings are standard-
ized to zero mean and unit variance within each build-
ing, to ensure comparability for causality tests.

4. Anomaly Detection: We prelabel anomalies using a
simple z-score threshold (|z| > 3) on the building’s
total energy consumption. Each detected anomaly time
ta becomes a “target” for explanation.

3.2. Causal Inference Module

Given a target anomaly at time ta, we form a sliding window
[ta −w, ta] (where w = 24 hours for Google, w = 6 hours
for Berkeley) of preprocessed features. We then:

1. Pairwise Granger Causality Tests. For each ordered
pair (i, j) of variables, we test whether past values of
xi help predict xj beyond xj’s own history. Concretely,
we fit two autoregressive models on the window:

H0 : xj
t =

p∑
k=1

ak x
j
t−k + εt,

H1 : xj
t =

p∑
k=1

ak x
j
t−k +

p∑
k=1

bk x
i
t−k + ε′t.

We use p = 3 lags (empirically chosen via BIC). A
standard F-test distinguishes if bk terms are jointly
significant (p < 0.05). If so, we record a directed edge
i → j.
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2. Structural Pruning. Because Granger tests can form
spurious edges due to indirect pathways, we apply a
pairwise Structural Causal Model (SCM) criterion: if
i → k and k → j both hold, we remove edge i → j
unless its F-statistic is > 1.5× that of the indirect path.
This enforces sparsity and approximate faithfulness
(adapted from Hyvärinen & Smith, 2020).

3. Cause Ranking. For a given target z (e.g., total en-
ergy), we collect all immediate parents Pa(z). We rank
Pa(z) by their Granger F-test statistic in descending
order, selecting the top-k (here k = 3). These top
causes {c1, c2, . . . } form the causal justification for
the anomaly at ta.

3.3. LLM Explanation Module

We fine-tune a preexisting LLM (LLaMA 2 7B) to con-
vert sets of top-k causes into concise explanations. Our
fine-tuning corpus consists of ≈ 2,500 manually annotated
examples drawn from Google and Berkeley datasets:(

“CauseSet: {c1, c2, c3} −→ Explanation : . . .
)
.

Input Formatting. For each anomaly at ta, the input
prompt to the LLM is constructed as:

CAUSES: [zone_temp↑, occupancy↑,
damper_closed].
GENERATE_EXPLANATION:

Here, ↑ or ↓ suffixes indicate whether each cause variable
increased or decreased relative to its moving mean in the
window.

Target Outputs. Each target is a short paragraph (2–3 sen-
tences) that states the causal chain and suggests corrective
action. For example:

“The spike in total energy at 3 PM was
driven by a sudden rise in occupancy in
Zone A combined with a drop in damper
opening, causing the system to overcool
the zone. Reopening the damper slightly
or reducing setpoint could mitigate
this inefficiency.”

Fine-tuning Details. We fine-tune LLaMA 2 (7B) (Tou-
vron et al., 2023) on approximately 2,500 annotated (cause
set, explanation) pairs, using an 80/10/10 train-validation-
test split. Fine-tuning is performed for 3 epochs with batch
size 8 and learning rate 2× 10−5 using AdamW (β1 = 0.9,
β2 = 0.95), with weight decay 0.1. Training is conducted
on a single NVIDIA H100 GPU (80GB) at Ohio Supercom-
puter Center (OSC)1. Gradient checkpointing and mixed-

1https://www.osc.edu/

precision (bf16) training are employed to fit model into
GPU memory efficiently. Early stopping is applied based
on validation perplexity. Total fine-tuning completes in
approximately 2 hours.

4. Illustrative Example
To clarify, consider a concrete anomaly detected at 14:00
on April 15, 2019 in Google Building B (Figure 2). The
system recorded a 35% increase in total energy relative to
preceding hours. The causal inference pipeline found:

Pa(Energy) = {Zone3_Temp,
Occupancy_Count,
ChilledWaterFlow}.

(1)

with Granger F-statistics:

Occupancy_Count F=9.7−→ Energy,

Zone3_Temp F=7.4−→ Energy,

ChilledWaterFlow F=5.8−→ Energy.

(2)

Relative to the prior 24 h window, occupancy in Zone 3
had jumped by 40%, while chilled water flow remained
unchanged. Thus the top two causes are (1) occupancy↑
(Zone 3) and (2) zone temperature↑ (Zone 3). The LLM
input becomes:

CAUSES: [occupancy↑, zone3_temp↑].
GENERATE_EXPLANATION:

The fine-tuned LLM outputs:

"The surge in energy usage at 2 PM was
chiefly due to a sudden influx
of occupants in Zone 3, leading to
elevated zone temperature. As a
result, the chiller ran at higher
capacity. Adjusting the setpoint or
redistributing occupants could prevent
such spikes."

5. Experiments and Results
5.1. Datasets and Evaluation Setup

Google Smart Buildings. We use data from 2017–2022
for two of Google’s office buildings (Buildings A & B). Af-
ter preprocessing, we obtain approximately 52,000 hourly
records per building. For evaluation, we hold out 10% of de-
tected anomalies (200 events), each paired with ground-truth
cause annotations curated based on historical maintenance
logs, operational records, and system metadata.
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Figure 2. Illustrative example in Google Building B: raw total en-
ergy (top), detected anomaly at 14:00 (red), occupancy in Zone 3
(middle), and zone temperature in Zone 3 (bottom). InsightBuild
correctly identifies occupancy↑ as primary driver.

Berkeley Office Building. From the Dryad repository
(Jan 2018–Dec 2020), we extract ≈ 130,000 fifteen-minute
records. We detect 300 anomalies in total energy (z-score
criterion) and reserve 60 anomalies (20%) for testing, with
expert-annotated causes.

5.2. Evaluation Metrics

Explanation Accuracy. Fraction of test anomalies where
the top-1 cause reported by model matches the expert label.

Precision/Recall of Top-3 Causes. For models that out-
put a ranked list {ĉ1, ĉ2, ĉ3}, we compute precision@3 and
recall@3 against ground truth.

Expert Satisfaction. Facility managers rate each generated
explanation on a 5-point Likert scale (1 = “Unhelpful,” 5 =
“Very Clear and Actionable”). Each anomaly’s explanation
is scored, and we report the mean.

5.3. Quantitative Results

Table 1 summarizes performance on the held-out test sets.
On Google data, InsightBuild’s Acc@1 (84.7%) signifi-
cantly surpasses RBE (42.5%), vLLM (61.3%), CT (68.0%),
and DeepAR (70.5%). Explicit causal ranking and LLM
fine-tuning produce substantial improvements in Preci-
sion@3 and Recall@3 over competing approaches. Ad-
ditionally, InsightBuild achieves the highest expert satisfac-
tion (4.2), highlighting superior clarity and practicality.

On Berkeley data, InsightBuild maintains a similar advan-
tage, demonstrating robust performance despite higher gran-

Table 1. Comparison of Explanation Accuracy, Precision@3, Re-
call@3, and Expert Satisfaction on Google and Berkeley test sets.

Model Acc@1 P@3 R@3 Satisfaction

Google Smart Buildings

RBE 42.5% 55.0% 68.0% 1.9
vLLM 61.3% 72.0% 85.5% 2.4
Causal Transformer (CT) 68.0% 75.3% 86.7% 3.0
DeepAR 70.5% 77.0% 88.0% 3.2
InsightBuild (Ours) 84.7% 88.5% 93.0% 4.2

Berkeley Office Building

RBE 38.3% 51.7% 64.2% 1.8
vLLM 57.0% 69.5% 82.3% 2.6
Causal Transformer (CT) 63.3% 71.2% 84.5% 2.8
DeepAR 65.0% 74.3% 86.2% 3.1
InsightBuild (Ours) 80.0% 85.0% 90.0% 4.0

ularity (15-min intervals) and inherent noise. InsightBuild’s
Acc@1 (80.0%) outperforms CT (63.3%) and DeepAR
(65.0%), underscoring its generalizability.

5.4. Ablation Study

We perform an ablation to isolate the impact of (1) causal
inference and (2) LLM fine-tuning:

• CI-Only: We output only the top cause variable name
(e.g., “Occupancy in Zone 3”), without generating a
full explanation. Accuracy = 82.0%, Satisfaction = 2.1.

• FT-Only: We feed the LLM a random set of three
variables (without causal ranking) but fine-tuned as
before. Accuracy = 65.3%, Satisfaction = 3.0.

These results confirm both components are essential: CI-
Only shows the value of causal ranking, but lacks a natural
language explanation (hence low satisfaction). FT-Only
shows that fine-tuning helps, but without causal priors, cause
selection is noisy.

6. Conclusion
We have presented InsightBuild, a two-stage framework that
marries explicit causal discovery with LLM-based expla-
nation generation to deliver precise, actionable insights on
building energy anomalies. Through experiments on two
real-world datasets, InsightBuild outperforms both a rule-
based engine and a vanilla LLM by large margins in accu-
racy and user satisfaction. By ensuring that explanations are
rooted in statistically justified causal relations (via Granger
tests and structural pruning), our approach mitigates hal-
lucination and provides facility managers with trustworthy
reasoning. Future work includes (i) extending to real-time
streaming with online causal updates, (ii) integrating do-
main knowledge (e.g., HVAC thermodynamics) as priors,
and (iii) adapting the framework to other cyber-physical
systems such as data centers or manufacturing plants.
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