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Abstract

In offline model-based optimisation (MBO) we are interested in using machine learning to
design candidates that maximise some measure of desirability through an expensive but
real-world scoring process. Offline MBO tries to approximate this expensive scoring function
and use that to evaluate generated designs, however evaluation is non-exact because one
approximation is being evaluated with another. Instead, we ask ourselves: if we did have
the real world scoring function at hand, what cheap-to-compute validation metrics would
correlate best with this? Since the real-world scoring function is available for simulated
MBO datasets, insights obtained from this can be transferred over to real-world offline MBO
tasks where the real-world scoring function is expensive to compute. To address this, we
propose a conceptual evaluation framework that is amenable to measuring extrapolation,
and demonstrate this on two conditional variants of denoising diffusion models. Empirically,
we find that two of the proposed validation metrics correlate very well with the ground truth.
Furthermore, an additional analysis reveals that controlling the trade-off between sample
quality and diversity (via classifier guidance) is extremely crucial to generating high scoring
samples.

1 Introduction

MBO tasks where the ground truth MBO tasks where the ground truth oracle
oracle is known (this paper) is not known
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Figure 1: We want to produce designs x that score high according to the ground truth oracle y = f(x),
but this is usually prohibitively expensive to compute since it involves executing a real-world process. If we
instead considered datasets where the ground truth oracle is cheap to compute (for instance simulations), we
can search for cheap-to-compute validation metrics that correlate well with the ground truth. In principle,
this can facilitate faster and more economical generation of novel designs for real-world tasks where the
ground truth oracle is expensive to compute.

In model-based optimisation (MBO), we wish to learn a model of some unknown objective function [ : X — Y
where [ is the ground truth ‘oracle’, & € X is some characterisation of an input and y € RT is some score
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assigned to the input. The larger the score is, the more desirable x is according to some desiderata. In
practice, such a function (a real world process) is often prohibitively expensive to compute because it involves
executing a real-world process. For instance if @ € X' is a specification of a protein that binds to a specific
receptor and we want to maximise the binding potential, then actually determining this would involve
synthesising and testing it in a wet lab. In other cases, synthesising and testing a candidate may also be
dangerous, for instance components for vehicles or aircraft. In MBO, we want to learn models that can
extrapolate — that is, generate inputs whose scores are beyond that of what we have seen in our dataset.
Because the most reliable way of validating these extrapolated designs also happens to be the most expensive
(i.e. evaluating the ground truth oracle), we are motivated to search for metrics that correlate well with this
function because this can translate to substantial economic savings.

We specifically consider the subfield of MBO that is data-driven (leverages machine learning) and is offline.
Unlike online, the offline case doesn’t assume an active learning loop where the ground truth can periodically
be queried for more labels. Since we only deal with this particular instantiation of MBO, for the remainder of
this paper we will simply say ‘MBO’ instead of ‘offline data-driven MBO’. In MBO, very simple approach to
generation is to approximate the ground truth oracle [ by training an approximate oracle fy(x) (a classifier)
from some dataset D, and exploiting it through gradient ascent to generate a high-scoring candidate:

x* = argmax f(x) ~ arg max fy(x), (1)

= Ty < T+ Vg fo(x), fort ={1,...,T},

The issue here however is that for most problems, this will produce an input that is either invalid (e.g. not
possible to synthesise) or is poor yet receives a large score from the approximate oracle (overestimation).
This is the case when the space of valid inputs lies on a low-dimensional manifold in a much higher dimension
space (Kumar & Levinel |2020). How these problems are mitigated depends on whether one approaches MBO
from a discriminative modelling point of view (Fu & Levine, [2021; [Trabucco et al., [2021; |Chen et al., |2022)
(this usually involves regularising the oracle fy), or a generative modelling one (Brookes et al.; [2019; [Fannjiang
& Listgarten, 2020; Kumar & Levine, |2020), where learning some notion of the data distribution p(x) is
emphasised. In the case of the latter, the approximate oracle fy(x) can be thought of as parameterising its
probabilistic form py(y|x). This, combined with an approximation of the unconditional data distribution
po(x) defines a joint density over the data py(x,y) = po(x)pe(y|x). For the remainder of this paper, we will
describe our evaluation framework with such statistical language.

1.1 Difficulties in evaluation

To understand some of the difficulties in MBO evaluation, we give a quick refresher on a typical training and
evaluation pipeline in machine learning. Most pipelines are based on maximum likelihood estimation which
the goal is to find some parameter set § which maximises the expected probability (likelihood) of samples
from the ground truth with respect to pg(x,y). Given a finite number of samples D from the ground truth, it
is common practice to split such a dataset into three sets: training Di,ain, validation Dy .4, and test Dyeg.
Models are trained to maximise the expected likelihood over Dy;.;n, and are validated on Dy.iiq, and this
usually comprises a back-and-forth process. Whatever is considered to be the best model via the validation set
is then used to compute a final likelihood (or related metric) on the test set Dioq;. The latter is a convenient
consequence of the theory underlying maximum likelhood estimation: the ground truth generating process
p(x,y) isn’t necessary to see how well pg(x,y) performs when all is said and done — the theory simply says
we just need a sufficiently large number of samples from it.

Conversely, in MBO training and validation play a similar role as mentioned earlier, but ultimately we would
like to synthesise new examples that are intended to be high scoring, and we can think of this as being
analogous to generating our own test set, but it is one which does not come from the same distribution as the
training set. Since these examples are generated with an approximating model (e.g. fp), the only way we can
be certain what their true y’s actually are is via the ground truth oracle f, which we don’t have access to.
While one could approximate ground truth oracle with an evaluation oracle trained on a held-out test set, the
issue is now that we are evaluating one approximation (our generative model) with another approximation.
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While this is an inevitable dilemma in offline MBO, we can still try to mitigate this uncertainty by carefully
thinking about how we should evaluate our models.

Let us assume that we did indeed have access to the ground truth oracle f and that it was cheap to compute.
We could ask ourselves the question: what validation metrics correlate the best with the ground
truth? Here, a validation metric is some measure of desirability of the generative model that is cheap to
compute and is a function of Dy,;q. We note that there is a circular issue at play here: to answer this
question, the ground truth f needs to be cheap to compute, which negates the need for validation proxies in
the first place. However, we believe that if the study we propose is conducted at scale with a sufficiently
large number of datasets that are both difficult and diverse (for which the ground truth is cheap to evaluate),
this knowledge can be transferred to real world problems where the ground truth oracle is too expensive to
liberally execute. By ‘transfer’; we do not mean that pertaining to transfer learning (at least not primarily),
but rather the transfer of human knowledge on how to best train MBO algorithms, and this is illustrated this
in Figure [l We solidify our point further by noting that a similar analogy can be made for reinforcement
learning (RL). In RL, the real world ‘reward function’ is usually expensive or dangerous to compute, but a
substantial literature is concerned with training and evaluating agents in simulated environments where the
cost of evaluating the reward function is significantly cheaper and safer (Todorov et al., [2012; Brockman
et al., [2016). These simulated environments can either be used for pre-training (‘sim2real’ knowldge transfer),
or through human knowledge (figuring out which algorithms are most robust to deploy in the real world).

1.2 Contributions

We lay out our contributions as follows{T]

o We propose a conceptual evaluation framework for generative models in offline MBO, where we would like
to find cheap-to-compute validation metrics that correlate well with the ground truth oracle. While this
requires access to the ground truth oracle, we believe that empirical insights derived from this evaluation
framework can be transferred to MBO tasks where the ground truth oracle is too expensive to compute

(see Figure [1]).

e While our proposed evaluation framework is agnostic to the class of generative model, we specifically
demonstrate it using the recently-proposed class of denoising diffusion probabilistic models (DDPMs) (Ho
et al., |2020). For this class of model, we examine two conditional variants: classifier-based (Dhariwal &
Nicholl 2021) and classifier-free (Ho & Salimans| |2022)) guidance. Since DDPMs appear to be relatively
unexplored in MBO, we consider our empirical results on these class of models to be an orthogonal
contribution.

e We explore five validation metrics in our work against four datasets in the Design Bench (Trabucco et al.
2022) framework, and explain their pros and cons. Empirically, we find that for the classifier-free variant,
two of the five metrics (score and agreement) correlate consistently well with the ground truth. For
classifier-based, there are almost no differences, and we conjecture why this is the case.

o Furthermore, we find that generating good samples is a careful trade-off between sample quality and sample
diversity, which underlies a common dilemma in generative modelling. We show that this trade-off can be
expressed easily for either conditional denoising diffusion model variants as a simple hyperparameter.

2 Proposed framework

We first motivate our framework through a statistical lens. Let us assume we have access to some learned
po(x,y). We know that the probability of sampling an (x,y) is proportional to its predicted likelihood.
However, samples that are ‘likely’ in nature would not be high scoring, otherwise MBO would not be needed
in the first place. Conversely, the high scoring examples lie in low density regions of the real data distribution.
Therefore, we have to be careful in how we use our generative model to sample. Because of this, we do not

!Furthermore, an anonymised version of our code can be found here: https://github.com/anonymouscat2434/
exploring-valid-metrics-mbo
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Figure 2: (2a): Our framework is split into four parts: training / extrapolation (2.1]), model selection and
generation (2.2]). Model selection involves selecting for the model § which minimises a validation metric,

which in turn may be either a function of D,.iq, the approximate validation oracle, [, or both. : given
the full dataset D, we split the dataset such that all examples with y’s less than or equal to -y are assigned to
Dirain, and those greater than «y assigned to the validation set Dy,jq- These splits can be seen as samples
from their respective ‘truncated’ ground truth distributions.

wish to use likelihood to select for likely candidates; instead, we wish to use it as a means to measure how
well a generative model can extrapolate, and this is crucial when it comes to performing model selection on
a validation set. One way we can measure extrapolation is to evaluate likelihood (or some proxy of it) on
high scoring examples, examples whose scores have never been observed during training. We can achieve this
through careful construction of our training and validation sets without having to leave the offline setting.
Assume the full dataset D = {(z;,y;}"_; and (z,y) ~ p(x, y), the ground truth joint distribution. Given some
threshold v, we can imagine dealing with two truncated forms of the ground truth po - (x,y) and p,(x,y),
where:

p()r, (a:,y) = {(mvy) ~ p(way”y € [03’7]} (2)
(@, y) ={(z,y) ~ p(e,y)ly € (7,00} (3)

Therefore, if we split D based on  then we can think of the left split D;,.in as a finite collection of samples
from p.(x,y) and the right split Dyaq is for po (2, y). This is illustrated in Figure

2.1 Training and extrapolation

Let us assume a conditional generative model of the form py(x|y), which has been trained on Dyyain. If we
denote the distribution over y’s in the training set as p, - (y) then through Bayes’ rule we can write the
joint likelihood as: pg(x,y) = pe(x|y)po,,(y). This equation essentially says: to generate a sample (x,y)
from this joint distribution, we first sample y ~ p ~(y), then we sample & ~ py(x|y). Decomposing the
joint distribution into a likelihood and a prior over y means that we can change the latter at any time. For
instance, if we wanted to construct an ‘extrapolated’ version of this model, we can simply replace the prior in
this equation with p. (y), which is the prior distribution over y for the validation set. We define this as the
extrapolated model (Figure |2| extrapolate caption)ﬂ

po~ (2, y) = po(x|y)p- (). (4)

Of course, it is not clear to what extent the extrapolated model would be able to generate high quality inputs
from y’s much larger than what it has observed during training. This is why we need to perform model
selection via the use of some validation metric that characterises the model’s ability to extrapolate.

2There are other ways to infer an extrapolated model from a ‘base’ model, and we describe some of these approaches in
Section @
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2.2 Model selection and generation

Suppose we trained many models, each differing by their set of hyperparameters. If we denote the j’th model’s
weights as 6, then model selection amounts to selecting a 6* € © = {0]-};”:1 such that a validation metric is
minimised. The simplest example would be the expected log likelihood over samples in the validation set:

1
0* = arg min ——— Z log pg(x, y). (5)
0ce ‘DV‘(Llid‘ "
(2,y) E€Dyatia

Since we would like to select for models that generate high scoring candidates, we could devise a validation
metric which favours models whose extrapolated variants (Equation [4]) generate the highest scoring candidates
with respect to the validation oracle. We could express this as the following:

0" = arg min IE:@,pre,W (x,y) fo (QN}) = arg min ]E:Efvpg (z)y),y~p~ (y) fo (‘i) : (6)
0cO 0cO

In order to be consistent with the evaluation setup of Design Bench, we consider a variant of Equation [§]
where the expectation is computed with respect to the ‘best’ 128 candidates output by the model. Here, ‘best’
is a criteria that is up to the practioner to specify, and we use a simple criteria for ours: simply generate a
sufficient large set candidates by sampling from pg ., (we do 128 x 10), then sort those candidates by their
predicted validation oracle scores and retain the top 128 candidates. This can be written as the following
equation:

K

‘ 1 . .
Mscore(S; 97 ()) = ? Z fo (SOI‘ted(S; f@)i)a Si ~ p(f,“/(xv y) (7)

=1

where sorted(S, f,) sorts S = {&;}; in descending order via the magnitude of prediction. This is the first
validation metric we propose, and a few more will be introduced over the course of this paper. A summary of
these metrics is described in Table [Il

To determine which validation metrics correlate the most with the ground truth, we first need to devise a test
metric. This test metric is the same as Equation [7] but with the validation oracle in the outer parentheses
replaced by the test oracle:

K

1 ) .
Mtest—score (87 07 C‘)) = ? Z f (sorted(S; fo)l)v Sz ~ p@,w(wv y) (8)

i=1

3 Related work

Design Bench Design Bench is an evaluation framework by [Trabucco et al. (2022)) that facilitates the
training and evaluation of MBO algorithms. Design Bench, as of time of writing, provides four discrete and
four continuous datasets. These datasets can be further categorised based on two attributes: whether a
ground truth oracle exists or not, and whether the input distribution is fully observed (i.e. the combined
train and test splits contain all possible input combinations). In terms of evaluation, Design Bench does
not prescribe a validation set (only a training set and test oracle), which we argue is important in order to
address the core question of our work, which is finding validation metrics that correlate well with the ground
truth oracle. While [Trabucco et al| (2022]) does allude to validation sets in the appendix, these do not convey
the same semantic meaning as our validation set since theirs is assumed to be a subsample of the training
set, and therefore come from the training distibution. Lastly, while the same appendix provides examples
for different validation metrics per baseline, the overall paper itself is concerned with establishing reliable
benchmarks for comparison, rather than comparing validation metrics directly.
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Table 1: Validation metrics considered in this work. We would like to determine which of these metrics is
most correlated with the ground truth oracle, as determined by the test score (Equation . For Mpp and
Mpc, Xialia denotes the x’s in Dy,j;q and X denotes samples generated from the extrapolated model pyg -,
and |X| = | Xyalia|- Note that we measure the negative of Mpc and Mseore to be consistent, i.e. for any
validation metric considered we would like to minimise it.

Metric Pros v Cons X

o relies on external classifier (approximate oracle)
“Mecore(S;0,9)  * simply the validation variant of the test score (Eqn.
(Eq. ) e does not take into account diversity of generated
candidates

o theoretical connection to reverse KL divergence
(see Section [A.3.2) o relies on external classifier (approximate oracle)

Magr(Dyatia; 0) .
(Eq. [10) * model agnostic (can compare any class of genera- ¢ does not take into account diversity of generated
tive model) candidates

e denoising score matching loss implements forward

Mc.psm (Dyalia; 0F S8me as training loss KL, which may have a stronger bias towards recall
(.

¢« commonly-used and widely studied e bias towards recall (Sec. [A.2)
MEFp X\'alidv)_() « model agnostic (can compare any class of genera- ¢ relies on external feature extractor, results can
(Eq. |S16) tive model) widely vary between them

« improved version of |[Kynkdanniemi et al.| (2019))

_ e relies on external feature extractor, results can
-Mpc(Xvatid; X) « model agnostic (can compare any class of genera- widely vary between them
(Eq. [S20) tive model)

Validation metrics To be best of our knowledge, a rigorous exploration of validation metrics has not
yet been explored in MBO. The choice of validation metric is indeed partly influenced by the generative
model, since one can simply assign the validation metric to be the same as the training loss but evaluated
on the validation set. For example, if we choose likelihood-based generative models (essentially almost all
generative models apart from GANSs), then we can simply evaluate the likelihood on the validation set and
use that as the validation metric (Equation . However, it has been well established that likelihood is a
relatively poor measure of sample quality and is more biased towards sample coverage (Huszar| 2015} |Theis|
let al.l |2015; Dosovitskiy & Broxj, [2016)). While GANs have made it difficult to evaluate likelihoods (they are
non-likelihood-based generative models), it has fortunately given rise to an extensive literature proposing
‘likelihood-free’ evaluation metrics , and these are extremely useful to explore for this study for
two reasons. Firstly, likelihood-free metrics are agnostic to the class of generative model used, and secondly
they are able to probe various aspects of generative models that are hard to capture with just likelihood.
As an example, the Fréchet Distance (FID) (Heusel et al., |2017)) is commonly used to evaluate the realism
of generated samples with respect to a reference distribution, and correlates well with human judgement of
sample quality. Furthermore, metrics based on precision and recall can be used to quantify sample quality
and sample coverage, respectively (Sajjadi et all [2018} [Kynkédnniemi et al.l [2019).

In most existing works mentioned, the discussion of validation metrics and model selection are rather opaque,
and instead most of the focus is on the final evaluation, i.e. the ground truth or approximate test oracle’s
scores on the generated candidates. However, in [Trabucco et al.| (2022) (their Appendix F) some examples
are given as to what validation metrics could be used.

3.1 Modelling approaches

Model inversion networks Generative modelling for MBO was proposed by [Kumar & Levine| (2020),
under the name model inversion networks (MINs). The name is in reference to the fact that one can learn
the inverse of the oracle f, 1. ¥ = &, which is a generative model. In their work, GANs are chosen for the
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generative model, whose generator we will denote as Gy(z, y)E| At generation time (i.e. after training) the
authors propose the learning of the following prior distribution as a way to extrapolate the generative modeﬂ

pg(Z, y)* = arg(ma)x Ez,yrvp((z,y)y + ]E(z,y)NpC [61 10gp0 (y|G0 (Z, y)) + e logp(z) ) (9)
p¢(zy
where €; and e are hyperparameters that weight the agreement and the prior probability of the candidate z.
The agreement is measuring the log likelihood of & = Gy(z,y) being classified as y under the training oracle
fo (expressed probabilistically as pg(y|x)), and can be thought of measuring to what extent the classifier and
generative model ‘agree’ that & has a score of y. The log density p(z) can be thought of as a regulariser to
ensure that the generated candidate z is likely under the latent distribution of the GAN.

We note that agreement can be easily turned into a validation metric by simply substituting pg(y|x) for the
validation oracle p,(y|x). Note that if we assume that py(y|x) is a Gaussian, then the log density of some
input y turns into the mean squared error up to some constant terms, so we we can simply write agreement
out as By, ()| /4(Go(z,y)) — yl|*. This leads us to our second validation metric, which we formally define
as:

1 . -
MAgr(Dvalid; 9) Z ||fo(mz) - y||2’ where T; ~ P()(-’B|y) (10)

" | Dyania|
| thd' (@,y)~Dyalia

Discriminative approaches In the introduction we noted that MBO methods can be seen as approaching
the problem from either a discriminative or a generative point of view (though some overlap can also certainly
exist between the two). In the former case, regularising the approximate oracle fy(x) is key, and it is also the
model that is sampled from (e.g. as per gradient ascent in Equation . The key idea is that the approximate
oracle should act conservatively or pessimistically in out-of-distribution regions. Some examples include
mining for and penalising adversarial examples (Trabucco et al., [2021)), encouraging model smoothness [Yu
et al.| (2021, conservative statistical estimators such as normalised maximum likelihood (Fu & Levine, 2021)),
learning bidirectional mappings (Chen et al., 2022)), and mitigating domain shift (Qi et al.; [2022]).

Generative approaches [Brookes et al.|(2019) propose the use of variational inference to learn a sampling
distribution pg(2|S) given a probabilistic form of the oracle pg(S|x) as well as a pre-trained prior distribution
over the data pg(x). Here, S is some desirable range of y’s, and therefore py(x|S) can be thought of as the
‘extrapolated’ generative model. Lastly, [Fannjiang & Listgarten| (2020]) proposes MBO training within the
context of a min-max game between the generative model and approximate oracle. Given some target range
y € S an iterative min-max game is performed where the generative model pg(x) updates its parameters to
maximise the expected conditional probability over samples generated from that range, and the approximate
oracle fy(x) updates its parameters to minimise the error between the generated predictions and that of the
ground truth. Since the latter isn’t accessible, an approximation of the error is used instead. In relation
to our evaluation framework, the extrapolated model would essentially be the final set of weights 6®*) for
po(x]S)|p—py when the min-max game has reached equilibrium.

For both approaches, there is a notion of leveraging an initial generative model py(x) and fine-tuning it with
the oracle so that it generates higher-scoring samples in regions that it was not initially trained on. Both
the min-max and variational inference techniques can be thought of as creating the ‘extrapolated’ model
within the context of our evaluation framework (Figure . Therefore, while our evaluation framework does
not preclude these more sophisticated techniques, we have chosen to use the simplest extrapolation technique
possible — which is simply switching out the prior distribution — as explained in Section [2.1]

Diffusion models Recently, diffusion models (Ho et all 2020) have attracted significant interest due
to their competitive performance and ease of training. They are also very closely related to score-based

3Note that we can still employ the same sampling notation here, i.e. © ~ pg(x|y) implies we sample from the prior z ~ p(z),
then produce a sample & = Gy(z,vy).

4In [Kumar & Levine| (2020) this optimisation is expressed for a single (z,%) pair, but here we formalise it as learning a joint
distribution over these two variables. If this optimisation is expressed for a minibatch of (z,y)’s, then it can be seen as learning
an empirical distribution over those variables.
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generative models (Song & Ermonl 2019; [2020)). In diffusion, the task is to learn a neural network that can
denoise any x; to x;_1, where (o, ..., xr) defines a joint distribution over increasingly perturbed versions
of the real data ¢(xo). Assuming that g(xr) = p(zr) for some prior distribution over xr, to generate a
sample Langevin MCMC is used to progressively denoise a prior sample 7 into xy, and the result is a
sample from the distribution pg(mo)ﬂ To the best of our knowledge, we are not aware of any existing works
that evaluate diffusion or score-based generative models on MBO datasets provided by Design Bench, and
therefore we consider our exploration into diffusion models here as an orthogonal contribution.

4 Experiments and Discussion

In this section we work towards answering the following question: which validation metrics correlate the best
with the ground truth oracle? So far two have been defined:

e The ‘score metric’ Mgcore, Which is just using the approximate validation oracle to score candidates
generated by the model;

o the ‘agreement’ Mg, (Section (3} Paragraph , which is an equation originally proposed in |[Kumar &
Levine (2020) but re-purposed for model selection.

Furthermore, since we demonstrate our validation framework using conditional denoising diffusion probabilistic
models (conditional DDPMs), one metric is essentially the DDPM training loss but evaluated on the validation
set, which we call Mc.psm (Equation , which we explain in Paragraph The last two validation metrics —
Frechet distance and density/coverage — are inspired from the GAN literature and measure distances between
the truncated ground truth and extrapolated distribution. These are also useful since they capture notions of
precison and recall, which are both very important in generative modelling. In the interest of space, we defer
their explanations to appendix Sections

Dataset Our codebase is built on top of the Design Bench (Trabucco et al., 2022)) framework. We consider
all continuous datasets in Design Bench datasets: Ant Morphology, D’Kitty Morphology, Superconductor,
and Hopper. Continuous datasets are chosen since we are using Gaussian denoising diffusion models, though
discrete variants also exist and we leave this to future work.

Both morphology datasets are ones in which the morphology of a robot must be optimised in order to maximise
a reward function. For these datasets, the ground truth oracle is a morphology-conditioned controller. For
Superconductor, the ground truth oracle is not accessible and therefore the test oracle is also approximate
(which we simply call the ‘approximate test oracle’). For Hopper, the goal is to sample a large (= 5000
dimensional) set of weights which are used to parameterise a controller.

Data splits While our framework is built on top of Design Bench, as mentioned in Section [3| the evaluation
differs slightly. In Design Bench, only D and Dy,.i, are exposed, and any users intending to perform validation
should derive Dy,jiq from Dy,ain. Because we require our validation set to be a higher-scoring distribution
than the training set, we break this convention and define the validation split to be Diyain \ D, i.e. their set
difference. Note that if a ground truth oracle exists, there is no need to define a D;.s;. Otherwise, a random
50% subsample of (Diyain \ D) is assigned to Dy,jq and the other 50% assigned to Dies. For Ant, Kitty, and
Hopper, the test oracles are exact. For Superconductor, we use the pre-trained test oracle RandomForest-v0
provided with the framework (which was trained on the full dataset D).

One nuance with the Hopper dataset is that the full dataset D and the training set Di,.in are equivalent,
presumably because of the scarcity of examples. This means that a validation set cannot be extracted unless
the training set itself is redefined, and this means that the training set in our framework is no longer identical
to that originally proposed by Design Bench. To address this, we compute the median y with respect to
Dirain, and take the lower half as Dy ain and the upper half as D.j;q. We call the final dataset ‘Hopper 50%’,
to distinguish it from the original dataset.

5The Langevin MCMC procedure is theoretically guaranteed to produce a sample from pg(x) (Welling & Tehl [2011). As
opposed to Equation E, where no noise is injected into the procedure and therefore samples are mode seeking.



Under review as submission to TMLR

Oracle pre-training The validation oracle f; is an MLP comprising of four hidden layer, trained on
Dirain N Dyatia- Note that in the case of a dataset not having a ground truth oracle f, this is not to be
confused with the approximate test oracle, which is trained on D = Dirain N Dyatia N Diest -

Architecture The architecture that we use is a convolutional U-Net from HuggingFace’s ‘annotated
diffusion model’ ﬂ whose convolutional operators have been replaced with fully connected layers (since Ant
and Kitty morphology inputs are flat vectors). For Hopper, we use 1D convolutions since MLPs performed
poorly and significantly blew up the number of learnable parameters.

For all experiments we train with the ADAM optimiser (Kingma & Bal,2014), with a learning rate of 2 x 1072,
B8 =(0.0,0.9), and diffusion timesteps T' = 200. Experiments are trained for 5000 epochs with single P-100
GPUs. Input data is normalised with the min and max values per feature, with the min and max values
computed over the training set Dirain. The same is computed for the score variable y, i.e. all examples in the
training set have a normalised score y € [0, 1] and those in the validation set have scores y > 1.

Training We consider the denoising diffusion probabilistic model (DDPM) proposed by [Ho et al.| (2020)).
DDPMs are currently state-of-the-art in many tasks and avoid some of the issues associated with other classes
of generative model. Like VAEs, DDPMs maximise an evidence lower bound, which in turn approximates
the forward KL divergence between the data and generative distributions. Using typical DDPM notation,
xo ~ q(xo) is the real data, and q(x¢|zs11) for ¢ € {1,...,T} defines progressively noisier distributions, and
pp parameterises a neural net reverse this process. In practice, when such distributions are Gaussian, each
of the T' KL terms in the ELBO can be simplified to the following noise prediction task, where we train a
neural network ey(x¢,t) to predict the noise from x; ~ g(a¢|xo):

[’DSM(Q) = Ezgwq(mo),mtwq(mt\mo),st [Het - 69(:3157 t)HQL (11)
where ¢; is the noise used to produce x; via @y := /@@ + /1 — dueq, € ~ N(0,1), and {at}thl defines a

noising schedule. Lastly, sampling @y ~ g(x¢) is approximated with those from Diyain.

Conditioning Note that Equation defines an unconditional model py(x). In order to be able to condition
on the score y, we can consider two optionsﬂ The first is classifier-based guidance (Dhariwal & Nicholl 2021)).
Here, we train an unconditional diffusion model py(x), but during validation we leverage the validation oracle
via equation:

60($t7 ta y) = EO(mtv t) -V 1- &twvmt logpc‘)(y|$t; t) (12)

classifier-based guidance

where w € R™ is a hyperparameter. Note that p,(y|x:;t) — with the extra conditioning on ¢ — is not the same
as the original validation set oracle. The former is trained to also predict y from any noisy distribution g(a;).
The reason for this is because using the original validation oracle p,(y|x) in Equation (12| may contribute bad
gradient for noisy x’s that are too far from the training distribution.

In classifier-free guidance (Ho & Salimans| |2022), the noise predictor is trained both conditionally and
unconditionally using label dropout. That is, €y can also be conditioned on y as well:

Lcopsm(0;7) =E(zg,y)~Dirain @i ~a(@: |zo) AU (0,1) || €6 — €0(@e, Iacr (¥), 1), (13)

where 1y..(y) is the indicator function and returns a null token if A < 7 otherwise y is returned. The
additional significance of this is that at generation time, one can choose various tradeoffs of (conditional)
sample quality and diversity by using the following noise predictor, for some hyperparameter w:

éo(xe, t,y) = (w+ Deg(xy, t,y) — wegp(x, t) (14)

classifier-free guidance

Shttps://huggingface.co/blog/annotated-diffusion
TWhile it is possible to derive a conditional ELBO from which a DDPM can be derived from, the most popular method for
conditioning in DDPMs appears to be via guiding an unconditional model instead.
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Validation The last validation metric we propose is specific to experiments run with classifier-free guidance.
We use the conditional noise predictor in Equation [14] to construct the conditional form of Equation

1
Mepsm(DPratia; 0) = D Z les — co(e, y, 1) (15)
valid (m7y)ND\"dlid

For each validation metric and dataset, we run many experiments where each experiment is a particular
instantiation of hyperparameters (see[A.4.1)). During the course of training we periodically keep track of the
smallest value observed so far for that particular validation metric and save its model weights as a checkpoint
(which is essentially early stopping). For each experiment, we load the early-stopped checkpoint, generate
candidates and compute the final test score as per Equation [8] Therefore, if we have run m experiments then
we generate an m-length list of tuples, where the first tuple element is the value of that particular validation
metric and the second tuple element is the actual test score. From this m list the Pearson correlation is
computed.

4.1 Results

Classifier-free guidance In Figure 3| we plot the Pearson correlations achieved for each dataset as well as
each diffusion variant, classifier-free guidance (‘cfg’) and classifier-based (‘cg’). (Due to space constraints,
we have also plotted the Pearson correlations on a per-dataset and per-validation metric level and these
are shown in the appendix.) Since all validation metrics are intended to be minimised, we are interested in
metrics that correlate the most negatively with the final test score, i.e. the smaller some validation metric is,
the larger the average test score as per Equation [§] We first consider the first four columns of the barplot,
which correspond to just the classifier-free guidance experiments for all four datasets. The two metrics which
perform consistency well are Mgcore and Magr. However, Mep also appears to perform well for Kitty and
Mc.pswm for Superconductor.

Classifier-based guidance For c.g. the differences between metrics are much less pronounced, and some
care must be taken in the interpretation of these results. Since classifier-based guidance requires a classifier
to be given to the diffusion model during generation (not training), we chose to use the validation oracle
f» (Equation , which means that the diffusion model gets to exploit gradients derived from a dataset of
higher scoring designs. This was not done for the purposes of obtaining advantageous results, but rather
because our evaluation framework technically permits it, since the validation set (or artifacts derived from it)
can be used as long as it’s not in the training stage (Figure . This however confounds our analysis, since it
isn’t clear how well the diffusion model can extrapolate in the absence of such gradients. While we could just
simply replace f, with a ‘training oracle’ which has only been trained on the training set, we can simply
interpret the results in light of this information. At the same time, we believe the reason for the metrics all
performing similarly here is because the differences between validation metrics are less important when the
generative model gets to ‘make up’ for any defiencies by taking gradients with respect to an oracle that has
been trained on larger scoring designsﬂ

Sample quality vs diversity We find that the guidance hyperparameter w makes a huge difference to
the final results, and this is shown in Figure[I4] Each point is colour-coded by w, which specifies the strength
of the ‘implicit’ classifier that is derived (Equation . With respect to just the two most strongly correlated
metrics per dataset (as per Figure 7 larger w’s appear to be more favourable for Ant Morphology (Mscore
and Mg, ). For Kitty Morphology, w ~ 1 is best for Mcore and a w = 0 is best for Mpp. This indicates
that performance is sensitive to w, and this appears to underscore a well-established ‘dilemma’ in generative
modelling, which is the trade-off between sample quality and sample diversity (Ho & Salimans, |2022; Brock
et al., [2018; [Burgess et al. 2018} [Dhariwal & Nicholl |2021)). While the ideal case would be to satisfy both
properties equally, in practice some trade-offs have to be made. If sample quality is too heavily weighted,
then sample diversity suffers and as a result the final set of (supposedly high scoring) generated candidates

8This analogy becomes much clearer if we consider the extreme case: if the validation oracle was the same as the ground
truth f, we would expect a perfect correlation of —1.
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may actually be classed as a badly scoring mode by the ground truth oracle. Conversely, if sample diversity
is too heavily weighted then we miss out on high-scoring modes of the data.

0.4 = M - psm Mep m— — Mpc — — M score " MAgr
0.2
0.0
-0.2
-0.4
-0.6
-0.8

Ant (cfg) Kitty (cfg) SD (cfg) Hopper50 (cfg) Ant (cg) Kitty (cg)

Figure 3: The Pearson correlation computed for each dataset / diffusion variant. Pearson correlations are
computed as per the description in Paragraph [d] Since each validation metric is something that should be
minimised, the ideal metric should be highly negatively correlated with the test score (Equation , which is

to be maximised.
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(a) Ant Morphology, classifier-free guidance (c.f.g) The Pearson correlations shown above each subplot correspond to
those shown for the same corresponding experiment in Figure El Here, we can see that Mscore and Magr are the most
negatively correlated with the test score. Points are colour-coded by guidance parameter w (see Equation ,
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(b) Kitty Morphology (c.f.g.)

Figure 4: Correlation plots for the Ant and Kitty Morphology, for the classifier-free guidance (c.f.g.) diffusion
variant. Each point is colour-coded by w, which specifies the strength of the ‘implicit’ classifier that is derived
(Equation . We can see that w makes a discernible difference with respect to most of the plots shown.
With respect to just the two most strongly correlated metrics per dataset: larger w’s appear to be more
favourable for Ant Morphology (Mscore and Mag,); for Kitty Morphology, w ~ 1 is best for Mgcore and a
w == 0 is best for Mgp. For additional plots for other datasets, please see Section

In Table 2] we present the final test scores for both diffusion variants and both datasets, as well as provide
Design Bench’s results as reference. Since we cannot compare our version of Hopper’s results to any existing
benchmarks, we omit them from this table (though its correlation plots are shown in Section [A.5.4]).

5 Conclusion

In this work, we asked a fundamental question pertaining to evaluation in offline MBO: what validation

metrics correlate well with the ground truth oracle? The key idea is that if we can run our presented study at

11



Under review as submission to TMLR

H Ant Morphology ‘ D’Kitty Morphology ‘ Superconductor

Dtrain 0.565 0.884 0.400
Auto. CbAS 0.882 £ 0.045 0.906 £ 0.006 0.421 £ 0.045
CbAS 0.876 £ 0.031 0.892 £ 0.008 0.503 £ 0.069
BO-qEI 0.819 £ 0.000 0.896 £ 0.000 0.402 £ 0.034
CMA-ES 1.214 £ 0.732 0.724 £ 0.001 0.465 £ 0.024
Grad. 0.293 £ 0.023 0.874 £ 0.022 | 0.518 + 0.024
Grad. Min 0.479 £ 0.064 0.889 £ 0.011 0.506 £ 0.009
Grad. Mean 0.445 £ 0.080 0.892 £ 0.011 0.499 £ 0.017
REINFORCE 0.266 £ 0.032 0.562 £ 0.196 0.481 £ 0.013
MINs 0.445 £ 0.080 0.892 £ 0.011 0.499 £ 0.017
COMs 0.944 £ 0.016 0.949 + 0.015 0.439 £ 0.033
Cond. Diffusion (c.f.g.) 0.954 £ 0.025 0.972 £ 0.006 0.645 £ 0.115
Cond. Diffusion (c.g.) 0.975 + 0.016 0.974 £+ 0.007 -

Table 2: 100th percentile test scores for methods from Design Bench (Trabucco et al.l 2022) as well as our
diffusion results shown in the last two rows, with c.f.g standing for classifier-free guidance (Equation and
c.g. standing for classifier-guidance (Equation . Each result is an average computed over six different runs
(seeds). Test scores are min-max normalised with respect to the smallest and largest oracle scores in the full
dataset, i.e. any scores greater than 1 are greater than any score observed in the full dataset. Design Bench
results are shown for illustrative purposes only — while our training sets are equivalent to theirs, we use a
held-out validation set to guide model selection, which makes a direct comparison difficult.

scale for a both a difficult and diverse range of datasets for which the ground truth is known, insights derived
from those findings (such as what are robust validation metrics) can be transferred to more real-world offline
MBO tasks where the actual ground truth oracle is expensive to evaluate. To approach this, our evaluation
framework is designed to measure how well a generative model extrapolates: the training and validation sets
are seen as coming from different ~v-truncated distributions, where examples in the validation set comprise a
range of y’s that are not covered by the training set and are larger than those in the training set. Therefore,
from the point of view of the generative model, the validation set is out-of-distribution. Because model
selection involves measuring some notion of desirability on the validation set (via a validation metric), we are
effectively trying to select for models that can extrapolate.

We demonstrated our framework on four continuous datasets prescribed by Design Bench, as well as across five
different validation metrics and two forms of label conditioning for Gaussian diffusion models: classifier-free
and classifier-based guidance. The five validation metrics we chose were inspired by existing MBO works as
well as the GAN literature, with the latter having proposed many metrics that are agnostic to the class of
generative model. For the classifier-free conditional variant, we identified validation metrics that performed
consistently well, namely the score and agreement metrics. We do not claim that these metrics would be useful
across different generative models however — ideally, the same experiments should be run on other model
variants such as GANs and VAESH Lastly, we identified that balancing the trade-off between sample quality
and sample diversity is extremely important for accurately generating extrapolated examples. Fortunately,
for both diffusion variants controlling this trade-off is as simple as tuning a single hyperparameter.

For future work, a wider variety of datasets should be considered such as non-robotics datasets as well as
discrete ones (which for instance can be addressed with discrete diffusion variants). Since the ground truth
oracle is required for a precise evaluation, this may call for the proposal of new datasets. Finally, following
an official release of the code we hope that the work that is presented will encourage further exploration into
good validation metrics and practices for model-based optimisation.
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A Appendix

A.1 Training, validation, and test splits

train train

v test and valid
test (full dataset)

(a) Design Bench (b) Ours (on top of Design Bench)

Figure S5: Design Bench only prescribes a training split. The full dataset (which we simply call the test set
here) is also accessible but is not meant to be accessed during training. If the dataset does not contain a
ground truth oracle, the test set is what is used to train the final (test) oracle. Furthermore, the lack of a
prescribed validation set makes it difficult for us to employ our conceptual evaluation framework detailed in
Figure [2| To address this, we retain the training set as shown in but denote everything else (examples
whose scores are > ) to comprise either validation or testing examples . To distinguish between the
two, we can simply randomly shuffle these examples and denote the first half as validation and the second
half as test. However, if there exists a ground truth oracle for the dataset, there is no need for a separate test
set, and both halves will be for validation.

A.2 Validation metrics

Frechet Distance ‘Likelihood-free’ metrics are used almost exclusively in the GAN literature because
there is no straightforward way to compute likelihoods for this class of models, i.e. pg(x|y) cannot be
evaluated. Furthermore, the search for good metrics is still an active topic of research (Borji, 2022)). Common
likelihood-free metrics involve measuring some distance between distributions in some predefined feature
space. For instance, for GANs trained on natural image datasets the Fréchet Inception Distance (FID)
(Heusel et al., [2017)) is used to fit Gaussians to both distributions with respect to the feature space of an
InceptionNet classifier trained on ImageNet. Since the acronym ‘FID’ specifically refers to a very specific
InceptionNet-based model, we will simply call it ‘FD’. If we assume that FD is computed in some latent space
characterised by an arbitrary feature extractor f, : X — H, then FD can be computed in closed form as
follows (Dowson & Landau, [1982):

M (X, X5 ) = |p(fa(X)) = p(fn(X))] + Tr(E(fn(X)) + Z(fa(X)) = 22(fn(X))S(fn(X))?)
(S16a)

where Mpp € R* and lower FD is better. FD is also known as the 2-Wasserstein distance. Here, X € RV*P
denotes N samples coming from a reference distribution (i.e. ground truth) and X are samples coming from
the generative model. H = f;(X) denotes these inputs mapped to some feature space. Conveniently, we
can simply define the feature space to be with respect to some hidden layer of the wvalidation oracle. One
caveat of FD is that it may have a stronger bias towards recall (mode coverage) than precision (sample
quality) (Kynkdanniemi et all|2019) and that it reports a single number, which makes it difficult to tease
apart how well the model contributes to precision and recall. Furthermore, while there exists a canonical
network architecture and set of weights to use for evaluating generative models on natural image datasets (i.e.
a particular Inception-V3 network that gives rise to the Frechet Inception Distance), this is not the case for
other types of datasets. This means that, unless a particular feature extractor is agreed upon, comparing
results between papers is non-trivial.
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Density and coverage We also consider ‘density and coverage’, which corresponds to an improved version
of the ‘precision and recall’ metric proposed in Kynkaanniemi et al.| (2019)). In essence, these methods estimate
the manifold of both the real and fake data distributions in latent space via the aggregation of hyperspheres
centered on each point, and these are used to define precision and recall: precision is the proportion of fake
data that can be explained by real data (in latent space), and recall is the proportion of real data that can be
explained by fake data (again, in latent space).

Similar to FD (Paragraph [A.2)), let us denote H; as the example X; embedded in latent space. Let us also
define B(H;, NNDg (H,) as the hypersphere centered on H; whose radius is the k-nearest neighbour, and k
is a user-specified parameter. ‘Density’ (the improved precision metric) is defined as:

M
Maensiey (H, H 1 ) = kNZZ {H; € B(H, NNDy(H,))}, (S17)

j=11:i=1

how many real neighbourhoods
does fake sample &; belong to?

where 1(+) is the indicator function, and large values corresponds to a better density. While coverage (improved
‘recall’) can be similarly defined by switching around the real and fake terms like so, the authors choose
to still leverage a manifold around real samples due to the concern of potentially too many outliers in the
generated distribution H. As a result, their coverage is defined as:

M
Mcoverage(H; H U { Hu NNDk(H ))} (818)

{Hj st. Hj € B(Hi,NNDk(Hi))}, (S19)

2=

2\
”Mz i Mz

Q
Il
-

is there any fake sample belonging
to «;’s neighbourhood?

where, again, a larger value corresponds to a better coverage. This leads us to the addition of both metrics,
Mpg, which is simply:

MDC(Xa X; fh; k') = Mdensity(ffL(X)7 fh(X); k) + Mcoverage(fh(X)a fh(X)a k) (8203‘)

Similar to FD, we use the validation oracle fy to project samples into the latent space. We do not tune k& and
simply leave it to k = 3, which is a recommended default.

A.3 Related work
A.3.1 Conditioning by adaptive sampling

CbAS (Brookes et al.| [2019), like our proposed method, approaches MBO from a generative modelling
perspective. Given some pre-trained ‘prior’ generative model on the input data py(x), the authors propose
the derivation of the conditional generative model py(x|y) via Bayes’ rule:

pylz)pe(x)  p(ylz)ps () (S21)

po(xly) = po(y) [, p(ylz)pe(x)da

where p(y|z) denotes the oracle in probabilistic form, and is not required to be differentiable. More generally,
the authors use S to denote some target range of y’s that would be desirable to condition on, for instance if
p(Slz) = [, p(yl@)1yesdy then:

_ p(S|z)pe(x)  p(S|x)pe(x)
p(@l$)=""09  ~ LaSepea)da’ (522)

8
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Due to the intractability of the denominator term, the authors propose the use of variational inference to learn
a sampling network ¢¢(x) that is as close as possible to py(x|S) as measured by the forward KL divergence.
Here, let us use pg(S|x) in place of p(S|x), and assume the oracle py(S|x) was trained on Dtrainm
= arggnin KL {pg(w|5) I qc(a:)}
forward KL

= arggmin ;pe(wls) log (pe(wls) - qg(w))

= argcmin > [pe(wlS) log pg(2]S) — po(|S) log qc(w)}

po(S)
zﬁ > [p0(5|w)p9(93) log %(98)}
~—— 7

const.

= argénax H[pe(x|S)] + Z [IM logq<(:v)}

= argmax Hpy(x|S)] +
¢ ——

const.

= argmax By, o) | po(Sl) log gc ()] (523)
¢ S——

oracle

The authors mention that in practice importance sampling must be used for Equation [S23] This is because
the expectation is over samples in pg(x), which in turn was trained on only examples with (relatively) small
y. i.e. those in Dipain. Because of this, p(S|x) is likely to be small in magnitude for most samples. For more
details, we defer the reader to the original paper (Brookes et al., [2019)).

To relate the training of CbAS to our evaluation framework, we can instead consider Equation as part
of the wvalidation part of our evaluation framework. In other words, if we define S := [y, 00| and use the
validation oracle py in place of py(S|x), then we can optimise for the extrapolated model as the following:

(" =argmin By, (a)| pe(S|x)log (Ic(ﬂ?)} (524)
C W—/
oracle
Generally speaking, validation metrics should not be optimised over directly since they are functions of the
validation set, and the purpose of a validation set in turn is to give a less biased measure of generalisation

than the same metric computed on the training set. However, this may not be too big of a deal here since we
are not taking gradients with respect to the oracle.

py(x,y)

l
Doy (f? 0) J— Dyalid /(@)

oracle

e fo(@) ——{_metc ] E.sl/(@)

train model
selection
extrapolate

generation
po() a(x) 5

Figure S6: The training and evaluation of CbAS Brookes et al.| (2019) in the context of our evaluation
framework. The extrapolation equation is described in Equation and involves variational inference to
fine-tune py(x) into a search model g ().

10In their paper the symbol ¢ is used, but here we use ¢ since the former is used to denote the validation oracle.
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A.3.2 Model inversion networks and the reverse KL divergence

It turns out that there is an interesting connection between the agreement and the reverse KL divergence
between a specific kind of augmented model distribution and the truncated ground truth pg - (x,y). To see
this, let us re-consider the generation time optimisation performed in |[Kumar & Levine (2020)) (which we
called MIN-Opt), which tries to find a good candidate @ = Gy(z,y) via the following optimisation:

y*, 2" = argmax y + €1 log pp(y|Go(z,y)) +e2 logp(z) (S25)
Y.z —
agreement prior over z

z and y can be generated by performing gradient ascent with respect to y and z. We can also express
MIN-Opt with respect to a batch of (y, z)’s, and this can be elegantly written if we express it as optimising
over a distribution pc(z,y). Then we can find such a distribution that maximises the ezpected value of
Equation over samples drawn from p¢(z,y):

D¢ (Z7 y)* ‘= argmax Ez,ywpc (z,y) [y +ea ( 10gp9 (y|G9 (zv y)) + €2 logp(z))] ’ (826)
pc(zy)

where e.g. ( parameterises the distribution, e.g. a mean and variance if we assume it is Gaussian. Although
MIN-Opt was intended to be used at generation time to optimise for good candidates, we can also treat it as
a validation metric, especially if we replace the training oracle py(y|x) with the validation oracle py(y|x).
For the sake of convenience, let us also replace €; and ez with one hyperparameter 7. This hyperparameter
can be seen as expressing a trade-off between selecting for large scores y versus ones with large agreement
and density under the prior distribution. This gives us the following:

pc(z,y)" = argmax Ey .p (z.y) [y + n(logpos(y\Ge(z, y)) + logp(Z))}

pc(2,y)

= arg(ma)x ]Ey~pg(y)y + nEy7z~p<(z,y) [1ng(b(y|G9 (2,’7 y)) + Ing(Z)} (827)
p¢l=z,y

= arg(ma)x Eywpg(y)y + nEw,y,szg(wly,z)pc(z,y) {IOgPQ‘)(mw) + 1ng(z):| . (828)
p¢(zy

Note that in the last line we instead use the notation & ~ py(x|y, z) (a delta distribution) in place of
x = Gy(z,y) , which is a deterministic operation. We can show that Equation has a very close
resemblence to minimising the reverse KL divergence between a specific kind of augmented model and the
~-truncated ground truth, with respect to our distribution p¢(z,y). Suppose that instead of the typical
augmented model py ~(x,y) = po(x|y)p,(y) we consider one where z and y are drawn from a learnable
joint distribution p¢(z,y), and we simply denote py(x|y, 2) to be a delta distribution (since & = Gy(2,y) is
deterministic). We can write this new augmented model as the following:

poc(x,y) = /pe(w\y, z) pe(z,y)dz. (529)
o GAN

Although this distribution is not tractable, we will only be using it to make the derivations more clear.

Let us work backwards here: if we take Equation but substitute the inner square bracket terms for the
reverse KL divergence between the augmented model of Equation and the ground truth p,(x,y), we
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obtain the following:

pc(z,y)" = argmin ~E, yy + 1 KL |poc(@.y) || 1 (2,9)
Yy~p¢

reverse KL

= argpmin —Eypc )y +n {Em,yNPQ,g(fmy) log po.c(®,y) — Ex ympy (a0, log P+ (T, y)]
9

= argpmax Eympec)¥ = 1| Ea ymps ¢ () 108 P0.c (2, Y) + By () 108 P (2, y)]
¢

= arg max Eprc(y)y +n

Hlpo.c] + Ex y~pp  (m,y) o8 1+ (T, y)]
p¢

p¢
entropy agreement

/A argmax Eympc(y)y +n

=argmax By, )y + 7 [H[paq] By zpo(aly,2)pc (=) | 108 P(y]2) +1og p, (93)]}
8 |

H[po,c] +Eoay 2poaly=ipe ) [ 108 20 (y]) +log o (@)] ] (830)
N————

entropy agreement

The entropy term is not tractable because we cannot evaluate its likelihood. For the remaining two terms
inside the expectation, the agreement can be approximated with the validation oracle p,(y|x). Howeer, it
would not be practical to estimate log p- (x) since that would require us to train a separate density p,(x) to
approximate it.

For clarity, let us repeat Equation here:

D¢ (Z, y)* = arg(ma)x Eywpg(y)y + nEw,y,szg(w|y,z)p<(z,y) IOgPo(MﬂU) + logp(z)} . (831)
pr¢(z,y

The difference between the two is that (1) there is no entropy term; and (2) log p,(x) term is replaced with
log p(z) for MIN-Opt, which is tractable since the know the prior distribution for the GAN. From these
observations, we can conclude that MIN-Opt comprises an approximation of the reverse KL divergence
where the entropy term is omitted and the log density of the data is replaced with the log density of the prior.

A.3.3 Exponentially tilted densities

Once the best model has been found via an appropriate validation metric, one can train the same type of
model on the full dataset D using the same hyperparameters as before. Ultimately, we would like to be
able to generate candidates whose y’s exceed that of the entire dataset, and at the same time at plausible
according to our generative model. To control how much we trade-off high likelihood versus high scoring
candidates, we can consider the ezponentially tilted density (Asmussen & Glynn, [2007; |O’Donoghue et al.l
2020; Piche et al.l [2022):

o, (,y) exp(n~ 'y — k(n)), (S32)

where k(n) is a normalisation constant, and smaller 7 puts larger emphasis on sampling from regions where y
is large. Taking the log of Equation we arrive at:

1
@,y = argmax logpo (@, y) + . v, (S33)
z,y

In practice, it would not be clear what the best 1 should be, but a reasonable strategy is to consider a
range of n’s, where larger values encode a higher tolerance for ‘risk’ since these values favour higher scoring
candidates at the cost of likelihood. Note that for VAEs and diffusion models, log pg(x,y) will need to be
approximated with the ELBO. Interestingly, since diffusion models have an extremely close connection to
score-based models, one could ‘convert’ a diffusion model to a score-based model (Weng, |2021)) and derive
Va,ylogpg(x,y), and this would make sampling trivial.
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One potential issue however relates to our empirical observation that predicted scores for generated candidates
exhibit very high variance, i.e. the agreement scores are very high (see Figures and . In other words,
when we sample some x,y ~ pg (x,y) (i.e. from the augmented model) there is significant uncertainty as
to whether « really does have a score of y. One potential remedy is to take inspiration from the MIN-Opt
generation procedure (Section and add the agreement term to Equation

1
x*,y" = argmax logpy (z,y) + ;y + alogps(y|x). (S34)

z,y
Due to time constraints, we leave additional experimentation here to future work.

A.4 Additional training details
A.4.1 Hyperparameters

The architecture that we use is a convolutional U-Net from HuggingFace’s ‘annotated diffusion model’ E
whose convolutional operators have been replaced with fully connected layers (since Ant and Kitty morphology
inputs are flat vectors).

For all experiments we train with the ADAM optimiser (Kingma & Bal,2014), with a learning rate of 2 x 1072,
B8 =(0.0,0.9), and diffusion timesteps T' = 200. Experiments are trained for 5000 epochs with single P-100
GPUs. Input data is normalised with the min and max values per feature, with the min and max values
computed over the training set Dirain. The same is computed for the score variable y, i.e. all examples in the
training set have a normalised score y € [0, 1] and those in the validation set have scores y > 1.

Here we list hyperparameters that differ between experiments:
e diffusion_kwargs.tau: for classifier-free diffusion models, this is the probability of dropping the label

(score) y and replacing it with a null token. For classifier guidance models, this is fixed to 7 = 1 since this
would correspond to training a completely unconditional model.

e gen_kwargs.dim: channel multiplier for U-Net architecture

e diffusion_kwargs.w_cg: for classifier-based guidance, this is the w that corresponds to the w in Equation

A.4.2 Hyperparameters explored for classifier-free guidance

{
’diffusion_kwargs.tau’: {0.05, 0.1, 0.2, 0.4, 0.5},
‘gen_kwargs.dim’: {128, 256}

A.4.3 Hyperparameters explored for classifier guidance

{
’diffusion_kwargs.w_cg’: {1.0, 10.0, 100.0},
’epochs’: {5000, 10000},
’gen_kwargs.dim’: {128, 256}

}

A.4.4 Classifier guidance derivation

Let us denote x; as the random variable from the distribution g(x;), denoting noisy input « at timestep ¢.

a@ey) _ awlz)a(@)

o) oy - Taking the score Vg, log q(x¢|y) (which

Through Bayes’ rule we know that g(x:|y) =

Hhttps://huggingface.co/blog/annotated-diffusion
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does not depend on ¢(y)), we get:

Va, log q(xily) = Vaz, logq(y|z:) + Ve, log g(z¢) (835)
~ (@ ty) ~ @), (36)

where in the last line we make clear the connection between the score function and the noise predictor €y
Weng| (2021). Since we would like to derive the conditional score, we can simply re-arrange the equation to
obtain it:

Ee(wta tu y) = Ee(wt7 t) Y 1 - atit log q(y|wt) (837)
~ ep(xt,t) — V1 — @t Vg, logpe(ylet), (S38)

where we approximate the classifier ¢(y|x;) with our (approximate) training oracle pg(y|x;). In practice, we
can also define the weighted version as follows, which allows us to balance between conditional sample quality
and sample diversity:

€o(Te,t,y;w) = €p(xs,t) — V1 — wVyg, log pg(y|z:), (S39)

Therefore, in order to perform classifier-guided generation, we replace eg(x,t) in whatever generation
algorithm we use with ep(xy, ¢, y;w) instead.

A.4.5 Classifier-free guidance

In classifier-free guidance a conditional score estimator ey(xy,y,t) is estimated via the algorithm described in
Ho & Salimans| (2022)), where the y token is dropped during training according to some probability 7. If y is
dropped it is replaced with some unconditional token. In other words, the noise predictor (score estimator) is
trained both conditionally and unconditionally, which means we have both eg(x¢,t) as well as eg(xs, y, t).

From Bayes’ rule, we know that: p(y|z;) = pﬁ&ﬁ) = p(m;(‘i)f))(y

18:

) and that therefore the score Ve, log p(y|z:)

Va, logp(y|z:) = Vg, log p(x|y) — Ve, log p(x) (540)

We simply plug this into Equation [12[to remove the dependence on pg(y|x:):

eo(@e, t,y;w) = eo(x1,1) — VI — QuwVg, log py(yla:) (S41)
= g, 1) — V1= apw [th log po(@:]y) — Va, logpa(:ct)] (S42)
= -1 -1
= ep(xt,t) — V1 — qw [7ﬁeg(a:t,y7t) - 7\/1_75%69(.%,0] (S43)
= ep(x¢,t) + wep(xy, y, t) — weg (e, 1) (S44)
= eg(@y, 1) + w(ee(mt, y,t) — eg(@t, t)) (S45)

A.5 Correlation and agreement plots

A.5.1 Ant Morphology
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(a) For each validation metric, we plot each experiment’s smallest-achieved metric versus the test score (Equation .
For this dataset, the best performing metrics are Mscore and Mag,. Coloured points represent the hyperparameter w,
which represents the strength of (implicit) classifier guidance.
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(b) We plot the conditioning y € linspace(Ymin, Ymax) against the validation/test oracle predictions for candidates
conditionally generated with that y. We call these ‘agreement plots’ since the sum of squared residuals for each point
would constitute the agreement (with a perfect agreement of zero corresponding to a diagonal dotted line on each
graph). Here we demonstrate this amongst the best three models with respect to Mag,, since this is most correlated
with the test oracle (see Figure . The shaded regions denote +1 standard deviation from the mean, and the
marker symbols denote the max/min score for each y with respect to either oracle.

Figure S7: Results on Ant Morphology dataset, using the classifier-free guidance variant (Equation .
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(a) (Due to space constraints, please see Caption for full description.) Here, validation metrics are all roughly
similar to each other in terms of Spearman correlation. The guidance hyperparameter w € {1,10,100} is coloured
orange, green, and red, respectively.
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(b) (Due to space constraints, please see Caption for full description.) Based on Figure the validation metric
most correlated with the test oracle is Mag,. We show the best three experiments here corresponding to that metric.

Figure S8: Results on Ant Morphology dataset, using the classifier guidance variant (Equation .
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A.5.2 D’Kitty Morphology
See Figures [S9) and

0 = -0.0046 o =-02192 o =0.1479 o =-0.1611 0 = -0.0255
2 o 2 o L
s g . s g g . L
@ o @ @ @ @
P 250 |8 8 St o I 250 _— I 250 Tasol @8 I 250 o4 ®
o bt 4B 4 2n “Sadhdiid B r) o o Y = ) ( 1
0 - 0 0 0 n -
g . g g | g ) g |t f
= 200 (S e ! S 200l } } Sl 1 S0l } 300 ¥ e } }
0.060 0.065 0.070 03 04 05 -30 -25 -20 -15 ~104 -103 -102 3000 4000 5000
Mc - psm Mep —Mpc —Mscore Magr
0.00 0.25 0.‘50 0.‘75 1.60 1.‘25 1 ‘50 1.75 2.00

w

(a) (Due to space constraints, please see Caption for full description.) Here, the validation metric which correlates
most with the test oracle is Mgp, with a score of —0.22.
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(b) (Due to space constraints, please see Caption for full description.) Based on Figure the validation metric
most correlated with the test oracle is Mag:. We show the best three experiments here corresponding to that metric.

Figure S9: Results on D’Kitty Morphology dataset, using the classifier-free guidance variant (Equation .
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(a) (Due to space constraints, please see Caption for full description.) Here, the validation metric which correlates

most with the test oracle is Mcore, With a Spearman correlation of p = —0.8681.
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(b) (Due to space constraints, please see Caption for full description.) Based on Figure [S10a} the validation metric
most correlated with the test oracle is Mag:. We show the best three experiments here corresponding to that metric.

Figure S10: Results on D’Kitty Morphology dataset, using the classifier guidance variant (Equation .
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A.5.3 Superconductor

See Figure
o p =-0.1421 ° p =0.1828 o p = 0.4705 o p=-0.1714 o p =-0.2003
S 100 S 100 S 1001 S 1001 o S 1001 .
T 4 T 20° T T T
E 50 4 ge = g 504 © ° E 50 {2 < = E 504 ‘os°” E 504 . ° L g

3 | | J 3 — 1 X, | | D S 3 oL |
0.004 0.005 0.006 25 50 75 100 =15 -1.0 -14 =12 -10 500 1000
Mc -psm Merp —Mpc —Mscore Magr

1.00 1.25 175

w

0.25 0.50 0.75

(a) (Due to space constraints, please see Caption for full description.) Here, the validation metric which correlates

most with the test oracle is Mgy, with a Spearman correlation of p = —0.20. Points are colour-coded according to w,
the strength of the classifier guidance.
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(b) (Due to space constraints, please see Caption for full description.) Best three models with respect to the

validation metric Magr.

Figure S11: Results on Superconductor dataset (Hamidieh} 2018)), using the classifier-free guidance variant

(Equation .

I 50th pt. | 100th pt.
Dhrain I - 0.400
Auto. CbAS 0.131 £ 0.010 | 0.421 £ 0.045
CbAS 0.111 £ 0.017 |  0.503 & 0.069
BO-qEI 0.300 £ 0.015 | 0.402 % 0.034
CMA-ES 0.379 £ 0.003 | 0.465 & 0.024
Grad. 0.476 £ 0.022 | 0.518 + 0.024
Grad. Min 0.471 £ 0.016 | 0.506 £ 0.009
Grad. Mean 0.469 £ 0.022 | 0.499 + 0.017
REINFORCE 0.463 £ 0.016 | 0.481 % 0.013
MINs 0.336 £ 0.016 | 0.499 + 0.017
COMs 0.386 £ 0.018 | 0.439 & 0.033

Cond. Diffusion (c.f.g.) || 0.518 + 0.045 | 0.636 + 0.034

Table S3: 100th and 50th percentile test scores for the Superconductor dataset. Results above our conditional
diffusion results (bottom-most row) were extracted from Design Bench Trabucco et al| (2022). For our
experiments, each result is an average computed over three different runs (random seeds). Test scores are
min-max normalised with respect to the smallest and largest oracle scores in the full dataset, i.e. any scores
greater than 1 are greater than any score observed in the full dataset. Design Bench results are shown for
illustrative purposes only, and are not directly comparable to our results due to differences in evaluation
setup.
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A.5.4 Hopper (50%)
See Figure
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(a) (Due to space constraints, please see Caption for full description.) Here, the validation metric which correlates

most with the test oracle is Magr, with a Spearman correlation of p = —0.3402. Points are colour-coded according to
w, the strength of the classifier guidance.
Magr = 14771.18 Magr = 18198.92 Magr = 19673.91

6004 x valid s “x_xx,, O goo | x validfelo = - * © 600 4 x valid fo(x) -

o test f(x) o test f(x) K o test fix)

(9} (9] e (9]

0 400 ¥ 400 W 0 400 M

2 2 LI o D el I B e Ol m i xx g xs,

%200‘ : % B S gzo(y a o § X 1 *x %200‘ x afiiog

_ —_ —_

° ° o ° o

0 250 500 750 1000 1250 0 250 500 750 1000 1250 0 250 500 750 1000 1250
y y y

(b) (Due to space constraints, please see Caption for full description.) Based on Figure [S12al the validation metric
most correlated with the test oracle is Magr. We show the best three experiments here corresponding to that metric.

Figure S12: Results on Hopper 50%, using the classifier-free guidance variant (Equation .
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A.6 Additional results

|| Ant Morphology

D’Kitty Morphology ‘ Superconductor

Auto. CbAS 0.364 £ 0.014 0.736 £ 0.025 0.131 £ 0.010
CbAS 0.384 £ 0.016 0.753 £ 0.008 0.017 £ 0.503
BO-qEI 0.567 £ 0.000 0.883 £ 0.000 0.300 £ 0.015
CMA-ES -0.045 £ 0.004 0.684 £ 0.016 0.379 £ 0.003
Gradient Ascent 0.134 £+ 0.018 0.509 £+ 0.200 | 0.476 + 0.022
Grad. Min 0.185 £ 0.008 0.746 £ 0.034 0.471 £ 0.016
Grad. Mean 0.187 £ 0.009 0.748 £ 0.024 0.469 £ 0.022
MINs 0.618 £+ 0.040 0.887 £ 0.004 0.336 £ 0.016
REINFORCE 0.138 £ 0.032 0.356 £ 0.131 0.463 £ 0.016
COMs 0.519 £ 0.026 0.885 £ 0.003 0.386 £ 0.018
Cond. Diffusion (c.f.g.) 0.831 & 0.052 0.930 & 0.004 0.492 + 0.112
Cond. Diffusion (c.g.) 0.880 £ 0.012 0.935 £ 0.006 -

Table S4: 50th percentile test scores for methods from Design Bench (Trabucco et al.l 2022) as well as our
diffusion results shown in the last two rows, with c.f.g standing for classifier-free guidance (Equation and
c.g. standing for classifier-guidance (Equation . Each result is an average computed over six different runs
(seeds). Test scores are min-max normalised with respect to the smallest and largest oracle scores in the
full dataset, i.e. any scores greater than 1 are greater than any score observed in the full dataset. Design
Bench results are shown for illustrative purposes only, and are not directly comparable to our results due to
differences in evaluation setup.
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