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Abstract
We propose to study and promote the robust-
ness of a model as per its performance through
the interpolation of training data distributions.
Specifically, (1) we augment the data by find-
ing the worst-case Wasserstein barycenter on the
geodesic connecting subpopulation distributions
of different categories. (2) We regularize the
model for smoother performance on the continu-
ous geodesic path connecting subpopulation distri-
butions. (3) Additionally, we provide a theoretical
guarantee of robustness improvement and inves-
tigate how the geodesic location and the sample
size contribute, respectively. Experimental vali-
dations of the proposed strategy on four datasets,
including CIFAR-100 and ImageNet, establish the
efficacy of our method, e.g., our method improves
the baselines’ certifiable robustness on CIFAR10
up to 7.7%, with 16.8% on empirical robustness
on CIFAR-100. Our work provides a new per-
spective of model robustness through the lens of
Wasserstein geodesic-based interpolation with a
practical off-the-shelf strategy that can be com-
bined with existing robust training methods.

1. Introduction
Deep neural networks (DNNs) have shown tremendous
success in an increasing range of domains such as natu-
ral language processing, image classification & generation
and even scientific discovery (e.g. (Bahdanau et al., 2014;
Krizhevsky et al., 2017; Ramesh et al., 2022)). However,
despite their super-human accuracy on training datasets,
neural networks may not be robust. For example, adding
imperceptible perturbations, e.g., adversarial attacks, to the
inputs may cause neural networks to make catastrophic mis-
takes (Szegedy et al., 2014; Goodfellow et al., 2014). Con-
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ventional defense techniques focus on obtaining adversarial
perturbations (Carlini & Wagner, 2017; Goodfellow et al.,
2014) and augmenting them to the training process. For in-
stance, the projected gradient descent (PGD) (Madry et al.,
2018), which seeks the worst-case perturbation via iterative
updates, marks a category of effective defense methods.
Recent works show that additional training data, including
data augmentation and unlabeled datasets, can effectively
improve the robustness of deep learning models (Volpi et al.,
2018; Rebuffi et al., 2021). Despite augmenting worst-
case samples with gradient information, an unlabeled, even
out-of-distribution dataset may also be helpful in this re-
gard (Carmon et al., 2019; Bhagoji et al., 2019). Among
available strategies, Mixup (Zhang et al., 2018), which inter-
polates training samples via convex combinations, is shown
to improve both the robustness and generalization (Zhang
et al., 2021). Moreover, Gaussian noise is appended to train-
ing samples to achieve certifiable robustness (Cohen et al.,
2019a), which guarantees the model performance under a
certain degree of perturbation. However, most aforemen-
tioned approaches operate on individual data samples (or
pairs) and require the specification of a family of augmen-
tation policies, model architecture, and additional datasets.
Thus, the robustness can hardly be generalizable, e.g., to
out-of-sample data examples. To this end, we are curious:
Can we let the underlying data distribution guide us to
robustness?
This paper proposes a framework to augment synthetic data
samples by interpolating the underlying distributions of the
training datasets. Specifically, we find the worst-case in-
terpolation distributions that lie on the decision boundary
and improve the model’s smoothness with samples from
these distributions. This is justified by the fact that better
decision margin (Kim et al., 2021a) and boundary thick-
ness (Moosavi-Dezfooli et al., 2019) are shown to benefit
robustness.
The probabilistic perspective allows us to formulate the dis-
tribution interpolation as barycenter distribution on Wasser-
stein geodesics, where the latter can be reviewed as a dy-
namic formulation of optimal transport (OT) (Villani, 2009).
This formulation has the following benefits: (a). It nicely
connects our worst-case barycenter distribution to distribu-
tionally robust optimization (Duchi & Namkoong, 2021)
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on the geodesic and substantiates our method’s benefit in
promoting robustness. (b). The geodesic provides a new pro-
tocol to assess one model’s robustness beyond the local area
surrounding individual data points. (c). Our data augmen-
tation strategy also exploits the local distribution structure
by generalizing the interpolation from (mostly Euclidean)
feature space to probability space. (d). Apart from most
OT use cases that rely on coupling, we reformulate the ob-
jective to include explicit optimal transport maps following
McCann’s interpolation (McCann, 1997). This enables us
to deal with out-of-sample data and appreciate the recent ad-
vances in OT map estimation (Perrot et al., 2016; Zhu et al.,
2021; Amos, 2022), neural OT map estimators (Makkuva
et al., 2020; Seguy et al., 2017; Fan et al., 2021) for large-
scale high-dimensional datasets, and OT between labeled
datasets (Alvarez-Melis & Fusi, 2020; Fan & Alvarez-Melis,
2022).

1.1. Related Work
Interpolation of data distributions (Gao & Chaudhari,
2021) propose a transfer distance based on the interpolation
of tasks to guide transfer learning. Meta-learning with task
interpolation (Yao et al., 2021), which mixes features and
labels according to tasks, also effectively improves gener-
alization. For gradual domain adaptation, (Wang et al.,
2022) interpolate the source dataset towards the target in a
probabilistic fashion following the OT schema. Moreover,
the interpolation of environment distribution (Huang et al.,
2022) is also effective in reinforcement learning. The re-
cently proposed rectified flow (Liu et al., 2022) facilities a
generating process by interpolating data distributions in their
optimal paths. In addition, the distribution interpolant (Al-
bergo & Vanden-Eijnden, 2022) has motivated an efficient
flow model which avoids the costly ODE solver but min-
imizes a quadratic objective that controls the Wasserstein
distance between the source and the target. Recently, the in-
terpolation among multiple datasets realized on generalized
geodesics (Fan & Alvarez-Melis, 2022) is also shown to
enhance generalizability for pretraining tasks. Most afore-
mentioned works focus on the benefit of distribution inter-
polation in generalization.
On the other hand, Mixup (Zhang et al., 2018), which aug-
ments data by linear interpolating between two samples,
is a simple yet effective data augmentation method. As
detailed in survey (Cao et al., 2022; Lewy & Mańdziuk,
2022), there are plenty of extensions such as CutMix (Yun
et al., 2019), saliency guided (Uddin et al., 2020), Aug-
Mix (Hendrycks et al., 2019), manifold mixup (Verma et al.,
2019), and so on (Yao et al., 2022). A few studies have
explored the usage of optimal transport (OT) ideas within
mixup when interpolating features (Kim et al., 2020; 2021b).
However, those methods focus on individual pairs, thus ne-
glecting the local distribution structure of the data. One
recent work (Greenewald et al., 2021) also explores mix-

ing multiple-batch samples with OT alignment. Although
their proposed K-mixup better preserves the data manifold,
our approach aims to determine the worst-case Wasserstein
barycenter, achieved through an interpolation realized by
transport maps.

Data augmentation for robustness. Augmentation of
data(Rebuffi et al., 2021; Volpi et al., 2018) or more train-
ing data (Carmon et al., 2019; Sehwag et al., 2021) can
improve the performance and robustness of deep learning
models. However, (Schmidt et al., 2018) show that sample
complexity for robust learning may be prohibitively large
when compared to standard learning. Moreover, with simi-
lar theoretical frameworks, recent papers (Deng et al., 2021;
Xing et al., 2022) further establish theoretical justifications
to characterize the benefit of additional samples for model
robustness. However, additional data may not be available;
in this work, we therefore use a data-dependent approach to
generate additional data samples.

1.2. Contributions
Our key contributions are as follows. We propose a data
augmentation strategy that improves the robustness of the
label prediction task by finding worst-case data distributions
on the interpolation within training distributions. This is
realized through the notion of Wasserstein geodesics and
optimal transport map, and further strengthened by connec-
tion to DRO and regularization effect. Additionally, we also
provide a theoretical guarantee of robustness improvement
and investigate how the geodesic location and the sample
size contribute, respectively. Experimental validations of
the proposed strategy on four datasets including CIFAR-100
and ImageNet establish the efficacy of our method.
Organization. The remainder of this paper is organized
as follows. Section 2 provides the necessary background
about distributional robustness and optimal transport dis-
tances. In Section 3, we introduce the interpolation strat-
egy for robustifying a classification task. Connections to
DRO(Distributionally Robust Optimization) setting further
help ground our strategy. Additionally, we also extend this
to a regularization framework that generalizes the data in-
terpolation approach. Theoretical analysis for the data aug-
mentation strategy is provided in Section 4, while Section 5
provides experimental validation justifying our approach.

2. Preliminaries
Consider a classification problem on the data set S =
{(x1, y1), ..., (xn, yn)}, where xi ∈ X ⊆ Rd and yi ∈ Y ⊆
Ry are drawn i.i.d from a joint distribution Pallx,y. Having a
loss criteria l(·, ·) : Y × Y 7→ R, the task is to seek a pre-
diction function fθ : Rd 7→ Ry that minimizes the standard
loss L(θ) = Ex,y∼Pall

x,y
[l(fθ(x), y)], and in practice people

optimize the empirical loss L̂(θ) = 1/n
∑n
i=1 l(f(xi), yi)

following the Empirical Risk Minimization (ERM). In large-
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scale classification tasks such as k-class image classifi-
cation, the label is the one-hot encoding of the class as
yi ∈ {0, 1}k := Rk and l are typically cross-entropy loss.

Adversarial training & distributional robustness Typi-
cally, adversarial training is a minimax optimization prob-
lem (Madry et al., 2018) which finds adversarial examples
x+ δ within a perturbation set S = {δ : ∥δ∥∞ ≤ ϵ, ϵ > 0}.
While finding specific attack examples is effective, there
are potential issues such as overfitting on the attack pat-
tern (Kurakin et al., 2016; Xiao et al., 2019; Zhang & Wang,
2019).
An alternative approach is to capture the distribution of
adversarial perturbations for more generalizable adversarial
training (Dong et al., 2020). In particular, the optimization
problem solves a distributional robust optimization (Duchi
& Namkoong, 2021; Weber et al., 2022) as follows:

min
θ

sup
Qx,y∈UP

Ex,y∼Qx,y
[l(fθ(x), y)], (1)

where UP ⊆ P(Z) is a set of distributions with constrained
support. Intuitively, it finds the worst-case optimal predictor
f∗θ when the data distribution P is perturbed towards an
adversarial distribution UP . However, the adversarial dis-
tribution family needs to be properly specified. In addition,
adversarial training may still have unsmooth decision bound-
aries (Moosavi-Dezfooli et al., 2019), thus, are vulnerable
around unobserved samples.

Optimal transport Given two probability distributions
µ, ν ∈ M(X ), where M(X ) is the set of Borel measures on
X . The optimal transport (OT) (Villani, 2009) finds the opti-
mal joint distribution and quantifies the movement between
µ and ν. Particularly, the Wasserstein distance is formu-
lated as Wp(µ, ν) := (infπ∈Π

∫
X×X d

p(x, y)dπ(x, y))1/p,

where d(·, ·) : X × X 7→ R+ is the ground metric cost
function, and Π denotes set of all joint probability measures
on X × X that have the corresponding marginals µ and ν.

Wasserstein barycenter and geodesic Equipped with the
Wasserstein distance, we can average and interpolate dis-
tributions beyond the Euclidean space. The Wasserstein
barycenter µ{νi}

α of a set of measures {ν1, ..., νN} in a prob-
ability space P ⊂ M(X ) is a minimizer of objective UNwb
over P, where

UNwb(µ) :=

N∑
i=1

αiW (µ, νi), (2)

and αi are the weights such that
∑
αi = 1 and αi > 0. Let

ν0 and ν1 be two measure with an existing optimal trans-
portation map, T , satisfying ν1 = T#ν0 andW 2

2 (ν0, ν1) =∫
X ∥x− T (x)∥2dν0. Then, for each t, the barycenter distri-

bution(denoted by µt) corresponding to α0 = t, α1 = 1− t

in Eq.(2), lies on the geodesic curve connecting ν0 and ν1 .
Moreover, (McCann, 1997),

µt := ((1− t)Id + tT )#ν0, (3)

where Id is the identity map. While the above McCann’s in-
terpolation is defined only for two distributions, the Wasser-
stein barycenter eq. (2) can be viewed as a generalization
to N ≥ 2 marginals. To this point, we are able to look for
adversarial distributions leveraging such interpolation.

3. Adversarial robustness by interpolation
For a k-classification task, it is natural to view the data of
each category are samples from distinct distributions P allx,y =∑k
i P

i
x,y. Following eq.(1), we can write the following

minimax objective

min
f

max
α

Ex,y∼Uwb(α) [l(f(x), y)] (4)

where Uwb(α) is the Wasserstein barycenter (eq. 2), in other
words, the interpolation of different category distributions.
In fact, this corresponds to a special case of DRO eq.(1) as
shown in the below proposition, and naturally corresponds
to the adversarial distribution within a particular Wasserstein
ball, for distributional robustness.

Proposition 3.1. Suppose the original data {Xi, Yi, }n0
i=1

are iid with distribution satisfying X|Y = y ∼ νµ(X|Y ) =
Nd(yµ, σ

2I), Y ∼ ν(Y ) = U{−1, 1}. Assume the loss
function is given by l(f(x), y) = 1(f(x) ̸= y). We con-
sider f(x) = fα,β(x) of the form sign(α′x + β).Then the
following holds

max
A(νµ,ϵ)

inf
α,β

E(X,Y )∼η(X|Y )ν(Y )l(f(α,β)(X), Y )

= infα,β max
A(νµ,ϵ)

E(X,Y )∼η(X|Y )ν(Y )l(f(α,β)(X), Y )

= E(X,Y )∼ν(1−ϵ)µ(X|Y )ν(Y )l(f(µ,0)(X), Y ). (5)

Here, A(νµ, ϵ) = {η(X|Y ) : η(·|Y ) is Gaussian,
W (η(X|Y ), νµ(X|Y )) ≤ ϵ, ∀Y ∈ {−1, 1}}.

This proposition, whose proof is discussed in Section A.4.

3.1. Data augmentation: worst-case interpolation
In this section, we proceed to device computation strategies
for the worst-case barycenter approach. Akin to robust train-
ing methods that seek adversarial examples approximately,
such as PGD (Madry et al., 2018) and FGSM (Goodfel-
low et al., 2014), our paradigm learns an adversarial dis-
tribution (Dong et al., 2020) and then samples from these
distributions.
Here we make an important choice by focusing on the
interpolation between K = 2 distributions rather than a
generalized K-margin barycenter. To date, efficient com-
putational solutions for for multimarginal OT (MOT) are
still nascent (Lin et al., 2022). Solving an MOT with linear
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Figure 1: 1: For a classification problem, the data samples give empirical access to the underlying data distribution, which
is a mixture of distinct subpopulation distributions. 2(a): The inner maximization step finds the worst-case Wasserstein
barycenter on the geodesic. 2(b): The outer minimization step updates the predictive function with augmented samples.

programming would scale to O(nK), and would be more
costly when we want to solve for (free-support) barycenters
to facilitate robustness in deep learning pipelines. Focusing
on K = 2 not only (1) allows us to focus on the decision
boundary between the different categories of data, and even
to deepen our understanding with theoretical analysis for ro-
bustness. (2) Achieve computation efficiency by leveraging
established OT algorithms when iterating between pairs of
distributions, as illustrated in Fig.(1).
Thus, our data augmentation strategy is to sample data
from the worst-case adversarial Wasserstein barycenter
{x̂i, ŷi} ∼ µ

{P0,P1}
adv , which can be obtained as an inner

maximization problem,

µ
{P0,P1}
adv := max

t∈[0,1]
E
x,y∼µ

{P0,P1}
t

[l(fθ(x), y)] . (6)

Despite a list of recent advances (Villani, 2009; Korotin
et al., 2022a; Fan et al., 2020), the usage of Wasserstein
barycenter may still be limited by scalability, and those
solvers are more limited since we are optimizing the lo-
cation of barycenters. However, thanks to the celebrated
properties (Brenier, 1991; McCann, 1997), which connects
the Monge pushforward map with the coupling, we can
avoid the intractable optimization over µt and turn to the
training distribution with a transport map.

Interpolation with OT map When ν0, ν1 ∈ M(X ), ν1
is absolutely continuous with respect to ν0. Let µ(t) =
{µt}0≤t≤1 be the geodesic of displacement interpolation,
then we have a unique and deterministic interpolation
µt = (Tt)#P

0, where Tt(x) := (1 − t)x + tT (x) and
convex function T (·) is the optimal transport map (Villani,
2009). Thus, the following proposition yields an objective
for finding the worst-case barycenter:

Proposition 3.2. Consider a factored map T xy :=
(T x, T y) : Rd × Ry 7→ Rd × Ry defined as T (·, ∗) :=
(T x(·), T y(∗)). Consequently, rewriting Eq, (6) with this

above map yields

µ̃
{P0,P1}
adv := max

t∈[0,1]
Ex,y∼P0 [l(fθ(T

x
t (x)), T

y
t (y))]

where, T x
t (x) = (1− t)x+ tT x(x),

T y
t (y) = (1− t)y + tT y(y)

(7)

such that the map T xy satisfies the Monge problem
minTxy#P 0=P 1 Ex,y∼P 0 [D({x, y}, T xy({x, y}))2]. Here
D({x1, y1}, {x2, y2}) = d(x1 − y1) + L(y1, y2) is a mea-
sure that combines the distance between samples the dis-
crepancy between y1 and y2 (Courty et al., 2017b). We
note here this joint cost is separable and the analysis of
the generic joint cost function is left for future studies (Fan
et al., 2021; Korotin et al., 2022b).

The benefits of this formulation: (1) Rather than the barycen-
ter, the problem uses the OT map estimation where a
lot of previous works have concerned efficiency (Perrot
et al., 2016), scalability (Seguy et al., 2017) and conver-
gence (Manole et al., 2021). (2) The transport map can
be estimated solely on data and stored regardless of the
supervised learning task. Moreover, the map can project
out-of-sample points, which improves the generalization. (3)
For the case where real data lies on a complex manifold, it
is necessary to utilize an embedding space. Specifically, we
perform the computation of Wasserstein geodesic and inter-
polation in an embedding space that is usually more regular-
ized (Kingma & Welling, 2013). (4) Such OT results on la-
beled data distributions have been shown effective (Alvarez-
Melis & Fusi, 2020; 2021; Fan & Alvarez-Melis, 2022)
in transfer learning tasks while we first investigate its dis-
tributional robustness. Also, interestingly, when ignoring
the expectation and defining the map as T x(x0) := x1,
T y(y0) := y1 , such interpolation coincides with the popu-
lar mixup (Zhang et al., 2018) which is simple but effective
even on complicated datasets.

3.2. Implicit regularization: geodesic smoothness
Data augmentation is, in general, viewed as implicit regu-
larization (Rebuffi et al., 2021). However, our augmentation
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policy also motivates an explicit regularization term to en-
hance the training of deep neural networks.
For a given predictive function f∗θ : Rd 7→ Ry and a loss
criterion l(·, ·) : Y×Y 7→ R, now we consider the following
performance geodesic,

Rg
f∗
θ
,l(t) := Ex,y∼µ(t) [l(f(x), y)] , (8)

which quantifies the loss associated with the prediction task,
where µ(t) is the displacement interpolation as stated after
Eq. (6). The geodesic loss Rgeo

f∗
θ

provides us a new lens
through which we can measure, interpret, and improve a
predictive model’s robustness from a geometric perspective.
Since the geodesic is a smooth and continuous path con-
necting P 0, P 1, The factorized geodesic interpolation T xy

Eq. (6) allows us to formulate a new metric RegT
xy

l that
measures the change of a classifier f∗θ , under criteria l(·, ·)
when gradually transporting from P 0 to P 1.
∫ 1

0

∣∣∣∣ ddt
∫
X×Y

l(fθ(T
x
t (x), T

y
t (y))dP

0
(x, y)

∣∣∣∣ dt = ∫ 1

0

∣∣∣∣ ddtRTxy

fθ,l (t)

∣∣∣∣ dt
(9)

where RTfθ,l(t) = Ex,y∼P 0 [l(f∗θ (T
x
t (x)), T

y
t (y))] is the

expected loss of f∗θ at the location t on the geodesic interpo-
lation. Thus, to robustify a classifier fθ, we propose to use
the following regularization, which promotes the smooth-
ness derivative along the geodesic.

RegT
l (fθ) :=

∫ 1

0

∣∣∣∣ ddtRT
fθ,l(t)

∣∣∣∣ dt, (geodesic regularizer) (10)

Proposition 3.3 (Geodesic performance as data-adaptive
regularization). Consider the following minimization

min
f∈H

Ex,y∼P [l(f(x), y)] +
λ1
2

RegT̂l (f)
2 +

λ2
2
∥f∥2H.

where H is space of function. When the data distribution is
P := 1/2P0+1/2P1 and P0 = N (−µ, I), P1 = N (µ, T ).
The objective has the following form:

min
θ

L(θ) := −⟨θ, µ⟩+ λ1
2
|⟨θ, µ⟩|2 + λ2

2
∥θ∥22

The optimal solution f corresponding to data assumption
has the closed form θ∗ = (λ1µ⊗ µ+ λ2Im)−1µ, where ⊗
refers to the outer product.

The illustrative result above indicates our geodesic regular-
izer is a data-depend regularization adjusted by the under-
lying data distributions. This agrees with the recent theoret-
ical understanding of mixup and robustness (Zhang et al.,
2021). In addition, existing robustness criteria (empirical
and certified robustness) focus on the local area of individual
samples within a perturbation ball S = {δ : ∥δ∥∞ ≤ ϵ, ϵ >
0} without considering the robustness behavior of fθ while
transitioning from P 0

x,y to P 1
x,y . The interpolation provides

a new perspective for robustness, as shown in Fig.(2).

3.3. Computation and implementation
OT map estimation Our formulation allows us to lever-
age off-the-shelf OT map estimation approaches. Despite
recent scalable and efficient solutions that solve the Monge
problem (Seguy et al., 2017), withGAN (Arjovsky et al.,
2017), ICNN (Makkuva et al., 2020), flow (Huang et al.,
2020; Makkuva et al., 2020; Fan et al., 2021), and so on (Ko-
rotin et al., 2022b; Bunne et al., 2022). As the first step,
in this work, we refer to barycentric projection (Ambrosio
et al., 2005) thanks to its flexibility (Perrot et al., 2016) and
recent convergence understandings (Manole et al., 2021;
Pooladian & Niles-Weed, 2021). Specifically, we are not
given access to the probability distributions P 0 and P 1, but
only samples {(x0i , y0i )}ni=1 ∼ P 0

xy and {(x1i , y1i )}ni=1 ∼
P 1
xy. When an optimal map T0 ∈ {T : X × Y 7→

X × Y|T#P 0 = P 1} exists, we want an estimator T̂n
with empirical distributions P̂ 0

xy,n and P̂ 1
xy,n. This problem

is usually regarded as the two-sample estimation problem
(Manole et al., 2021). Among them, the celebrated Sinkhorn
algorithm (Cuturi, 2013) solves the entropic Kantorovich
objective efficiently π̂ϵ, n := argminπ∈Π(Rn×n)⟨π,M⟩ +
ϵH(π), where H(π) := −

∑
ij πij log πij is the negative

entropy, provides an efficient O(n2) solution. Furthermore,
It was shown in Section 6.2 of (Pooladian & Niles-Weed,
2021) that an entropy-regularised map (given by T̂ϵ,n) for
empirical distributions can approximate the population trans-
portation map efficiently.
From the computation perspective, Tϵ,n can be realized
through the entropically optimal coupling (Cuturi, 2013) π∗

e

as T̂ϵ,n(X0) = diag(π∗1n1)
−1π∗

ϵX1. Since we assume the
samples are drawn i.i.d, then T̂ϵ,n(X0) = n0π

∗X1. At this
point, we can have the geodesic interpolation computed via
regularized OT as

T̂ xy
t :=

{
T̂ x
t (X0) = (1− t)X0 + tT̂ϵ,n(X0),

T̂ y
t (Y0) = (1− t)Y0 + tY1

(11)

Since the labels Y i have a Dirac distribution within each
Pi, we utilize the map T y(y0) := y1. With such closed-
form interpolation, we then generate samples by optimizing
Eq. (7) using numerical methods such as grid search. Notice
that, when setting T x(X0) := X1 then the geodesic turns
into the mixup however it can not deal with the case where
we have different numbers of samples n0 ̸= n1.

Regularization With the aforementioned parameteriza-
tion, we thus have the following expression for the smooth-
ness regularizer RegTl (fθ).

RegT̂
l (fθ) =

∫ 1

0

∣∣∣∣ ddtRTxy

fθ,l (t)

∣∣∣∣ dt where
d

dt
RTxy

fθ,l (t)

=

∫
dL

dỹ
∇fθ((1− t)x+ tT̂ϵ,n(x))(T̂ϵ,n(x)− x)dP 0(x, y)

(12)
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where ỹ = fθ((1 − t)x + tT̂ (x)) is the predicted target,
L = l(ỹ, T̂ yt (y)) measures the loss with regard to the inter-
polated target. This regularizer can be easily computed with
the Jacobian of fθ on mixup samples. In fact, we regular-
ize the inner product of the expected loss, the Jacobian on
interpolating samples, and the difference of T̂ϵ,n(x0)− x0.
In fact, Jacobian regularizer has already been shown to im-
prove adversarial robustness (Hoffman et al., 2019)

Manifold and feature space The proposed data augmen-
tation and regularization paradigms using the OT formu-
lation have nice properties when data lie in a Euclidean
space. However, the real data may lie on a complex mani-
fold. In such a scenario, we can use an embedding network
ϕ : X 7→ Z that projects it to a low-dimensional Euclidean
space Z ∈ Rz and a decoder network ψ : Z 7→ X . Simi-
larly, data augmentation may be carried out via

µ̃
{P0,P1}
adv = max

t∈[0,1]
Ex,y∼P0 [l(fθ(ψ(T

x
t (ϕ(x)))), T

y
t (y))] .

(13)
Also, regularize the geodesic on the manifold

RegT̂
l (fθ) =

∫ 1

0

∣∣∣∣ ddtRTxy

fθ,l (t)

∣∣∣∣ dt, where
d

dt
RTxy

fθ,l (t)

=
1

n

dL

dỹ
∇fθ((1− t)ϕ(X0) + tnπ∗

ϵϕ(X1))(nπ
∗
ϵϕ(X1)− ϕ(X0)).

(14)
In fact, such a method has shown effectiveness in Manifold
Mixup (Verma et al., 2019) since a well-trained embed-
ding helps create semantically meaningful samples than
mixing pixels, even on a Euclidean distance that mimics
Wasserstein distance (Courty et al., 2017a). Recent ad-
vances in representation learning (Radford et al., 2021)
also facilitate this idea. In this work, we also adopt Vari-
ational Autoencoder (VAE) (Kingma & Welling, 2013)
and pre-trained ResNets to obtain the embedding space.
We follow a standard adversarial training scheme where
we iteratively (a) update the predictor fθ with objective
minθ Exi,yi∼

∑
P i+

∑
νadv [l(fθ(x),y)]+λReg(fθ), where the

geodesic regularization Reg(fθ) is computed via Eq.(14).
(b) Find and store the augmented data by maximizing the
equation (6). A pseudocode Algo.(2) is attached in the
Appendix.

Scalability and batch OT To handle large-scale datasets,
we follow the concept of minibatch optimal transport (Fatras
et al., 2021b; 2019; Nguyen et al., 2022) where we sample
a batch of bn samples from only two classes during the data
augmentation procedure. Whereas minibatch OT could lead
to non-optimal couplings, it contributes to better domain
adaptation performance (Fatras et al., 2021a) without being
concerned by the limitations of algorithmic complexity. Fur-
ther, our experimental results have demonstrated that our
data augmentation is still satisfactory.

Algorithm 1 The data augmentation algorithm

1: for a batch of mixture data do
2: We only sample from two classes. {Xs,i, ys,i}ns

i=1,
and {Xt,j , yt,j}nt

j=1.
3: Map to manifold Zs = ϕrep(Xs), Zt = ϕrep(Xt).
4: # Obtain the worst-case Wasserstein barycenters
5: Empirical distributions ν̂s =

∑ns

i=1 ps,iδZs
, ν̂t =∑nt

j=1 pt,jδZy .
6: Sample a list of {ti} ∼ U [0, 1] for Monte-Carlo
7: for each ti do
8: # Get transported samples via (11).
9: Get the pushforward measures on the geodesic

µti = (Tti)#ν̂s,
10: Map to data space X̂ = ϕ−1(Ẑs), Ẑs ∼ µti .
11: Prediction on the geodesic ỹ = f(T̂ xti(X̂)), Com-

pute the loss L = l(ỹ, T̂ yt (y)).
12: end for
13: Store the worst-case data X̂ti of this batch.
14: end for
15: return All the augmented data

4. Theoretical analysis
Here, we rigorously investigate how the interpolation along
geodesics affects the decision boundary and robustness.
We use the concrete and natural Gaussian model (Schmidt
et al., 2018) since it is theoretically tractable and, at the same
time, reflects underlying properties in high-dimensional
learning problems. In fact, such settings have been widely
studied to support theoretical understandings in complex
ML problems such as adversarial learning (Carmon et al.,
2019; Dan et al., 2020), self-supervised learning (Deng et al.,
2021), and neural network calibration (Zhang et al., 2022).
More importantly, recent advances in deep generative mod-
els such as GAN (Goodfellow et al., 2020), VAE (Kingma &
Welling, 2013), and diffusion model (Song & Ermon, 2019)
endorse the theoretical analysis of Gaussian generative mod-
els (Zhang et al., 2021) on complicated real-world data, akin
to our manifold geodesic setting.

Problem set-up As introduced in our preliminary (Sec.
2) and problem formulation (Sec. 3), we consider
a 2− classification task where all the data S =
{(x1, y1), ..., (xn, yn)} ∼ Pallx,y are sampled from a joint
distribution Pallx,y = 1/2P 0

xy + 1/2P 1
xy . Formally,

Definition 4.1 (Conditional Gaussian model). For µ ∈ Rd
and σ ≥ 0, the model is defined as the distribution over
(x, y) ∈ X × Y , where X ⊆ Rd,Y := {−1, 1},

(x, y) ∼ P all
xy : = p(y = −1)P 0

xy + p(y = 1)P 1
xy

where P 0
xy = N(−µ, σ2I), P 1

xy = N(µ, σ2I), and p(y =

1) = p(y = −1) = 1
2 .

The goal here is is to learn a classifier fθ : X 7→ Y pa-
rameterized by θ which minimizes population classification
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error
Rµ,σ(f) := Ex,y∼Pall

xy
[I(fθ(x) ̸= y)]. (15)

And such classifier is estimated from n0 observed training
data samples {xi, yi}n0

i=1 ∼ P allx,y .

4.1. Geodesic between Gaussian distributions
The assumption of Gaussian distribution not only provides
a tractable guarantee for classification but also allows us
to employ desirable conclusions for optimal transport be-
tween Gaussian distributions, thanks to established stud-
ies (Dowson & Landau, 1982; Givens & Shortt, 1984; Knott
& Smith, 1984). More specifically, although the Wasserstein
distance and the transport map between regular measures
rarely admit closed-form expressions, the W2-Wasserstein
distance between Gaussian measures can be obtained ex-
plicitly (Dowson & Landau, 1982). Moreover, the Optimal
transport map (Knott & Smith, 1984) between two Gaus-
sian distributions as well as the constant speed geodesics
between them, termed McCann’s interpolation have explicit
forms (McCann, 1997). Please see the Appendix for more
detail on this.
Given explicit forms of the augmented distribution, to pro-
ceed with the theoretical analysis, we construct the fol-
lowing data augmentation scheme: We always consider a
symmetric pair of augmented Gaussian distributions Ggt
and Gg1−t, t ∈ [0, 12 ). Further, since the marginal dis-
tributions of the Gaussian model are P 1 = N(−µ, σ2I)
and P2 = N(+µ, σ2I), we can denote the augmented
data distribution as a mixture of Gaussian distributions as
P
A(t)
xy := 1

2G
g
t +

1
2G

g
1−t with augmented samples x̃i, ỹi :

x|y ∼ N(ryµ, σ2I), y ∼ U{−1, 1}, where r = 1− 2t.

4.2. Data augmentation improves robustness, provably
Here, we demonstrate that the data augmentation obtained
via Wasserstein geodesic perturbation provably improves the
robust accuracy probability. In this work, we consider the
ℓp norm ball with p = ∞. Specifically, we apply a bounded
worst-case perturbation before feeding the sample to the
classifier. Then, we recap the definition of the standard
classification and robust classification error.

Definition 4.2 (Standard, robust, and smoothed classifica-
tion error probability (Schmidt et al., 2018; Carmon et al.,
2019)). Let the original data distribution be PX,Y . The
standard error probability for classifier fθ : Rd 7→ Y is
defined is PEa(fθ) = P(x,y)∼PX,Y

(fθ(x) ̸= y). The robust
classification error probability is defined as PEp,ϵa (fθ) =
P(x,y)∼PX,Y

(∃u′ ∈ Bpϵ (x), fθ(u′) ̸= y), where the pertur-
bations in a ℓp norm ball Bpϵ (x) := {x′ ∈ X |∥x′ − x∥ ≤ ϵ}
of radius ϵ around the input. The smoothed classification
error for certifiable robustness is defined as PEσs

a (fθ) =
P(x,y)∼PX,Y ,δ∼N(0,σ2

sI)
(fθ(x+ δ) ̸= y).

Remark: In this setting, standard, robust, and smoothed
accuracies are aligned (Carmon et al., 2019). In other words,

a highly robust standard classifier will (1) also be robust
to ℓ∞ perturbation and (2) will be a robust base classifier
for certifiable robustness, as randomized smoothing is a
Weierstrauss transform of the deterministic base classifier.
The following result provides a bound for the robust error
in such a case compared to using the original data alone.

Theorem 4.3. Suppose the original data {Xi, Yi, }n0
i=1 are

iid with distribution satisfying X|Y = y ∼ N(yµ, σ2I),
Y ∼ U{−1, 1}. Additionally our n1 = man0 augmented
data {X̃i, Ỹi}n1

i=1 are iid and independent of the origi-
nal data and satisfies X|Y = y ∼ N(yrµ, σ2I), Y ∼
U{−1, 1} where r ∈ [0, 1], are the Wasserstein geodesic
interpolation. Then for ϵ > 0, for all n1 > N1 with N1

(depending on t) satisfying tN1 + n0 >
√
N1 log(N1) and√

n0(r + n0)/(
√
N1σ) ≤ logN1, then we have

PEp,ϵ
a (fθ̂n0

) ≥ PEp,ϵ
a (fθ̂n0,n1

), (16)

w.p. ≥ PX∼N(0,Id)(∥X∥ ≤ log(n1)/σ)×PX∼N(0,Id)(A∩B),
(17)

whereA = {X :
√
n0(r + n0)/(

√
n1σ) ≤ ∥X∥ ≤ log n1},

B = {X : µTX/∥X∥ ≤
√
∥µ∥2 − {n0(r + n0)2/(n1σ2)},

and θ̂n0,n1
= (
∑n0

i=1 YiXi +
∑n1

i=1 ỸiX̃i)/n0 + n1,

θ̂n0 = (
∑n0

i=1 YiXi)/n0. fθ(x) defined as sign(xT θ).

Note that in the above theorem PX∼N(0,Id)(∥X∥ ≤
log(n1)/σ) → 1 as n1 → ∞. Moreover, P (A) and
P (B) → 1 as well with n → ∞. The proof is shown
in the Appendix.

Remark: From the above theory, we can see that the
robustness from data augmentation will increase when we
have a larger r and sample size. This explains the property of
interpolation-based methods where the samples from vicinal
distributions are desired. Actually, the effect of sample size
can be observed in the following experiments (figure (3)).

Figure 2: The performance geodesic Rg
f,l(t) of classifiers

obtained from different training strategies. Here ERM stands
for normal training, +reg is using geodesic regularization,
+da means using data augmentation, adv denotes adversarial
training with PGD. Their robustness acc. are in table.(1)
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5. Experiments and Discussion
We evaluate our proposed method in terms of both em-
pirical robustness and certified robustness (Cohen et al.,
2019a) on the MNIST (LeCun et al., 1998), CIFAR-10 and
CIFAR-100 (Krizhevsky, 2009) dataset, and samples from
ImageNet(64× 64) dataset (Deng et al., 2009; Le & Yang,
2015). Typically, we use data augmentation to double the
size of the training set ma = 1 at first and use the regular-
ization with a fixed weight αreg = 5.0 during the training,
as implicit data augmentation. For the MNIST samples, we
train a LeNet (LeCun et al., 1998) classifier with a learning
rate lr = 0.01 for 90 epochs. For the CIFAR dataset, we use
the ResNet110 (He et al., 2016) for the certifiable task on CI-
FAR10 and PreactResNet18 on CIFAR-100. The Sinkhorn
entropic coefficient is chosen to be ϵ = 0.01. We use VAE
with different latent dimensions as embedding, where de-
tails can be found in the appendix. The experiments are
carried out on several NVIDIA RTX A6000 GPUs and two
NVIDIA GeForce RTX 3090 GPUs.

Table 1: Adversarial robustness (MNIST), ours:DA + Reg

ERM PGD ERM+Reg ERM + Ours PGD +Ours

Clean Acc.(%) 99.09 ± 0.02 98.94 ± 0.03 99.27 ± 0.06 99.39 ± 0.03 99.34 ± 0.02
Robust Acc.(%) 31.47 ± 0.12 81.23 ± 0.17 35.66 ± 0.20 81.23 ± 0.12 82.74 ± 0.16

Empirical robustness We use the strongest PGD method
to perform ℓ∞ attack with ϵ = 2.0 and 4 steps. As shown
in table (1), either data augmentation and regularization
can improve the ℓ∞ robustness. Moreover, our method
can further improve gradient-based adversarial training. In
fig.(2), we visualize the performance geodesic of various
training strategies where more robust models apparently
have mode smoother geodesic. For empirical robustness
on CIFAT-100 and ImageNet(64× 64), we follow training
protocol from (Kim et al., 2020) and compare our method
with ERM, vanilla mixup (Zhang et al., 2018), Manifold
mixup (Verma et al., 2019), CutMix (Yun et al., 2019),
AugMix (Hendrycks et al., 2019), and PuzzleMix (Kim
et al., 2020). To enable a fair comparison, we reproduce
only the non-adversarial PuzzleMix methods.
For ImageNet(64×64), it contains 200 classes with 64×64
resolution(Chrabaszcz et al., 2017). As in table (2), our
approach outperforms the best baseline by 16.8% under
(ϵ = 4/255) FGSM attack. For CIFAR-100, as in table (3),
we exceed baseline by 22.4% under FGSM, while having
comparable performance in standard accuracy. It may be
caused by our data augmentation populating samples only
on the local decision boundaries.

Table 2: ℓ∞ Standard and adversarial robust accuracy on
ImageNet (64× 64) with baselines

ERM Mixup Manifold CutMix AugMix PuzzleMix Ours

Clean Acc.(%) 58.28 56.32 58.08 57.71 56.135 63.31 64.15
FGSM Acc.(%) 8.22 11.21 10.69 11.61 11.07 7.82 13.46

Table 3: ℓ∞ Standard and adversarial robust accuracy on
CIFAR-100 dataset with baselines

ERM Mixup Manifold CutMix AugMix PuzzleMix Ours

Clean Acc.(%) 78.76 81.90 81.98 82.31 79.82 83.05 81.36
FGSM Acc.(%) 34.72 43.21 39.22 30.81 44.82 36.82 54.87

ℓ2 Certifiable robustness We compare the performance
with Gaussian (Cohen et al., 2019b), Stability training (Li
et al., 2018), SmoothAdv (Salman et al., 2019), MACER
(Zhai et al., 2020), Consistency (Jeong & Shin, 2020), and
SmoothMix (Jeong et al., 2021). We follow the same evalu-
ation protocol proposed by (Cohen et al., 2019b) and used
by previous works (Salman et al., 2019; Zhai et al., 2020;
Jeong & Shin, 2020), which is a Monte Carlo-based certi-
fication procedure, calculating the prediction and a ”safe”
lower bound of radius over the randomness of n samples
with probability at least 1−α, or abstaining the certification.
We consider three different models as varying the noise
level σ ∈ {0.25, 0.5, 1.0}. During inference, we apply ran-
domized smoothing with the same σ used in training. The
parameters in the evaluation protocol (Cohen et al., 2019b)
are set as: n = 100, 000, n0 = 100, and α = 0.001, with
previous work (Cohen et al., 2019b; Jeong & Shin, 2020).

Table 4: Certified accuracy on CIFAR-10 dataset.

σ Models (CIFAR-10) 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25

0.25

Gaussian 76.6 61.2 42.2 25.1 0.0 0.0 0.0 0.0 0.0 0.0
Stability training 72.3 58.0 43.3 27.3 0.0 0.0 0.0 0.0 0.0 0.0
SmoothAdv∗ 73.4 65.6 57.0 47.1 0.0 0.0 0.0 0.0 0.0 0.0
MACER∗ 79.5 69.0 55.8 40.6 0.0 0.0 0.0 0.0 0.0 0.0
Consistency 75.8 67.6 58.1 46.7 0.0 0.0 0.0 0.0 0.0 0.0
SmoothMix 77.1 67.9 57.9 46.7 0.0 0.0 0.0 0.0 0.0 0.0

Ours 69.7 63.4 56.0 47.3 0.0 0.0 0.0 0.0 0.0 0.0

0.50

Gaussian 65.7 54.9 42.8 32.5 22.0 14.1 8.3 3.9 0.0 0.0
Stability training 60.6 51.5 41.4 32.5 23.9 15.3 9.6 5.0 0.0 0.0
SmoothAdv∗ 65.3 57.8 49.9 41.7 33.7 26.0 19.5 12.9 0.0 0.0
MACER∗ 64.2 57.5 49.9 42.3 34.8 27.6 20.2 12.6 0.0 0.0
Consistency 64.3 57.5 50.6 43.2 36.2 29.5 22.8 16.1 0.0 0.0
SmoothMix 65.0 56.7 49.2 41.2 34.5 29.6 23.5 18.1 0.0 0.0

Ours 55.4 50.7 45.6 40.6 35.2 30.5 25.7 19.5 0.0 0.0

1.00

Gaussian 47.2 39.2 34.0 27.8 21.6 17.4 14.0 11.8 10.0 7.6
Stability training 43.5 38.9 32.8 27.0 23.1 19.1 15.4 11.3 7.8 5.7
SmoothAdv∗ 50.8 44.9 39.0 33.6 28.1 23.7 19.4 15.4 12.0 8.7
MACER∗ 40.4 37.5 34.2 31.3 27.5 23.4 22.4 19.2 16.4 13.5
Consistency 46.3 41.8 37.9 34.2 30.1 26.1 22.3 19.7 16.4 13.8
SmoothMix 47.1 42.5 37.5 32.9 28.2 24.9 21.3 18.3 15.5 12.6

Ours 40.9 36.9 34.5 31.5 28.1 24.4 22.5 20.4 16.5 14.0

For the CIFAR-10 dataset, Table 4 showed that our method
generally exhibited better certified robustness compared
to other baselines, i.e., SmoothAdv (Salman et al., 2019),
MACER (Zhai et al., 2020), Consistency (Jeong & Shin,
2020), and SmmothMix (Jeong et al., 2021). The important
characteristic of our method is the robustness under larger
noise levels. Our method achieved the highest certified
test accuracy among all the noise levels when the radii
are large, i.e., radii 0.25-0.75 under noise level σ = 0.25,
radii 0.50-1.75 under noise level σ = 0.50, and radii 0.50-
2.75 under noise level σ = 1.00. We obtained the new
state-of-the-art certified robustness performance under large
radii. As shown in Table 4, we find that by combing our
data augmentation mechanism, the performance of previous
SOTA methods can be even better, which demonstrates our
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method can be easily used as an add-on mechanism for other
algorithms to improve robustness.

Ablation study Here, we conducted detailed ablation stud-
ies to investigate the effectiveness of each component. We
performed experiments on MNIST with σ = 1.0, and the
results are shown in Figure 3. (More results are shown
in the Appendix.) We investigated the influence by the
augmentation batch size bn (Figure 3(a)) following batch
optimal transport setting. Also, we studied data augmenta-
tion sample size ma (Figure 3(b)). We found that a larger
augmentation batch size bn leads to better performance,
which is expected since it better approximates the joint mea-
sure. In addition, more augmented data samples ma benefit
robustness, which agrees with our theoretical results.

Figure 3: Comparison of approximate certified accuracy
with different parameters, including (a) augmentation batch
size bn, and (b) magnificent coefficient ma.

6. Conclusion and Future Work
In this paper, we proposed to characterize the robustness of a
model through its performance on the Wasserstein geodesic
connecting different training data distributions. The worst-
case distributions on the geodesic allow us to create aug-
mented data for training a more robust model. Further, we
can regularize the smoothness of a classifier to promote
robustness. We provided theoretical guarantees and carried
out extensive experimental studies on multiple datasets in-
cluding CIFAR100 and ImageNet. Our results showed new
SOTA performance compared with existing methods and
can be easily combined with other learning schemes to boost
the robustness.
As a first step, this work provides a new perspective to
characterize the model’s robustness. There could be several
future works, including considering multi-marginal adver-
sarial Wasserstein barycenter on a simplex, more efficient
optimization on the geodesic, and more thorough theoretical
studies beyond Gaussian models. Additionally, other no-
tions of Wasserstein distances (Guha et al., 2023) could also
be used to extend the current set of results under specific
objectives.

Acknowledgements
This work is partially supported by the Defense Advanced
Research Projects Agency (DARPA) under Contract No.
HR00112320012. We would like to thank Kilian Fatras, Lin
Gui, and anonymous reviewers for their valuable feedback
and comments on our manuscript.

9



Interpolation for Robust Learning: Data Augmentation on Geodesics

References
Agueh, M. and Carlier, G. Barycenters in the wasserstein

space. SIAM Journal on Mathematical Analysis, 43(2):
904–924, 2011.

Albergo, M. S. and Vanden-Eijnden, E. Building normal-
izing flows with stochastic interpolants. arXiv preprint
arXiv:2209.15571, 2022.

Alvarez-Melis, D. and Fusi, N. Geometric dataset distances
via optimal transport. Advances in Neural Information
Processing Systems, 33:21428–21439, 2020.

Alvarez-Melis, D. and Fusi, N. Dataset dynamics via gradi-
ent flows in probability space. In International Confer-
ence on Machine Learning, pp. 219–230. PMLR, 2021.

Ambrosio, L., Gigli, N., and Savaré, G. Gradient flows: in
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A. Theoretical results
A.1. The Wasserstein distance between Gaussian distribution
Theorem A.1 (The Wasserstein distance between Gaussian distribution ). Given two Gaussian measures, P 0 = N(µ0,Σ0)
and P 1 = N(µ1,Σ1). The L2-Wasserstein distance between them is given by

W 2
2 (P

0, P 1) =∥µ0 − µ1∥2 + tr(Σ0) + tr(Σ1)

− 2tr(

√
Σ

1/2
0 Σ1Σ

1/2
0 )

(18)

The proof largely depends on a summary of (Givens & Shortt, 1984), as well as. We recall the theorem. Given two Gaussian
measures, P 0 = N(µ0,Σ0) and P 1 = N(µ1,Σ1). The L2-Wasserstein distance between them is given by

W 2
2 (P

0, P 1) =∥µ0 − µ1∥2 + tr(Σ0) + tr(Σ1)− 2tr(

√
Σ

1/2
0 Σ1Σ

1/2
0 ) (19)

Given two distributions P 0 = N(µ0,Σ0) and P 1 = N(µ1,Σ1), one can first reduce to the centered case µ0 = µ1 = 0.
Next, let X ∼ P 0 and Y ∼ P 1 and if (X,Y ) is a random vector of Rn × Rn with covariance matrix

Γ =

[
Σ0 C
C⊤ Σ1

]
then the quantity

E[∥X − Y ∥22] = Tr(Σ0 +Σ1 − 2C)

depends only on Γ. Also, when P 0 = N(0,Σ0) and P 1 = N(0,Σ1), one can restrict the infimum which defines W2 to run
over W2 to run over Gaussian laws N(0,Γ) on Rn × Rn with covariance matrix Γ structured above. Here the constrain on
C is the Schur complement constraint Σ0 −CΣ−1

1 C⊤ ⪰ 0. Thus, the minimization of the function C 7→ −2Tr(C) leads to
the result.
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A.2. Transport map between Gaussian measures
Proposition A.2 (Optimal transport map between Gaussian measures, adopted from (Knott & Smith, 1984), Example
1.7 (McCann, 1997)). Given the two Gaussian distributions defined in theorem (A.1), define a symmetric positive matrix T
and a corresponding linear map T : X 7→ X

T (x) = µ1 + T (x− µ0), where

T = Σ
1/2
1 (Σ

1/2
1 Σ0Σ

1/2
1 )−1/2Σ

1/2
1

(20)

Then, T is the optimal map such that P 1 = T#P 0.

Hence we obtain a closed-form map and that leads to an explicit form of the geodesic interpolation among two Gaussian
distributions, as:

TG,xy
t :=


TG,x
t (x0) = (1− t)x0 + T (x0),

TG,y
t (y0) =

{
y0, 0 < t < 0.5,

−y0, 0.5 < t < 1.

Here the interpolation of y0 means we will always label a sample as −1 or 1, which allows us to proceed to the analysis
under the classification error. Given the two Gaussian distributions defined in theorem (A.1), define a symmetric positive
matrix T and a corresponding linear map T : X 7→ X

T (x) = µ1 + T (x− µ0), where

T = Σ
1/2
1 (Σ

1/2
1 Σ0Σ

1/2
1 )−1/2Σ

1/2
1

Then, T is the optimal map such that P 1 = T#P 0.
Check the optimal transport map from N(µ0,Σ0) to N(µ1,Σ1), again assume µ0 = µ1 = 0 for simplicity, one may define
the random column vectors X ∼ N(µ0,Σ1) and Y = TX and write

E(Y Y ⊤) = TE(XX⊤)T⊤

= Σ
−1/2
0 (Σ

1/2
1 Σ2Σ

1/2
0 )1/2(Σ

1/2
1 Σ2Σ

1/2
0 )1/2Σ

−1/2
0

= Σ1

To show the map is optimal, one may use

E(∥X − Y ∥22) = E(∥X∥22) + E(∥Y ∥22)− 2E(< X,Y >)

= Tr(Σ0) + Tr(Σ1)− 2E(< X,TX >)

= Tr(Σ0) + Tr(Σ1)− 2Tr(Σ0T )

and one can observe that by the cyclic property of the trace

Tr(Σ0T ) = Tr((Σ
1/2
1 Σ2Σ

1/2
0 )1/2)

Moreover, for the interpolation Geodesic, the following result holds.

Proposition A.3 (Interpolation between Gaussian distributions (McCann, 1997) example 1.7). Given the two Gaussian
distributions defined in theorem (A.1), respectively. A constant speed geodesic is defined by the the path (Ggt )t∈[0,1], such
that ∀t ∈ [0, 1], and Ggt := N(mt,Σt) is given by

mt = (1− t)µ1 + tµ2,

Σt = ((1− t)Id+ tT )Σ1((1− t)Id+ tT )
(21)

where T = Σ
1/2
1 (Σ

1/2
1 Σ0Σ

1/2
1 )−1/2Σ

1/2
1 .

We have illustrated that the Wasserstein barycenter, on the geodesic, of two Gaussian distributions is still a Gaussian
distribution and admits an explicit form.

where, T xt (x) = (1− t)x+ tT x(x),

T yt (y) = (1− t)y + tT y(y)
(22)
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A.3. The effect of the regularization
Recall that the geodesic regularization term is

RegT
xy

l (fθ) =

∫ 1

t=0

∣∣∣∣ ddt
∫
X×Y

l(fθ(T
x
t (x), T

y
t (y))dP

0(x, y)

∣∣∣∣ dt (23)

Recall the classifier to be fθ(x) = ⟨θ, x⟩ = θ⊤x, and the loss to be l(f(x), y) = −yf(x),
Consider the following minimization problem

min
f∈H

E(x,y)∼Pall
[l(f(x), y)] +

λ1
2

RegT
xy

l (fθ) (24)

Proof. The problem above can be written as follows

min
θ∈Rd

L(θ) = −(⟨θ, µ1 − µ0⟩) + λ1Reg(θ) (25)

And under the above setting, we have

RegT
xy

l (fθ) =

∫ 1

t=0

∣∣∣∣ ddt
∫
X×Y

l(fθ(T
x
t (x), T

y
t (y))dP

0(x, y)

∣∣∣∣ dt
=

∫ 1

t=0

∣∣∣∣ ddtEx0.y0∼P 0(x,y)[l(fθ(T
x
t (x), T

y
t (y))]

∣∣∣∣ dt
=

∫ 1

t=0

∣∣∣∣ ddtEx0.y0∼P 0(x,y)[−T yt (y0)⟨θ, T xt (x0)⟩]
∣∣∣∣ dt

Recall the parameterization of the map as interpolation, as e.q., 7,

(26)

Here, using the dominated convergence theorem. Also, use the closed form interpolation T xt (x0) = (1− t)x0 + tT̂ (x0),
and T yt (y0) = 2t− 1 (y0 = −1 and y1 = 1), the above equation turns into

=

∫ 1

t=0

∣∣∣Ex0.y0∼P 0(x,y)[−2⟨θ, T xt (x0)⟩ − (2t− 1)⟨θ, T̂ (x0)− x0⟩]
∣∣∣ dt (27)

Since we have closed-form expression for the geodesic as Ex0∼P 0 [T t(x0)] = (2t− 1)µ and Ex0∼P 0 [T̂ (x0)− x0] = 2µ,
then

=

∫ 1

t=0

∣∣−2(2t− 1)θ⊤µ− 2(2t− 1)θ⊤µ
∣∣ dt = ∫ 1

t=0

∣∣4(1− 2t)θ⊤µ
∣∣ dt = 2|θ⊤µ| (28)

Then, the objective becomes

min
θ

L(θ) := −⟨θ, µ⟩+ λ1
2
|⟨θ, µ⟩|2 + λ2

2
∥θ∥22 (29)

Setting the first-order derivative to be zero, we obtain the solution

∇θL(θ) = −µ+ λ1µ⊗ µθ + λ2θ = 0,

θ∗ = (λ1µ⊗ µ+ λ2Im)−1µ
(30)

From Eq. (29), we can see that geodesic regularization is a data-adaptive regularization that smooths the classifier according
to the distribution of original data.

A.4. Proof of Proposition 3.1
Assumptions and generalisation Without loss of generalisation, we assume σ = 1 and µ = (1, 0, . . . , 0), with 1 at the
first coordinate and 0 elsewhere. Thus ∥µ∥ = 1.
Since η(x|y = −1), η(x|y = 1) are both Gaussian, assume η(x|y = −1) ∼ N(ψ−1,Σ−1) and η(x|y = 1) ∼ N(ψ1,Σ1).
Let u1, . . . , ud be the eigenvalues of Σ0 Following Theorem A.1, we have

W 2
2 (Nd(ψ1,Σ1), Nd(µ, I)) = ∥ψ1 − µ∥2 + tr(Σ1) + d− 2tr(Σ1

1/2)

= ∥ψ1 − µ∥2 +
d∑

i=1

(
√
ui − 1)

2
(31)
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Similarly,

W 2
2 (Nd(ψ−1,Σ−1), Nd(−µ, I)) = ∥ψ−1 + µ∥2 +

d∑
i=1

(
√
vi − 1)

2
, (32)

where {vi}d1 are the eigenvalues of Σ−1.
By linearity property of Gaussian distributions η(X|Y = y) ∼ N(ψy,Σy) implies, α′X+β|Y = y ∼ N(α′ψy+β, α

′Σyα).
Therefore,

E(X,Y )∼η(X|Y )ν(Y )l(f(α,β)(X), Y ) ∝ PN(0,1)

(
Z1 < − (α′ψ1 + β)√

α′Σ1α

)
+ PN(0,1)

(
Z−1 > − (α′ψ−1 + β)√

α′Σ−1α

)
, (33)

where Z1 =
α′(X − ψ1)√

α′Σ1α

∣∣∣∣Y = 1 ∼ N(0, 1) if X|Y = 1 ∼ N(ψ1,Σ1) and

Z−1 =
α′(X − ψ−1)√

α′Σ−1α

∣∣∣∣Y = −1 ∼ N(0, 1) if X|Y = −1 ∼ N(ψ−1,Σ−1).

The LHS of Eq. (5) becomes

max(ψ1,ψ−1,Σ1,Σ−1)∈Bϵ(µ) infα,β PN(0,1)

(
Z1 < − (α′ψ1 + β)√

α′Σ1α

)
+ PN(0,1)

(
Z−1 > − (α′ψ−1 + β)√

α′Σ−1α

)
, (34)

where, Bϵ(µ) = {(ψ1, ψ−1,Σ1,Σ−1) : ∥ψ−1 + µ∥2 +
∑d
i=1

(√
vi − 1

)2 ≤ ϵ2, ∥ψ1 − µ∥2 +
∑d
i=1

(√
ui − 1

)2 ≤ ϵ2}
{ui}d1 are eigenvalues of Σ−1, and {ui}d1 are eigenvalues of Σ−1.

Step 1: First, we show the proof under the assumption Σ1 = Σ−1 = Σ.
Fixing ψ1, ψ−1,Σ so that ψ1, ψ−1,Σ,Σ ∈ Bϵ(µ) and setting derivative to 0 of

PN(0,1)

(
Z1 < − (α′ψ1 + β)√

α′Σα

)
+ PN(0,1)

(
Z−1 > − (α′ψ−1 + β)√

α′Σα

)
(35)

w.r.t β yields either (i) α′ψ1 + β = α′ψ−1 + β, or (ii) α′ψ1 + β = −(α′ψ−1 + β).
Setting derivative of (35) w.r.t α to 0 yields ψ1 = ψ−1, which clearly is a contradiction for ϵ < 1.
Considering (ii) above yields β = −α′(ψ−1 + ψ1)/2. Then Eq. (35) leads to

PN(0,1)

(
Z >

α′(ψ1 − ψ−1)

2
√
α′Σα

)
+ PN(0,1)

(
Z < −α

′(ψ1 − ψ−1)

2
√
α′Σα

)
= 2PN(0,1)

(
Z >

α′(ψ1 − ψ−1)

2
√
α′Σα

)
. (36)

The RHS above is minimized w.r.t α when
α′(ψ1 − ψ−1)

2
√
α′Σα

is maximized. A simple calculation shows that this is achieved

for α =
ãΣ−1

√
ã′Σ−1ã

, where ã = (ψ1 − ψ−1). This gives
α′(ψ1 − ψ−1)√

α′Σα
=

√
ã′Σ−1ã.

For a given Σ, this is minimized (and equivalently Eq. (35) is maximised) when (ψ1 − ψ−1)/2 is in the direction of the
largest eigenvector of Σ, say v1, and ã′Σ−1ã = ∥ψ1 − ψ−1∥2/v1.
Notice that since the other eigenvalues do not affect the choice of (ψ1 − ψ−1), based on the constraints ∥ψ−1 + µ∥2 +∑d
i=1

(√
vi − 1

)2 ≤ ϵ2 and ∥ψ1 + µ∥2 +
∑d
i=1

(√
vi − 1

)2 ≤ ϵ2, where vi are the ordered eigenvalues of Σ, we can
assume all other eigenvalues to be 1 without affecting the value in the RHS of Eq. (36).
Let the largest eigenvalue of Σ be (1+ δ)2. Then based on the constraints ∥ψ1 −ψ−1∥2/v1 is minimized when ψ1 = −ψ−1

and they are concurrent with µ and −µ.
Based on the constraints, this yields,

√
∥ψ1 − ψ−1∥2/v1 = 2(1−

√
ϵ2 − δ2)/(1 + δ), (37)
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which is an increasing function of δ and is minimised at δ = 1, which implies Σ = I, and ψ1 = (1− ϵ)µ, ψ−1 = (1− ϵ)−µ,
which are the geodesic optimizers.
Therefore,

maxÃ(νµ,ϵ)
infα,β E(X,Y )∼η(X|Y )ν(Y )l(f(α,β)(X), Y ) =

E(X,Y )∼ν(1−ϵ)µ(X|Y )ν(Y )l(f(µ,0)(X), Y ). (38)

where Ã(νµ, ϵ) = {η(X|Y ) : η(·|Y ) is Gaussian, W (η(X|Y ), νµ(X|Y )) ≤ ϵ, ∀Y ∈ {−1, 1}, Cov(η(·|Y = 1)) =
Cov(η(·|Y = −1))}

Step 2: Next, we use the result in Step 1 to show the remaining.
Therefore, consider the situation where we do not restrict to Σ1 = Σ−1.
Set Σ0

1 = Σ0
−1 = I, ψ0

1 = (1− ϵ)µ, ψ0
−1 = −(1− ϵ)µ, α0 = (1− ϵ)µ, β0 = 0. Also, let

F (ψ1, ψ−1,Σ1,Σ−1, α, β) := E(X,Y )∼η(X|Y )ν(Y )l(f(α,β)(X), Y ), (39)

where η(X|Y = 1) ∼ N(ψ1,Σ1), η(X|Y = −1) ∼ N(ψ−1,Σ−1).
Note that F (ψ0

1 , ψ
0
−1,Σ

0
1,Σ

0
−1, α0, β0) = E(X,Y )∼ν(1−ϵ)µ(X|Y )ν(Y )l(f(µ,0)(X), Y ).

From Step 1 of the proof, we have shown that, F (ψ0
1 , ψ

0
−1,Σ

0
1,Σ

0
−1, α, β) ≥ F (ψ0

1 , ψ
0
−1,Σ

0
1,Σ

0
−1, α0, β0).

Now, we claim it is enough to show F (ψ1, ψ−1,Σ1,Σ−1, α0, β0) ≤ F (ψ0
1 , ψ

0
−1,Σ

0
1,Σ

0
−1, α0, β0) for ψ1, ψ−1,Σ1,Σ−1 ∈

A(νµ, ϵ), since then

max
Ã(νµ,ϵ)

infα,βF (ψ
0
1 , ψ

0
−1,Σ

0
1,Σ

0
−1, α, β)

≥ infα,βF (ψ
0
1 , ψ

0
−1,Σ

0
1,Σ

0
−1, α, β)

≥ F (ψ0
1 , ψ

0
−1,Σ

0
1,Σ

0
−1, α0, β0)

≥ max
Ã(νµ,ϵ)

F (ψ1, ψ−1,Σ1,Σ−1, α0, β0)

≥ infα,β max
Ã(νµ,ϵ)

F (ψ0
1 , ψ

0
−1,Σ

0
1,Σ

0
−1, α, β) (40)

and we know that

infα,β max
A(νµ,ϵ)

F (ψ0
1 , ψ

0
−1,Σ

0
1,Σ

0
−1, α, β) ≥ max

A(νµ,ϵ)
infα,βF (ψ

0
1 , ψ

0
−1,Σ

0
1,Σ

0
−1, α, β) (41)

This would imply that

infα,β max
A(νµ,ϵ)

F (ψ0
1 , ψ

0
−1,Σ

0
1,Σ

0
−1, α, β) = max

A(νµ,ϵ)
infα,βF (ψ

0
1 , ψ

0
−1,Σ

0
1,Σ

0
−1, α, β)

= E(X,Y )∼ν(1−ϵ)µ(X|Y )ν(Y )l(f(µ,0)(X), Y ) (42)

and complete the proof.
Now,

F (ψ1, ψ−1,Σ1,Σ−1, α0, β0) = P

(
Z <

µ′ψ−1√
µ′Σ−1µ

)
+ P

(
Z >

µ′ψ1√
µ′Σ−1µ

)
. (43)

Since the constraints in A(νµ, ϵ) are separate and symmetric with respect to ψ1,Σ1 and ψ−1,Σ−1 respectively, and standard
Normal distribution is symmetric. Therefore the max of F (ψ1, ψ−1,Σ1,Σ−1, α0, β0) over A(νµ, ϵ) is attained when
ψ−1 = −ψ1 and Σ1 = Σ−1. The remainder follows from Step 1.

A.5. Error probabilities in closed form (Definition 4.2)
Standard accuracy probability. The standard accuracy probability is given as

Px∼D(fθ(x) = y) = 1− Px∼D(yx⊤θ < 0) = 1−Q

(
µ⊤θ

σ∥θ∥

)
(44)

where Q(x) = 1√
2π

∫∞
x
e−t

2/2dt.
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lϵ∞ robust accuracy. The lϵ∞ robust accuracy is given as:

inf
∥v∥∞<ϵ

Px∼D(fθ(x) = y) = 1− Px∼D
(

inf
∥v∥∞<ϵ

{
y · (x+ v)⊤θ

}
< 0

)
= 1−Q

(
µ⊤θ

σ∥θ∥
− ϵ∥θ∥1
σ∥θ∥

)
(45)

lσs
2 smoothed classifier for certifiable robust accuracy. It is the accuracy probability from a N(0, σ2

sI) smoothed
classifier:

Px∼D,δ∼N(0,σ2
sI)

(fθ(x+ δ) = y) (46)

The above probability involves two random variables x(y) ∼ D and δ ∼ N(0, σ2
sI), which are independent of each other.

This addition is considered as the convolution of two pdfs. Since D is a mixture of Gaussian and δ subjects to a Gaussian,
there is a closed form

D∗ = N(µ, σ2I) ∗N(0, σ2
sI) = N(µ, σ2 + σ2

sI) (47)

Thus, the certifiable robust accuracy in this setting is equivalent to the standard accuracy probability from a convoluted
dataset.

Px∼D∗(fθ(x) = y) = 1−Q

(
µ⊤θ

(σ + σs)∥θ∥

)
(48)

A.6. Provable improvement from data augmentation (Theorem 4.3)
Proof. We divide the proof into several steps as follows:

Step 1: The distribution of original data (X,Y ) is iid with X|Y ∼ N(yµ, σ2I). Thus, from Eq.(10) and (11) in (Carmon
et al., 2019), we have

PEp,ϵa (fθ) = Q

(
µT θ

σ∥θ∥
− ϵ

√
d

σ

)
, where Q(x) =

1

2π

∫ ∞

x

e−z
2/2dz. (49)

Let α(n0, n1) be used to denote n1/(n0 + n1). Additionally, let θ̂n1
=

(∑n1

i=1 ỸiX̃i

)
n1

.

Step 2: Note that PEp,ϵa (fθ̂n0
) ≥ PEp,ϵa (fθ̂n0,n1

) holds as long as
µT θ̂n0

∥µ∥∥θ̂n0
∥
≤ µT θ̂n0,n1

∥µ∥∥θ̂n0,n1
∥

. This is what we will show.

Step 3: Let θ̂n1 ∈ {x : ∥x− tµ∥ ≤ A3 := t log(n1)/n1}. Also assume:

θ̂n0 ∈ {x : A1 := (t+ n0)/
√
n1 ≤ ∥x− µ∥A2 := log(n1)} ∩ {x : µT (x)/∥x∥ (50)

≤
√

∥µ∥2 − ((t+ n0)/
√
n1)2}} (51)

We show that in this case
µT θ̂n0

∥µ∥∥θ̂n0∥
≤ µT θ̂n0,n1

∥µ∥∥θ̂n0,n1∥
. Indeed,

µT θ̂n0

∥µ∥∥θ̂n0
∥

≤ cos(π/2− arcsin(A1/∥µ∥))

< cos

(
π2 − arcsin

(
n1A3 + n0A2

n1t∥µ∥+ n0∥µ∥

))
<

(n1tµ+ n0µ)
T θ̂n0,n1

∥n1tµ+ n0µ∥∥θ̂n0,n1
∥

(52)

=
µT θ̂n0,n1

∥µ∥∥θ̂n0,n1∥
. (53)
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The first inequality holds by Cauchy-Schwartz, while the second inequality holds by substituting values of A1, A2 and
A3 (note that n1A3 + n0A2 ≤ (n1t + n0)A1) combined with the facts that tN1 + n0 >

√
N1 log(N1) and f(n) =

tn+ n0 −
√
n log(n) is monotonically increasing in n.

Note that θ̂n0,n1
= α(n0, n1)θ̂n1

+ (1 − α(n0, n1))θ̂n0
. Moreover, θ̂n1

and θ̂n0
follow θ̂n1

∼ N(tµ, σ2Id/n1) and
θ̂n0 ∼ N(µ, σ2Id/n0), independently.
The third inequality therefore holds because ∥y− tµ∥ ≤ A3 and ∥x−µ∥ ≤ A2 implies ∥α(n0, n1)y+ (1−α(n0, n1))x−
α(n0, n1)tµ+ (1− α(n0, n1))µ∥ ≤ α(n0, n1)A3 + (1− α(n0, n1))A2.

Therefore, P

(
µT θ̂n0

∥µ∥∥θ̂n0
∥
≤ µT θ̂n0,n1

∥µ∥∥θ̂n0,n1
∥

)
≥ P (θ̂n1

∈ {x : ∥x− tµ∥ ≤ A3 := t log(n1)/n1})× P (θ̂n0
∈ {x : A1 :=

(t+ n0)/
√
n1 ≤ ∥x− µ∥ ≤ A2 := log(n1)} ∩ {x : µT (x)/∥x∥ ≤

√
∥µ∥2 − ((t+ n0)/

√
n1)2}}).

The result now holds true by simple variable transformations.

B. Additional intuition & related works
B.1. Related works
Nonparametric gradient flow (Liutkus et al., 2019) provides satisfactory data generation with theoretical guarantees. Further,
data synthesis (Hua et al., 2023) on the feature-Gaussian manifold can be realized by the maximum mean discrepancy
(MMD) gradient flow (Mroueh & Nguyen, 2021) is proven to be effective for transfer learning tasks.
Recent studies have shown that data augmentation, including potentially unlabelled data, improves adversarial robustness,
both empirically and theoretically. A line of study is rigorously explaining how the adversarial robustness is affected by the
sample size (Schmidt et al., 2018) where unlabeled or out-of-distribution data are helpful (Carmon et al., 2019; Deng et al.,
2021; Dan et al., 2020; Bhagoji et al., 2019). Although conventional data augmentation techniques (such as random flips,
rotations, or clips) (Howard, 2013; He & Sun, 2015) have remarkable standard learning performance, is not until recently
that researchers started to investigate how data augmentation can improve deep learning robustness (Volpi et al., 2018; Ng
et al., 2020; Rebuffi et al., 2021).
A few studies have already explored the usage of optimal transport (OT) ideas within mixup. PuzzelMix (Kim et al., 2020)
aligns saliency regions of images with a masked optimal transport. The idea of augmentation with saliency is extended in
recent works (Kim et al., 2021b). OT also helps align feature tensors in high-dimensional vector space (Venkataramanan
et al., 2022), while this method also requires autoencoder models to capture reasonable representations, they perform
barycentric projection (linear map) and implicitly restrict the interpolation manifold. The idea of barycenter is also used
in AutoMix (Zhu et al., 2020), which relies on a barycenter generator. On the other hand, OT has been shown to be
effective in various areas such as data augmentation for cardiovascular diseases (Zhu et al., 2022b; Qiu et al., 2022a), model
personalization (Zhu et al., 2022a), and multimodal learning (Qiu et al., 2022b).

B.2. Intuitions
The recently proposed idea of randomized smoothing (Cohen et al., 2019b) provides a certifiably robust classifier on ℓ2-
perturbations. This notion is desirable as it not only offers a provable guarantee of the robustness of deep neural networks but
also can be obtained in a relatively computationally-efficient fashion. To improve the robustness, multiple approaches have
been proposed to facilitate the training of base classifiers that could have better certified robustness. In addition to different
regularization methods (Zhai et al., 2020; Jeong & Shin, 2020; Li et al., 2018), the pioneering work adopted Gaussian data
augmentation (Cohen et al., 2019b) to pursue smoothness, augmenting more complicated smoothing distribution (Li et al.,
2021), adversarial samples (Salman et al., 2019), and mixing adversarial samples with original samples (Jeong et al., 2021)
are all promising methods.
We can illustrate our intuitions as follows: (1) Instead of the datapoint-specific adversarial perturbations that are aimed to
attack one specific sample, the directed augmented data distribution can be considered as universal perturbations (Moosavi-
Dezfooli et al., 2019) that cause label change for a set of samples from the perturbed distribution UP . (2) Such perturbation
matches the global manifold structure of the dataset (Greenewald et al., 2021), therefore promoting a smoother decision
boundary. (3) It is shown in (Wei et al., 2020) that this augmentation strategy improves the expansion of the neighborhood
of class-conditional distributions. This formulation allows us to employ the results from OT theories (Villani, 2009) and
Wasserstein Barycenter (Agueh & Carlier, 2011) thus firmly estimating the perturbed distribution UP . (4) Apart from
most data augmentation techniques that improve the generalization by creating samples that are likely to cover the testing
distribution. Our argumentation promotes the inter-class behavior (Tokozume et al., 2017) and potentially enlarges the ratio
of the between-class distance to the within-class variance (Fisher, 1936), or Fisher’s criterion.
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B.3. Mixture of distributions
Mixture of distributions in classification While it is challenging to specify a general distribution family for UP to enable
robust training, we further look into the structure of the joint data distribution Pallx,y. Considering a k-class classification
problem, it is natural to view the data distribution as a mixture of subpopulation distributions

Pallx,y =

k∑
i=1

wkPk(X,Y ), (54)

where each mixture Pk(X,Y ) stands for an individual class (Carmon et al., 2019; Zhai et al., 2019; Dan et al., 2020). In
such a case, we can utilize the geometric structure underneath the training data to specify the adversarial distribution and
improve the model’s robustness, especially when differentiating subpopulation distributions.

B.4. Connection to Mixup
Let us define x ∈ X to be input data and y ∈ Y to be the output label. Let (X0, Y0) ∼ P 0

x,y and (X1, Y1) ∼ P 1
x,y be

two distributions on X × Y . We may also allow Y1 = 1 a.s. P 1
x,y and Y0 = 0 a.s. P 0

x,y.For brevity, we use P ix,y and P i

interchangeably. For the mixup setting (Kim et al., 2020), the goal is to optimize a loss function as follows:

min
f

E(X0,Y0)∼P 0
x,y,(X1,Y1)∼P 1

x,y
Eλ∼q(l(f(hλ(X0, X1)), eλ(Y0, Y1))) (55)

where the label mixup function is eλ(y0, y1) = (1− λ)y0 + λy1. Input mixup uses hλ(x0, x1) = (1− λ)x0 + λx1, and
q is the distribution of λ considered. Here conventional mixup (Zhang et al., 2018) considers the linear interpolation of
independently sampled data. However, we feel this may be too restrictive in nature, since this may lead to the creation of
samples that may not contribute in situations when the task is binary classification. In that respect, consider the following
minimization problem instead,

min
f

Et∼qE(X0,X1,Y0,Y1)∼π̃ [l(f(ht(X0, X1)), et(Y0, Y1)] ,

where π̃(x0, x1, y0, y1) = π̃x((x0, x1)|(y0, y1))×π̃y((y0, y1)), with π̃x((·, ∗)|(y0, y1)) being the optimal transport coupling
between the conditional distributions P 0(·|y0) and P 1(·|y1), while π̃y((·, ·)) is the optimal transport coupling between the
marginal distributions of Y0 and Y1. It is easy to see that under the existence of unique Monge maps in-between marginal and
conditional distributions of Y0, Y1 and X0|Y0, X1|Y1 respectively, this is equivalent to solving the following optimization
problem.

min
f

Et∼qE(x,y)∼µ{P0,P1}
t

[l(f(x), y)] (56)

where Eq.(2) µ{P0,P1}
t = minµ U

N=2
wb (µ) := minµ(1− t)W (µ, P 0) + tW (µ, P 1) and W (·, ∗) is the Wasserstein metric.

B.5. A more general problem formulation: multi-marginal optimal transport
We restrict the adversarial distribution family to be the geodesic interpolations between individual subpopulation distributions.
Thus eq.(1) becomes

min
f

max
α

Ex,y∼Uwb(α) [l(f(x), y)] (57)

where Uwb(α) = argminU
1
K

∑
i αiW (U,Pi) is the Wasserstein barycenter, in other words, the interpolation of subpopu-

lation distributions.
In addition, with a predictive function f , we can consider a dynamic metric, geodesic loss, Rgeo

f that measures the change of
its performance with the criteria function l while gradually interpolating among subpopulation distributions {Pi}Ki=1. This
metric is thus a continuous function of α, where

Rgeo
f (α) = Ex,y∼Uwb(α) [l(f(x), y)] (58)

The geodesic loss Rgeo
f provides us a new lens through which we can measure, interpret, and improve a predictive model’s

robustness from a geometric perspective.
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C. Algorithm & Computation

Algorithm 2 Sinkhorn Barycenter

1: Input: Empirical distributions α1, α2, cost matrix C, K = exp(−C/ϵ).
2: Output: debiased barycenters αSϵ

3: Initialize scalings (b1, b2), d to 1.
4: while not converge do
5: for k = 1 to 2 do
6: ak ←− (αk/Knk)
7: end for
8: α←− d⊙

∑K
k=1(K

⊤ak)
wk

9: for k = 1 to 2 do
10: bk ←−

(
α/K⊤αk

)
11: end for
12: d←−

√
d⊙ (αKd)

13: end while

In practice, we only observe discrete training samples that represent an empirical distribution of Pi and Pj . Consider
Xi = {xil}

ni

l=1 and Xj = {xjl }
nj

l=1 are two set of features from class i and j respectively. The empirical distributions
are written as P̂i =

∑ni

l=1 p
i
lδxi

l
and P̂j =

∑nj

l=1 p
j
l δxj

l
where δx is the Dirac function at location x ∈ Ω, pil and pjl are

probability mass associated to the sample. Then the Wasserstein distance, between empirical measures P̂i and P̂j becomes

W (P̂i, P̂j) = inf
π∈Π̂

ni,nj∑
l=1,k=1

c(xi
l,x

j
k)πl,k +H(π), (59)

where Π̂ := {π ∈ (R+)ni×nj |π1nj
= 1ni

/ni, π
⊤1ni

= 1nj
/nj} with 1n a length n vector of ones, H(·) is the negative

entropy regularizer for us to utilize the Sinkhorn algorithm. c(x, y) is the ground cost function that specifies the actual cost
to transport the mass, or probability measure, from position x to y. Most studies merely use l2 norm as the ground metric as
there are a lot of desirable properties, such as the linear barycentric projection (Villani, 2009) used in other OT-based mixup
methods (Venkataramanan et al., 2022).

Computation concerns: batch OT and entropic OT Discrete optimal transport involves a linear program that has an
O(n3) complexity. Hence, the potential computation issues can not be ignored.
First of all, we adopted the celebrated entropic optimal transport (Cuturi, 2013) and used the Sinkhorn algorithm to solve for
OT objectives and Barycenters (Janati et al., 2020) (algorithm 2). The Sinkhorn algorithm has a O(n log n) complexity, thus
it can ease the computation burden. In addition, the pairwise Wasserstein distance can be precomputed and stored. Last but
not least, we follow the concept of minibatch optimal transport (Fatras et al., 2021b) where we sample a batch of samples
from each condition during the data augmentation procedure. Whereas minibatch OT could lead to non-optimal couplings,
our experimental results have demonstrated that our data augmentation is still satisfactory.

Data augmentation In our work, we focus on studying the advantages and limitations brought by certain data augmentation
algorithm A : X 7→ X such that A#P

0
X,Y = P 1

X,Y , where A#µ = ν denotes that ν is the pushfoward measure of µ by A.
Under this notation, a data augmentation algorithm is a transport map that transforms the original data distribution P 0

X,Y

towards the augmentation distribution P 1
X,Y . In practice, the estimation of such a transport map is challenging. Nevertheless,

we can assume the access to the distribution P 1
X,Y and augmented data samples {x̃i, ỹi}n1

i=1 ∼ P 1
X,Y . Consider a supervised

learning algorithm T (·, ·) : (X × X ) 7→ Θ that maps a dataset to a model parameter θ. The standard training process relies
on the raw dataset θ̂n0 = T (X,Y ) while data augmentation provides additional dataset and θ̃n0+n1

= T ([X,Y ], [X̃, Ỹ ]).

D. Additional Experimental Results
D.1. Experiments on MNIST dataseet
In Table 5, we show the comparison results on the MNIST dataset with certified accuracy at various radii, and the comparison
results on the CIFAR-10 dataset are shown in Table 4. We set our results bold-faced whenever the value improves the
Gaussian baseline and underlines whenever the value improves the best among the considered baselines.
As shown in Table 5, our method can significantly improve the certified test accuracy compared with Gaussian (Cohen et al.,
2019b) on the MNIST dataset, and also outperforms existing methods, i.e., SmoothAdv (Salman et al., 2019), MACER
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Table 5: Certified accuracy on MNIST dataset.

σ Models (MNIST) 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75

0.25

Gaussian 99.2 98.5 96.7 93.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Stability training 99.3 98.6 97.1 93.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SmoothAdv 99.4 99.0 98.2 96.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MACER 99.3 98.7 97.5 94.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Consistency 99.3 98.7 98.2 95.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SmoothMix 99.2 98.8 98.0 96.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

ours 99.0 98.1 97.3 95.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ours + SmoothAdv 98.2 97.1 96.3 94.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ours + SmoothMix 98.3 97.7 97.0 96.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.50

Gaussian 99.2 98.3 96.8 94.3 89.7 81.9 67.3 43.6 0.0 0.0 0.0 0.0
Stability training 99.2 98.5 97.1 94.8 90.7 83.2 69.2 45.4 0.0 0.0 0.0 0.0
SmoothAdv 99.0 98.3 97.3 95.8 93.2 88.5 81.1 67.5 0.0 0.0 0.0 0.0
MACER 98.5 97.5 96.2 93.7 90.0 83.7 72.2 54.0 0.0 0.0 0.0 0.0
Consistency 99.2 98.6 97.6 95.9 93.0 87.8 78.5 60.5 0.0 0.0 0.0 0.0
SmoothMix 98.7 98.0 97.0 95.3 92.7 88.5 81.8 70.0 0.0 0.0 0.0 0.0

ours 98.1 97.3 96.2 94.8 92.2 87.8 79.5 67.7 0.0 0.0 0.0 0.0
ours + SmoothAdv 88.8 86.7 84.4 80.6 77.6 73.9 70.3 64.0 0.0 0.0 0.0 0.0
ours + SmoothMix 97.7 97.0 95.4 93.6 89.1 84.9 78.0 67.7 0.0 0.0 0.0 0.0

1.00

Gaussian 96.3 94.4 91.4 86.8 79.8 70.9 59.4 46.2 32.5 19.7 10.9 5.8
Stability training 96.5 94.6 91.6 87.2 80.7 71.7 60.5 47.0 33.4 20.6 11.2 5.9
SmoothAdv 95.8 93.9 90.6 86.5 80.8 73.7 64.6 53.9 43.3 32.8 22.2 12.1
MACER 91.6 88.1 83.5 77.7 71.1 63.7 55.7 46.8 38.4 29.2 20.0 11.5
Consistency 95.0 93.0 89.7 85.4 79.7 72.7 63.6 53.0 41.7 30.8 20.3 10.7
SmoothMix 93.5 91.3 87.9 83.2 77.9 71.1 62.5 53.6 44.9 36.5 28.8 21.3

ours 91.7 88.7 85.4 81.1 75.4 68.0 61.4 52.3 45.0 37.8 30.7 23.2
ours+ SmoothAdv 86.2 82.4 78.9 73.9 67.9 62.4 56.8 49.4 43.7 38.4 33.0 27.8
ours + SmoothMix 92.5 90.2 86.5 83.0 77.3 70.6 62.6 53.4 45.9 37.8 30.7 22.5

24



Interpolation for Robust Learning: Data Augmentation on Geodesics

(Zhai et al., 2020), Consistency (Jeong & Shin, 2020), and SmoothMix (Jeong et al., 2021). The important characteristic
of our method is the robustness under larger noise levels. Our method achieved the highest certified test accuracy among
all the noise levels when the radii are large, i.e., radii 0.50-0.75 under noise level σ = 0.25, radii 0.75-1.75 under noise
level σ = 0.50, and radii 1.50-2.75 under noise level σ = 1.00, which clearly demonstrated the effectiveness of our data
augmentation method, as the robustness improvement under large noise level is more critical (Cohen et al., 2019a).
We also combined our method with SmoothAdv and SmoothMix to evaluate whether our data augmentation method can
provide additive improvements. As shown in Table 5, we find that by combing our data augmentation mechanism, the
performance of previous SOTA methods can be even better, which demonstrates the effectiveness of our method, and can be
easily used as an add-on mechanism for many other algorithms to improve learning robustness.

D.2. More ablation studies
Comparison on training batch size We show the performance comparison for different training batch sizes on the MNIST
dataset.

Table 6: Comparison of different training batch with VAE on the MNIST dataset of certified accuracy at various radii (noise
level σ = 0.5).

σ Training batch (MNIST) 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50

0.5

64 97.5 96.5 95.2 93.5 90.4 84.5 76.5 64.4 0.0 0.0 0.0
128 97.7 96.9 96.0 94.5 91.5 87.0 78.7 65.8 0.0 0.0 0.0
256 97.9 96.8 95.9 94.3 91.6 86.5 79.0 66.3 0.0 0.0 0.0
512 97.6 97.2 96.1 94.5 91.8 87.0 78.7 67.0 0.0 0.0 0.0

1024 97.9 97.0 96.1 94.1 91.7 86.7 78.4 66.8 0.0 0.0 0.0
2048 97.7 97.2 96.1 94.2 91.8 86.4 78.2 67.0 0.0 0.0 0.0
3072 97.7 96.8 96.0 94.1 91.5 86.2 78.1 66.6 0.0 0.0 0.0
4096 97.4 96.7 95.4 93.5 91.0 86.0 78.1 66.0 0.0 0.0 0.0

Comparison on augmentation batch size bn We show the performance comparison for different augmentation batch
sizes on the MNIST dataset.

Table 7: Comparison of different augmentation batch size bn with VAE on the MNIST dataset of certified accuracy at
various radii (noise level σ = 0.5).

σ augmentation batch bn (MNIST) 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50

0.5

4 97.9 96.8 95.9 94.4 91.9 87.0 78.7 67.5 0.0 0.0 0.0
8 97.8 97.2 95.9 94.6 91.6 87.4 79.2 66.7 0.0 0.0 0.0
16 97.9 97.1 96.1 94.2 91.8 87.8 78.7 67.0 0.0 0.0 0.0
32 98.0 96.9 95.9 94.8 91.7 87.0 79.2 67.1 0.0 0.0 0.0
64 97.8 96.9 95.8 94.2 92.1 87.5 78.6 67.5 0.0 0.0 0.0

128 97.9 97.2 95.9 94.7 91.8 87.5 78.6 66.3 0.0 0.0 0.0
256 97.7 97.1 96.1 94.4 91.9 88.0 78.8 67.6 0.0 0.0 0.0
512 97.8 97.2 96.2 94.6 91.8 87.1 79.1 66.8 0.0 0.0 0.0
1024 98.0 96.9 96.2 94.5 91.1 86.7 78.4 67.3 0.0 0.0 0.0

Influence of magnificent coefficient ma The comparison results of different magnificent coefficient ma with correspond-
ing certified accuracy at various radii are shown in Table 8.
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Table 8: Comparison of different magnificent coefficients ma on the MNIST dataset of certified accuracy at various radii.
(noise level σ = 0.5)

σ magnificent coefficient ma (MNIST) 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75

0.5

1 97.8 97.2 95.9 94.3 92.2 87.6 78.7 67.5 0.0 0.0 0.0 0.0
2 98.1 97.3 96.2 94.8 92.2 87.8 78.7 67.7 0.0 0.0 0.0 0.0
3 98.2 97.3 96.0 94.7 92.0 87.4 78.6 66.6 0.0 0.0 0.0 0.0
4 97.9 97.1 95.8 94.6 92.2 87.8 78.5 66.8 0.0 0.0 0.0 0.0
5 98.1 97.1 96.1 94.5 92.3 87.4 79.2 66.4 0.0 0.0 0.0 0.0
6 97.8 97.0 96.1 94.5 92.6 87.5 79.2 67.0 0.0 0.0 0.0 0.0
7 98.1 96.7 96.0 94.5 92.0 87.7 78.9 66.4 0.0 0.0 0.0 0.0

Influence of ot lbd The comparison results of different ot lbd with corresponding certified accuracy at various radii are
shown in Table 9.

Table 9: Comparison of different ot lbd on the MNIST dataset of certified accuracy at various radii. (noise level σ = 0.5)

σ ot lbd (MNIST) 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75

0.5

1e-1 97.3 96.1 94.6 92.5 88.3 82.4 75.1 63.0 0.0 0.0 0.0 0.0
1e-2 96.7 96.1 94.6 92.3 88.6 82.4 74.6 64.9 0.0 0.0 0.0 0.0
1e-3 96.8 96.2 94.4 91.6 88.6 82.5 75.1 63.4 0.0 0.0 0.0 0.0
1e-4 97.2 96.3 94.3 91.3 87.7 82.6 75.4 64.5 0.0 0.0 0.0 0.0

Influence of ot t The comparison results of different ot t with corresponding certified accuracy at various radii are shown
in Table 10.

Table 10: Comparison of different ot t on the MNIST dataset of certified accuracy at various radii. (noise level σ = 0.5)

σ ot t (MNIST) 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50

0.5

0.1 97.8 97.2 96.1 94.8 92.1 87.6 78.5 66.5 0.0 0.0 0.0
0.2 97.7 97.2 95.9 94.3 92.2 87.5 78.5 66.6 0.0 0.0 0.0
0.3 97.9 97.0 96.2 94.5 91.4 86.5 78.4 67.0 0.0 0.0 0.0
0.4 97.9 97.1 96.1 93.9 91.3 87.3 78.6 67.2 0.0 0.0 0.0
0.5 98.0 97.3 95.9 93.8 91.0 86.7 77.7 66.7 0.0 0.0 0.0

D.3. More experimental results
Influence of VAE training The training protocol for VAE can also affect performance. We adopted different VAE training
mechanisms and computed the corresponding certified accuracy at various radii, which is shown in Table 11.

Table 11: Comparison of different VAE training methods on the CIFAR-10 dataset of certified accuracy at various radii.

σ VAE training (CIFAR-10) 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75

0.25
Without crop and flip 67.80 60.70 51.50 41.70 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

With crop and flip 67.20 60.30 53.40 44.60 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.5
Without crop and flip 50.70 46.10 41.60 36.50 32.90 28.20 22.40 18.20 0.00 0.00 0.00 0.00

With crop and flip 47.50 44.10 39.70 35.50 30.70 26.50 22.40 18.60 0.00 0.00 0.00 0.00

1.0
Without crop and flip 34.90 31.90 28.20 25.20 23.10 21.30 19.20 17.70 15.60 13.60 11.10 9.70

With crop and flip 36.40 33.00 29.90 26.90 24.30 21.90 20.00 17.60 14.80 12.90 10.40 8.70

Influence of the hidden size z in VAE More ablation study results on the hidden size z in VAE on the CIFAR-10 dataset
are shown in Table 12.
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Table 12: Comparison of different hidden sizes z in VAE on the CIFAR-10 dataset of certified accuracy at various radii.

σ z in VAE (CIFAR10) 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75

0.25

30 67.90 59.40 48.80 41.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
64 67.80 60.70 51.50 41.70 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
90 67.90 59.40 48.90 41.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
128 69.70 63.40 56.00 47.30 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.5

30 51.30 47.00 41.90 38.70 33.80 28.70 23.90 19.20 0.00 0.00 0.00 0.00
64 50.70 46.10 41.60 36.50 32.90 28.20 22.40 18.20 0.00 0.00 0.00 0.00
90 51.30 47.00 41.90 38.70 34.00 28.60 23.80 18.80 0.00 0.00 0.00 0.00
128 55.40 50.70 45.60 40.60 35.20 30.50 25.70 19.50 0.00 0.00 0.00 0.00

1.0

30 33.80 31.00 28.00 24.60 22.00 19.40 17.30 14.90 13.40 10.40 9.40 8.40
64 34.90 31.90 28.20 25.20 23.10 21.30 19.20 17.70 15.60 13.60 11.10 9.70
90 40.90 36.90 34.50 31.50 28.10 24.40 22.50 20.40 16.50 14.00 12.30 9.70
128 39.00 35.50 31.90 28.20 24.40 21.80 18.50 16.10 13.80 11.20 9.20 7.70

Influence of t on MNIST dataset More ablation study results of different ot t with PCA and VAE on the MNIST dataset
are shown in the following tables.

Table 13: Comparison of different t with PCA on the MNIST dataset of certified accuracy at various radii (without mixing
label, noise level σ = 0.25).

σ t (MNIST) 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50

0.25

0.001 99.40 98.50 97.20 95.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.005 99.30 98.30 96.90 94.60 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.10 99.40 98.40 97.20 95.30 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.15 99.50 98.20 97.10 94.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.20 99.20 98.70 97.00 95.30 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.25 99.50 98.40 97.00 94.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.30 99.30 98.10 97.30 95.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.35 99.40 98.60 96.90 94.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.40 99.60 98.20 96.90 95.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.45 99.40 98.30 97.00 94.80 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.50 99.40 98.40 97.20 95.30 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 14: Comparison of different t with VAE on the MNIST dataset of certified accuracy at various radii (without mixing
label, noise level σ = 0.25).

σ t (MNIST) 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50

0.25

0.001 99.30 98.60 96.40 93.30 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.005 99.30 98.20 97.20 93.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.10 98.90 98.20 97.00 93.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.15 99.10 98.50 97.40 94.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.20 98.80 98.50 97.30 94.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.25 99.30 98.60 96.80 94.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.30 99.10 98.00 96.80 93.80 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.35 99.00 98.40 97.00 94.30 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.40 99.20 98.00 96.90 94.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.45 99.10 98.20 96.60 94.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.50 99.30 98.40 97.00 94.60 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Table 15: Comparison of different t with PCA on the MNIST dataset of certified accuracy at various radii (without mixing
label, noise level σ = 0.5).

σ t (MNIST) 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50

0.5

0.001 99.00 98.10 96.90 95.40 91.40 85.50 75.10 56.20 0.00 0.00 0.00
0.005 98.90 97.90 97.10 95.50 92.20 85.70 75.20 57.50 0.00 0.00 0.00
0.10 99.00 98.30 97.20 95.30 92.10 85.60 75.70 56.50 0.00 0.00 0.00
0.15 99.10 98.20 97.10 95.50 91.50 85.30 74.80 55.70 0.00 0.00 0.00
0.20 99.00 98.40 96.70 95.20 91.90 86.00 75.30 58.20 0.00 0.00 0.00
0.25 99.10 98.10 97.10 95.20 92.10 85.80 75.70 58.00 0.00 0.00 0.00
0.30 99.10 98.30 97.40 95.30 91.30 86.00 74.60 57.50 0.00 0.00 0.00
0.35 99.10 97.80 97.10 95.20 92.10 86.30 75.50 57.50 0.00 0.00 0.00
0.40 99.10 98.10 97.00 95.10 91.60 85.90 75.70 55.90 0.00 0.00 0.00
0.45 99.00 98.30 97.30 95.60 92.50 85.90 75.00 57.30 0.00 0.00 0.00
0.50 99.00 98.30 96.70 95.40 91.90 85.60 75.00 57.00 0.00 0.00 0.00

Table 16: Comparison of different t with VAE on the MNIST dataset of certified accuracy at various radii (without mixing
label, noise level σ = 0.5).

σ t (MNIST) 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50

0.5

0.001 99.00 98.100 96.90 95.40 91.40 85.50 75.10 56.20 0.00 0.00 0.00
0.005 98.90 97.90 97.10 95.50 92.20 85.70 75.20 57.50 0.00 0.00 0.00
0.10 99.00 98.30 97.20 95.30 92.10 85.60 75.70 56.50 0.00 0.00 0.00
0.15 99.10 98.20 97.10 95.50 91.50 85.30 74.80 55.70 0.00 0.00 0.00
0.20 99.00 98.40 96.70 95.20 91.90 86.00 75.30 58.20 0.00 0.00 0.00
0.25 99.100 98.10 97.10 95.20 92.10 85.80 75.70 58.00 0.00 0.00 0.00
0.30 99.100 98.30 97.40 95.30 91.30 86.00 74.60 57.50 0.00 0.00 0.00
0.35 99.10 97.80 97.10 95.20 92.10 86.30 75.50 57.50 0.00 0.00 0.00
0.40 99.10 98.10 97.00 95.10 91.60 85.90 75.70 55.90 0.00 0.00 0.00
0.45 99.00 98.30 97.30 95.60 92.50 85.90 75.00 57.30 0.00 0.00 0.00
0.50 99.00 98.30 96.70 95.40 91.90 85.60 75.00 57.00 0.00 0.00 0.00

Table 17: Comparison of different t with PCA on the MNIST dataset of certified accuracy at various radii (without mixing
label, noise level σ = 1.0).

σ t (MNIST) 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50

1.0

0.001 95.90 93.90 90.20 86.40 80.40 72.70 61.70 50.80 38.80 27.50 16.40
0.005 96.00 94.00 90.20 86.40 80.40 72.80 61.40 50.90 38.40 28.20 16.50
0.10 95.70 93.80 90.00 85.90 80.10 72.50 61.60 50.90 39.20 28.20 16.90
0.15 95.60 93.90 89.80 86.20 80.30 72.80 62.10 50.80 38.10 27.20 15.90
0.20 96.20 94.00 90.40 86.30 80.30 72.40 61.50 50.40 38.40 27.40 16.30
0.25 96.10 93.90 90.50 86.10 80.20 72.70 61.40 50.80 38.70 27.90 16.00
0.30 96.10 94.10 90.00 86.70 80.00 72.40 61.40 50.50 38.10 27.20 16.10
0.35 95.90 93.80 90.20 86.40 80.30 72.90 61.40 50.70 37.80 27.600 15.800
0.40 96.10 93.90 90.20 86.60 79.90 72.50 61.50 50.30 38.10 28.00 16.30
0.45 95.80 93.90 90.10 86.60 80.40 72.30 61.30 50.80 37.80 27.40 16.30
0.50 96.10 93.60 90.00 86.00 79.80 73.20 61.70 50.90 38.30 27.30 16.10
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Table 18: Comparison of different t with VAE on the MNIST dataset of certified accuracy at various radii (without mixing
label, noise level σ = 1.0).

σ t (MNIST) 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50

1.0

0.001 96.00 94.20 90.40 86.70 79.70 73.10 61.80 49.90 35.90 24.20 13.30
0.005 95.70 93.90 90.50 86.20 80.20 72.40 61.80 49.80 35.80 24.90 13.50
0.10 95.60 93.90 90.00 86.80 80.30 72.60 61.20 50.30 36.00 24.80 13.70
0.15 95.80 94.00 90.30 86.70 80.30 72.30 61.90 49.90 6.60 25.40 13.70
0.20 95.50 94.10 89.80 86.20 79.70 72.30 62.00 50.10 37.10 26.100 14.100
0.25 95.80 93.80 90.10 86.50 80.30 72.70 62.50 50.50 37.10 25.90 14.40
0.30 95.80 93.70 90.50 86.00 80.30 72.70 62.10 50.00 37.90 26.60 14.50
0.35 95.50 93.50 89.80 86.10 80.40 72.40 61.70 50.50 37.30 26.50 14.60
0.40 95.80 93.60 89.80 85.60 79.70 72.30 62.10 51.00 37.80 26.80 14.80
0.45 95.60 93.20 89.70 86.00 79.80 72.20 62.30 50.10 38.40 28.20 15.70
0.50 95.50 93.30 89.60 85.80 79.70 72.20 61.80 51.20 38.40 27.80 16.90
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