Entropy Rectifying Guidance
for Diffusion and Flow Models

Tariq Berrada Ifriqi'-2 Adriana Romero-Soriano' 34

Michal Drozdzal' Jakob Verbeek! Karteek Alahari’
L FAIR at Meta 2 Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LJK, France
3 McGill University 4 Mila, Quebec Al institute ~ ° Canada CIFAR Al chair
tarigberrada@meta.com

Abstract

Guidance techniques are commonly used in diffusion and flow models to improve
image quality and input consistency for conditional generative tasks such as class-
conditional and text-to-image generation. In particular, classifier-free guidance
(CFQG) is the most widely adopted guidance technique. It results, however, in
trade-offs across quality, diversity and consistency: improving some at the expense
of others. While recent work has shown that it is possible to disentangle these
factors to some extent, such methods come with an overhead of requiring an
additional (weaker) model, or require more forward passes per sampling step. In
this paper, we propose Entropy Rectifying Guidance (ERG), a simple and effective
guidance method based on inference-time changes in the attention mechanism of
state-of-the-art diffusion transformer architectures, which allows for simultaneous
improvements over image quality, diversity and prompt consistency. ERG is more
general than CFG and similar guidance techniques, as it extends to unconditional
sampling. We show that ERG results in significant improvements in various tasks,
including text-to-image, class-conditional and unconditional image generation.
We also show that ERG can be seamlessly combined with other recent guidance
methods such as CADS and APG, further improving generation results.

1 Introduction

Diffusion (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021; Dhariwal and Nichol,
2021) and flow models (Lipman et al., 2023; Ma et al., 2024; Esser et al., 2024) are state-of-the-art
generative modeling tools for various modalities, ranging from images (Rombach et al., 2022; Podell
et al., 2024; Chen et al., 2024; Esser et al., 2024), to audio (Wang et al., 2023; Levy et al., 2023), and
video (Jin et al., 2025; Polyak et al., 2024). These models generate data by starting with a simple prior
and iteratively removing noise — a process called “denoising”. See Kingma and Gao (2023); Lipman
et al. (2023) for details on diffusion and flow matching. These models can be conditioned on various
inputs to control the generative process, e.g., in text-to-image models. Guidance techniques such
as classifier guidance (Dhariwal and Nichol, 2021) and classifier-free guidance (Ho and Salimans,
2021) are commonly used to improve sample quality and consistency with input conditioning. In
the sampling process, these techniques combine a conditional signal with an unconditional one, and
control the strength of conditioning through a scaling parameter. Although such guidance techniques
are a crucial component in achieving state-of-the-art results, they are also known to negatively affect
the diversity of generated samples given a particular prompt (Sadat et al., 2024; Karras et al., 2024;
Kynkidnniemi et al., 2024; Saharia et al., 2022). Moreover, too high guidance scales may lead to
overly saturated images, affecting the quality of generated images (Saharia et al., 2022). An extensive
analysis on the trade-offs of image generation quality, diversity, and consistency was presented
by Astolfi et al. (2024). To mitigate these quality-diversity-consistency trade-offs, more advanced
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Figure 1: Qualitative comparison of classifier-free guidance (CFG) and our Entropy Rectifying
Guidance (ERG). The images generated using ERG (second and fourth row) exhibit greater quality
and diversity than standard CFG. Images are generated using 50 Euler steps; each column corresponds
to a different random seed for the generations.

guidance techniques have recently been proposed, see e.g. Sadat et al. (2025); Karras et al. (2024).
Most guidance techniques , however, require spending part of the training cycles on unconditional
generation for the guidance to work, even if unconditional generation is not a goal in itself, and
are not applicable to unconditional sampling (Sadat et al., 2025; Ho and Salimans, 2021). Others
rely on a second model with weaker performance than the main model, thereby increasing memory
requirements (Karras et al., 2024).

In our work, we build upon the work of Karras et al. (2024) and Hong (2024), and propose Entropy
Rectifying Guidance (ERG): a simple and effective method to obtain both a strong and a weak
predictive signal from a single model that leverages attention layers, where the model may be
conditional or unconditional. In particular, our method uses the Hopfield energy formulation of
attention (Ramsauer et al., 2021; Hong, 2024) and applies a temperature scaling to the softmax
function of the attention layers in order to obtain the weak predictive signal. This scaling does not
require any adaptations in model training, and may be applied to pre-trained denoising models, as
well as their accompanying text encoders. Moreover, motivated by this energy interpretation of
attention layers, we also consider iterative re-application of attention layers, and rescaling the residual
attention update. Our experiments show that manipulating the attention layers in this manner results
in simultaneous improvements in sample quality, diversity, and consistency, contrary to the trade-offs
observed by Astolfi et al. (2024) for classifier-free guidance.

In summary, our contributions are the following:

1. We propose Entropy Rectifying Guidance (ERG), a guidance mechanism based on modifying the
energy landscape of the attention layers.

2. Since our guidance mechanism does not require unconditional inference, it is directly applicable
to any attention-based diffusion or flow model, including unconditional, class-conditional, and
text-to-image models.

3. Experimentally, we find that ERG significantly improves image quality and diversity while
retaining the same prompt consistency as the standard classifier-free guidance (430 points in
density, +4 points in VQAScore) on COCO at 512 resolution using our 1.9B text-to-image model.



2 Related work and background

In this section, we briefly review background material on diffusion and flow models, and related work
on guidance techniques to improve sampling as well as the Hopfield energy formulation of attention.

2.1 Diffusion and flow matching models

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021) form a flexible class
of generative models whose underlying principle is to map samples € from a trivial unit Gaussian
prior pg = N(0,I) to samples from a learned model p; of the data distribution. The forward process
is defined as: x; = ayx1 + o€ with t € [0, 1], where x; ~ p1, and «; is a decreasing function of
“time” ¢ while o, an increasing function of ¢.

Flow matching methods (Lipman et al., 2023) assume that ag = 07 = 1 and o1 = 0¢ = 0. Using
these assumptions, during the reverse process x; interpolates between € at t = 0 and x; at¢t = 1. In
contrast, score-based diffusion models (Ho et al., 2020; Dhariwal and Nichol, 2021) set «; and o
implicitly through different formulations of stochastic differential equations (SDE) where NV (0, I) is
the equilibrium distribution. Additionally, they consider ¢ € [0, T'| with T large enough so that x is
approximately distributed as a unit Gaussian random variable.

2.2 Guidance mechanisms

Classifier guidance. To enable high quality conditional generation, Dhariwal and Nichol (2021)
proposed to guide the sampling process by leveraging gradients from pre-trained auxiliary classifier
p(c|x) in each denoising step. They use the classifier to define the (scaled) joint score function as
Vi, logp(x¢, ¢) = Vx, log p(x¢) + wVx, log p(c|x;), where p(x;) is an unconditional data model,
and w is a scalar parameter regulating the strength of the classifier guidance. While classifier guidance
allows to improve input consistency and image quality (at the expense of diversity), it requires an
auxiliary classification model that is robust to inputs x; with varying amounts of noise.

Classifier-free guidance. To avoid the need for an auxiliary noise-robust classifier, Ho and Sali-
mans (2021) proposed classifier-free guidance (CFG). In this case, during the training process, two
generative models are learned, one conditional p(x|c) and one unconditional p(x|@). In practice, the
unconditional model is trained by dropping conditioning information with a small probability. The
score function used for sampling is extrapolated towards the conditional prediction and away from the
unconditional prediction VO log p(x|c) = wVy log p(x|c) + (1 — w)Vy log p(x|()). While CFG
improves image quality and input consistency with respect to classifier guidance, it tends to come at
the cost of a reduction in diversity (Astolfi et al., 2024; Ho and Salimans, 2021; Sadat et al., 2024).
Moreover, CFG often leads to generation artifacts, such as over-saturation as the guidance scale w
grows (Sadat et al., 2025).

Advanced guidance techniques. Several improved variants of classifier-free guidance have been pro-
posed recently. Hong et al. (2023) presented Self-Attention Guidance (SAG), a guidance mechanism
based on feeding a modified intermediate sample x; when performing inference for unconditional
prediction. The modification consists in blurring x; in regions that are most attended to by the
model’s self-attention. This method has been developed for the U-Net architecture, hence applying it
to more recent diffusion transformer architectures requires a hyperparameter search to understand
which attention layers should be used for this method.

Smoothed energy guidance (SEG) (Hong, 2024) contrasts conditional prediction with a “weaker”
conditional prediction obtained by altering the attention’s softmax energy with a Gaussian kernel
applied to queries. This method is developed for U-Net-style architectures and the softmax alteration
applies to the self-attention layers in the middle block of the U-Net. In the conditional case, SEG
uses a linear combination of the conditional, unconditional, and energy-smoothed unconditional
prediction, whereas in our approach we only use the conditional and smoothed conditional term.
Thus, SEG requires an additional function evaluation with respect to ERG for conditional inference.
For unconditional inference, both approaches require only two function evaluations. In a similar
spirit, Ahn et al. (2024) propose a guidance method based on manipulating the attention mechanism,
by replacing the attention matrix with an identity mapping inside the denoiser U-Net.



Karras et al. (2024) proposed AutoGuidance, a method that uses a smaller/weaker version of the same
conditional model for classifier-free guidance, resulting in better diversity and image quality. Like
ours, their approach can also be applied to unconditional sampling. However, their method requires
access to an earlier checkpoint of the model or, for best results, training a separate model with lower
capacity, as well as accessing two models when sampling, which may increase the memory footprint.

Rather than considering modifications of the unconditional model term, Sadat et al. (2024) proposed
the “condition-annealed diffusion sampler” (CADS) to increase the diversity of generations while
maintaining sample quality. This is achieved by adding Gaussian noise to the conditioning tokens
during inference, using a piecewise-linear decreasing schedule on the noise amplitude. Sadat et al.
(2025) propose “adaptive projected guidance” (APG), a variant of CFG that resolves the over-
saturation problem by emphasizing guidance orthogonal to the conditional prediction, rescaling the
guidance term, and introducing a negative momentum term. The latter two approaches can be easily
combined with our approach, and we consider such combinations in our experiments.

Lastly, several works (Kynkéddnniemi et al., 2024; Chung et al., 2024a; Pavasovic et al., 2025; Wang
et al., 2024) explore non-constant weight schedules for CFG. Such methods are complementary to
our work, as our method only operates at the architecture level by rectifying the attention updates.
Although they therefore could be combined with our approach, we defer this to future work.

2.3 Hopfield energy formulation of attention

The Hopfield network (Hopfield, 1982) is a dense associative memory model that aims to associate
an input with its most similar pattern. More specifically, it constructs an energy function to model
an energy landscape that contains basins of attraction around the desired patterns. Modern Hopfield
energy networks (Ramsauer et al., 2021) introduce a new family of energy functions that improve the
storage capacity of the model and make it compatible with continuous embeddings. Specifically, the
following energy functional matches a continuous d-dimensional state (query) pattern £ € R? with
N stored (key) patterns X = (x1,...,xy) € RN as B(¢;X) = $£7¢€ — LogSumExp (X ¢, 8) ,

where LogSumExp(x, 8) = 3~ !log (Zle exp(xi)) , where z; are the elements of the vector x,

and [ a scalar hyperparameter defining the sharpness of the approximation of the maximum in the
LogSumExp operation. Intuitively, the first term imposes a finite norm on the queries while the second
term measures the alignment between the state patterns (queries) and stored patterns (keys). Using the
Concave-Convex Procedure (CCCP) (Yuille and Rangarajan, 2003), an iterative update rule, which
converges to the global minima of the energy, can be derived as &, ; = X SoftMax(3X "¢;), where
SoftMax(x) = exp(x — LogSumExp(x, 1)). Equivalently, each iterative update step can be seen
as a gradient update in the negative direction of the energy V¢ E(£; X) = £ — X SoftMax(8X "€).
Taking a gradient descent step on this energy landscape with a step size ~ results in an update of the
form&; 1 =& — v (fl — XSoftMax(ﬂXTfl)), and for v = 1 we recover the CCCP update.

Ramsauer et al. (2021) show that the CCCP update is related to the standard attention opera-
tion as follows. Assuming there are S state (query) patterns, and N stored (key) patterns that
can be mapped to keys, queries and values using linear transformations, he state pattern can
be obtained through a concatenation: Z = [£;,...,€5] € RS, Then the attention map is
given by Z;,; = XSoftMax(X "Z;). The keys, queries and values are obtained via linear pro-
jections as K = XVV;}r € RVXd v = XWJ € RV%d and Q = ElJerVér € R5%4 re-

spectively. By setting 5 = ﬁ and substituting this into the CCCP update rule, we obtain:
Qi1 = SoftMaX(Q\I/%T JK = SoftMax (Q—\I/%T) A% (I/VKVV‘jl)—r . Hence, we observe the equa-

tion of attention up to a linear transformation, which provides an interpretation of the attention
mechanism through the Hopfield energy lens. Such a formulation has been used in the Energy
Based Cross-Attention method (EBCA) (Park et al., 2024) for adaptive context control in order to
incorporate additional contexts into the generative process of a conditional diffusion model.

3 Guidance via entropy rectification

Similarly to previous approaches (Ho and Salimans, 2021; Hong, 2024; Karras et al., 2024), our
approach is based on contrasting the (conditional) denoising estimate with a less powerful one.
In particular, using the Hopfield energy interpretation of attention (Ramsauer et al., 2021), see



Section 2.3, we manipulate the energy landscape of the attention layer, by rectifying the entropy
of the associations in the attention operation. The modified attention layers lead to lower quality
predictions, which are used as the contrasting term for guidance. This approach does not require a
second model, and can be used for both conditional and unconditional sampling. We refer to our
approach as Entropy Rectifying Guidance (ERG).

3.1 Manipulating the energy landscape

Our method manipulates the energy landscapes by introducing two new test-time hyperparameters, o
and 7 in the energy function:

B(§X) = 5676 — o LogSumExp (XT,7 - 6), n

where = ﬁ is the default temperature of the at-
tention attention update. The temperature rescaling
parameter 7 controls the sharpness of the softmax Algorithm 1 Entropy rectifying guidance
attention, and « the relative importance of the simi- - -

. . Require: K € N number of gradient update steps.
larity between the state matching term compared 0 Require: + > 0 step size.
the norm of the state patterns. Temperature rescal- Require: o € R State pattern matching weight.
ing with 7 is similar to the Gaussian blurring of the ﬁ:g“f::: ;(>VO ;“%“;f&timperatgre'l

. . . ulre: s €ys and values.

attention maps introduced in SEG (Hong, 202.4), Require: Q € RS queries.
but allows for non-local smoothing of the attention &« 0
maps. Additionally, the view of the attention layer ~ Whilek < K do -
as a CCCP update of the energy function, allows QeQ-n (Q — @ - softmax (T F QK ) V)
for consideration of different methods to minimize endkw ?ﬂek 1
the energy landscape. For instance, taking K gradi-
ent descent steps with step size -, as illustrated in
Algorithm 1.

Using different settings of the hyperparameters «;, v, 7 and K allows us to manipulate the attention
operation, and obtain noise estimates that deviate from the trained model. We expect these to be
weaker estimates compared to those provided by the model, as it was trained with standard attention
layers, i.e. with « = v = 7 = K = 1. When applying this rectification mechanism to the denoiser
model, we refer to the method as image-ERG, or I-ERG for short. In particular, we apply it to the
negative/unconditional prediction part of the classifier-free guidance, and only on certain layers of
the network that we will identify in our experiments. Additionally, we impose a kickoff threshold x
on the time steps in which guidance is applied.

3.2 Manipulating the energy of the text encoder

Besides the image denoising model, we can also manipulate the energy landscape of attention-based
text encoders to obtain a weak version of the conditional embeddings. Let c be the text prompt that
is used as conditioning. The text tokens are obtained by feeding the prompt to the text encoder:
Enc(c) € R, such as Llama (Grattafiori et al., 2024) or T5 (Chung et al., 2024b). Text tokens are
then fed to the denoiser model through cross-attention layers.

To obtain a contrasting signal for guidance, we manipulate the energy landscape in the self-attention
layers of the text encoder following Algorithm 1. More specifically, for every self-attention layer in
the text encoder, we introduce a temperature hyperparameter in the softmax function. This enables us
to change the strength by which keys and queries are being matched, resulting in a modified prompt
embedding at the output. For the remainder of the manuscript, we refer to this method condition-ERG,
or C-ERG for short. For simplicity reasons, for the text encoder, we only consider changing the
temperature but not the step size ~, pattern matching weight «, and number of update steps K.

3.3 Guidance update

When combining the energy modulations in the text-encoder and denoising model, we obtain our
Entropy Rectifying Guidance (ERG) update:

AERG(Xycvt; ef) =w- D(X5¢C7t) + (1 - 'lU) ' DE(X7¢Zat7@£)7 (2)



where D is the learned denoiser model with parameters © that are omitted for simplicity, D is the
denoiser model where the attention layers have been replaced by the modified version presented
in Equation (1), and ©¢ = {«,, 7, K'} the set of hyperparameters introduced by ERG. We use ¢,
to denote the prompt embedding produced by the text encoder, while ¢” denotes the embedding
obtained with the modified attention layers.

Compared to standard CFG, the main differences are that (i) we replace the unconditional text
embeddings with conditional embeddings obtained with the entropy-rectified attention mechanism
(C-ERG), and (ii) the denoiser model for the negative/unconditional predictions also uses modified
attention layers (I-ERG). Finally, the changes to the image denoiser are only applied after a certain
point during sampling in order to not overly penalize the negative components of the ERG update at
the start of sampling. For the text-encoder we apply the temperature scaling throughout the denoising
process, so that at any stage we obtain a noise prediction that can be contrasted with the vanilla
denoising signal.

Note that our approach can be combined with other approaches, e.g., CADS (Sadat et al., 2024) and
APG (Sadat et al., 2025). We will explore such combinations in our experiments.

4 Experimental evaluation

4.1 Experimental setup

Datasets and architectures. We experiment with class-conditional and text-to-image models trained
using rectified flow-matching (Lipman et al., 2023; Esser et al., 2024). We use a face-blurred version
of ImageNet (Deng et al., 2009) to train class-conditional models at 256 and 512 resolution based on
the XL/2 variant of the DiT architecture (Peebles and Xie, 2023), which is composed of 28 attention
blocks with hidden dimension of 1152, resulting in 790M parameters. For the text-to-image model,
we use an architecture similar to MMDIT (Esser et al., 2024), and train a 512 resolution model on a
mix of a proprietary dataset of 320M text-image pairs and YFCC100M (Thomee et al., 2016), where
all faces in YFCC100M have been blurred. Similar to MMDIT (Esser et al., 2024), the model uses a
mix of different text encoders: Llama3-8B (Grattafiori et al., 2024) and Flan-T5-XL (Chung et al.,
2024b). During training, each of the text encoders is disabled with a probability of 1/0.1, so that the
probability of both encoders being disabled is around 10%. We enable both text encoders during
inference time for text-to-image generation, and disable both text-encoders for unconditional image
generation experiments. The architecture of the model is made of 38 blocks with a hidden dimension
of 1,536, resulting in approx 1.9B parameters. For both datasets, we recaption the images using both
Florence-2 Large (Xiao et al., 2024) to obtain medium-length captions and PaliGemma-3B (Beyer
et al., 2024) for shorter COCO-style captions. Additional techniques to improve training efficiency of
this model, such as conditioning mechanisms and pre-training strategies, were adopted from Berrada
et al. (2024). For the class-conditional model we use the asymmetric autoencoder of Zhu et al. (2023),
while for the larger text-to-image model we use the SD3 autoencoder (Esser et al., 2024).

Metrics. We consider metrics for quality, diversity, and consistency (Astolfi et al., 2024). We
measure sample quality with FID (Heusel et al., 2017) and density (Naeem et al., 2020); sample
diversity is measured with coverage (Naeem et al., 2020) and FID; and prompt consistency is measured
with CLIPScore (Hessel et al., 2021) and VQAScore (Lin et al., 2024). For evaluation of text-to-image
and unconditional generation, we use the 40k COCQO’ 14 validation image-caption pairs. For the
class-conditional models, we sample 50 images for each of the 1,000 ImageNet classes and use the
ImageNet validation set as a reference. All evaluated models are sampled using the Euler method
with 50 sampling steps. We use the EvalGIM (Hall et al., 2024) library for all evaluations.

Baselines. In addition to the standard classifier-free guidance, we compare our method to several
recent state-of-the-art guidance techniques: Condition-Annealed Diffusion Sampler (CADS) (Sadat
et al., 2024), Adaptive Projected Guidance (APG) (Sadat et al., 2025), Smooth Energy Guidance
(SEG) (Hong, 2024), and Auto-Guidance (Karras et al., 2024). For APG, we follow the recommen-
dations from the paper and set yapg = —0.5, napg = 0.0, rapg = 5.0. For CADS, we perform
a grid search over 7°APS € [0.6,0.8], 7$4PS € [0.8,1.0], s“APS € [0.25,1.0],APS = 1.0. Since
SAG, PAG and SEG were developed specifically for the U-Net architecture, we adapt these method
for diffusion transformers (Peebles and Xie, 2023) by applying the method in the attention layers



Table 1: Comparison of ERG with other guidance approaches for text-to-image generation. We
compare ERG to other state-of-the-art guidance approaches and mark the best result in each column
in bold in the top part of the table. In the bottom part of the table we evaluate combinations of ERG
with APG and CADS, and bold results when they surpass the results in the upper part of the table.

Metric .
m FID () Density (1)  Coverage (1)  CLIPScore (1)  VQAScore (1)  NFE ({)
CFG (Ho and Salimans, 2021) 12.81 98.24 71.12 26.45 70.15 2
APG (Sadat et al., 2025) 11.88 104.07 73.06 26.54 72.47 2
CADS (Sadat et al., 2024) 11.93 101.01 72.99 26.76 73.36 2
PAG" (Ahn et al., 2024) 12.75 107.21 72.20 26.80 73.32 2
SAG" Hong et al. (2023) 11.68 103.58 72.74 26.81 72.16 2
SEG" (Hong, 2024) 16.87 87.77 61.91 26.86 73.59 3
AutoGuidance (Karras et al., 2024) 16.62 87.02 62.75 26.59 73.53 2
ERG (ours) 13.62 120.25 73.21 26.86 73.96 2
ERG (ours) + APG 11.37 115.08 80.50 26.74 73.55 2
ERG (ours) + CADS 12.87 128.54 76.23 26.75 73.45 2
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Figure 2: Pareto fronts on consistency-diversity-quality for text-to-image generation. Comparing
ERG + APG (dots) with APG (crosses). We sweep over different guidance scales (each marked with
a different color), and hyper-parameters «, -y, 7 for ERG. Dashed lines trace the Pareto fronts for each
plot. We measure consistency with VQAScore, quality with density and diversity with coverage.

of the middle blocks of the transformer; we refer to these methods with an asterisk superscript.
Additional details on the choice of layers are provided in Appendix D.4. For AutoGuidance, we
follow the recommendations from the paper and use an earlier checkpoint of the same model, at
approximately 1/16-th of the training, as the weaker model. To ensure a fair comparison, we select
the best performing guidance strength for baselines as well as our method using the rank-scoring
algorithm detailed in Appendix A.2. Note that this is different from reporting the optimal score
achieved for each metric, which might not correspond to any particular run because of inherent
trade-offs between the different facets of the generations.

4.2 Main experimental results

Throughout our experiments, we modify attention layers in both the text encoder (C-ERG) and the
image denoising model (I-ERG), unless specified otherwise.

Text-to-image generation. In Table 1, we compare ERG with recent state-of-the-art guidance
mechanisms on the text-to-image generation task. ERG demonstrates excellent performance, outper-
forming baselines such as CFG, SAG, PAG and SEG" in most metrics. Specifically, ERG considerably
boosts image quality as reported for Density (e.g., +22 points when compared to CFG). Additionally,
ERG achieves the highest consistency scores: 4-0.4 points in CLIPScore and +3.8 in VQAScore
when compared to standard CFG. Moreover, ERG combined with APG achieves the overall best
diversity, measured by FID and Coverage, and also improves Density over prior methods. These
results suggest that our ERG approach is successfully able to boost the generation quality of the
model in all three facets of generation (quality, diversity, and consistency). Moreover, the number
of function evaluations (NFE) required for our approach is only two per inference step, which is
comparable to other methods except SEG which requires three.

Following Astolfi et al. (2024), we plot Pareto fronts for quality (measured by Density), diversity
(Coverage), and consistency (VQAScore) metrics in Figure 2 when using ERG + APG. We find all



Figure 3: Unconditional generation results. Compared to not using guidance (top), our ERG
generates more realistic and detailed images and more coherent structure (bottom). Images obtained
from T2I model at 512 with empty prompt as input. Samples in each column use the same seed.

Table 2: Unconditional generation. Comparing Table 3: Class-conditional generation. Com-
ERG to other approaches compatible with uncon- parison of ERG with other guidance methods for

ditional sampling. models trained for 256 and 512 resolution.
FID () Density (1) Coverage (1) Res. FID(|) Density (f) Coverage (1)
No guidance 101.50 8.99 3.63 CFG (Ho and Salimans, 2021) 3.67 127.03 85.81
SAG (Hong et al., 2023) 39.25 46.22 30.70 PAG’ (Ahn et al., 2024) 5.31 111.94 81.04
PAG" (Ahn et al., 2024) 41.50 45.65 30.51 SAG (Hong et al., 2023) 256 3.78 131.89 86.35
SEG" (Hong, 2024) 37.75 55.56 34.79 SEG’ (Hong, 2024) 6.15 132.22 84.51
AutoGuidance (Karras et al., 2024)  39.50 48.26 34.71 ERG (ours) 3.67 141.96 86.72
ERG (ours) 3625 5584 51.59 CEG (Ho and Salimans, 2021) 5.65 146.97 86.70
PAG’ (Ahn et al., 2024) 4.65 134.49 86.50
SAG (Hong et al., 2023) 512 481 120.09 83.91
SEG’ (Hong, 2024) 6.59 160.11 81.85
ERG (ours) 4.56 163.63 86.13

the points belonging to the Pareto fronts correspond to ERG + APG, which improves in all three
facets of the generations w.r.t. APG, and provides significant boosts for quality and consistency. This
can also be observed in the qualitative comparison between APG and ERG + APG in Figure 13 and
Figure 14 in the supplementary material. Similarly, in Figure 1 the images sampled using ERG show
better visual quality than those sampled with CFG.

Unconditional generation. In the unconditional model sampling experiment, we compare I-ERG
with sampling without guidance and using applicable methods: AutoGuidance, SEG", PAG" and
SAG". We provide quantitative evaluation results in Table 2, where we find that ERG outperforms
all other methods, with significant boosts in FID, Density, and Coverage over other methods. The
qualitative examples in Figure 3 clearly exhibit artifacts in terms of structural coherence in all the
objects present in the generated images when not using guidance, which disappear when using ERG.

Class-conditional generation. For class-conditional generation, we observe similar trends as those
seen for text-to-image and unconditional sampling in Table 3. In particular, at 256 resolution, we find
improvements in Density and Coverage. FID remains similar to CFG but is better compared to all
other methods tested. At 512 resolution, ERG is best across all metrics, except for coverage where
ERG is slightly behind CFG and SEG".

4.3 Analysis and ablations

Text attention energy. To isolate the effect of the temperature re-scaling in the text-encoder and
image denoising components, we experiment with C-ERG and disable temperature rescaling in the
image denoising model. In Figure 4, we vary the SoftMax temperature 7. used in the text encoder,
and consider generation performance for different guidance strengths w. For all metrics we find
a somewhat symmetrical behavior around 7, = 1, which corresponds to an unguided prediction
because in this case there is no difference with the normal conditional prediction.
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Figure 4: Temperature rescaling in the conditioning for text-to-image generation (C-ERG). We
vary the text encoder’s attention temperatures 7.. Each curve corresponds to a different guidance
strength w. The left-most point on each curve represents the result for standard CFG.

Table 4: Impact of the different components of ERG. Table 5: Multi-step gradient descent
We accumulate different components of ERG, namely C- for optimizing the energy landscape.
ERG, then I-ERG through denoiser entropy rectification We ablate different values for & and ~.

and objective reweighting, finally all are merged into ERG. & } 115 01 éq
. ¥ . 5 .
7. 7 7 | FID({) Density (1) Coverage (1) CLIP () VQA (1) FID (1) Tl 1562 13.06  12.68
X X x| 1281 98.24 71.12 26.45 70.15 Density (1)  120.25 123.65 121.95 119.07
v X X | 1306 109.52 72.06 26.73 73.10 Coverage (1) 7321  74.07 7263 7211
v / X | 1362 120.25 73.21 26.86 73.96 CLIP (1) 26.86 26.81  26.16  26.77
v o/ /| 1362 123.65 74.07 26.81 74.67 VQA (1) 73.96 74.67 73.01 73.95

The CLIPScore, Coverage and Density metrics generally improve when moving away from 7, = 1,
making it either larger or smaller. For FID, the best values are obtained with low guidance scales and
intermediate temperature values, the general trend shows improved FID using C-ERG compared to
standard guidance. Compared with standard classifier-free guidance (left-hand side of the dashed
lines), we find that all metrics can be improved for any guidance scale, provided with the right
temperature. While 7, < 1 results in higher CLIPScore, 7. > 1 results in higher Coverage, indicating
that tuning 7. provides an easy way to control the diversity-consistency tradeoff.

Combining the different parts. In Table 4, we combine different parts of ERG and measure the
effects on different facets of image generation. Our results show that all components show positive
effects across all metrics, at the expense of a slight degradation in FID. Compared to the CFG baseline
(first row), most of the improvement in CLIPScore and VQA are brought by the conditional entropy
rectification (7., second row), while the improvements in Coverage and Density mostly come from
rectifying the attention in the denoiser to obtain (7;, third row). Finally, a further modest improvement
in Density, Coverage and VQA is brought by the update step size (-, fourth row).

Multi-step gradient descent. In Table 5 we consider the effect of varying number of updates K for
each attention operation along with the update step size. We find small variations in metrics with
respect to the baseline K = v = 1 with slight improvements when setting v = 1.5, using multiple
gradient descent steps did not induce significant gains. Therefore, we used K = v = 1 in our default
setup in our experiments, unless specified otherwise.

5 Conclusion

We presented Entropy Rectifying Guidance (ERG), a novel guidance mechanism for sampling
diffusion and flow models which significantly improves sample quality without sacrificing diversity
and consistency performance. In particular, by manipulating the energy landscape of the attention
layers in the diffusion transformer and the text encoder at inference time, ERG significantly boosts
the performance of different models when studying their quality-consistency-diversity trade-offs and
is applicable to different modalities such as text-to-image, class conditional and unconditional models.
Furthermore, ERG outperforms recent state-of-the-art guidance methods such as CADS, APG, SEG
and AutoGuidance, while requiring the same compute as standard CFG. ERG can be combined with
approaches such as APG and CADS, which further improves results.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: we claim: (i) a novel guidance technique to sample diffusion/flow models, (ii)
our guidance technique is applicable to unconditional sampling, and (iii) improved sample
quality/diversity/consistency compared to previous methods. The claims are clearly stated in
the abstract and introduction. Novelty is backup-up by a clear discussion of relevant related
work, and performance claims are backed up by extensive experimental results on multiple
data sets and models.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes] .
Justification: In section B of the appendix, we discuss the limitations of our method in detail.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms

and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to

address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA] .
Justification: Our paper does not introduce theoretical results.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

» Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Our experiments are accompanied with the full set of hyperparameters used
to reproduce each experiment. Namely Section 4.1 and Appendix E discuss the choice of
hyperparameters in detail. We also provide pseudo-code for our method in Algorithm 1 and
Algorithm 2.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
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some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Our paper provides pseudo-code and hyperparameter choices for popular
open-source models such as Stable Diffusion 3, we evaluate our method on COCO dataset
which is open-source as well. Some models were trained on public data (ImageNet) others
on a mix of public and proprietary data (YFCC + 320M proprietary text-image pairs).

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Section 4.1 provides a comprehensive context for the setup in which exper-
iments were conducted. Our main results in Section 4.2 are accompanied with extensive
ablations in Section 4.3 where each experiment is accompanied with a thorough discussion
of the setup of the experiment and an analysis of the results.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
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Justification: While we do not provide statistical significance tests, we evaluate our method
in different settings (class-conditional, text-to-image), different models (internal models of
different scales, open-source models), and also models trained for different resolutions (256
and 512), across all these setups, we find our method to result in significant improvements.
Accordingly, we believe that the significance of our method is validated by the extent of our
experiments.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Our method consists in a modified sampling algorithm for diffusion and
flow models, the new sampling method has a comparable NFEs to standard classifier-free
guidance, which we report in Table 1. The main difference in compute compared would
be induced by the number of gradient descent steps K in the multistep energy update, this
variable is set to K = 1 in most of our experiments and recommended setups, hence the
computational cost is practically unchanged compared to standard classifier-free guidance.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our internal model was trained on mitigated datasets (CSAM filtering +
face blurring), we only used compliant datasets for evaluation (MS COCO), which is
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under Creative Commons Attribution 4.0 License. Our implementation on top of open-
source models does not alter the model weights, but just provides changes to the guidance
mechanism used for inference.

Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We propose a method to improve the quality of generative models, hence our
method can be used to generate high-quality, realistic content which can be used maliciously
to spread misinformation and disinformation, creating deepfakes, identity theft etc. By
releasing our code transparently, we provide a way for researchers to study and counter the
potential harmful effects of our method being misused, allowing for the development of
defense strategies.

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is

being used as intended and functioning correctly, harms that could arise when the

technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

If there are negative societal impacts, the authors could also discuss possible mitigation

strategies (e.g., gated release of models, providing defenses in addition to attacks,

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from

feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: We do not release any new models or datasets.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.
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* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We carefully cite the respective authors of each method/model and dataset that
was referenced in our manuscript. We additionally provide links to the different assets used
in Table 14.

Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA] .
Justification: We do not introduce new datasets/code/models with our paper.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: We do not perform any crowdsourcing or use human subjects in our work.

Guidelines:
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* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

¢ According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: We do not perform any crowdsourcing or use human subjects in our work.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: Our work does not make use of LLMs as an important, original or non-standard
component of the method we propose.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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