
Large-Scale Study of Vulnerability Scanners for Ethereum Smart Contracts

Christoph Sendner∗, Lukas Petzi∗, Jasper Stang∗, Alexandra Dmitrienko∗
∗University of Würzburg, Germany

Abstract—Ethereum smart contracts, which are autonomous
decentralized applications on the blockchain that manage
assets often exceeding millions of dollars, have become primary
targets for cyberattacks. In 2023 alone, such vulnerabilities led
to substantial financial losses exceeding a billion US dollars.
To counter these threats, various tools have been developed by
academic and commercial entities to detect and mitigate vul-
nerabilities in smart contracts. Our study investigates the gap
between the effectiveness of existing security scanners and the
vulnerabilities that still persist in practice. We compiled four
distinct datasets for this analysis. The first dataset comprises
77,219 source codes extracted directly from the blockchain,
while the second includes over 4 million bytecodes obtained
from Ethereum Mainnet and testnets. The other two datasets
consist of nearly 14,000 manually annotated smart contracts
and 373 smart contracts verified through audits, providing a
foundation for a rigorous ground truth analysis on bytecode
and source code. Using the unlabeled datasets, we conducted
a comprehensive quantitative evaluation of 18 vulnerability
scanners, revealing considerable discrepancies in their findings.
Our analysis of the ground truth datasets indicated poor
performance across all the tools we tested. This study unveils
the reasons for poor performance and underscores that the
current state of the art for smart contract security falls
short in effectively addressing open problems, highlighting that
the challenge of effectively detecting vulnerabilities remains a
significant and unresolved issue.

1. Introduction

Blockchains are digital ledgers that enable mutually
untrusted parties to transact without involving a third-party
intermediary such as a bank. The rise and wide usage
of blockchain platforms like Bitcoin [1], Ethereum [2],
and Hyperledger [3] fueled rapid growth of the blockchain
ecosystem.

Smart contracts, which are self-executing computer pro-
grams, are a crucial component of blockchain-based sys-
tems. They are deployed on a blockchain and facilitate the
creation of new decentralized applications (dApp) [4], such
as Decentralized Finance (DeFi) [5], Non-Fungible Tokens
(NFTs) [6], and games [7]. Smart contracts govern the use
of cryptocurrency – digital coins that are locked in a contract
and can be accessed only when specific conditions are
met. Developers can use them to build various services, for
instance, for anonymizing money (e.g., TornadoCash [8]),
lending money (e.g., MakerDAO [9]), and pooling resources
for various projects (e.g., Uniswap [10]).

Decentralized applications have gained immense popu-
larity, with MakerDAO alone holding $8.49 billion in cryp-
tocurrency [11]. However, these dApps are often targeted
by malicious actors who try to exploit vulnerabilities in
their contracts. Unfortunately, some of these attacks are
successful and can result in damages worth millions of
dollars for all parties involved [12].

Cryptocurrency hacks have become increasingly com-
mon in recent years, with the DAO hack [12] being the
first and one of the most well-known incidents. It resulted
in a loss of $60 million US dollars and led to a hard
fork of Ethereum. Other examples include the Safemoon
Hack, which occurred due to an access control vulnerability
and enabled adversaries to exfiltrate around 8.9 million dol-
lars [13]. Furthermore, the LendHub hack took place when
an attacker exploited a wrong update mechanism to steal
approximately 6 million dollars [14]. In the Deus Finance
hack, an attacker exploited an access control issue to steal
13.4 million dollars [15].

Smart contract developers face challenges in dealing
with vulnerabilities and bugs, as the most traditional ap-
proach of code patching is not applicable due to the im-
mutability of the underlying blockchain. They have to resort
to smart contract update mechanisms, which, as we can see
from the LendHub example, can themselves have errors
and lead to exploitable vulnerabilities. Alternatively and
preferably, smart contracts have to be subjected to rigorous
code analysis in pre-deployment phase, before the code is
uploaded to the blockchain and becomes immutable.

In recent years, many vulnerability detection tools have
been developed for smart contracts that can aid smart con-
tract developers in pre-deployment security testing. These
tools can be classified into four categories: Symbolic anal-
ysis [16]–[19], static analysis [20], [21], machine learning
approaches [22]–[24], and fuzzing [25]–[27]. Interestingly,
even though some of these tools have been available for
years and provided under open-source licenses, smart con-
tracts continue to suffer from vulnerabilities that malicious
actors can exploit. In 2023 alone, hackers managed to
exploit vulnerabilities in smart contracts, resulting in gains
exceeding one billion US dollars [28].

In this work, we aim to shed light on the problem of
smart contract security testing. In particular, we want to
identify the cause of the problem and answer the following
questions: Why, despite the existence of many effective vul-
nerability detection tools, does the problem of vulnerabilities
in smart contracts still prevail? Is it due to difficulties of
setting up and using those tools, which raises the adaption
barrier, or because they are less effective than the security

research community believes? If some tools are better suit-
able for the detection of selected vulnerability types, can
one achieve better detection by using several tools?

To answer these questions, we want to study existing
vulnerability detection tools with the goal of accessing and
comparing their effectiveness. Overall, we aim to understand
if the research field devoted to vulnerability detection in
smart contracts is sufficiently researched or if there are
remaining open problems.

We acknowledge the efforts of previous works that have
attempted already to compare various tools for vulnerability
detection [29]–[42]. However, these works either provide
a survey-like comparison without performing actual perfor-
mance evaluations [29]–[34] or evaluate a small subset of
tools on a very limited dataset [35], [38]–[42]. In addition,
some of these works [36], [38], [39], [41] only analyze
tools that operate either on bytecode or source code and do
not offer a comprehensive exploration of both. Furthermore,
previous studies have not explored the potential of bundling
different tools to enhance vulnerability detection.

In our research, we seek to understand why vulnera-
bilities continue to be exploited despite the existence of
various scanning tools. In particular, we aim to answer
the above-postulated questions by means of conducting a
comprehensive study of the existing tools. This study is to
be performed using a range of publicly accessible resources
and extensive datasets, including bytecode, source code, and
ground-truth data.
Contributions. We make the following contributions:

• We conduct a large study of existing vulnerability
detection tools by building, using, and comparing 18
smart contract vulnerability scanners from different
methodology categories that utilize static analysis, sym-
bolic execution, fuzzing, and machine learning tech-
niques for detection. Among them, 14 tools perform
source code-based analysis, while four detect vulnera-
bilities at the bytecode level. Three of the tools allow
for the analysis of both bytecode and source code.
Related literature considered only a subset of tools [35],
[39], [41], [42] or discussed only a particular method-
ology [38], [40]. Unlike previous large-scale analy-
sis [39], our study integrates an analysis of bytecode,
conducts a comprehensive analysis of the employed
tools, and is not limited to just reentrancy bugs but
considers eight distinct vulnerabilities. Furthermore,
our research is underpinned by a more extensive dataset
and a broader range of tools, setting a new benchmark
in the field of smart contract vulnerability analysis.

• To conduct our study using tools that expect source
code as input, we built a dataset comprising 77,219
unique and carefully de-duplicated smart contracts.
We collected the source codes from EtherScan [43]
and InterPlanetary File System (IPFS) [44], where
some developers upload their source code. This is the
largest dataset of real-world source codes directly from
Ethereum blockchain available to date.

• To study tools operating on bytecode of smart con-
tracts, we built an unprecedentedly large dataset

of 4,062,844 bytecodes after de-duplication of initially
collected 26,740,370 bytecodes. For this dataset, we
tried to get as many Ethereum-compatible smart con-
tracts as one could find. In particular, we collected all
smart contracts from Ethereum network and extended it
with smart contracts collected from four test networks:
Goerli [45], Rinkeby [46], Ropsten [47], and Kovan
[48].

• We performed a comprehensive study of 14 source
code-based tools (Slither [20], SmartCheck [21], Ma-
ian [16], Oyente [17], Artemis [49], Osiris [50], Secu-
rify2 [19], Mythril [51], TeEther [18], ConFuzzius [25],
Smartian [27], sFuzz [26], GNNSCVulDetector [22],
MANDO-GURU [52]) and attempted to detect 8 vul-
nerability types in our source code-based dataset. The
goal of this study was to establish if the outcomes
of these tools are consistent with each other, and if
one could potentially use a strategy of using several
detection tools to enhance detection performance. The
outcomes of this study are non-trivial – we observed
significant discrepancies in detection outcomes. For
instance, we reveal that the tools do not agree on a
single sample to have the reentrancy vulnerability. This
shows that the idea of combining several tools won’t
be very useful in practice.

• We additionally studied four vulnerability detection
tools that operate on the byte-code level: Vandal [53],
Maian [16], Oyente [17], Mythril [51]. Their perfor-
mance was evaluated using 5 vulnerability types. The
results of this evaluation similarly display lack of con-
sensus among the tools, to the extent that questions
their ability for accurate detection.

• Significant discrepancies in detection outcomes of both
source code and bytecode-based tools indicate that at
least some of them do not provide good detection per-
formance. To verify this preposition, we built two ad-
ditional datasets labeled with ground-truth labels. Our
team manually labeled one ground truth dataset for the
reentrancy bug, consisting of 13,773 unique smart con-
tracts. The other dataset comprises 373 unique smart
contracts collected from publicly available repositories
and includes eight vulnerability types. Vulnerabilities
in these contracts were confirmed by security audits
conducted by security firms.

• Equipped with the two ground truth datasets, we evalu-
ate the performance of both source code and bytecode-
based tools involved in our study. Our results high-
light the overall poor performance of all tools under
our evaluation, with F1-scores ranging from 0% to a
maximum of 73%. This is primarily attributed to the
high incidence of false positives and negatives reported
by the tools.

• The results of our analysis reveal the reasons why
the performance of the tools under evaluation is often
below expectations and derive other valuable insights.
We provide insights into these reasons. For instance,
we observe that varying compiler versions can lead to
significant changes that obstruct the effectiveness of

vulnerability scanners in their analysis. Additionally,
the evolving coding practices of developers could also
affect the performance of these scanners. Our findings
aim to assist future research in developing more effi-
cient tools for detecting vulnerabilities.

• We plan to make datasets and tools available for further
research at https://github.com/sss-wue/sc-study/.

Overall, our study demonstrates that the current state of
the art in the area of smart contract security has significant
room for improvement and the problem of vulnerability
detection remains an open and challenging problem.

Outline. The rest of this paper is structured as follows:
We offer in Section 2 a brief overview of smart contract
vulnerabilities and the tools we utilized in this study to
detect them. In Section 3, we describe our datasets and the
methodology employed in their construction. The analysis
of the different tools is presented in Section 4. An additional
discussion around security analysis of smart contracts is pro-
vided in Section 5. We examine related work in Section 6.
We conclude the paper in Section 7.

2. Background

This section provides the background information for
smart contracts, their vulnerabilities, and the vulnerability
scanners. We will especially focus on those vulnerabilities
and scanners that will be further explored in this study.

2.1. Smart Contracts

A smart contract refers to a software program that oper-
ates within a blockchain environment. In this study, we focus
on smart contracts designed for the Ethereum blockchain.
These contracts are typically written in Solidity [54], com-
piled, and executed within the Ethereum Virtual Machine
(EVM). The EVM functions as a stack-based machine with
a word size of 256 bits and a stack size of 1024, utilizing
a word-addressable memory model [55].

To deploy a smart contract, the compiled EVM bytecode
is uploaded to the blockchain through a transaction. Inter-
acting with the smart contract is also achieved by sending
transactions to the contract’s address. It is important to note
that executing smart contracts incurs a cost in the form
of Gas, which is essentially a fee that aims to cover the
costs of execution (e.g., electricity costs). Certain contracts
incorporate an IPFS link within their bytecode by encoding
essential metadata. This link grants access to retrieve valu-
able information, including the Application Binary Interface
(ABI), source code, and additional metadata.

2.2. Smart Contract Vulnerabilities

Similar to any other software, smart contracts are suscep-
tible to bugs and vulnerabilities. Given that smart contracts
are directly associated with cryptocurrencies, the potential
financial losses resulting from undiscovered vulnerabilities
can be significant. Numerous vulnerabilities exist in the

realm of Solidity smart contracts and are listed in the Smart
Contract Weakness Classification Registry (SWC) [56]. One
can classify these vulnerabilities into three categories: Soft-
ware Errors, Runtime Bugs, and Blockchain Characteristics.

Software Errors In the field of Solidity smart contracts,
software errors often result in bugs, with arithmetic issues
(SWC-101 [56]) such as integer overflows and underflows
being particularly prevalent. Notably, these vulnerabilities
have been partly addressed through a compiler update in
Solidity. However, for comprehensive legacy detection, these
issues remain a focus of this study.

Additionally, various other critical bugs warrant atten-
tion. The ’suicide’ vulnerability (SWC-106 [56]), for exam-
ple, can potentially allow an attacker to destroy a contract if
its functions lack proper safeguards. Equally concerning is
the assert violation [57], which arises when developers inad-
vertently leave a failing assert statement in live code. Also
of significance is the misuse of txOrigin (SWC-115 [56]),
which, if exploited in place of msg.sender, could allow
attackers to manipulate a global variable to their advantage.

Another notable vulnerability involves the use of block
timestamps as a proxy for time, which can be exploited by
attackers aware of this time dependency (SWC-116 [56]).
Lastly, the issue of ’Locked Ether’ arises from the absence
of a mechanism to withdraw Ether from the contract, leading
to potential fund loss if not addressed pre-deployment.

Runtime Bugs Smart contracts also face a range of bugs
associated with their execution runtime. These vulnerabili-
ties arise due to specific characteristics of how smart con-
tracts are executed. For instance, an example vulnerability
is reentrancy (SWC-107 [56]), where an attacker can exploit
the ability to reenter a function during runtime, even before
the initial execution is completed. Another example is the
legacy callstack depth vulnerability [58], where the stack
can become exhausted. Additionally, there are ”greedy con-
tracts” [16], which only accept Ether without providing a
means for later extraction. Another critical vulnerability is
associated with the use of DelegateCall (SWC-112 [56]).
This feature allows a contract to execute another contract’s
code within its own context. It’s essential to emphasize that
the external contract’s code must be thoroughly vetted for
security, as any compromise in its integrity could give an
attacker complete control over the caller’s funds.

Blockchain Characteristics The blockchain infrastructure
itself can give rise to vulnerabilities within smart contracts.
An instance of such vulnerability is money concurrency or
Transaction Ordering Dependency (ToD) (SWC-114 [56]),
which can result in financial losses when the code depends
on the sequence of transactions, such as determining the first
correct answer submitted [59]. Another concern emerges
when developers utilize blockchain’s block values for time-
related purposes. However, these values can be influenced by
miners and should not be relied upon. Additionally, creating
randomness within smart contracts becomes challenging due
to their deterministic execution nature, potentially leading to
vulnerabilities.

https://github.com/sss-wue/sc-study/

2.3. Vulnerability Scanners

In the following, we categorize each vulnerability scan-
ner into one of four analysis approaches: Static Analysis,
Symbolic Execution, Fuzzing, and Machine Learning.

Static Analysis Static Analysis involves examining source
code or compiled output without execution. This allows
tools to detect bugs and security issues without requiring
an execution environment or risking running vulnerable or
malicious code.

Slither [20] is a static analysis framework for finding
vulnerabilities in Solidity source files. It supports the detec-
tion of over 80 vulnerability classes and can be extended.
Slither supports the detection of, for example, suicidal con-
tracts, reentrancy, and block data dependency.

Vandal [53] is a security analysis framework designed
for EVM bytecodes. It operates by converting the bytecode
into semantic logic relations, which are subsequently an-
alyzed against specified vulnerabilities using a declarative
language. The tool detects a range of vulnerabilities, in-
cluding Unchecked Send, Reentrancy, and Selfdestruct.

SmartCheck [21] conducts thorough lexical and syntac-
tical analyses on source code to identify vulnerabilities. It
employs text parsing techniques to convert Solidity source
code into an XML parse tree, which is subsequently ex-
amined for vulnerability patterns. It is crucial to emphasize
that as of 2020, SmartCheck has been deprecated and is no
longer actively maintained.

EtherTrust [60] classifies bytecodes by defining an ab-
stract EVM semantic representation and rules for detecting
reentrancy vulnerabilities. It abstracts EVM bytecode and
employs static reachability analysis with Horn clauses for
vulnerability detection.

Symbolic Execution Differing from Static Analysis, Sym-
bolic Execution encompasses the execution of the specific
source code or compiled code, including dynamic analysis.
Given the overlapping nature of symbolic execution and
dynamic analysis, these tools are categorized together under
this unified category.

Maian [16] is a symbolic analysis tool for EVM byte-
codes and Solidity source codes. It detects three types of
vulnerabilities: Prodigal, Suicidal, and Greedy contracts.

Oyente [17] is a symbolic execution tool created for
detecting possible security flaws in the source code and
bytecode of Ethereum smart contracts. Like SmartCheck,
Oyente is also outdated and no longer actively maintained.

Artemis [49] and Osiris [50] are extensions of Oyente
that aim to detect additional vulnerabilities.

Securify2 [61] is an analysis tool based on Securify [19]
that was deprecated since 2019. Similar to the initial version,
Securify2 performs in-depth analysis of EVM bytecode,
examining it against a predefined set of security patterns.
These patterns consist of both compliance and violation
patterns, which encompass the necessary conditions for
ensuring the smart contract’s adherence to specific security
requirements or, conversely, flagging instances where pre-
defined security properties are violated.

EthBMC [62] is a bounded model checker analysis tool
that utilizes symbolic execution to examine smart contract
EVM bytecodes against predefined models. It specializes
in detecting suicidal contracts and contracts that permit
arbitrary extraction of funds.

Mythril [51] is a EVM bytecode analysis tool. The
tool combines symbolic execution, SMT solving, and taint
analysis techniques to detect a wide range of vulnerabilities,
such as suicidal contracts or contracts that rely on weak
sources of randomness.

TeEther [18] does not primarily focus on general vul-
nerability detection but rather the creation of practical ex-
ploits. To achieve this, it specifically targets four low-level
instructions closely tied to value transfer: (1) Call, (2) Self-
destruct, (3) Callcode, and (4) Delegatecall. By imposing
path constraints and evaluating their satisfiability, the tool
examines each execution path to determine if an undesired
value transfer could potentially occur.

Fuzzing Although fuzzing can be categorized as a form
of runtime analysis, we distinguish it from other techniques
based on the selection of input data. Fuzzing involves the
guided but random selection of input data, setting it apart
from other methods in the Symbolic Execution category.

ILF [63] is a fuzzing tool that classifies solidity source
code files. The fuzzer is trained from data generated by a
symbolic execution engine. The trained fuzzing model can
be used to detect vulnerabilities such as Suicidal contracts,
Leaking vulnerability or Block dependency.

ConFuzzius [25] is an evolutionary fuzzer that applies
constraint resolving and data dependency analysis to detect
smart contract vulnerabilities. The fuzzer detects 10 vulner-
abilities, including Suicidal, Reentrancy, and ToD.

Smartian [27] is a mutation-based fuzzer that integrates
static and dynamic analyses to drive input mutation. By
leveraging dynamic dataflow analysis, Smartian dynamically
guides the fuzzing engine and incorporates bug oracles into
its testing process.

sFuzz [26] is a framework developed based on AFL [64],
a renowned fuzzer primarily used for C/C++ programs. It
extends the capabilities of AFL to support EVM bytecode
by introducing adaptations in multiple areas. Notably, sFuzz
introduces a novel metric to target hard-to-cover branches
specifically.

Machine Learning Machine Learning has been widely
utilized in various domains to identify vulnerabilities, and
the realm of smart contracts is no exception. In this context,
we introduce two available tools that leverage Graph Neural
Networks (GNNs) and Recurrent Neural Networks (RNNs),
respectively, for vulnerability detection purposes.

GNNSCVulDetector [65] is designed to detect vulnera-
bilities in smart contracts by utilizing a GNN. It analyzes
the syntactic and semantic structures of the smart contract,
which are represented as a graph. This graph is processed
using a degree-free graph convolutional neural network for
classification. The tool identifies three vulnerability classes:
Reentrancy, Timestamp Dependency, and Infinite Loop.
While the source code for the generation of the datasets

and training the model is publicly available, execution is
restricted. With minor bug fixes the dataset generation and
training was successful for the timestamp vulnerability but
not for Reentrancy and Infinite Loop vulnerabilities.

MANDO-GURU [52] utilizes a topology GNN to de-
rive node embeddings from a heterogeneous code graph,
followed by graph-level vulnerability classification. Should
the code graph be deemed vulnerable, a node classification
model is trained to pinpoint the vulnerable nodes. Our focus
is on the graph-level labels (determining if the source code
has vulnerabilities) rather than the finer-grained node-level
labels (identifying the specific locations of vulnerabilities).

3. Datasets

Ethereum contracts are stored across various
blockchains, primarily encompassing the Ethereum
Mainnet (i.e., the primary production blockchain) and the
testnets, namely Goerli [45], Rinkeby [46], Ropsten [47],
and Kovan [48]. We successfully generated four distinct
datasets from those blockchains. The first dataset is the
Source Code Dataset (SCD), which comprises a collection
of smart contract source codes. The second dataset is
the Bytecode Dataset (BCD), consisting of a hexadecimal
representation of compiled bytecodes of the smart contracts.
The third dataset is the Reentrancy Ground Truth (RGT),
specifically focused on identifying and labeling source code
operations that are vulnerable to reentrancy. Lastly, the
fourth dataset is the Audits Ground Truth dataset (AGT),
which includes labeled data obtained from security audits
conducted on smart contracts.

3.1. Source Code Dataset

The process of assembling our source code dataset in-
volved two distinct stages. In the initial phase, we used
Google BigQuery [66] to gather addresses of smart con-
tracts. The second phase entailed downloading the source
code, which was accessible either through EtherScan [43]
or IPFS [44].

EtherScan [43], a prominent blockchain explorer and
analytics tool for the Ethereum network, offers a detailed set
of functionalities for examining and extracting information
about Ethereum transactions, addresses, smart contracts, and
overall network dynamics. One of its key features is provid-
ing access to the source code of specific contracts on the
Mainnet, enabling a deeper understanding of the contracts’
operations and verifying their functionalities. We utilized
the EtherScan API to systematically download all accessible
source codes from the Mainnet blockchain.

Regarding IPFS, our approach started with downloading
the contract bytecodes to check for embedded metadata.
This metadata, located at the end of the bytecode, was
then decoded using a CBOR decoder. From the decoded
information, we extracted the IPFS link, which led us to the
original contract metadata containing the source code.

After implementing a deduplication process by hashing
the smart contracts and comparing these hashes, we success-
fully compiled a dataset of 77,219 unique source codes, all
written in the Solidity language.

3.2. Bytecode Dataset

We retrieve the bytecode from Ethereum contracts on
different blockchains.

To synchronize with the Ethereum blockchain, we em-
ployed two clients: Erigon [67] for the Goerli, Ropsten, and
Rinkeby testnets, chosen for its speed and lower disk space
usage, and Geth [68] for the Kovan network, as it is not yet
supported by Erigon. Furthermore, Ethereum Mainnet con-
tracts were sourced from an open dataset available through
Google’s BigQuery service [66].”

We proceeded by retrieving the contract addresses from
each blockchain and utilizing the Python Web3 API li-
brary [69] to extract the EVM bytecode from the down-
loaded blockchains. These extracted bytecodes were then
stored in a MySQL database. Some contracts obtained this
way were found to be empty. There are a few possible
reasons for this. It could be due to the Ethereum node
not being fully synchronized with the network, resulting
in an unavailable bytecode. Alternatively, it could be be-
cause empty contracts were deployed on the blockchain
or the contract had been self-destructed. Overall, we suc-
cessfully extracted 26,740,370 non-empty bytecodes from
the five networks. Specifically, the Ethereum Mainnet con-
tributed 22,789,100 bytecodes, Ropsten provided 1,831,168,
Rinkeby contributed 1,382,338, while Kovan and Goerli
supplied 635,766 and 101,998 bytecodes, respectively. After
deduplication, we can use 4,062,844 unique bytecodes for
our analysis.

3.3. Reentrancy Ground Truth

This dataset is centered explicitly on reentrancy vul-
nerabilities, selected due to their frequent detection by
smart contract vulnerability scanners. This focus allows
us to compare across multiple tools. Given the intensive
nature of manually labeling numerous contracts, our study
is concentrated exclusively on this particular vulnerability.
Consequently, we have developed a specialized source code
dataset enriched with detailed annotations to deepen our in-
vestigation into reentrancy vulnerabilities. As a foundation,
we utilized the SmartBugs Wild Dataset [70], which encom-
passes 47,398 source codes from various smart contracts.
We began by eliminating duplicates from the dataset and
then proceeded to incorporate the annotations specific to the
reentrancy vulnerability. This dataset allows for a more de-
tailed analysis of how effectively reentrancy vulnerabilities
are detected in smart contract source codes and bytecodes
downloaded directly from the blockchain.

Preprocessing During the preprocessing step, our focus was
on removing duplicates from the dataset. These duplicates
often arise when source code is copied and subsequently

subjected to minor modifications, such as comment adjust-
ments, variable or function renaming, or changes to variable
values. To identify such contracts, we utilized the Solidity
compiler to generate an Abstract Syntax Tree (AST) from
the source code file. This AST representation allowed us to
eliminate comments and whitespace characters while also
removing intermediate values, variable names, and func-
tion names. This process facilitated effective comparison
between Solidity files. By assessing the similarity of the
AST trees by comparing their hashes, we identified contracts
that displayed little resemblance to others, resulting in a
refined dataset comprising of 22,237 source code files.

Annotation Subsequently, we proceeded to annotate the
deduplicated dataset. The original SmartBugs Wild dataset
only provided annotations for the reentrancy vulnerability
for the call subtype. To achieve a more comprehensive and
detailed annotation, we expanded our analysis to include
all three subtypes: call, send, and transfer. The ’call’ sub-
type is particularly critical, as its function lacks intrinsic
gas limitations. On the other hand, ’send’ and ’transfer’
subtypes are designed to use only a specified amount of
gas for the contract call, as defined in the Ethereum Yellow
Paper [55]. However, this amount may vary with updates to
the Ethereum network. It is important to note that contracts
lacking these subtypes were considered non-vulnerable.

For each contract, we manually inspected the source
code containing the three subtype functions. Our assessment
focused on determining whether a state change occurred
after the transfer of funds and whether a reentrancy occurred.
Upon meeting these conditions, we annotated the respective
contract as vulnerable to reentrancy attacks. As a result, our
final reentrancy dataset comprises 13,773 smart contracts.
Labeling this dataset took over four person-months by two
master students, supervised by a Ph.D. student in IT security.
Due to high efforts required to label the entire dataset, we
stopped labeling after processing 13,773 instances.

3.4. Audits Ground Truth

Obtaining a ground truth dataset for evaluating the de-
tection performance of various tools can be challenging
and time-consuming. It requires significant investment in
correctly labeling the data, often involving the expertise
of human auditors. This process, known as security audits,
ensures that the presence of vulnerabilities in smart contract
source code is accurately identified. To acquire a reliable
ground truth dataset for tools that operate at the level of
the source code, we utilized publicly available audit repos-
itories from reputable sources, including Quantstamp [71],
OpenZeppelin [72], Trail of Bits [73], ConsenSys [74], and
CertiK [75]. The resulting dataset consists of 373 smart
contract source codes that have been labeled by security
auditors into the vulnerability categories. This carefully
labeled ground truth dataset provides a robust benchmark for
evaluating the performance of different tools in vulnerability
detection. Further, we compiled the available source codes
to allow a bytecode-based analysis.

4. Study

In this section, we detail our study conducted with 13
source code-based and four bytecode-based tools, using the
four datasets described in Section 3. The SCD and BCD
datasets enable quantitative evaluation, while the RGT and
AGT datasets facilitate qualitative analysis of the tools.

4.1. Methodology

In this section, we will discuss our methodology for
the analysis of source codes, bytecode, and describe our
visualization method.

We use the vulnerability scanners as-is and do not
optimize them per smart contract. For instance, if the tool
supports only a limited range of compiler versions, we don’t
attempt to enhance it to other versions. We also consider
vulnerability scanners that time out on a smart contract
as non-vulnerable since the outcome is the same for a
developer – no vulnerability is found or reported. For a
detailed evaluation of scanning robustness, we refer the
reader to Section 4.7, where we analyze the completion rate
of the different scanners.

Source code analysis We employed 13 tools to identify over
200 vulnerability types. For comparability and simplicity,
our focus was on eight types detectable by at least three
scanners. Results for other types are omitted due to space
limitations.

Bytecode analysis We analyzed the bytecode-based datasets
using four tools. Since the tools’ density is lower than that of
those operating on source codes, we provided our analysis
of tools based on four vulnerability types present across the
tools.

Visualization We opted for Upset plots that proved to be
superior to Venn diagrams for visualizing complex intersec-
tions in datasets, as they provide a clearer and more scalable
representation of the relationships between multiple sets,
especially when dealing with large numbers of sets where
Venn diagrams become cluttered and less interpretable.

Each plot comprises two main sections: On the left side,
we display the total number of vulnerable samples found by
each tool. On the top, we show the total number of samples
that overlap among the tools. If there is a single dot, it
signifies that these samples do not overlap with any other
tool. Conversely, when a column contains multiple dots, it
signifies that the respective tools agree in their analysis of
these specific samples.

Vulnerabilities We focus on eight types of vulnerability
throughout this paper: Suicide, Reentrancy, Transaction Or-
der Dependency (ToD), Arithmetic Bugs, Usage of txOrigin,
Time Dependency, Locked Ether, and DelegateCall.

Test Environment All tests were conducted in our High-
Performance Cluster, in which each node comprises two
Intel® Xeon Gold 6134 Processors (8c/16t), with 384 GB
DDR4 memory and BeeGFS [76] for storage. We use

Docker [77] to parallelize the use of different tools and, thus,
maximize the usage of available resources in the cluster.

Effort Deploying and extensively testing the tools on the
datasets required considerable manual labor, totaling twelve
person-months. Setting up the tools demanded between 600
to 800 hours, while over 1,000 hours were dedicated to
gathering and labeling the datasets, followed by several
months of computational time.

Timeouts We apply the following timeouts during evalua-
tion to make a large-scale analysis possible: For Slither, Ma-
ian, Oyente, Artemis, and Mythril, we applied a timeout of 5
minutes. TeEther, Osiris, Smartian, ConFuzzius, and sFuzz
had a timeout of 2 minutes. GNNSCVulDetector, MANDO-
GURU, Securify2, and SmartCheck offer no possibility of
defining a timeout, but their analysis is finished within a
reasonable time frame.

4.2. Quantitative Analysis on SCD Dataset

As per our analysis, we have evaluated all 77,219 smart
contracts available in SCD using 13 source code-based tools,
listed in Table 1. We utilized them to detect eight types
of vulnerabilities, namely: Suicide, Reentrancy, Transaction
Order Dependency (ToD), Arithmetic Bugs, Usage of txO-
rigin, Time Dependency, Locked Ether, and DelegateCall.
During our analysis, we found that some tools provide
a more detailed analysis of the reentrancy vulnerability
type by reporting vulnerability sub-types. For example, the
reentrancy vulnerability type can be divided into bad, No
Eth, or Benign, as per the analysis by Slither and Securify2.
Additionally, vulnerabilities like Arithmetic Bugs have been
grouped based on the type of bugs, such as Integer Over-
flow/Underflow and generic Arithmetic Bugs.

Suicide We utilized seven distinct tools to identify oc-
currences of suicidal contracts in the source code. These
tools are Slither, Mythril, Smartian, Confuzzius, Securify2,
Maian, and TeEther. In Figure 1, we have visually presented
the results obtained from running these tools. The figure
clearly illustrates that none of the contracts were identified
as vulnerable by all seven tools. The highest level of agree-
ment was six out of seven tools, and this only occurred
for three smart contracts, as indicated in the figure’s last
two columns. Summing up the columns that contain at least
three dots reveals that a mere 70 contracts were marked as
vulnerable by three or more tools.

The overlap between the scanners is minimal, with four
tools independently detecting the suicide vulnerability in
over 50% of all tool-flagged contracts. Slither and TeEther
have the most overlap with other tools in this analysis.
However, even in these cases, the overlap with other tools
is still limited.
Reentrancy Our study shows that there is minimal overlap
between different tools when it comes to detecting the
reentrancy vulnerability in smart contracts, as illustrated
in Figure 2. We could utilize ten different tools to detect
this vulnerability, thanks to the popularity of this vulner-
ability type among various scanners. Although Slither and

MANDO-GURU stand out from the rest with an extremely
high positive rate, including the positives of other tools
and each other (MANDO-GURU uses Slither to construct
its graphs), the most significant finding is that no single
contract is marked as vulnerable when all the tools’ results
are combined. Out of the total of 77,219 smart contracts
checked, only 106 were identified as vulnerable by three
tools at most. This highlights the need for a comparative
study of various tools to comprehensively and accurately
assess this smart contract vulnerability.
ToD In our evaluation of the ToD vulnerability, as shown
in Figure 3, none of the smart contracts were identified as
vulnerable by all five tested tools. Additionally, not even
four out of five tools agreed on a single contract. However,
there was a significant overlap between Osiris and Artemis,
which is not surprising since they are both based on the
same underlying tool, Oyente. Oyente also overlaps with
Artemis and Osiris, although it provides the fewest positive
detections.
Arithmetic Bugs The evaluation results for reported arith-
metic bugs are presented in Figure 4, which displays the
test results for seven underlying tools. Remarkably, Artemis
is notably absent from the figure, as it did not detect a
single bug. Similar to previously observed trends, the tools
agreed on no cases. It is noteworthy that Oyente, Osiris, and
Confuzzius showed a significant overlap and agreement on
an arithmetic bug in 2,519 samples. While the similarity of
Osiris and Oyente can be explained by the fact that Osiris
is based on Oyente, the reasons for the overlap between
Confuzzius and Oyente are not that apparent. Generally, the
overlap between the tools is more pronounced than with the
other vulnerabilities. We attribute this result to the simplistic
nature of this vulnerability type. But we also note that this
positive result is undermined by the fact integer over- and
underflow vulnerability is mitigated directly by the compiler.
txOrigin Based on our evaluation results, Figure 5 indicates
that all five analyzed tools agree on only one sample to
have the vulnerability. We observed that Slither overlaps
with SmartCheck for most of its detected samples, which is
quite interesting. Other than that, the tools mostly disagree,
similar to the other vulnerabilities.
Time Dependency We use ten security scanners to identify
the Time Dependency vulnerability. The Figure 14 from
the Section A shows our evaluation results where not a
single contract was identified as vulnerable by all tools.
Eight tools agree on the existence of the vulnerability in
seven samples out of our dataset. Similar to the reentrancy
vulnerability, Slither identifies the most potentially vulner-
able samples. Therefore, most of the other tools have a
significant overlap with Slither. However, the majority of
positive samples are disjoint.
Locked Ether According to the evaluation results presented
in Figure 6, none of the six tools agree on a single sample.
SmartCheck flags the most contracts as vulnerable and has
a significant overlap with Slither. Securify2 has most of its
flagged contracts overlapping with Slither and SmartCheck.
Maian, on the other hand, only overlaps with the other tools
on 20 samples.

Metrics Static Analysis Symbolic Execution Fuzzing Machine Learning
Slither SmartCheck Maian Oyente Artemis Osiris Securify2 Mythril TeEther ConFuzzius Smartian sFuzz GNNSCVulDetector Mando-GURU

Suicidal # # # # # # #
Reentrancy G# # # G# # #

ToD # # # G# # # # # # #
Arithmetic Bug # # # G# G# G# # # G# # #

TxOrigin # # # # # # # #
Timestamp # # # #

Lock # # # # # # # #
DelegateCall G# # # # # # # #

TABLE 1: Overview of vulnerability scanners with detectable vulnerability types on source code. (: Tool detects
vulnerability, G#: Tool detects finer granularity, #: Tool does not detect vulnerability)

Figure 1: Overlap of source code-based tools detecting the Suicide vulnerability.

DelegateCall The Figure 7 shows our evaluation results
of six tools. As with the other vulnerability types, none
of the tools agree on a single example. Further, there is
a substantial overlap between Mythril and other tools –
specifically TeEther and Artemis.
Summary In summary, our quantitative analysis of all
detectable vulnerabilities demonstrates a general lack of
consensus among tools regarding the presence of any vulner-
ability. This indicates a significant gap between the reported
detection capabilities and the actual data observed on-chain.
The divergence in our detection results raises questions
about the reliability of these tools in accurately identifying
vulnerabilities in source code.

4.3. Quantitative Analysis on BCD Dataset

Metrics Static Analysis Symbolic Execution
Vandal Maian Oyente Mythril

Suicidal #
Reentrancy #

UncheckedCall # #
txOrigin # #

Timestamp # #

TABLE 2: Overview of vulnerability scanners with de-
tectable vulnerability types on bytecode.

In this section, we evaluate four tools that can detect
vulnerabilities in bytecode against our Bytecode dataset
of 4,062,844 unique bytecodes of BCD (cf. Section 3.2).
We compare each tool’s performance, detecting five different
vulnerabilities: Reentrancy, Suicidal, Unchecked Call, Use
of txOrigin, and Time Dependency. We list an overview

of the evaluated tools and their overlap for the detected
vulnerability types in Table 2.
Reentrancy As highlighted, a reentrancy vulnerability per-
mits an attacker to deplete a smart contract’s funds. Figure 8
illustrates the intersections in detecting the Reentrancy bug
among Mythril, Oyente, and Vandal. Vandal identifies the
highest number of contracts vulnerable to reentrancy, lead-
ing to its greatest overlap with the other two tools. Con-
versely, Oyente and Mythril coincide in their identification
on merely five contracts, while an overlap among all three
tools occurs in just six distinct contracts.
Suicidal In Figure 9, the overlap in identifying the Suicide
vulnerability is depicted, a flaw that allows an attacker to
terminate a smart contract. Mythril, Maian, and Vandal are
capable of detecting this vulnerability, whereas Oyente is
incapable of recognizing it in bytecode. Vandal, consistent
with its performance in detecting other vulnerabilities, flags
the most significant number of contracts as susceptible.
Notably, the shared detection by all three tools is more
substantial in this case compared to the Reentrancy vulner-
ability. Additionally, there is a significant overlap between
Maian and Vandal, with both identifying the issue in ap-
proximately 14,991 contracts. Despite this, there remains
a considerable disparity in the assessments across most
contracts by the three analyzed tools.
Unchecked Call Unchecked calls can be exploited by an
attacker to induce undefined behavior in a smart contract.
This vulnerability is identifiable by Mythril and Vandal. Fig-
ure 10 displays the intersection of these tools in detecting the
issue within bytecode. We see Vandal’s tendency to report
excessively, in this case identifying 1,771,577 instances as
vulnerable, which is over one-fourth of all contracts. Further,
there is a significant degree of overlap with Mythril’s find-

Figure 2: Overlap of source code-based tools detecting the Reentrancy vulnerability.

Figure 3: Overlap of source code-based tools detecting the
ToD vulnerability.

ings. Nevertheless, this overlap constitutes less than 0.5%
of the total detections of Vandal.
TxOrigin The use of txOrigin gives an attacker the po-
tential to bypass authorization checks in a smart contract.
The overlap between Mythril and Vandal in detecting this
issue is illustrated in Figure 11. The two tools agree on
the vulnerability in only 2,372 contracts, representing less
than 5% of the total contracts in our dataset. Collectively,
these tools have flagged 1.3% of contracts, indicating a
possible overestimation of this vulnerability when all tools

are utilized together.
Time Dependency The intersection of Oyente and Mythril
in detecting the Time Dependency vulnerability is depicted
in Figure 12. These tools agree on the vulnerability in 8,735
contracts. However, they diverge in their assessments for
over 90% of the contracts they flagged, indicating a sig-
nificant discrepancy in their detection capabilities for this
particular vulnerability.
Summary Overall, there is a parallel pattern observed with
bytecode analysis tools compared to those analyzing source
code. Consistently, there’s a notable disagreement among
the tools regarding the majority of contracts and types of
vulnerabilities. This pattern suggests that these tools may not
be highly effective on a larger scale. Although this quantita-
tive analysis doesn’t fully capture the exact performance of
the bytecode tools, the evident discrepancies among various
tools are clear.

4.4. Source Code vs. Bytecode

We consider two vulnerability scanners, Mythril and
Maian, that allow the input of source code and bytecode. In
this section, we evaluate the performance difference between
these scanners and see whether they have a performance
difference being exposed to source code or bytecode. This
analysis is based on our quantitative datasets.

Figure 4: Overlap of source code-based tools detecting the Arithmetic vulnerability.

Figure 5: Overlap of source code-based tools detecting the
txOrigin vulnerability.

Figure 6: Overlap of tools detecting the Locked Ether vul-
nerability.

Figure 7: Overlap of tools detecting the DelegateCall vul-
nerability.

Maian flags four smart contracts as Suicidal in source code
and 93 in bytecode, overlapping in three cases. It also finds
80 contracts with locked ether in source code and 3,223
in bytecode, with 66 common detections. Generally, Maian
shows a higher positive rate in bytecode analysis.
Mythril shows no common detections between source code
and bytecode for the DelegateCall and Reentrancy vul-
nerabilities and only one shared detection for the Suicide
vulnerability. It finds an overlap of 35 in Arithmetic Bugs,
76 in txOrigin, and a notable 1,242 in Time Dependency.

Contrary to Maian, Mythril generally presents a higher pos-
itive detection rate in source codes compared to bytecodes.

4.5. Qualitative Analysis based on RGT Dataset

In this section, we evaluate both source code and byte-
code analysis tools using our meticulously curated reen-
trancy dataset RGT, as detailed in Section 3.3. As men-
tioned, this dataset is exclusively annotated for the reen-
trancy vulnerability, which is categorized into three sub-
types: call, send, and transfer.

Our analysis covers two distinct approaches: the first
includes only the ’call’ subtype under the umbrella of reen-
trancy, while the second encompasses all three subtypes.
This dual approach aids in determining the specific type
of reentrancy each tool is geared to identify, especially
since the tools do not explicitly state their focus on certain
subtypes.
Analysis of Source Code-based Tools We present our
findings for the call subtype in Table 3, which displays eval-
uation results for nine vulnerability scanners. In contrast to
the quantitative analysis, we do not consider samples if the
applied vulnerability scanner does not finish the evaluation.

Securify2 emerged as the most effective tool with an
F1-Score of 38%, but it was only able to test 662 instances.
The key observation here is the generally poor detection rate
for the call subtype across all tools.

Tools TN FP FN TP F1 Acc
Artemis 5,174 95 358 71 0.24 0.92
Osiris 1,727 81 112 49 0.34 0.90
Confuzzius 2,956 21 159 30 0.25 0.94
Smartian 2,279 3 168 10 0.10 0.93
Mythril 4,069 398 298 83 0.19 0.86
sFuzz 617 24 34 7 0.19 0.91
Oyente 2,854 0 169 1 0.01 0.94
Slither 4,469 1,483 41 411 0.35 0.76
Securify2 603 41 4 14 0.38 0.93
MANDO-GURU 332 4,027 4 281 0.12 0.13

TABLE 3: Results of Ground Truth call-subtype Reentrancy
dataset with source code tools.

The results for all reentrancy subtypes are presented
in Table 4. Here, we observe a general decline in detec-
tion effectiveness among most tools. However, four tools
– Slither, Securify2, Mythril, and MANDO-GURU – show
improved performance, suggesting their emphasis on all
three reentrancy bug subtypes.

This analysis reveals varied interpretations of ’reen-
trancy’ across tools. Most prioritize the call subtype, but
some also regard send and transfer subtypes as important.

Figure 8: Overlap of bytecode tools detecting the
reentrancy vulnerability.

Figure 9: Overlap of bytecode tools detecting the
suicidal vulnerability.

Figure 10: Overlap of bytecode tools
detecting the unchecked call vulner-
ability.

Figure 11: Overlap of bytecode tools
detecting the txOrigin vulnerability.

Figure 12: Overlap of bytecode tools
detecting the Time Dependency vul-
nerability.

Tools TN FP FN TP F1 Acc
Artemis 4,378 53 1,154 113 0.16 0.79
Osiris 1,257 46 582 84 0.21 0.68
Confuzzius 2,484 14 631 37 0.10 0.80
Smartian 1,931 2 516 11 0.04 0.79
Mythril 3,517 298 850 183 0.24 0.76
sFuzz 411 17 240 14 0.10 0.62
Oyente 2,279 0 744 1 0.00 0.75
Slither 4,324 704 186 1,190 0.73 0.86
Securify2 592 24 15 31 0.61 0.94
MANDO-GURU 321 3,510 15 798 0.31 0.24

TABLE 4: Results of Ground Truth all subtypes Reentrancy
dataset with source code tools.

This variance in definitions hinders direct performance com-
parisons between tools.
Analysis of Bytecode-based Tools As we already explained
in Section 3.3, we do not compile smart contracts of our
dataset. Instead, we use their addresses to download the
bytecode from the blockchain. This allows us to analyze
the deployed smart contract version without introducing
discrepancies due to compiler versions and optimizations.

The outcomes of bytecode tools for the call-subtype
reentrancy are presented in Table 5. It’s observed once
more that bytecode tools are capable of analyzing a greater
number of contracts compared to their source code counter-
parts. Additionally, it’s notable that Mythril’s performance
is less effective on bytecode than on source code, which is
understandable considering the richer information available
in the source code. Vandal, despite achieving the highest
F1-score among the tools, falls behind in terms of accuracy
compared to the others. Interestingly, Oyente demonstrates
improved performance on bytecode over its analysis of the
same data in source code. Overall, the effectiveness of these
tools in analyzing bytecode for call-subtype reentrancy is not
particularly impressive.

Tools TN FP FN TP F1 Acc
Vandal 3,662 2,292 107 345 0.22 0.63
Oyente 5,900 54 412 40 0.15 0.93
Mythril 5,953 1 452 0 0.00 0.93

TABLE 5: Results of Ground Truth call-subtype Reentrancy
dataset with bytecode tools.

The findings for all reentrancy subtypes are presented
in Table 6. In this comparison, both Oyente and Mythril
exhibit diminished performance. On the other hand, Van-
dal improves its F1-score significantly, jumping from 22%
to 40%. However, it’s important to note that Vandal’s accu-
racy decreases by one percent.

Tools TN FP FN TP F1 Acc
Vandal 3,194 1,836 575 801 0.40 0.62
Oyente 4,995 35 1,317 59 0.08 0.79
Mythril 5,029 1 1,376 0 0.00 0.79

TABLE 6: Results of Ground Truth all subtypes Reentrancy
dataset with bytecode tools.

Summary. Ultimately, Slither had the best F1-Score over-
all on our handcrafted reentrancy dataset with 73% for
the source code-based analysis. Although bytecode analysis
tools demonstrated a higher completion rate, their detection
efficacy was notably lower compared to when the vulnera-
bility scanners were applied directly to the source code. A
key insight from this study is the significant influence that
vulnerability scanners’ definitions of a vulnerability have on
the performance of various tools on the same dataset.

Our investigation focused on the nuances of the reen-
trancy bug, a well-recognized type of vulnerability. How-
ever, it’s plausible that similar discrepancies in the definition
of vulnerabilities in different studies could also affect the
detection of other types of vulnerabilities.

4.6. Qualitative Analysis based on AGT Dataset

In our Audit dataset, we ensure that all smart con-
tracts are compiled using the required compiler version,
facilitating the analysis of their bytecode. On the other
hand, when it comes to source code-based analysis, we
encounter limitations. Due to the small number of vulnerable
contracts and the inability of tools to analyze them without
modifications to either the project’s source code or the
vulnerability scanners, we couldn’t conduct source code-
based analysis effectively. Consequently, our focus in this
section is primarily on the analysis of bytecode.
Reentrancy We show the results of the reentrancy bug
detection in Table 7. Like in the case of our self-labeled
dataset RGT (cf. Section 3.3), all three analyzed tools show
low detection performance.

Tools TN FP FN TP F1 Acc
Vandal 87 31 31 36 0.40 0.53
Oyente 165 0 67 0 0.00 0.71
Mythril 163 2 67 0 0.00 0.70

TABLE 7: Results of Audit dataset for Reentrancy with
bytecode tools.

Other Vulnerabilities. Our additional findings are detailed
in Table 8. In this table, we present the tools used and
the corresponding SWC identifiers for each vulnerability,
as referenced in Section 2.2. These results further highlight
the limited effectiveness of all involved tools in detecting
various vulnerabilities.

Tools TN FP FN TP F1 Acc Vulnerability (SWC)
Mythril 187 18 25 2 0.09 0.81 Int Over/Underflow (101)
Vandal 52 28 90 62 0.51 0.49 Unchecked Call (104)
Oyente 216 0 16 0 0.00 0.93 ToD (114)
Mythril 202 18 9 3 0.18 0.88 Time Dependency (116)
Oyente 220 0 12 0 0.00 0.95 Time Dependency (116)

TABLE 8: Results of Audit dataset for different vulnerabil-
ities with bytecode tools.

4.7. Scanning Robustness

In this section, we assess the robustness of the vulner-
ability scanners. Given that some scanners are unable to
complete the analysis of certain smart contracts, our focus
is on the frequency of successful analyses. This is in the
interest of smart contract developers since an unfinished scan
leaves them with some degree of uncertainty.

Figure 13 shows the percentage of how many contracts
were successfully scanned by the different source code-
based tools. We can see that only five tools (Artemis,
Mythril, Slither, GNN, MANDO-GURU, and Smartcheck)
were able to at least check half of the smart contracts in
our dataset. Otherwise, the tools quite often were not able
to complete their analysis.

We attribute these disheartening results to several fac-
tors. First, most tools base their analysis on specific compiler
versions of the Solidity compiler. Since the area of smart
contracts is a rather fast-growing field, compiler versions
are regularly updated and at some points introduce breaking
changes. A further concern involves reliance on third-party
tools, like constraint-solving algorithms. These tools fre-
quently receive updates, which might lead to compatibility
issues with existing versions of the tools or Solidity. Fur-
ther, some smart contracts are written in another language.
However, most tools are only able to analyze Solidity code.
Generally, these effects can be attributed to the effect of
software aging. Most pressing is the issue of dependency on
specific compiler versions, which makes most of the tooling
dependent on a fast-changing piece of code.

Figure 13: Robustness of Tool Detection

5. Discussion

In this section, we engage in a focused discussion about
our study’s outcomes. We first analyze why the tools used
show discrepancies in their results, considering their differ-
ent methodologies and biases. Next, we debate if using more
tools leads to improved vulnerability detection, balancing
the pros and cons of diverse methodologies against potential
complexities. We then evaluate the ease of setup and use for
these tools, considering their user-friendliness and technical
requirements. Next, we assess the commonness of vulner-
abilities in smart contracts, understanding their prevalence
and impact on the security and efficacy of these contracts.
Lastly, we discuss the limitations of our study in terms of
both the methodology employed and the datasets utilized.
This discussion aims to provide a comprehensive under-
standing of our findings, their implications, and limitations
in the practical use of smart contracts vulnerability scanners.

5.1. Disagreement of Tools

The disagreement among tools is largely attributed to
the varying times at which they were developed, leading to
three key issues which we discuss below.
Compiler Version Changes Tools, particularly those ana-
lyzing source code, are often designed for specific versions
of the Solidity compiler. As the compiler evolves, these tools
may not be updated promptly to accommodate new versions
or resolve potential breaking changes.
Evolution of Smart Contract Programming The pro-
gramming practices in smart contracts can shift over time.
For instance, the use of ‘send‘/‘transfer‘ calls was initially
common in smart contracts. However, changes in Ethereum,
like the gas limit alterations for these calls, have led to
programmers being advised against their use.
New Developments and Attack Variations The emergence
of new developments and variations in attack strategies can
alter the landscape of vulnerabilities. An example is the
introduction of built-in defenses against integer overflows
and underflows in the compiler.

Additionally, vulnerability definition can differ across
tools, influenced by the authors’ perspectives and interpre-
tations of what constitutes a vulnerability. In some cases,
vulnerabilities might be part of a multi-step exploit process.

Overall, the significant disagreement among tools is con-
cerning. It suggests that their detection capabilities are not
yet robust enough to eliminate bugs effectively, a conclusion
further reinforced by the ongoing exploits occurring on the
blockchain.

5.2. Usage of Multiple Tools

Using a combination of tools to identify vulnerabilities
in a smart contract might seem like a promising strategy.
The differing results from various tools suggest that their
combined use could potentially offer a more thorough anal-
ysis. However, this method has its drawbacks, primarily
the increase in positive detections, which includes false

positives. This means that more extensive portions of the
smart contract would require examination.

Moreover, the challenge lies in selecting an appropriate
mix of tools. There’s no definitive or universally effective
combination that guarantees the successful detection of all
vulnerabilities. Each tool has its own strengths, weaknesses,
and focus areas, and their efficiency can vary depending on
the contract’s specific features and vulnerabilities.

In summary, there is no foolproof or ’silver bullet’
method for detecting all vulnerabilities in smart contracts.
While using multiple tools might enhance the breadth of
analysis, it does not necessarily lead to flawless detection
and can complicate the assessment process.

5.3. Difficulty of Usage

The implementation ease and use of smart contract vul-
nerability detection tools vary widely. Some tools are easily
operated with a Docker command, while others require
complex dependency resolutions, especially Java-based tools
using Maven. Running these tools often necessitates spe-
cific configurations and parameters, adding complexity and
reducing practicality for developers.

Further, we discuss a range of smart contract analysis
tools, which were not included in our analysis due to
their source code being inaccessible. These tools encom-
pass EthPloit [78], Harvey [79], ReGuard [80], Solar [81],
SmartScopy [82], SESCon [83] and sCompile [84], Ether*
S-gram [85], Sereum [86], Easyflow [87], Zeus [88], Ethain-
ter [89] and the framework described in [90]. Similar con-
siderations apply to SACS [91] and Sailfish [92]. Despite
assurances of making their code open source, these tools
remain unavailable as of the time this paper was written.

On a different note, while the machine learning model
underlying ESCORT [23] is not accessible, the tools from
which ESCORT derives its learning are available and are
consequently incorporated into our analysis.

In our analysis, we intended to include a wider range
of tools but faced challenges due to issues like complex
setups and outdated functionalities. Tools such as Con-
tractFuzzer [93], EtherRacer [94], SODA [95], and Secu-
rifyV1 [19] were non-functional because of outdated or
unmaintained repositories, though we could include the
updated SecurifyV2.

NeuCheck [96] lacked clear setup instructions, mak-
ing it unsuitable for our study. Tools like eThor [97] and
EthBMC [62], requiring intensive constraint solving, had
prohibitive execution times for large-scale analysis.

Lastly, we excluded tools such as Manticore [98] and
MadMax [99], which focus on metrics like code coverage
and gas issues, respectively, not aligning with our vulnera-
bility detection objective.

5.4. Limitations

Our study is subject to certain limitations concerning the
datasets and methodology.

The datasets employed were collected before the appli-
cation of various scanning tools, meaning our datasets lack
the most recent contracts that might exhibit newer coding
styles. Nonetheless, the scanners applied in our study were
developed with the capability to analyze smart contracts,
which should suffice for analyzing our datasets.

Moreover, our self-labeled RGT dataset inherently car-
ries a bias in defining reentrancy vulnerabilities. To coun-
teract this, we included three different subtypes of the
reentrancy vulnerability in our analysis (cf. Section 4.5). A
similar challenge is faced with the AGT dataset, which was
labeled based on audit reports, introducing another potential
labeling bias by the audit authors.

Given the extensive scope of our analysis, we limited
the analysis time for each tool, which may restrict the effec-
tiveness of certain tools, especially fuzzing tools, that might
perform better with extended runtimes. This compromise
was deemed necessary to facilitate a large-scale analysis.

Acknowledging the possibility of inaccuracies in our
analysis, labeling, and tooling, we intend to make our
datasets and scripts publicly available at https://github.c
om/sss-wue/sc-study/. This will allow future researchers to
explore potential discrepancies and validate our results.

For future research, an interesting aspect would be to ex-
plore the specific vulnerability definitions utilized by various
tools. Our examination of the RGT dataset revealed minor
variations in how different tools define vulnerabilities.

6. Related Work

The related work concerning analysis of smart contract
vulnerability detection tools can be categorized into two
categories: Theoretical and practical analysis.

Theoretical Analysis Several studies including [29]–[34]
have conducted theoretical analyses of smart contract detec-
tion tools and vulnerabilities in Ethereum smart contracts.
These studies primarily focus on categorizing vulnerabili-
ties, listing available tools, and discussing their properties
without performing actual evaluations or comparisons. In
summary, these studies provide theoretical insights into
smart contract vulnerabilities and detection tools, but they
do not offer practical assessments of how well these tools
perform in real-world scenarios.

Practical Analysis The SmartBugs framework [36] com-
pares ten smart contract analysis tools using a dataset of
143 annotated contracts.

The Solidify framework [38] assesses six static analysis
tools on 50 contracts injected with 9,369 bugs, with each
vulnerability randomly represented in the code.

Ren et al. [39] analyzed nine tools out of the three
categories: static analysis, symbolic execution, and dynamic
fuzzing. Their study utilized a dataset that encompassed
real-world contracts, manually injected bugs, and verified
vulnerable contracts, culminating in a total of 46,186 unique
contracts, of which 214 were confirmed as vulnerable. In
contrast to our research, their investigation was solely con-
centrated on reentrancy vulnerabilities in source codes.

Kushwaha et al. [40] performed a theoretical comparison
of 86 analysis tools, as documented in 145 research papers.
From this survey, they selected 16 tools for analysis, primar-
ily focusing on categories such as symbolic execution and
constraint solving. Their analysis was based on a relatively
limited dataset comprising only 30 contracts, tagged with
five specific vulnerabilities.

Dika and Nowostawski [41] provided insights into four
tools using a dataset of 45 contracts, split between 21 clean
and 24 vulnerable.

He et al. [100] focused on random number vulnerabili-
ties in Fomo3d-like games and discussed three auditing tools
for smart contract security.

Peng et al. [42] presented an overview of 29 smart
contract analysis tools, assessing their language support,
analysis methods, and detectable vulnerabilities. They com-
pared five tools using a dataset of 300 randomly collected
smart contracts from Etherscan.

While previous studies, provide practical evaluations,
they are constrained in scope, primarily focusing on a nar-
row selection of tools or utilizing relatively small datasets
for comparison. Notably, none of these surveys address the
intersection of tools, a significant oversight in the related
literature. This gap is crucial as it reveals considerable dis-
crepancies in results across almost every tool, highlighting
the importance of comprehensive and varied datasets for
robust tool evaluation.

7. Conclusion

To conclude, our extensive analysis, encompassing mil-
lions of smart contracts with both source codes and byte-
codes, including those that are manually labeled, highlights
a clear finding: there is substantial scope for enhancement
in the realm of smart contract security. This study under-
scores the ongoing and complex nature of the challenge of
detecting vulnerabilities effectively.

References

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,”
Accessed 2023. [Online]. Available: http://bitcoin.org/bitcoin.pdf

[2] “Ethereum Whitepaper,” Accessed 2023. [Online]. Available:
https://ethereum.org/en/whitepaper/

[3] “Hyperledger project,” Accessed 2023. [Online]. Available: https:
//www.hyperledger.org/

[4] “What’s a DApp?” Accessed 2023. [Online]. Available: https:
//www.bitcoin.com/get-started/what-is-a-dapp/

[5] “What is decentralized finance (DeFi)?” Accessed 2023. [Online].
Available: https://www.techtarget.com/whatis/definition/decentralize
d-finance-DeFi

[6] “Non-Fungible Token (NFT): What It Means and How It Works,”
Accessed 2023. [Online]. Available: https://www.investopedia.com
/non-fungible-tokens-nft-5115211

[7] “CryptoKitties,” Accessed 2023. [Online]. Available: https://www.
cryptokitties.co/

[8] “Tornado.cash,” Accessed 2023. [Online]. Available: https://tornad
ocash.eth.link/

https://github.com/sss-wue/sc-study/
https://github.com/sss-wue/sc-study/
http://bitcoin.org/bitcoin.pdf
https://ethereum.org/en/whitepaper/
https://www.hyperledger.org/
https://www.hyperledger.org/
https://www.bitcoin.com/get-started/what-is-a-dapp/
https://www.bitcoin.com/get-started/what-is-a-dapp/
https://www.techtarget.com/whatis/definition/decentralized-finance-DeFi
https://www.techtarget.com/whatis/definition/decentralized-finance-DeFi
https://www.investopedia.com/non-fungible-tokens-nft-5115211
https://www.investopedia.com/non-fungible-tokens-nft-5115211
https://www.cryptokitties.co/
https://www.cryptokitties.co/
https://tornadocash.eth.link/
https://tornadocash.eth.link/

[9] “MakerDAO,” Accessed 2023. [Online]. Available: https://makerd
ao.com/en/

[10] “Uniswap,” Accessed 2023. [Online]. Available: https://uniswap.org/

[11] “MakerDAO expected to generate $105 million in profits in 2024,
Maker price nearly rallies by 8%,” Accessed 2024. [Online].
Available: https://www.fxstreet.com/cryptocurrencies/news/makerda
o-expected-to-generate-105-million-in-profits-in-2024-maker-price
-nearly-rallies-by-8-202312290205

[12] D. Siegel, “Understanding the DAO Attack,” Accessed 2023.
[Online]. Available: https://www.coindesk.com/understanding-dao
-hack-journalists

[13] “Explained: The SafeMoon Hack,” Accessed 2023. [Online].
Available: https://www.halborn.com/blog/post/explained-the-safe-m
oon-hack-march-2023

[14] “Explained: The LendHub Hack,” Accessed 2023. [Online].
Available: https://www.halborn.com/blog/post/explained-the-lendh
ub-hack-january-2023

[15] “How Deus Finance Was Exploited for $13.4M on Fantom,”
Accessed 2023. [Online]. Available: https://www.coindesk.com/tech/
2022/04/28/how-deus-finance-was-exploited-for-134m-on-fantom/

[16] I. Nikolic, A. Kolluri, I. Sergey, P. Saxena, and A. Hobor, “Finding
the greedy, prodigal, and suicidal contracts at scale,” 2018.

[17] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor,
“Making smart contracts smarter,” in Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’16. New York, NY, USA: Association for
Computing Machinery, 2016, p. 254–269. [Online]. Available:
https://doi.org/10.1145/2976749.2978309

[18] J. Krupp and C. Rossow, “teEther: Gnawing at ethereum to
automatically exploit smart contracts,” in 27th USENIX Security
Symposium (USENIX Security 18). Baltimore, MD: USENIX
Association, Aug. 2018, pp. 1317–1333. [Online]. Available: https:
//www.usenix.org/conference/usenixsecurity18/presentation/krupp

[19] P. Tsankov, A. Dan, D. Drachsler-Cohen, A. Gervais, F. Bünzli,
and M. Vechev, “Securify: Practical security analysis of smart
contracts,” in Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, ser. CCS ’18. New York,
NY, USA: Association for Computing Machinery, 2018, p. 67–82.
[Online]. Available: https://doi.org/10.1145/3243734.3243780

[20] J. Feist, G. Grieco, and A. Groce, “Slither: A static analysis frame-
work for smart contracts,” 2019 IEEE/ACM 2nd International Work-
shop on Emerging Trends in Software Engineering for Blockchain
(WETSEB), pp. 8–15, 2019.

[21] S. Tikhomirov, E. Voskresenskaya, I. Ivanitskiy, R. Takhaviev,
E. Marchenko, and Y. Alexandrov, “Smartcheck: Static analysis
of ethereum smart contracts,” in 2018 IEEE/ACM 1st Interna-
tional Workshop on Emerging Trends in Software Engineering for
Blockchain (WETSEB), 2018, pp. 9–16.

[22] Y. Zhuang, Z. Liu, P. Qian, Q. Liu, X. Wang, and Q. He, “Smart
contract vulnerability detection using graph neural network.” in
IJCAI, 2020, pp. 3283–3290.

[23] C. Sendner, H. Chen, H. Fereidooni, L. Petzi, J. König, J. Stang,
A. Dmitrienko, A.-R. Sadeghi, and F. Koushanfar, “Smarter con-
tracts: Detecting vulnerabilities in smart contracts with deep transfer
learning,” in Proceedings of the 2023 Network and Distributed
System Security (NDSS) Symposium, ser. NDSS ’23, 01 2023.

[24] O. Lutz, H. Chen, H. Fereidooni, C. Sendner, A. Dmitrienko, A. R.
Sadeghi, and F. Koushanfar, “Escort: ethereum smart contracts vul-
nerability detection using deep neural network and transfer learning,”
arXiv preprint arXiv:2103.12607, 2021.

[25] C. F. Torres, A. K. Iannillo, A. Gervais, and R. State, “Confuzzius: A
data dependency-aware hybrid fuzzer for smart contracts,” in 2021
IEEE European Symposium on Security and Privacy (EuroS&P),
2021, pp. 103–119.

[26] T. D. Nguyen, L. H. Pham, J. Sun, Y. Lin, and Q. T. Minh,
“Sfuzz: An efficient adaptive fuzzer for solidity smart contracts,”
in Proceedings of the ACM/IEEE 42nd International Conference
on Software Engineering, ser. ICSE ’20. New York, NY, USA:
Association for Computing Machinery, 2020, p. 778–788. [Online].
Available: https://doi.org/10.1145/3377811.3380334

[27] J. Choi, D. Kim, S. Kim, G. Grieco, A. Groce, and S. K. Cha, “Smar-
tian: Enhancing smart contract fuzzing with static and dynamic data-
flow analyses,” in Proceedings of the International Conference on
Automated Software Engineering, 2021.

[28] “Crypto Hacks 2023: Full List Of Scams And Exploits As
Millions Go Missing,” Accessed 2023. [Online]. Available:
https://www.ccn.com/education/crypto-hacks-2023-full-list-of-sca
ms-and-exploits-as-millions-go-missing/

[29] X. Tang, K. Zhou, J. Cheng, H. Li, and Y. Yuan, “The vulnerabilities
in smart contracts: A survey,” in Advances in Artificial Intelligence
and Security: 7th International Conference, ICAIS 2021, Dublin,
Ireland, July 19-23, 2021, Proceedings, Part III 7. Springer, 2021,
pp. 177–190.

[30] H. Rameder, M. Di Angelo, and G. Salzer, “Review of automated
vulnerability analysis of smart contracts on ethereum,” Frontiers in
Blockchain, vol. 5, p. 814977, 2022.

[31] H. Zhou, A. Milani Fard, and A. Makanju, “The state of ethereum
smart contracts security: Vulnerabilities, countermeasures, and tool
support,” Journal of Cybersecurity and Privacy, vol. 2, no. 2, pp.
358–378, 2022.

[32] P. Praitheeshan, L. Pan, J. Yu, J. Liu, and R. Doss, “Security analysis
methods on ethereum smart contract vulnerabilities: a survey,” arXiv
preprint arXiv:1908.08605, 2019.

[33] S. Sayeed, H. Marco-Gisbert, and T. Caira, “Smart contract: Attacks
and protections,” IEEE Access, vol. 8, pp. 24 416–24 427, 2020.

[34] S. S. Kushwaha, S. Joshi, D. Singh, M. Kaur, and H.-N. Lee, “Sys-
tematic review of security vulnerabilities in ethereum blockchain
smart contract,” IEEE Access, vol. 10, pp. 6605–6621, 2022.

[35] T. Durieux, J. F. Ferreira, R. Abreu, and P. Cruz, “Empirical review
of automated analysis tools on 47,587 ethereum smart contracts,”
in Proceedings of the ACM/IEEE 42nd International conference on
software engineering, 2020, pp. 530–541.

[36] J. F. Ferreira, P. Cruz, T. Durieux, and R. Abreu, “Smartbugs: A
framework to analyze solidity smart contracts,” in Proceedings of
the 35th IEEE/ACM international conference on automated software
engineering, 2020, pp. 1349–1352.

[37] M. di Angelo, T. Durieux, J. F. Ferreira, and G. Salzer, “Smartbugs
2.0: An execution framework for weakness detection in ethereum
smart contracts,” arXiv preprint arXiv:2306.05057, 2023.

[38] A. Ghaleb and K. Pattabiraman, “How effective are smart contract
analysis tools? evaluating smart contract static analysis tools using
bug injection,” in Proceedings of the 29th ACM SIGSOFT Inter-
national Symposium on Software Testing and Analysis, 2020, pp.
415–427.

[39] M. Ren, Z. Yin, F. Ma, Z. Xu, Y. Jiang, C. Sun, H. Li, and Y. Cai,
“Empirical evaluation of smart contract testing: What is the best
choice?” in Proceedings of the 30th ACM SIGSOFT International
Symposium on Software Testing and Analysis, 2021, pp. 566–579.

[40] S. S. Kushwaha, S. Joshi, D. Singh, M. Kaur, and H.-N. Lee,
“Ethereum smart contract analysis tools: A systematic review,” IEEE
Access, vol. 10, pp. 57 037–57 062, 2022.

[41] A. Dika and M. Nowostawski, “Security vulnerabilities in ethereum
smart contracts,” in 2018 IEEE international conference on Internet
of Things (iThings) and IEEE green computing and communica-
tions (GreenCom) and IEEE cyber, physical and social computing
(CPSCom) and IEEE Smart Data (SmartData). IEEE, 2018, pp.
955–962.

https://makerdao.com/en/
https://makerdao.com/en/
https://uniswap.org/
https://www.fxstreet.com/cryptocurrencies/news/makerdao-expected-to-generate-105-million-in-profits-in-2024-maker-price-nearly-rallies-by-8-202312290205
https://www.fxstreet.com/cryptocurrencies/news/makerdao-expected-to-generate-105-million-in-profits-in-2024-maker-price-nearly-rallies-by-8-202312290205
https://www.fxstreet.com/cryptocurrencies/news/makerdao-expected-to-generate-105-million-in-profits-in-2024-maker-price-nearly-rallies-by-8-202312290205
https://www.coindesk.com/understanding-dao-hack-journalists
https://www.coindesk.com/understanding-dao-hack-journalists
https://www.halborn.com/blog/post/explained-the-safe-moon-hack-march-2023
https://www.halborn.com/blog/post/explained-the-safe-moon-hack-march-2023
https://www.halborn.com/blog/post/explained-the-lendhub-hack-january-2023
https://www.halborn.com/blog/post/explained-the-lendhub-hack-january-2023
https://www.coindesk.com/tech/2022/04/28/how-deus-finance-was-exploited-for-134m-on-fantom/
https://www.coindesk.com/tech/2022/04/28/how-deus-finance-was-exploited-for-134m-on-fantom/
https://doi.org/10.1145/2976749.2978309
https://www.usenix.org/conference/usenixsecurity18/presentation/krupp
https://www.usenix.org/conference/usenixsecurity18/presentation/krupp
https://doi.org/10.1145/3243734.3243780
https://doi.org/10.1145/3377811.3380334
https://www.ccn.com/education/crypto-hacks-2023-full-list-of-scams-and-exploits-as-millions-go-missing/
https://www.ccn.com/education/crypto-hacks-2023-full-list-of-scams-and-exploits-as-millions-go-missing/

[42] P. Qian, Z. Liu, Q. He, B. Huang, D. Tian, and X. Wang, “Smart
contract vulnerability detection technique: A survey,” arXiv preprint
arXiv:2209.05872, 2022.

[43] “Ethereum (eth) blockchain explorer,” Accessed 2023. [Online].
Available: https://etherscan.io/

[44] “InterPlanetary File System (IPFS),” Accessed 2023. [Online].
Available: https://ipfs.tech/

[45] “Testnet Goerli,” Accessed 2023. [Online]. Available: https:
//goerli.net/

[46] “Testnet Rinkeby,” Accessed 2023. [Online]. Available: https:
//www.rinkeby.io/

[47] “Testnet Ropsten,” Accessed 2023. [Online]. Available: https:
//ropsten.etherscan.io/

[48] “Testnet Kovan,” Accessed 2023. [Online]. Available: https:
//kovan-testnet.github.io/website/

[49] A. Wang, H. Wang, B. Jiang, and W. K. Chan, “Artemis: An
improved smart contract verification tool for vulnerability detection,”
in 2020 7th International Conference on Dependable Systems and
Their Applications (DSA), 2020, pp. 173–181.

[50] C. F. Torres, J. Schütte, and R. State, “Osiris: Hunting for
integer bugs in ethereum smart contracts,” in Proceedings of
the 34th Annual Computer Security Applications Conference,
ser. ACSAC ’18. New York, NY, USA: Association for
Computing Machinery, 2018, p. 664–676. [Online]. Available:
https://doi.org/10.1145/3274694.3274737

[51] B. Mueller, “Smashing ethereum smart contracts for fun and real
profit,” in 9th Annual HITB Security Conference (HITBSecConf),
Amsterdam, Netherlands, 2018.

[52] H. H. Nguyen, N.-M. Nguyen, H.-P. Doan, Z. Ahmadi, T.-N.
Doan, and L. Jiang, “Mando-guru: Vulnerability detection for
smart contract source code by heterogeneous graph embeddings,”
in Proceedings of the 30th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of
Software Engineering, ser. ESEC/FSE 2022. New York, NY, USA:
Association for Computing Machinery, 11 2022, pp. 1736–1740.
[Online]. Available: https://doi.org/10.1145/3540250.3558927

[53] L. Brent, A. Jurisevic, M. Kong, E. Liu, F. Gauthier, V. Gramoli,
R. Holz, and B. Scholz, “Vandal: A scalable security analysis
framework for smart contracts,” 2018.

[54] “The Solidity Contract-Oriented Programming Language,” Accessed
2023. [Online]. Available: https://github.com/ethereum/solidity

[55] G. Wood et al., “Ethereum: A secure decentralised generalised
transaction ledger,” Ethereum project yellow paper, 2014.

[56] SmartContractSecurity, “Smart contract weakness classification
and test cases,” Accessed 2023. [Online]. Available: https:
//swcregistry.io/

[57] ——, “Swc-110 assert violation,” Accessed 2023. [Online].
Available: https://swcregistry.io/docs/SWC-110/

[58] H. Ermawan, “Vulnerabilities and attacks of smart contracts.”
Accessed 2023. [Online]. Available: https://medium.com/hryer-dev
/vulnerabilities-attacks-of-smart-contracts-9f112ea6c52c

[59] SmartContractSecurity, “Swc-114 example of tod vulnerability,”
Accessed 2023. [Online]. Available: https://swcregistry.io/docs/SW
C-114

[60] I. Grishchenko, M. Maffei, and C. Schneidewind, “Ethertrust: Sound
static analysis of ethereum bytecode,” 2018.

[61] Ethereum Foundation and chainSecurity, “Securify v2.0,” https://gi
thub.com/eth-sri/securify2, 2023, gitHub repository.

[62] J. Frank, C. Aschermann, and T. Holz, “ETHBMC: A bounded
model checker for smart contracts,” in 29th USENIX Security
Symposium (USENIX Security 20). USENIX Association, Aug.
2020, pp. 2757–2774. [Online]. Available: https://www.usenix.org
/conference/usenixsecurity20/presentation/frank

[63] J. He, M. Balunović, N. Ambroladze, P. Tsankov, and M. Vechev,
“Learning to fuzz from symbolic execution with application to smart
contracts,” in Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security, ser. CCS ’19. New York,
NY, USA: Association for Computing Machinery, 2019, p. 531–548.
[Online]. Available: https://doi.org/10.1145/3319535.3363230

[64] M. Zalewski, “American fuzzy lop,” https://lcamtuf.coredump.cx/af
l/technical details.txt, 2016, whitepaper.

[65] Y. Zhuang, Z. Liu, P. Qian, Q. Liu, X. Wang, and Q. He, “Smart
contract vulnerability detection using graph neural network.” in
IJCAI, 2020, pp. 3283–3290.

[66] “Google BigQuery,” Accessed 2023. [Online]. Available: https:
//cloud.google.com/bigquery

[67] “Erigon,” Accessed 2023. [Online]. Available: https://github.com/l
edgerwatch/erigon

[68] “Geth,” Accessed 2023. [Online]. Available: https://geth.ethereum.
org/

[69] “Introduction — Web3.py 5.12.1 documentation,” Accessed 2023.
[Online]. Available: https://web3py.readthedocs.io/en/stable/

[70] “Smartbugs wild dataset,” Accessed 2023. [Online]. Available:
https://github.com/smartbugs/smartbugs-wild

[71] “Quantstamp Security Audits,” Accessed 2023. [Online]. Available:
https://certificate.quantstamp.com/

[72] “OpenZeppelin Security Audits,” Accessed 2023. [Online].
Available: https://blog.openzeppelin.com/security-audits/

[73] “Trail of Bits Security Audits,” Accessed 2023. [Online]. Available:
https://github.com/trailofbits/publications/tree/master/reviews

[74] “ConsenSys Audits,” Accessed 2023. [Online]. Available: https:
//consensys.net/diligence/audits/

[75] “CertiK Audits,” Accessed 2023. [Online]. Available: https:
//www.certik.com/

[76] “BeeGFC,” Accessed 2023. [Online]. Available: https://www.beeg
fs.io

[77] “Docker,” Accessed 2023. [Online]. Available: https://www.docker
.com/

[78] Q. Zhang, Y. Wang, J. Li, and S. Ma, “Ethploit: From fuzzing to
efficient exploit generation against smart contracts,” in 2020 IEEE
27th International Conference on Software Analysis, Evolution and
Reengineering (SANER). IEEE, 2020, pp. 116–126.

[79] V. Wüstholz and M. Christakis, “Harvey: A greybox fuzzer for
smart contracts,” in Proceedings of the 28th ACM Joint Meeting
on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, 2020, pp. 1398–1409.

[80] C. Liu, H. Liu, Z. Cao, Z. Chen, B. Chen, and B. Roscoe, “Reguard:
finding reentrancy bugs in smart contracts,” in Proceedings of the
40th International Conference on Software Engineering: Companion
Proceeedings, 2018, pp. 65–68.

[81] A. Li and F. Long, “Detecting standard violation errors in smart
contracts,” arXiv preprint arXiv:1812.07702, 2018.

[82] Y. Feng, E. Torlak, and R. Bodik, “Precise attack synthesis for smart
contracts,” arXiv preprint arXiv:1902.06067, 2019.

[83] A. Ali, Z. U. Abideen, and K. Ullah, “Sescon: Secure ethereum
smart contracts by vulnerable patterns’ detection,” Security and
Communication Networks, vol. 2021, pp. 1–14, 2021.

[84] J. Chang, B. Gao, H. Xiao, J. Sun, Y. Cai, and Z. Yang, “scompile:
Critical path identification and analysis for smart contracts,” in
Formal Methods and Software Engineering: 21st International Con-
ference on Formal Engineering Methods, ICFEM 2019, Shenzhen,
China, November 5–9, 2019, Proceedings 21. Springer, 2019, pp.
286–304.

https://etherscan.io/
https://ipfs.tech/
https://goerli.net/
https://goerli.net/
https://www.rinkeby.io/
https://www.rinkeby.io/
https://ropsten.etherscan.io/
https://ropsten.etherscan.io/
https://kovan-testnet.github.io/website/
https://kovan-testnet.github.io/website/
https://doi.org/10.1145/3274694.3274737
https://doi.org/10.1145/3540250.3558927
https://github.com/ethereum/solidity
https://swcregistry.io/
https://swcregistry.io/
https://swcregistry.io/docs/SWC-110/
https://medium.com/hryer-dev/vulnerabilities-attacks-of-smart-contracts-9f112ea6c52c
https://medium.com/hryer-dev/vulnerabilities-attacks-of-smart-contracts-9f112ea6c52c
https://swcregistry.io/docs/SWC-114
https://swcregistry.io/docs/SWC-114
https://github.com/eth-sri/securify2
https://github.com/eth-sri/securify2
https://www.usenix.org/conference/usenixsecurity20/presentation/frank
https://www.usenix.org/conference/usenixsecurity20/presentation/frank
https://doi.org/10.1145/3319535.3363230
https://lcamtuf.coredump.cx/afl/technical_details.txt
https://lcamtuf.coredump.cx/afl/technical_details.txt
https://cloud.google.com/bigquery
https://cloud.google.com/bigquery
https://github.com/ledgerwatch/erigon
https://github.com/ledgerwatch/erigon
https://geth.ethereum.org/
https://geth.ethereum.org/
https://web3py.readthedocs.io/en/stable/
https://github.com/smartbugs/smartbugs-wild
https://certificate.quantstamp.com/
https://blog.openzeppelin.com/security-audits/
https://github.com/trailofbits/publications/tree/master/reviews
https://consensys.net/diligence/audits/
https://consensys.net/diligence/audits/
https://www.certik.com/
https://www.certik.com/
https://www.beegfs.io
https://www.beegfs.io
https://www.docker.com/
https://www.docker.com/

[85] H. Liu, C. Liu, W. Zhao, Y. Jiang, and J. Sun, “S-gram: towards
semantic-aware security auditing for ethereum smart contracts,” in
Proceedings of the 33rd ACM/IEEE international conference on
automated software engineering, 2018, pp. 814–819.

[86] M. Rodler, W. Li, G. O. Karame, and L. Davi, “Sereum: Protecting
existing smart contracts against re-entrancy attacks,” arXiv preprint
arXiv:1812.05934, 2018.

[87] J. Gao, H. Liu, C. Liu, Q. Li, Z. Guan, and Z. Chen, “Easyflow:
Keep ethereum away from overflow,” in Proceedings of the 41st
International Conference on Software Engineering: Companion
Proceedings, ser. ICSE ’19. IEEE Press, 2019, p. 23–26. [Online].
Available: https://doi.org/10.1109/ICSE-Companion.2019.00029

[88] S. Kalra, S. Goel, M. Dhawan, and S. Sharma, “ZEUS: analyzing
safety of smart contracts,” in 25th Annual Network and Distributed
System Security Symposium, NDSS 2018, San Diego, California,
USA, February 18-21, 2018. The Internet Society, 2018.

[89] L. Brent, N. Grech, S. Lagouvardos, B. Scholz, and Y. Smaragdakis,
“Ethainter: A smart contract security analyzer for composite
vulnerabilities,” in Proceedings of the 41st ACM SIGPLAN
Conference on Programming Language Design and Implementation,
ser. PLDI 2020. New York, NY, USA: Association for
Computing Machinery, 2020, p. 454–469. [Online]. Available:
https://doi.org/10.1145/3385412.3385990

[90] N. F. Samreen and M. H. Alalfi, “Reentrancy vulnerability
identification in ethereum smart contracts,” in 2020 IEEE
International Workshop on Blockchain Oriented Software
Engineering (IWBOSE). IEEE, feb 2020. [Online]. Available:
https://doi.org/10.1109%2Fiwbose50093.2020.9050260

[91] E. Zhou, S. Hua, B. Pi, J. Sun, Y. Nomura, K. Yamashita, and
H. Kurihara, “Security assurance for smart contract,” in 2018 9th
IFIP International Conference on New Technologies, Mobility and
Security (NTMS). IEEE, 2018, pp. 1–5.

[92] P. Bose, D. Das, Y. Chen, Y. Feng, C. Kruegel, and G. Vigna, “Sail-
fish: Vetting smart contract state-inconsistency bugs in seconds,” in
2022 IEEE Symposium on Security and Privacy (SP). IEEE, 2022,
pp. 161–178.

[93] B. Jiang, Y. Liu, and W. K. Chan, “Contractfuzzer: Fuzzing smart
contracts for vulnerability detection,” in Proceedings of the 33rd
ACM/IEEE International Conference on Automated Software Engi-
neering, 2018, pp. 259–269.

[94] A. Kolluri, I. Nikolic, I. Sergey, A. Hobor, and P. Saxena, “Exploit-
ing the laws of order in smart contracts,” in Proceedings of the 28th
ACM SIGSOFT international symposium on software testing and
analysis, 2019, pp. 363–373.

[95] T. Chen, R. Cao, T. Li, X. Luo, G. Gu, Y. Zhang, Z. Liao, H. Zhu,
G. Chen, Z. He et al., “Soda: A generic online detection framework
for smart contracts.” in NDSS, 2020.

[96] N. Lu, B. Wang, Y. Zhang, W. Shi, and C. Esposito, “Neucheck:
A more practical ethereum smart contract security analysis tool,”
Software: Practice and Experience, vol. 51, no. 10, pp. 2065–2084,
2021.

[97] C. Schneidewind, I. Grishchenko, M. Scherer, and M. Maffei,
“Ethor: Practical and provably sound static analysis of ethereum
smart contracts,” in Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS
’20. New York, NY, USA: Association for Computing Machinery,
2020, p. 621–640. [Online]. Available: https://doi.org/10.1145/3372
297.3417250

[98] M. Mossberg, F. Manzano, E. Hennenfent, A. Groce, G. Grieco,
J. Feist, T. Brunson, and A. Dinaburg, “Manticore: A user-friendly
symbolic execution framework for binaries and smart contracts,”
in 2019 34th IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, 2019, pp. 1186–1189.

[99] N. Grech, M. Kong, A. Jurisevic, L. Brent, B. Scholz, and
Y. Smaragdakis, “Madmax: Analyzing the out-of-gas world of
smart contracts,” Commun. ACM, vol. 63, no. 10, p. 87–95, sep
2020. [Online]. Available: https://doi.org/10.1145/3416262

[100] D. He, Z. Deng, Y. Zhang, S. Chan, Y. Cheng, and N. Guizani,
“Smart contract vulnerability analysis and security audit,” IEEE
Network, vol. 34, no. 5, pp. 276–282, 2020.

Appendix A.
Additional Figures

Figure 14 shows our analysis of the Time Dependency
vulnerability on our source code dataset SCD.

https://doi.org/10.1109/ICSE-Companion.2019.00029
https://doi.org/10.1145/3385412.3385990
https://doi.org/10.1109%2Fiwbose50093.2020.9050260
https://doi.org/10.1145/3372297.3417250
https://doi.org/10.1145/3372297.3417250
https://doi.org/10.1145/3416262

Figure 14: Overlap of tools detecting the Time Dependency vulnerability in source code.

Appendix B.
Meta-Review

The following meta-review was prepared by the program
committee for the 2024 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

B.1. Summary

This paper provides a comprehensive analysis of existing
vulnerability scanners for Ethereum-based smart contracts.
In total, 17 vulnerability scanners are considered, both,
bytecode and source code-based, that rely on detection
methods of four categories: Static Analysis, Symbolic Exe-
cution, Fuzzing and Machine Learning. The study shows
a high inequality in the identification of vulnerabilities,
both for source code and byte code data. The potential
reasons therefore are mentioned as non-uniform definitions
of vulnerabilities, the use of different compiler versions,
software aging, and changing coding styles. Also, the new
variations of attacks where vulnerability scanners are not
keeping up with.

B.2. Scientific Contributions

• Independent Confirmation of Important Results with
Limited Prior Research

• Provides a New Data Set For Public Use
• Provides a Valuable Step Forward in an Established

Field

B.3. Reasons for Acceptance

1) Timely topic and important problem: Despite advances
made in the recent years, smart contract vulnerabilities
continue to prevail.

2) Important findings: Identifying the reasons behind
smart contract vulnerability detection tools being un-
able to consistently detect vulnerabilities can help de-
veloping better detection tools in the future work.

3) Large scale study: To date, this is the largest study of
smart contract vulnerability detection tools in terms of
analyzed tools, datasets, and evaluation methodologies.

4) Datasets and data labeling scripts will be open-sourced.

B.4. Noteworthy Concerns

1) The paper lacks in-depth analysis of factors that con-
tribute to the poor performance of tools. One could
expect more insightful findings, such as the extent to
which combining tools improves detection accuracy,
the increase in the number of cases requiring manual
analysis, or suggestions for optimizing tool combina-
tions for specific vulnerabilities.

Appendix C.
Response to the Meta-Review

We recognize the importance of the concern raised by
the reviewers. However, conducting a detailed analysis of the
tools involved in the study would necessitate a significant
amount of manual work, potentially extending over several
months to years, which is not feasible.

	Introduction
	Background
	Smart Contracts
	Smart Contract Vulnerabilities
	Vulnerability Scanners

	Datasets
	Source Code Dataset
	Bytecode Dataset
	Reentrancy Ground Truth
	Audits Ground Truth

	Study
	Methodology
	Quantitative Analysis on SCD Dataset
	Quantitative Analysis on BCD Dataset
	Source Code vs. Bytecode
	Qualitative Analysis based on RGT Dataset
	Qualitative Analysis based on AGT Dataset
	Scanning Robustness

	Discussion
	Disagreement of Tools
	Usage of Multiple Tools
	Difficulty of Usage
	Limitations

	Related Work
	Conclusion
	References
	Appendix A: Additional Figures
	Appendix B: Meta-Review
	Summary
	Scientific Contributions
	Reasons for Acceptance
	Noteworthy Concerns

	Appendix C: Response to the Meta-Review

