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Abstract

Visual geo-localization for drones faces critical degradation under weather per-
turbations, e.g., rain and fog, where existing methods struggle with two inherent
limitations: 1) Heavy reliance on limited weather categories that constrain general-
ization, and 2) Suboptimal disentanglement of entangled scene-weather features
through pseudo weather categories. We present WeatherPrompt, a multi-modality
learning paradigm that establishes weather-invariant representations through fusing
the image embedding with the text context. Our framework introduces two key
contributions: First, a Training-free Weather Reasoning mechanism that employs
off-the-shelf large multi-modality models to synthesize multi-weather textual de-
scriptions through human-like reasoning. It improves the scalability to unseen or
complex weather, and could reflect different weather strength. Second, to better dis-
entangle the scene and weather features, we propose a multi-modality framework
with the dynamic gating mechanism driven by the text embedding to adaptively
reweight and fuse visual features across modalities. The framework is further
optimized by the cross-modal objectives, including image-text contrastive learning
and image-text matching, which maps the same scene with different weather condi-
tions closer in the representation space. Extensive experiments validate that, under
diverse weather conditions, our method achieves competitive recall rates compared
to state-of-the-art drone geo-localization methods. Notably, it improves Recall@ 1
by 13.37% under night conditions and by 18.69% under fog and snow conditions.
Our code is available at https://github.com/Jahawn-Wen/WeatherPrompt.

1 Introduction

Drone visual geo-localization aims to match drone-view image with corresponding satellite views,
supporting critical applications such as disaster response, urban surveillance, search-and-rescue, and
environmental monitoring |1} 2| 3| 4] |5, |6]. However, variable weather conditions such as rain, fog
and snow introduce noise, occlusions and low visibility, which severely distort image features [/7} |8}
9] and leading conventional localization methods to suffer drastic performance degradation under
extreme weather. Recent advances in cross-modal retrieval show that integrating natural language
descriptions can substantially enhance the discrimination power of vision models, allowing better
generalization in complex or ambiguous scenarios [[10} 11} 12} 13]]. Despite this progress, leveraging
textual guidance for cross-weather drone geo-localization remains largely underexplored, especially
considering the nuanced and dynamic nature of weather conditions encountered in the field. The
ability of text to capture complex semantics and fine-grained details [14} |15] offers a promising
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Figure 1: Example of the proposed Chain-of-Thought description and matching. Our framework
generates structured weather and spatial Text Description via stepwise reasoning. We leverage Off-
the-shelf Visual Grounding Model (VGM), i.e., XVLM [16] to extract local region cues, which are
integrated to further refine the matching process. Finally, we match images using weather description,
global scene layout, and local region semantics to retrieve the corresponding satellite-view image.

avenue for cross-weather generalization. Addressing the all-weather visual geo-localization task
presents two primary challenges: (1) Limited Weather Labeling. Existing approaches typically
perform domain-specific fine-tuning on a limited set of predefined weather labels (e.g., sunny, rainy).
This closed-set paradigm fails to capture the continuous and combinatorial nature of real-world
weather, thereby limiting model generalization to unseen or mixed conditions and preventing the
exploitation of richer weather semantics. (2) Scene—Weather Feature Entanglement. Existing methods
directly inject coarse pseudo-weather labels (e.g., rain, fog) into visual representations during training,
leading to a severe entanglement between scene semantics and weather disturbances. Consequently,
the model learns suboptimal representations under mixed or unseen weather conditions, fails to
disentangle scene content from weather noise, and is severely limited in cross-weather generalization.

For the first limitation, we propose a training-free weather reasoning mechanism leveraging off-the-
shelf large multimodal models [[17]] (see Fig.[T). Specifically, we employ chain-of-thought (CoT) [I8]]
prompting to automatically generate rich, step-by-step natural language weather descriptions for each
geographical scene using a single randomly sampled drone-view image. This strategy circumvents
manual description and expert controlled, enabling large-scale collection of high-quality and diverse
multimodal samples at significantly reduced costs. Moreover, the stepwise reasoning introduced by
the CoT prompts ensures semantic accuracy and formatting consistency across generated captions,
further enhancing the reliability and usability of descriptions. This ultimately leads to improved
generalization for complex and unseen weather conditions. To address the second challenge, we
propose a multimodal framework equipped with a text embedding-driven dynamic gating mechanism
to adaptively reweight and fuse visual features, effectively disentangling scene and weather attributes.
Specifically, during training, the framework jointly optimizes multimodal objectives including image-
text contrastive (ITC) loss and image-text matching (ITM) loss, aligning drone images with generated
weather-aware captions. Additionally, a localized alignment loss is introduced to explicitly enforce
consistency between annotated visual regions and textual descriptions across multiple granularities,
encouraging the visual encoder to learn robust and weather-invariant scene representations. At infer-
ence, visual and textual embeddings are extracted in parallel, and the textual embeddings dynamically
modulate visual features via the gating mechanism. The resulting multimodal representation is
directly fed into a classification head for localization prediction, avoiding any additional online fine-
tuning or dedicated parameter sets for different weather conditions. This design significantly reduces
structural complexity and improves the deployment efficiency on resource-constrained platforms.
The main contributions are as follows:

e Training-Free Weather Reasoning: We pioneer automatic weather semantics extraction through
Large Vision Language Models (LVLMs) with chain-of-thought prompting, eliminating manual
descriptions. Our hierarchical reasoning mechanism integrates continuous weather priors with
spatial-object analysis, enabling weather-adaptive caption generation and scalable dataset construc-
tion.

e Semantic Disentanglement via Language Guidance: We devise a text-driven framework achiev-
ing scene-weather disentanglement through: (1) Multi-granularity alignment of visual features with
continuous textual weather embeddings, (2) Region-level semantic consistency enforcement, (3)
Dynamic textual gating for weather-invariant representations.



o State-of-the-Art Generalization: The proposed method has achieved average 87.72% Recall@1
on University-1652 and 83.1% on SUS-200 over 10 different weather conditions. For unseen weather
combinations (i.e., Dark+Rain+Fog), ours still arrives at 72.15% AP, validating unprecedented cross-
domain generalization.

2 Related Work

Cross-view Geolocalization. Cross-view geo-localization aims to match images captured from
different viewpoints with their corresponding geographic locations [[1,{19} 20, |21f]. Early approaches
relied on hand-crafted local features such as SIFT [22] and SURF [23]], as well as global descriptors
like VLAD [24] and Fisher Vector [25]], often combined with RANSAC [26] for geometric verification;
however, they remain brittle under large viewpoint and illumination changes [27} 28|]. With the advent
of deep learning, deep metric learning frameworks based on global or part-based contrastive objectives
have become dominant [29} 30} |31} |32} |33 [34]]. These approaches employ triplet or InfoNCE losses
to train end-to-end embeddings and integrate global pooling with spatial attention or multi-region
partitioning strategies [35}36]. Representative examples include the multi-part partitioning scheme et
al. [2], the keypoint attention module [3]], the content-aligned Transformer architecture [37]], self-
attention positional encoding by Yang et al. [35]], the dual-path fusion network [36]], and Bird’s Eye
View (BEV) [38]], all of which substantially enhance cross-view feature alignment. Recent research
has begun to address the impact of image degradations such as low-light, motion blur, and synthetic
fog, often by using data augmentation, domain adaptation, or cross-modal transformers [39} 40, |41}
42| 43| 44]. However, most existing methods still depend on a limited set of discrete weather labels,
restricting generalization to unseen or complex conditions. In contrast, our approach introduces
a training-free, all-weather text-guided representation learning framework that leverages open-set
weather descriptions to overcome these limitations.

Multi-modality Alignment. In this work, we address weather-aware text-guided representation
learning, where the goal is to retrieve drone-view images based on fine-grained weather-related textual
cues. Recent advances in vision—language alignment, such as CLIP [45], BLIP [46], and XVLM [16],
have established powerful contrastive pre-training and cross-modal attention mechanisms, but previ-
ous studies mainly target static semantics or rigid spatial relations [47|48| |49]]. Additional efforts on
adaptive fusion and region-word alignment 50} 51, |52} 53] have improved retrieval, but remain lim-
ited by closed vocabularies and overlook dynamic, fine-grained weather semantics. To address these
gaps, we propose a framework that generates open-set weather descriptions via Chain-of-Thought
prompting and applies text-driven dynamic gating for adaptive feature modulation, achieving robust
cross-modal alignment under diverse weather conditions.

Large Vision Language Models for Vision via Prompting. Large Vision Language Models
(LVLMs) such as GPT-3/4 [54} |55]] and Qwen [17] have recently been applied to vision tasks
using prompt engineering. Approaches like VisualGPT [56]] and MM-CoT [57] leverage Chain-of-
Thought (CoT) prompts [18] to elicit stepwise reasoning for visual question answering and captioning.
However, scaling LVLMs to cross-view, multi-weather geo-localization remains challenging: free-
form text often suffers from hallucinations and lacks semantic or structural consistency [58 |59,
60]). Prior works also overlook prompt design tailored for robust, multi-weather, multi-scale cross-
modal alignment. To address this, we introduce the first CoT-driven description pipeline for multi-
weather drone-to-satellite geo-localization. Our structured prompts regularize LVLMs’ outputs,
enabling scalable generation of high-quality, open-set weather descriptions to advance large-scale
vision—language alignment.

3 Method

3.1 Open-Weather Description

As shown in Fig. 2] we present an overview of our multi-weather drone-view image captioning
pipeline. To minimize description redundancy and mitigate overfitting, our approach begins by
randomly sampling a single representative drone-view image from each geographical region, forming
concise yet diverse image—text pairs. Notably, Large Vision Language Models (LVLMs) typically
generate weather labels or captions intuitively, which may omit critical visual cues and exhibit
semantic inconsistency. To address this limitation, we explicitly divide the captioning process into
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Figure 2: The proposed training-free weather reasoning mechanism. We synthesize drone-
view images with diverse weather conditions based on the University-1652 and SUES-200 datasets,
covering complex scenarios such as fog, rain, snow, and nighttime. For each synthesized image,
we first employ stepwise Chain-of-Thought prompting to generate open-set weather descriptions,
including global assessment, local detail analysis, and weather inference. Guided by the inferred
weather prior, we then sequentially reason about the scene’s macro layout, structural elements, and
topological relationships, ultimately producing high-quality, structured image—text pairs.

two sequential phases: a weather estimation phase and a spatial semantics phase, guided by carefully
designed Chain-of-Thought (CoT) prompts. Inspired by human hierarchical visual reasoning, our
CoT prompting strategy enforces a rigorous three-step reasoning procedure: global perception, local
analysis, and comprehensive synthesis.

In the weather estimation phase, the LVLMs first assesses global visibility to quantify observable
range, subsequently identifies localized atmospheric indicators such as rain-streak reflections or fog
diffusion patterns, and finally integrates these global and local cues to assign an accurate weather
category. This structured inference process significantly alleviates the ambiguity inherent to single-
shot captioning methods, establishing a reliable weather-conditioned prior for the following stage.

In the subsequent spatial semantics phase, conditioned explicitly on the inferred weather semantic,
the model rapidly identifies macro-level layout features, including the spatial distribution of buildings,
orientations of roads, and proportion of open spaces. Then, it captures micro-level structural details
such as object counts, shapes, and local spatial arrangements. Ultimately, the pipeline synthesizes
these cues by reasoning about relative positions and topological relationships to generate a structured
textual description. This final output aligns comprehensively with weather semantics, spatial structure,
and detailed scene attributes, ensuring robust, consistent, and high-quality multimodal descriptions.

Single-image Sampling. Since existing benchmarks (e.g., University-1652) are partitioned by
geographic regions, we randomly select only one drone-view image per region as a representative to
avoid redundancy. Given the prohibitive cost of obtaining real drone-view imagery across diverse
weather conditions, we utilize the imgaug library to synthesize realistic weather variations. By
parametrically adjusting visibility and occlusion effects such as rain, fog, and snow, we generate
high-fidelity, diverse meteorological scenarios that closely resemble real-world conditions.

Weather Estimation Phase. Given a drone-view image with synthetically generated weather, we
apply a pretrained large multimodal model for automatic weather description. To mitigate
hallucinations, vague phrasing, and inconsistent terminology typical of single-shot captioning, we
adopt a Chain-of-Thought prompting strategy inspired by human visual perception. Specifically, we
first quantify global visibility, then identify local meteorological cues such as rain-streak reflections
or fog diffusion, and finally integrate global and local evidence to determine a reliable weather
label. Any description that lacks explicit visibility information, meteorological cues, or contains
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Figure 3: The proposed multimodal alignment framework. Our model extracts global and local
features from drone images and multi-step weather captions, performs multi-granular image-text
alignment, and dynamically fuses modalities via weather-driven gating for robust geo-localization.

uncertain terminology (e.g., “possibly” or “uncertain”) is automatically rejected and regenerated.
This three-step reasoning pipeline ensures accurate, consistent, and reliable weather descriptions,
thus providing a robust prior for the subsequent spatial semantics phase.

Spatial Semantics Phase. Conditioned on the inferred weather prior, we further generate detailed,
scene-level textual descriptions essential for precise vision—language alignment. Initially, the model
conducts a global scan to capture macro-level structures, including building distributions, road
orientations, and proportions of open areas. Subsequently, it enumerates fine-grained elements,
accurately counting structural entities, describing shapes, and detailing local spatial arrangements.
Lastly, it synthesizes macro-layout and micro-level information to explicitly infer relative positions
and topological relationships, producing structured, natural-language scene descriptions. These
descriptions serve as fine-grained semantic supervision for downstream multimodal alignment.

Discussion. Existing cross-view geo-localization methods primarily rely on image-based retrieval.
While some recent studies [21}/62] integrate textual descriptions, these approaches remain limited to
coarse, scene-level labels and largely neglect weather semantics, resulting in compromised robustness
under diverse weather conditions. In contrast, we introduce a training-free, CoT-driven pipeline
for automatically generating multi-weather semantic descriptions. By employing large multimodal
models guided by Chain-of-Thought prompting, we move beyond predefined discrete weather
categories and achieve robust generalization to unseen and complex meteorological conditions.
Furthermore, our framework systematically annotates both macro-level spatial layouts and micro-
level structural attributes, embedding essential spatial cues into the image—text pairs. Relying solely
on pretrained multimodal models without manual description, our approach efficiently produces large-
scale, semantically consistent multimodal data, significantly facilitating downstream cross-weather
multimodal representation learning.

3.2 Multimodal Alignment Model

We introduce a training-free, all-weather text-guided representation learning framework (see Fig. [3)
that aligns weather semantics injected via text prompts with visual features to produce consistent,
discriminative cross-view embeddings across diverse meteorological conditions. The framework
consists of a pretrained visual encoder, a text encoder, and a cross-modal fusion module, capped
by a lightweight classification head. During inference, the text embedding parametrizes a gating
mechanism that adaptively modulates the visual feature channels; the fused multimodal representation
is then passed through a single-layer MLP to predict the geographic location.

Weather-Driven Channel Gating. Let f; € R®*P and fr € RE*P represent the normalized visual
and textual embeddings for a batch of B samples. We utilize text embeddings to generate an adaptive



channel-wise gating vector g € (0, 1)5*P:
2z = ReLU(frW (o) T 4 p{0t9)) ¢ REXD/r g = o (zWeate)T 4 p{0e)) ¢ (0,1)B*P,
(1)
where Wl(gate), WQ(g ate) b§9 ate) bégate) are learnable parameters, and r is the reduction ratio. The
fused multimodal feature is computed by

ffuse:g®f1+(1_g)®fT 6RBXD7 (2)

followed by a classification head for geo-localization. By dynamically modulating visual channels
conditioned on textual weather semantics, our approach yields discriminative and weather-robust
embeddings with minimal computational overhead.

Image-Text Contrastive. Given paired samples {(I;,T;)}2 ;, we compute the similarity matrix

T ; . . . .
Sij = 115 € RE*B between normalized visual embeddings ; and textual embeddings 7}, where
T is a learnable temperature parameter. We then convert the diagonal entries into retrieval probabilities
by applying softmax over rows and columns:

exp(Sii) (%) exp(Sii)

, P =5 - < 3)
2 oexp(Sy) T 2 exp(S5)

pyLT = >

The contrastive loss is defined as:

B
1 ; i

Lire = —35 O [logplr +logpil), . )

i=1

enforcing global semantic alignment between the visual and textual modalities.

Image-Text Matching. To further enhance fine-grained discriminability, we introduce an image-
text matching loss utilizing hard negatives. Given the similarity matrix S, for each image I; and
its paired textual T;), we select the highest non—diagonal similarity entry as its hard negative:
T, = argmax;z; Sij,I; = argmax;; Sj;. This forms 2B hard negative pairs (I;,7; ) and
(I;,T;), and B positive pairs (I;, T;), resulting in 3B pairs in total. Each pair is passed through the
cross-modal encoder, and we extract the CLS embedding hj which is fed to a binary classifier fmach-
The matching probability is py = o( fmatch(hk)), where o is the sigmoid function. Denoting the
ground-truth label y;, = 1 for positive pairs and y; = O for negatives, the matching loss is defined as

3B

1
Lirs = o5 O [y log e + (1= ) log(1 = )] 5)

k=1
which guides the model to hear subtle semantic distinctions between closely related pairs.
Localized Alignment Module. To enable text-driven fine-grained visual localization, the model

responds to both global descriptions 7" and the region hints 77,75, T5. For the j-th concept , we

extract its [CLS] embedding mzls € R%. from the cross-encoder, which is projected to normalized
coordinate vector via a dedicated two-layer MLP:

= oWy GELUW ) 27 +{°?) + b)) € [0,1]* (6)

cls

where Wl(loc) € R2dxd WQ(ZOC) € R4x2d b(lloc) e R4, bgl“) € R*. The resulting vector I/ =

(éz, ¢y, W, h) encodes the region center and size in normalized coordinates. The localized alignment
loss supervises both overlap and regression accuracy:

Lia =B gy |1 = 00U, D) + |0 =] ], 7
—— —— —_———
Overlap Loss L1 Loss

where I/ = (c;, ¢y, w, h) is the ground-truth region, [7 its prediction, and IoU(-,-) computes the
Intersection-over-Union.

Classification Module. After multimodal fusion, we employ a single-layer MLP classification head
to predict the geographic location. Let the fused feature for sample b be z, € R, and classifier



Method Normal o Rain Snow Fog+Ramn FogSnow | RaintSnow, Dark Over-exp Wind Mean
R@1 AP R@1 AP R@1 AP R@1 AP R@1 AP R@1 AP R@1 AP R@1 AP R@1 AP R@1 AP R@1 AP
Drone — Satellite
Zheng eral[L[ackbone] [ 6783 7174 [ 6097 6523 | 6029 6461 [ 5558 6009 [ 5475 5940 | 4485 4978 [ 5761 6203 | 3970 44.65 | 5T85 5675 | 5828 6283 3517 97T
ResNet-101[68] [backbone] | 70.07 73.04 | 63.87 6822 | 6334 6759 | 5975 6415 | 5745 6212 [ 4831 5328 | 60.25 64.68 | 46.12 5102 | 5634 6123 | 62.13 66.63 58.76 63.29
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IBN-Net 1 /0] [b: 1 7235 7585 | 66.68 70.64 | 67.95 71.73 | 62.77 66.85 | 62.64 66.84 | 51.09 5579 | 64.07 68.13 | 50.72 5553 | 57.97 6252 | 66.73 70.68 62.30 66.46
LPN [2] [TCSVT21] 7433 7760 | 69.31 7295 | 6796 71.72 | 6490 68.85 | 64.51 68.52 | 54.16 5873 | 6538 6929 | 53.68 58.10 | 6090 6527 | 66.46 7035 64.16 68.14
SampledGeo” [71][ICCV'23] | 92.70 93.85 | 88.70 90.55 | 62.44 66.17 | 52.76 57.24 | 5270 56.77 | 19.79 23.16 | 38.19 4233 | 46.34 4991 | 75.77 7890 | 81.54 87.34 61.10 64.32
Safe-Net” |72 TTIP'24] 86.98 88.85 | 82.12 86.10 | 67.13 68.90 | 60.50 63.01 | 54.80 58.73 | 32.12 39.77 | 25.83 2640 | 41.10 44.13 | 69.87 7115 | 7432 76.58 60.48 63.36
CCR" [73]TTCSVT24) 9254 93.78 | 85.57 87.13 | 6746 6882 | 5516 59.14 | 63.11 60.97 | 27.74 3148 | 23.06 4685 | S1.I0 5419 | 7590 79.16 | 8131 87.22 62.30 66.87
MuSe-Net™ 29/[PR™24] 7448 77.83 | 69.47 7324 | 70.55 74.14 | 65.72 69.70 | 65.59 69.64 | 54.69 59.24 | 66.64 70.55 | 53.85 58.49 | 61.05 6551 | 69.45 7322 65.15 69.16
Ours 8278 8518 | 8146 8403 | 8034 83.11 77.60 80.67 7875 8169 7338 7694 7841 8140 6722 7106 7420 7763 7726 8027 T7.14(+11.99) 80.20 (+11.04)
Satellite  Drone

Zheng et al [T [hackbonc] | 8345 6794 [ 79.60 61.12 [ 77.60 59.73 | 73.18 5507 | 7589 5445 [ 70.76 4326 [ 7475 5644 | 6947 3925 | 7218 5101 | 7646 5759 7533 5268
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CCR” 73| [TCSVT'24] 95.15 91.80 | 9093 80.62 | 81.83 7389 | 69.92 6541 | 76.92 70.53 | 50.89 31.64 | 61.11 3221 | 64.80 46.28 | 86.01 7123 | 9267 76.55 77.02 64.02
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Ours 89.16 8180 | 88.73 B80.58 | 88.06 79.87 87.59 77.25 8845 7820 8673 7323 8859 75.14 8659 6520 8531 7325 8788 7633 8772(:3.00) 7639 (11061

Table 1: Performance (R@1(%) and AP(%)) on University-1652 for Drone — Satellite and
Satellite — Drone tasks. In both tasks, drone-view images are stylized 10 different weather conditions,
and the satellite-view images are constant. Best results are highlighted in bold. * denotes the use of
official pretrained weights.

output logits 0, = Weiezp + ber € RY, where Wy € RE*P and by € RC. Given the ground-truth
location label y;, € {1,...,C}, the softmax cross-entropy loss is:

Lon— L3 10 _SP(0m) ©
B b=1 25:1 eXP(Ob,c)

Optimization Objectives. Our total 10ss L;.:q; 1s defined as:

Liotat = Lirc + Lirm +Lra+ Lek. 9)

This unified objective enables the model to learn fine-grained, weather-invariant representations,
substantially improving cross-weather generalization.

4 Experiment

Implementation Details. We adopt XVLM [16] as the backbone, which is pre-trained on 4M
image—caption pairs, integrates BERT [63]] as the text encoder and Swin Transformer [64] as the
image encoder. The model is optimized using stochastic gradient descent (SGD) [|65] with momentum
0.9 and weight decay 0.0005. Training 210 epochs, with the learning rate reduced by 0.1 at epoch
120 and by 0.01 at epoch 180. We resize input images to 384 x 384 pixels and divide them into
32 x 32 patches. During training, satellite-view images are augmented via random cropping and
horizontal flipping, for drone-view images, we first apply style transformations using the imgaug [61]
library and then perform the same random crop and flip augmentations. At test time, we compute the
Euclidean distance between query and candidate embeddings to measure similarity. All experiments
have been implemented in PyTorch [66] and conducted on a single NVIDIA RTX A6000 GPU, with
an average inference time of 0.024s per query.

Dateset. University-1652 [1]] is a large-scale cross-view geo-localization dataset comprising images
from 1,652 university locations. Each location is represented by satellite, drone, and ground-level
images, with 54 drone-view and 1 satellite-view images per building, as well as street-view imagery.
The dataset is split into 701 training and 951 test buildings, with no overlap between train and test
sets. SUES-200 [67]] contains multi-view drone and satellite images from 200 locations in Shanghai,
encompassing diverse urban scenes, parks, lakes, and public buildings. Drone images are captured
from multiple altitudes (150-300m) to simulate varied real-world conditions.

4.1 Comparison with Competitive Methods

The experimental results on the University-1652 dataset are shown in Tab We compare the
proposed WeatherPrompt with several competitive cross-view geo-localization methods. In the Drone
— Satellite task, WeatherPrompt achieves a mean Recall@1 (R@1) accuracy of 77.14% (+11.99%)
and a mean Average Precision (AP) of 80.20% (+11.04%), outperforming existing state-of-the-art
methods for multi-weather geo-localization. Similarly, in the Satellite — Drone task, WeatherPrompt



Method Normal € Rain Snow FogtRain | Fog+Snow | Rain+Snow Dark Over-exp Wind Mean
R@1 AP R@1 AP R@1 AP R@1 AP R@1 AP R@1 AP R@1 AP R@1 AP R@1 AP R@1 AP R@1 AP
Drone — Satellite
Zheng ef al, ST70 5830 [ 4863 4961 | S3AT 5272 [AL78 4347 [ 3717 3744 | 4422 46.18 [ 4060 4063 [ 2381 2545 [ 49.79 5064 [ 4TAZ 4831 7433 7512
IBN-Net 6534 6378 | 56.03 56.57 | 55.73 58.55 | 47.80 49.53 | 4345 44.98 | 50.04 5100 | 4551 4592 | 29.61 3093 | 5601 5696 | 5736 58.10 50.69 51.63
SampledGeo 7493 7876 | 7258 7644 | 34.60 4156 [ 2895 3502|3510 4147 [ 1295 17.90 | 2005 2595 | 34.18 3899 | 3840 43.68 | 67.80 7241 41.95 122
Safe-Net 24 7631 7535 | 73.53 7344 | 54.15 5505 | 4894 50.10 | 45.12 47.92 | 4005 40.18 | 2595 26.12 | 29.74 31.48 | 54.86 58.68 | 58.10 5895 50.68 51.63
CCR' [73][TCSVT24] 7322 7453 | 7095 7304 | 6014 6495 | 5031 S53.12 | 4587 49.14 | 4580 47.87 | 3125 3294 | 31.03 3436 | 5997 6107 | 5202 5333 52.06 5346
MuSe-Net [PR"24] 66.07 67.02 | 5849 59.65 | 5894 60.14 | 54.85 56.12 | 4431 4582 | 49.81 51.26 | 49.42 50.87 | 29.34 31.03 | 55.02 56.36 | 59.97 61.05 35 5333
Ours 7672 7551 | 6849 68.87 | 7077 7120 5995 60.62 5824 5883 64.36 6627 5849 5889 4042 5575 8L60 7170 6519 67.00 62.52(+10.46) 6326 (+9.80)
Satellitc — Drone
Zheng er al1 7020 5798 [ 63.77 4690 6872 5085 [ 6172 39.70 | 6210 32.75 | 71.70 4039 [ 59.72 3755 [ 4549 2528 | 5211 4340 | 5662 4531 6121 7201
IBN. \Ielﬁ" e] 73.68 6291 | 6741 5575 | 7230 56.44 | 64.07 47.69 | 6698 39.54 | 71.10 4732 | 68.46 4595 | 54.72 31.53 | 65.64 53.77 | 73.48 57.03 67.79 49.79
SampledGeo' [71 Iccv 23] | 8750 79.57 | 8375 7114 | 4250 2524 4000 21.59 | 3875 2322 |30.00 1058 | 2625 1644 | 5625 2975 | 5875 3038 | 8375 69.66 5475 37.76
Safe-Net [72] 8831 8035 | 8133 68.60 [ 4021 4104 | 3643 37.50 | 3312 3545 [ 2478 27.65 | 4112 3231 | 5388 27.01 | 5419 57.82 | 79.36 57.09 5327 46.48
CCRY . SVT Z4| 90.59 80.45 | 8299 70.62 | 43.39 4590 | 39.81 40.88 | 42.63 39.46 | 2032 30.65 | 25.89 26.94 | 26.01 30.40 | 58.01 59.13 | 83.09 61.05 5217 48.55
MuSe-Net' [29] [PR'24] 7656 6602 | 7219 57.87 | 7219 S8.01 | 68.38 5122 | 66.56  42.25 | 69.06 46.80 | 6938 4779 | 53.75 2794 | 70.00 5267 | 7625 60.74 69.43 114
Ours 90.61 8124 | 86.14 7115 | 8394 7380 7103 60.19 8441 5849 79.16 6493 7728 0.5 5675 4785 8165 74.04 8030 6938 8073 (1 1130) 66.12( 1105

Table 2: Performance (R@1(%) and AP(%)) on SUES-200 for Drone — Satellite and Satellite
— Drone tasks. In both tasks, drone-view images are stylized in 10 weather conditions, while
satellite-view images remain constant. Best results are highlighted in bold. * denotes the use of
official pretrained weights. T denotes the use of official pretrained weights on University-1652.

Normal Drone —— Satellite

Satellite — Drone Fog+Rain

uery image

Sample4GEO |

MuSeNet

Ours

Figure 4: Qualitative comparison under varying weather. While existing methods perform reliably
under clear weather, their accuracy drops markedly in adverse conditions. Our approach maintains
superior localization performance, especially when drone images are severely affected by weather.
Green boxes indicate correct matches, while images in red boxes represent incorrect matches.

attains a mean R@1 accuracy of 87.72% (+3.04%) and a mean AP of 76.39% (+10.64%). Our method
validates competitive performance when handling drone view images under different conditions,
especially in terms of cross-view geo-localization in challenging weather scenarios (e.g., Dark,
Fog+Snow, and Rain+Snow). In addition to quantitative comparisons, we present qualitative retrieval
results in Figure ] While existing methods can retrieve plausible matches in clear conditions, they
suffer a substantial performance drop when encountering adverse weather conditions. In contrast, our
approach consistently retrieves more accurate matches among the top-ranked candidates even in the
presence of severe weather, highlighting its robustness and generalization capability. In the real-world
captured SUES-200 dataset, we combine drone-view images captured at four altitudes (150m, 200m,
250m, and 300m) to simulate diverse operational heights in practical drone applications, enabling
a comprehensive evaluation of our method. As shown in Tab [2| compared to the state-of-the-art
multi-weather geolocalization method MuSe-Net, our method shows significant improvements in
several metrics. Specifically, Ours improves mean R@1 accuracy in the Drone — Satellite task from
52.02% to 61.20% (+9.18%) and mean AP from 53.33% to 63.26% (+9.80%). In the Satellite —
Drone task, our method increases mean R@1 accuracy from 69.43% to 80.73% (+11.30%) and mean
AP from 51.14% to 66.12% (+14.98%).

4.2 Ablation Studies and Further Discussion

Impact of Weather-Driven Gating Mechanism. We conduct ablation experiments to quantify
the impact of the weather-driven gating module on multimodal fusion. Table[3a] summarizes three
alternative fusion strategies under identical settings: (1) Concatenation, which concatenates visual
and textual features directly; (2) Static Gate, which fuses modalities using fixed average weights; and
(3) Dynamic Gate (Ours), which adaptively reweights visual channels based on weather semantics.
We find that the dynamic gating mechanism improves mean AP by 2.3% over the no-gate baseline,
with only 0.2M extra parameters and 0.4 ms added latency. This validates that weather-aware,
channel-wise fusion enables more reliable feature integration, especially under adverse weather. The
dynamic gate also reduces degradation from ambiguous weather descriptions, demonstrating its
robustness for cross-weather geo-localization.

Impact of Text-Guided Weather Semantics. We conduct an ablation study to assess how multi-
weather textual supervision affects cross-view geo-localization. Table 3] reports mean Recall@1



D2S S2D

Normal Mean Normal Mean

Method R@1(%) AP(%) R@1(%) AP(%) R@1(%) AP(%) R@1(%) AP(%)

+Concatenation 81.59 84.11 75.73 78.90 88.59 81.76 85.38 73.84
+Static Gate 82.35 84.75 75.26 78.45 88.45 82.25 85.89 74.61
+Dynamic Gate 82.78 85.18 77.14 80.20 89.16 81.80 87.72 76.39

(a) Impact of Weather-Driven Channel Gating on University-1652

D2S S2D Dark+Rain+Fog
R@I(%) R@5(%) R@I0(%) AP(%)
CoT Step Mean R@1(%) Mean AP(%) Mean R@1(%) Mean AP(%) SampledGeo [71] 3.2 6111 7778 31.65
NAN 74.53 78.72 85.17 73.26 D2S  MuSe-Net [29 2222 66.67 83.33 31.70
0 75.10 79.15 85.45 73.65 Ours 44.44 83.33 94.44 64.94
2 75.35 79.10 85.85 74.40 Sample4Geo |71} 3333 61.11 8333 4347
4 76.05 79.80 86.60 75.20 S2D  MuSe-Net [29] 38.89 61.11 88.89 44.34
6 77.14 80.20 87.72 76.39 Ours 66.66 71.78 94.44 72.15
(b) Different CoT Setting on University-1652 (¢) Evaluation on Real World Videos

Table 3: Ablation Studies on University-1652 and Real-World Videos. D2S denotes the Drone —
Satellite and S2D denotes the Satellite — Drone.

and mean Average Precision (AP) across two tasks (Drone — Satellite and Satellite — Drone) on
University-1652, under varying levels of Chain-of-Thought (CoT) guidance. The no-caption baseline
(NAN) removes all text-based components, training the model with only the visual encoder and
classification head. When progressively increasing the CoT prompt steps, we observe consistent
performance gains for both tasks. Compared to the baseline, the best CoT setting (6-step) achieves
improvements of +2.61% mean Recall@1 and +1.48% mean AP in the Drone — Satellite task,
and +2.55% mean Recall@1 and +3.13% mean AP in the Satellite — Drone task. Notably, all
models leveraging text-based weather guidance achieve higher mean Recall@1 and AP compared to
the visual-only baseline, demonstrating that even minimal textual supervision provides substantial
benefits for model robustness and accuracy.

Impact of Prompt Structuring on Multimodal Alignment. To comprehensively assess the impact
of stepwise reasoning in prompt engineering on multimodal alignment, we generate captions using
the same large vision—language model [[17]], varying only the number of reasoning steps prescribed
in the prompt. The zero-step baseline produces a single-turn weather description without explicit
intermediate reasoning. In contrast, the Chain-of-Thought (CoT) variants employ multi-stage reason-
ing prompts, including 2-step, 4-step, and 6-step configurations. The optimal 6-step CoT scheme
decomposes the generation process into two reasoning chains: the first three steps sequentially
estimate global visibility, local atmospheric cues, and fine-grained weather semantics; the latter three
steps, conditioned on the inferred weather prior, successively infer macro scene layout, enumerate
structural elements, and capture fine-grained spatial relationships. This structured decomposition
compels the model to capture both meteorological variations and spatial semantics, yielding captions
that are both semantically rich and consistent in format. As shown in Table model performance
steadily improves as the number of reasoning steps increases, with the 6-step CoT achieving the
best results in terms of both Recall@1 and mAP. These findings show that fine-grained, multi-stage
reasoning significantly enhances cross-weather robustness and discriminative capacity, serving as a
crucial ingredient for high-quality vision—language alignment in challenging multi-weather scenarios.

Real-World Performance under Adverse Weather Conditions. To validate real-world robustness,
we collected 54 drone-satellite video pairs from YouTube to evaluate ours under three weather
conditions, including Dark, Rain, and Fog. As shown in Tab our model consistently achieves
superior results in terms of R@1, R@5, R@10, and Average Precision (AP). These results underscore
the strong robustness and generalization capability of our model under challenging real-world
scenarios with poor lighting or inclement weather conditions.

Limitations. Despite of significant advancements in cross-view geo-localization under diverse
weather conditions, several limitations inherited from external components warrant discussion: (1)
Dataset. The evaluation relies on existing datasets, which lack exhaustive geographic and weather
diversity. Their limited scope in representing globally rare or region-specific weather phenomena
may affect generalization to unseen environmental extremes. (2) Language Model Biases. The
weather and spatial captions generated by off-the-shelf vision-language models inherit biases from



their pretraining corpora. Subtle inaccuracies in descriptor granularity, e.g., "haze" vs. "fog", could
propagate into the alignment process. Dataset and LVLM advances will mitigate these limitations.

5 Conclusion

In this paper, we propose a novel training-free, text-guided multi-modality alignment framework for
robust cross-view geo-localization under complex and unseen weather conditions. By leveraging large
vision—language models, we introduce a reasoning pipeline that automatically generates high-fidelity
weather and spatial captions via chain-of-thought prompting, eliminating the need for costly manual
descriptions or expert-controlled. Our multi-modal alignment model incorporates a dynamic channel-
wise gating mechanism that adaptively fuses textual weather semantics with visual representations,
achieving fine-grained disentanglement of scene and weather features. Extensive experiments on
the University-1652 and SUES-200 benchmarks validate that our method consistently outperforms
state-of-the-art approaches, particularly in challenging multi-weather scenarios. Our approach sets a
new paradigm for leveraging language-driven priors in aerial geo-localization and offers a scalable
path toward real-world deployment under diverse environmental conditions.

6 Acknowledgement

This work is supported by the Shanghai Committee of Science and Technology, China (Grant
No.23ZR1423500), the National Natural Science Foundation of China under Grant No.62302287,
University of Macau MYRG-GRG2024-00077-FST-UMDF and SRG2024-00002-FST, and the
Science and Technology Development Fund (FDCT) 0043/2025/RIAL1.

References

[1] Zhedong Zheng, Yunchao Wei, and Yi Yang. “University-1652: A Multi-view Multi-source
Benchmark for Drone-based Geo-localization”. In: Proceedings of the 28th ACM International
Conference on Multimedia (ACM MM). 2020, pp. 1395-1403.

[2] Tingyu Wang, Zhedong Zheng, Chenggang Yan, Jiyong Zhang, Yaoqi Sun, Bolun Zheng, and
Yi Yang. “Each Part Matters: Local Patterns Facilitate Cross-view Geo-localization”. In: IEEE
Transactions on Circuits and Systems for Video Technology (Feb. 2022), pp. 867-879. DOI:
10.1109/TCSVT.2021.3061265.

[3] Jinliang Lin, Zhedong Zheng, Zhun Zhong, Zhiming Luo, Shaozi Li, Yi Yang, and Nicu Sebe.
“Joint Representation Learning and Keypoint Detection for Cross-View Geo-Localization”. In:
IEEE Transactions on Image Processing (2022), pp. 3780-3792. DOI1:/10.1109/TIP.2022|
3175601.

[4] Zelong Zeng, Zheng Wang, Fan Yang, and Shin’ichi Satoh. “Geo-Localization via Ground-
to-Satellite Cross-View Image Retrieval”. In: IEEE Transactions on Multimedia 25 (2023),
pp- 2176-2188. DOI1:|10.1109/TMM. 2022 . 3144066.

[5] Qiuming Zhu, Yi Zhao, Yang Huang, Zhipeng Lin, Lu HanJie Wang, Yunpeng Bai, Tianxu Lan,
Fuhui Zhou, and Qihui Wu. “Demo Abstract: An UAV-based 3D Spectrum Real-time Mapping
System”. In: IEEE INFOCOM 2022 — IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS). 2022, pp. 1-2.

[6] Jie Wang, Qiuming Zhu, Zhipeng Lin, Junting Chen, Guoru Ding, Qihui Wu, Guochen Gu,
and Qianhao Gao. “Sparse Bayesian Learning-based Hierarchical Construction for 3D Radio
Environment Maps Incorporating Channel Shadowing”. In: IEEE Transactions on Wireless
Communications (2024).

[7] Tongtong Feng, Qing Li, Xin Wang, Mingzi Wang, Guangyao Li, and Wenwu Zhu. “Multi-
weather Cross-view Geo-localization Using Denoising Diffusion Models”. In: Proceedings of
the 2nd Workshop on UAVs in Multimedia: Capturing the World from a New Perspective. 2024,
pp- 35-39.

[8] Vishwanath A. Sindagi, Poojan Oza, Rajeev Yasarla, and Vishal M. Patel. “Prior-based Domain
Adaptive Object Detection for Hazy and Rainy Conditions”. In: Proceedings of the European
Conference on Computer Vision (ECCV). 2020.

10


https://doi.org/10.1109/TCSVT.2021.3061265
https://doi.org/10.1109/TIP.2022.3175601
https://doi.org/10.1109/TIP.2022.3175601
https://doi.org/10.1109/TMM.2022.3144066

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]
[24]

[25]

Wenyu Liu, Gaofeng Ren, Runsheng Yu, Shi Guo, Jianke Zhu, and Lei Zhang. “Image-
Adaptive YOLO for Object Detection in Adverse Weather Conditions”. In: Proceedings of the
AAAI Conference on Artificial Intelligence (AAAI). Vol. 36. 2. 2022, pp. 1792-1800.

Shuyu Yang, Yinan Zhou, Zhedong Zheng, Yaxiong Wang, Li Zhu, and Yujiao Wu. “Towards
Unified Text-based Person Retrieval: A Large-Scale Multi-Attribute and Language Search
Benchmark™. In: Proceedings of the 31st ACM International Conference on Multimedia (ACM
MM). 2023, pp. 4492-4501.

Cairong Yan, Meng Ma, Yanting Zhang, and Yongquan Wan. “Dual-Path Multimodal Opti-
mal Transport for Composed Image Retrieval”. In: Proceedings of the Asian Conference on
Computer Vision (ACCV). 2024, pp. 1741-1755.

Shuanglin Yan, Neng Dong, Liyan Zhang, and Jinhui Tang. “CLIP-Driven Fine-Grained
Text-Image Person Re-identification”. In: IEEE Transactions on Image Processing 32 (2023),
pp. 6032-6046.

Edward Vendrow, Omiros Pantazis, Alexander Shepard, Gabriel Brostow, Kate Jones, Oisin
Mac Aodha, Sara Beery, and Grant Van Horn. “INQUIRE: A Natural World Text-to-Image
Retrieval Benchmark”. In: Advances in Neural Information Processing Systems (NeurIPS).
Vol. 37. 2024, pp. 126500-126514.

Juncheng Li, Xin He, Longhui Wei, Long Qian, Linchao Zhu, Lingxi Xie, Yueting Zhuang, Qi
Tian, and Siliang Tang. “Fine-grained Semantically Aligned Vision-Language Pre-training”. In:
Advances in Neural Information Processing Systems (NeurIPS). Vol. 35. 2022, pp. 7290-7303.
Wei Chow, Juncheng Li, Qifan Yu, Kaihang Pan, Hao Fei, Zhiqi Ge, Shuai Yang, Siliang
Tang, Hanwang Zhang, and Qianru Sun. “Unified Generative and Discriminative Training
for Multi-modal Large Language Models”. In: arXiv preprint (2024). arXiv: 2411.00304
[cs.CV]L

Yan Zeng, Xinsong Zhang, and Hang Li. “Multi-Grained Vision Language Pre-Training: Align-
ing Texts with Visual Concepts”. In: arXiv preprint (2021). arXiv:2111.08276 [cs.CV].
Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng
Wang, Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li,
Jianqgiang Wan, Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao
Xie, Zesen Cheng, Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. “Qwen2.5-VL
Technical Report”. In: arXiv preprint (2025). arXiv: 2502.13923 [cs.CV].

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V.
Le, Denny Zhou, et al. “Chain-of-Thought Prompting Elicits Reasoning in Large Language
Models”. In: Advances in Neural Information Processing Systems (NeurIPS). Vol. 35. 2022,
pp- 24824-24837.

Gabriele Berton, Riccardo Mereu, Gabriele Trivigno, Carlo Masone, Gabriela Csurka, Torsten
Sattler, and Barbara Caputo. “Deep Visual Geo-localization Benchmark™. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2022,
pp- 5396-5407.

Hyo Jin Kim, Enrique Dunn, and Jan-Michael Frahm. “Learned Contextual Feature Reweight-
ing for Image Geo-localization”. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). 2017, pp. 2136-2145.

Meng Chu, Zhedong Zheng, Wei Ji, Tingyu Wang, and Tat-Seng Chua. “Towards Natural
Language-Guided Drones: GeoText-1652 Benchmark with Spatial Relation Matching”. In:
Proceedings of the European Conference on Computer Vision (ECCV). 2024, pp. 213-231.
Javier Cruz-Mota, Iva Bogdanova, Benoit Paquier, Michel Bierlaire, and Jean-Philippe Thiran.
“Scale Invariant Feature Transform on the Sphere: Theory and Applications”. In: International
Journal of Computer Vision 98 (2012), pp. 217-241.

Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. “SURF: Speeded Up Robust Features”. In:
Proceedings of the European Conference on Computer Vision (ECCV). 2006.

Jian Zhang, Yunyin Cao, and Qun Wu. “Vector of Locally and Adaptively Aggregated Descrip-
tors for Image Feature Representation”. In: Pattern Recognition 116 (2021), p. 107952.

Jorge Sanchez, Florent Perronnin, Thomas Mensink, and Jakob Verbeek. “Image Classification
with the Fisher Vector: Theory and Practice”. In: International Journal of Computer Vision
105 (2013), pp. 222-245.

11


https://arxiv.org/abs/2411.00304
https://arxiv.org/abs/2411.00304
https://arxiv.org/abs/2111.08276
https://arxiv.org/abs/2502.13923

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

Daniel Barath, Luca Cavalli, and Marc Pollefeys. “Learning to Find Good Models in
RANSAC”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). 2022, pp. 15744—-15753.

Francesco Castaldo, Amir Zamir, Roland Angst, Francesco Palmieri, and Silvio Savarese.
“Semantic Cross-View Matching”. In: 2015 IEEE International Conference on Computer
Vision Workshops (ICCVW). 2015. DO1:/10.1109/ICCVW.2015.137.

Tsung-Yi Lin, Serge Belongie, and James Hays. “Cross-View Image Geolocalization”. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
2013. DOI1:/110.1109/CVPR.2013.120,

Tingyu Wang, Zhedong Zheng, Yaoqi Sun, Chenggang Yan, Yi Yang, and Tat-Seng Chua.
“Multiple-environment Self-adaptive Network for Aerial-view Geo-localization”. In: Pattern
Recognition 152 (2024), p. 110363. DOI:/10.1016/j.patcog.2024.110363!

Scott Workman, Richard Souvenir, and Nathan Jacobs. “Wide-Area Image Geolocalization
with Aerial Reference Imagery”. In: Proceedings of the IEEE International Conference on
Computer Vision (ICCV). 2015.

Tsung-Yi Lin, Yin Cui, Serge Belongie, and James Hays. “Learning Deep Representations
for Ground-to-Aerial Geolocalization”. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). 2015.

Arvind M. Vepa, Zukang Yang, Andrew Choi, Jungseock Joo, Fabien Scalzo, and Yizhou Sun.
“Integrating Deep Metric Learning with Coreset for Active Learning in 3D Segmentation”. In:
Advances in Neural Information Processing Systems (NeurIPS). Vol. 37. 2024, pp. 71643—
71671.

Wonhyeok Choi, Mingyu Shin, and Sunghoon Im. “Depth-Discriminative Metric Learning for
Monocular 3D Object Detection”. In: Advances in Neural Information Processing Systems
(NeurlIPS). Vol. 36. 2023, pp. 80165-80177.

Zhedong Zheng, Liang Zheng, and Yi Yang. “A Discriminatively Learned CNN Embedding for
Person Re-identification”. In: ACM Transactions on Multimedia Computing, Communications,
and Applications (TOMM) 14.1 (2017), pp. 1-20. DOI1:|10.1145/3159171,

Hongji Yang, Xiufan Lu, and Yingying Zhu. “Cross-View Geo-localization with Layer-to-
Layer Transformer”. In: Advances in Neural Information Processing Systems (NeurlPS).
Vol. 34. 2021, pp. 29009-29020.

Royston Rodrigues and Masahiro Tani. “Global Assists Local: Effective Aerial Representations
for Field-of-View Constrained Image Geo-localization”. In: Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision (WACV). 2022, pp. 3871-3879.
Ming Dai, Jianhong Hu, Jiedong Zhuang, and Enhui Zheng. “A Transformer-based Feature
Segmentation and Region Alignment Method for UAV-view Geo-localization”. In: /IEEE
Transactions on Circuits and Systems for Video Technology 32.7 (2021), pp. 4376-4389.

Hao Ju, Shaofei Huang, Si Liu, and Zhedong Zheng. “Video2BEV: Transforming Drone Videos
to BEVs for Video-based Geo-localization”. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV). 2024.

Yanjie Tan, Yifu Zhu, Zhaoyang Huang, Huailiang Tan, and Keqin Li. “MAPD: An FPGA-
based Real-time Video Haze Removal Accelerator Using Mixed Atmosphere Prior”. In: IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems 42.12 (2023),
pp- 4777-4790.

Xianzheng Ma, Zhixiang Wang, Yacheng Zhan, Yinqiang Zheng, Zheng Wang, Dengxin Dai,
and Chia-Wen Lin. “Both Style and Fog Matter: Cumulative Domain Adaptation for Semantic
Foggy Scene Understanding”. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR). 2022, pp. 18922-18931.

Xiaohan Zhang, Xingyu Li, Waqas Sultani, Yi Zhou, and Safwan Wshah. “Cross-View Geo-
localization via Learning Disentangled Geometric Layout Correspondence”. In: Proceedings
of the AAAI Conference on Artificial Intelligence (AAAI). Vol. 37. 3. 2023, pp. 3480-3488.
Sijie Zhu, Mubarak Shah, and Chen Chen. “TransGeo: Transformer is All You Need for Cross-
View Image Geo-localization”. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR). 2022, pp. 1162-1171.

Zefan Qu, Ke Xu, Gerhard Petrus Hancke, and Rynson W. H. Lau. “LuSh-NeRF: Lighting Up
and Sharpening NeRFs for Low-light Scenes”. In: arXiv preprint (2024). arXiv: 2411.06757
[cs.CV].

12


https://doi.org/10.1109/ICCVW.2015.137
https://doi.org/10.1109/CVPR.2013.120
https://doi.org/10.1016/j.patcog.2024.110363
https://doi.org/10.1145/3159171
https://arxiv.org/abs/2411.06757
https://arxiv.org/abs/2411.06757

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

Haoyu Chen, Wenbo Li, Jinjin Gu, Jingjing Ren, Sixiang Chen, Tian Ye, Renjing Pei, Kaiwen
Zhou, Fenglong Song, and Lei Zhu. “RestoreAgent: Autonomous Image Restoration Agent
via Multimodal Large Language Models”. In: arXiv preprint (2024). arXiv: 2407 . 18035
[cs.CV].

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. “Learning Transferable
Visual Models from Natural Language Supervision”. In: Proceedings of the 38th Interna-
tional Conference on Machine Learning (ICML). Vol. 139. Proceedings of Machine Learning
Research. PMLR, 2021, pp. 8748-8763.

Junnan Li, Dongxu Li, Caiming Xiong, and Steven C. H. Hoi. “BLIP: Bootstrapping Language-
Image Pre-training for Unified Vision-Language Understanding and Generation”. In: Proceed-
ings of the 39th International Conference on Machine Learning (ICML). Vol. 162. Proceedings
of Machine Learning Research. PMLR, 2022, pp. 12888-12900.

Junjie Zhu, Yiying Li, Ke Yang, Naiyang Guan, Zunlin Fan, Chunping Qiu, and Xiaodong Yi.
“MVP: Meta Visual Prompt Tuning for Few-shot Remote Sensing Image Scene Classification”.
In: IEEE Transactions on Geoscience and Remote Sensing 62 (2024), pp. 1-13.

Keyan Chen, Chenyang Liu, Hao Chen, Haotian Zhang, Wenyuan Li, Zhengxia Zou, and
Zhenwei Shi. “RSPrompter: Learning to Prompt for Remote Sensing Instance Segmentation
Based on Visual Foundation Model”. In: IEEE Transactions on Geoscience and Remote
Sensing 62 (2024), pp. 1-17.

Yuan Yuan, Yang Zhan, and Zhitong Xiong. “Parameter-efficient Transfer Learning for Remote
Sensing Image—Text Retrieval”. In: IEEE Transactions on Geoscience and Remote Sensing 61
(2023), pp. 1-14.

Zhedong Zheng, Liang Zheng, Michael Garrett, Yi Yang, Mingliang Xu, and Yi-Dong Shen.
“Dual-Path Convolutional Image-Text Embeddings with Instance Loss”. In: ACM Transactions
on Multimedia Computing, Communications, and Applications (TOMM) 16.2 (2020), pp. 1-23.
Zihao Wang, Xihui Liu, Hongsheng Li, Lu Sheng, Junjie Yan, Xiaogang Wang, and Jing Shao.
“CAMP: Cross-Modal Adaptive Message Passing for Text-Image Retrieval”. In: Proceedings
of the IEEE/CVF International Conference on Computer Vision (ICCV). 2019, pp. 5764-5773.
Yen-Chun Chen, Linjie Li, Licheng Yu, Ahmed El Kholy, Faisal Ahmed, Zhe Gan, Yu Cheng,
and Jingjing Liu. “UNITER: Universal Image-Text Representation Learning”. In: Proceedings
of the European Conference on Computer Vision (ECCV). 2020, pp. 104-120.

Xiujun Li, Xi Yin, Chunyuan Li, Pengchuan Zhang, Xiaowei Hu, Lei Zhang, Lijuan Wang,
Houdong Hu, Li Dong, Furu Wei, et al. “OSCAR: Object-Semantics Aligned Pre-training for
Vision-Language Tasks”. In: Proceedings of the European Conference on Computer Vision
(ECCV). 2020, pp. 121-137.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D. Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. “Language
Models are Few-Shot Learners”. In: Advances in Neural Information Processing Systems
(NeurIPS). Vol. 33. 2020, pp. 1877-1901.

Josh Achiam, Steven Adler, Sandhini Agarwal, et al. “GPT-4 Technical Report”. In: arXiv
preprint (2023). arXiv:|2303.08774 [cs.CL]L

Jun Chen, Han Guo, Kai Yi, Boyang Li, and Mohamed Elhoseiny. “Visual GPT: Data-efficient
Adaptation of Pretrained Language Models for Image Captioning”. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2022, pp. 18030-
18040.

Zhuosheng Zhang, Aston Zhang, Mu Li, Hai Zhao, George Karypis, and Alex Smola. “Multi-
modal Chain-of-Thought Reasoning in Language Models”. In: arXiv preprint (2023). arXiv:
2302.00923 [cs.CL].

Gaurang Sriramanan, Siddhant Bharti, Vinu Sankar Sadasivan, Shoumik Saha, Priyatham
Kattakinda, and Soheil Feizi. “LLM-Check: Investigating Detection of Hallucinations in Large
Language Models”. In: Advances in Neural Information Processing Systems (NeurIPS). Vol. 37.
2024, pp. 34188-34216.

Chaoya Jiang, Haiyang Xu, Mengfan Dong, Jiaxing Chen, Wei Ye, Ming Yan, Qinghao Ye,
Ji Zhang, Fei Huang, and Shikun Zhang. “Hallucination Augmented Contrastive Learning
for Multimodal Large Language Model”. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR). 2024, pp. 27036-27046.

13


https://arxiv.org/abs/2407.18035
https://arxiv.org/abs/2407.18035
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2302.00923

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

Minchan Kim, Minyeong Kim, Junik Bae, Suhwan Choi, Sungkyung Kim, and Buru Chang.
“Exploiting Semantic Reconstruction to Mitigate Hallucinations in Vision-Language Models”.
In: Proceedings of the European Conference on Computer Vision (ECCV). 2024, pp. 236-252.

Alexander B. Jung, Kentaro Wada, Jon Crall, Satoshi Tanaka, Jake Graving, Christoph Reinders,
Sarthak Yadav, Joy Banerjee, Gabor Vecsei, Adam Kraft, Zheng Rui, Jirka Borovec, Christian
Vallentin, Semen Zhydenko, Kilian Pfeiffer, Ben Cook, Ismael Ferndndez, Francois-Michel
De Rainville, Chi-Hung Weng, Abner Ayala-Acevedo, Raphael Meudec, Matias Laporte, et al.
imgaug. https://github.com/aleju/imgaug. Accessed: 2020-02-01. 2020.

Junyan Ye, Honglin Lin, Leyan Ou, Dairong Chen, Zihao Wang, Qi Zhu, Conghui He, and
Weijia Li. “Where am 1? Cross-View Geo-localization with Natural Language Descriptions”.
In: arXiv preprint (2024). arXiv:|2412.17007 [cs.CV].

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. “BERT: Pre-training of
Deep Bidirectional Transformers for Language Understanding”. In: Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational Linguistics
(NAACL-HLT). 2019, pp. 4171-4186.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining
Guo. “Swin Transformer: Hierarchical Vision Transformer Using Shifted Windows”. In:
Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). 2021,
pp.- 10012-10022.

Herbert Robbins and Sutton Monro. “A Stochastic Approximation Method”. In: The Annals of
Mathematical Statistics (1951), pp. 400—407.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. “PyTorch: An Impera-
tive Style, High-Performance Deep Learning Library”. In: Advances in Neural Information
Processing Systems (NeurIPS). Vol. 32. 2019.

Runzhe Zhu, Ling Yin, Mingze Yang, Fei Wu, Yuncheng Yang, and Wenbo Hu. “SUES-200:
A Multi-height Multi-scene Cross-view Image Benchmark Across Drone and Satellite”. In:
IEEE Transactions on Circuits and Systems for Video Technology 33.9 (2023), pp. 4825-4839.
Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep Residual Learning for
Image Recognition”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). 2016. DOI: 110.1109/CVPR.2016.90.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q. Weinberger. “Densely
Connected Convolutional Networks”. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). 2017, pp. 4700-4808.

Xingang Pan, Ping Luo, Jianping Shi, and Xiaoou Tang. “Two at Once: Enhancing Learning
and Generalization Capacities via IBN-Net”. In: Proceedings of the European Conference on
Computer Vision (ECCV). 2018, pp. 484-500.

Fabian Deuser, Konrad Habel, and Norbert Oswald. “Sample4Geo: Hard Negative Sampling
for Cross-View Geo-Localization”. In: Proceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV). 2023, pp. 16847-16856.

Jinliang Lin, Zhiming Luo, Dazhen Lin, Shaozi Li, and Zhun Zhong. “A Self-Adaptive Feature
Extraction Method for Aerial-View Geo-Localization”. In: IEEE Transactions on Image
Processing (2024).

Haolin Du, Jingfei He, and Yuanqing Zhao. “CCR: A Counterfactual Causal Reasoning-Based
Method for Cross-View Geo-Localization”. In: IEEE Transactions on Circuits and Systems for
Video Technology (2024).

14


https://github.com/aleju/imgaug
https://arxiv.org/abs/2412.17007
https://doi.org/10.1109/CVPR.2016.90

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims in the abstract and introduction accurately reflect the paper’s
core contributions and scope. The paper proposes a training-free weather reasoning approach
for multi-weather geo-localization, introduces a text-guided feature alignment framework
with dynamic gating, and yields consistent improvements on challenging benchmarks. All
major claims are substantiated by method descriptions and experimental results throughout
the paper.
Guidelines:

* The answer NA means that the abstract and introduction do not include the claims

made in the paper.
* The abstract and/or introduction should clearly state the claims made, including the

contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.
2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations of the work are discussed in Section
Guidelines:
* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.
 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer:
Justification: The paper does not present formal theorems or proofs.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper provides all necessary details for experimental reproducibility. All
modules, loss functions, and augmentation strategies are specified in the main text. To further
support reproducibility, we will release our code and configuration files upon publication.

Guidelines:

» The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: As stated in the response above, we provided detailed instructions on how to
replicate our experiment results in the main paper and further in the supplementary material.
We will release our code and models upon paper acceptance.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not

including code, unless this is central to the contribution (e.g., for a new open-source

benchmark).

The instructions should contain the exact command and environment needed to run to

reproduce the results. See the NeurIPS code and data submission guidelines (https:

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized

versions (if applicable).

Providing as much information as possible in supplemental material (appended to the

paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provided detailed instructions on replicating the training and evaluation
procedures in Section[d] We did not perform delicate tuning for the hyperparameters.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Error bars or statistical significance metrics are not reported, as our experi-
mental protocol follows standard practice in the cross-view geo-localization field, where
single-run, fixed split results are widely adopted for benchmarking. For direct comparability,
we report results under the same evaluation protocol as prior work. We note that nearly all
published baselines on these benchmarks also omit error bars.

Guidelines:

* The answer NA means that the paper does not include experiments.
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8.

10.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g.negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We described our compute setup as well as the training time and inference
runtime in Section 4l

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer:[Yes]
Justification: : Authors carefully read the NeurIPS Code of Ethics and preserved anonymity.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consider-
ation due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer:
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11.

12.

Justification: Our paper primarily discusses the positive application prospects of the proposed
method, such as urban management and disaster response, in the introduction and application
sections. However, we do not specifically address potential negative societal impacts. While
the method offers promising practical value, we acknowledge that issues such as privacy
protection and ethical risks should be considered during real-world deployment. Future
work may further analyze these aspects.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our study does not involve the release of any data or models with a high risk
of misuse. All data used in this work are either standard public benchmarks or synthetically
generated for research purposes, with no content that requires special safeguards. Addition-
ally, all real-world validation images are collected from publicly available and safe content
on Youtube, ensuring no sensitive or inappropriate material is included.

Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
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13.

14.

15.

Answer: [Yes]

Justification: All assets used in this work, including code, datasets, and models, are properly
credited in the text, with full compliance to their respective licenses and terms of use.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: We explicitly describe the use of a large language model (Qwen2.5-VL-32B)
as a core component of our methodology. The LLM is leveraged to generate multi-step,
chain-of-thought weather and spatial descriptions, which serve as supervisory signals for
vision-language alignment in our framework. Detailed descriptions of the LLM’s role,
prompt design, and integration into the description pipeline are provided in Section [3|of the
paper.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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