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Seeing Beyond Words: Multimodal Aspect-Level Complaint
Detection in Ecommerce Videos

Anonymous Authors

ABSTRACT
Complaints are pivotal expressions within e-commerce communi-
cation, yet the intricate nuances of human interaction present for-
midable challenges for AI agents to grasp comprehensively. While
recent attention has been drawn to analyzing complaints within
a multimodal context, relying solely on text and images is insuffi-
cient for organizations. The true value lies in the ability to pinpoint
complaints within the intricate structures of discourse, scrutiniz-
ing them at a granular aspect level. Our research delves into the
discourse structure of e-commerce video-based product reviews,
pioneering a novel task we term Aspect-Level Complaint Detec-
tion from Discourse (ACDD). Embedded in a multimodal frame-
work, this task entails identifying aspect categories and assign-
ing complaint/non-complaint labels at a nuanced aspect level. To
facilitate this endeavour, we have curated a unique multimodal
product review dataset, meticulously annotated at the utterance
level with aspect categories and associated complaint labels. To sup-
port this undertaking, we introduce a Multimodal Aspect-Aware
Complaint Analysis (MAACA) model that incorporates a novel
pre-training strategy and a global feature fusion technique across
the three modalities. Additionally, the proposed framework lever-
ages a moment retrieval step to identify the relevant portion of the
clip, crucial for accurately detecting the fine-grained aspect cate-
gories and conducting aspect-level complaint detection. Extensive
experiments conducted on the proposed dataset showcase that our
framework outperforms unimodal and bimodal baselines, offering
valuable insights into the application of video-audio-text represen-
tation learning frameworks for downstream tasks. The code and the
sample dataset are shared as Supplementary Material.

KEYWORDS
Aspect-based Multimodal Complaint Detection, Multimodal Fusion,
Video-Audio-Text Alignment, Multi-task Learning, Social Media
Mining, Multimedia Applications

1 INTRODUCTION
In today’s landscape, the surge in product review videos across plat-
forms like YouTube1, seamlessly integrated into major e-commerce
hubs such as Amazon2, highlights the escalating impact of visual

1https://www.youtube.in
2https://www.amazon.in
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content on consumer choices. As these multimedia reviews increas-
ingly shape purchasing decisions, understanding user sentiments
and pinpointing specific complaint aspects within these videos
has become a crucial focus [15, 28, 32]. However, current research
largely overlooks the immense potential lying at the intersection
of visual, audio, and textual data within these video reviews.

Figure 1: An example of aspect-based complaint detection
using multimodal cues.

Motivation: The significance of incorporating visual elements
in complaint detection becomes apparent due to several reasons.
Individuals expressing complaints often share information using
visual and audio formats alongside text, which is crucial for provid-
ing accurate details about various aspects that trigger complaints.
Moreover, aspects like reviewer’s tone or electronic design often ne-
cessitate audio and visual cues for precise identification, surpassing
what text alone can convey. Merging text, visuals, and audio in fine-
grained complaint detection has the potential to enhance accuracy
and efficiency, offering a more comprehensive understanding that
solely textual analysis may overlook. This strategy acknowledges
the intricate ways in which humans express themselves, leveraging
multimodal information in their communication. By delving into
the integration of text, images, and audio, computational linguistics
researchers can better tackle the evolving complexities of modern
communication.

This interdisciplinary approach to complaint detection holds
numerous advantages for both companies and consumers. For com-
panies, it offers deeper consumer insights, nuanced aspect identifica-
tion, improved user experience design, precise marketing strategies,
and fosters trust-building communication. On the consumer side,
it empowers them with a clearer voice, ensures a more accurate
representation of their concerns, and helps in forming realistic
expectations regarding products and services. Ultimately, this con-
vergence of visual, audio, and textual data not only enriches the
understanding of consumer feedback but also facilitates more in-
formed decisions, leading to improved products and enhanced user
experiences.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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However, the lack of effective, automated methodologies for sys-
tematically analyzing the diverse range of video content and iden-
tifying complaints at the aspect level poses a substantial challenge.
Moreover, the scarcity of datasets for analyzing complaint entities
in video reviews emphasizes the need to develop comprehensive
resources in this domain. This motivates our research to curate a
dataset of video reviews and study various approaches involving
multiple modalities for fine-grained complaint recognition.

In response, the Aspect-Level Complaint Detection from Dis-
course framework includes two sub-tasks: aspect category detection
(ACD), and aspect-level complaint classification (ACC) using the
textual, visual, and audio data available. The initial focus is on pin-
pointing aspects within instances and categorizing them into spe-
cific aspect categories. Subsequently, the task involves whether in-
stances at the aspect level constitute complaints or non-complaints.
As shown in Figure 1, for a given multimodal review consisting of
textual, visual and audio data, the two identified duplets (aspect
category-complaint label) are shown on the right side.

Contributions: The major contributions of this work include:

• We introduce the Video Complaint Dataset (VCD), a novel re-
source aimed at advancing research in aspect-level complaint
detection.

• We propose a Multimodal Aspect-Aware Complaint Analysis
(MAACA) framework for aspect-level complaint detection
from discourse (ACDD). MAACA extends the ALPRO pre-
training strategy [18], to incorporate the audio modality into
its architecture as well as in its pre-training strategy. Further-
more, MAACA incorporates a moment retrieval step, aug-
menting the identification of pertinent segments within the
video clip crucial for the accurate detection of fine-grained
aspect categories and aspect-level complaints.

• Wepropose a gated-fusionmechanism to efficiently integrate
multimodal representations while considering the varying
importance of each feature through a gating mechanism.

• Extensive experiments conducted on the VCDdataset demon-
strate the significant superiority of our framework over ex-
isting multimodal baselines, providing valuable insights into
the application of multimodal representation learning frame-
works for downstream tasks.

2 RELATEDWORK
Complaint and Text: In the realm of linguistics and psychology,
it’s consistently observed that people adapt their complaints to var-
ious degrees [12, 22, 37]. Complaints can either be implicit, without
assigning blame, or explicit, directly accusing someone of wrong-
doing [38]. These complaints are further categorized by emotional
intensity into four levels: no particular blame, disapproval, accu-
sation, and blame [37]. Minor complaints can serve as emotional
outlets and enhance mental well-being, whereas severe complaints
can lead to hostility and aggression [11].

In computational linguistics, previous research has predomi-
nantly focused on automating the identification of text-based review-
level complaints [5, 13, 28]. Jin andAletras [13] employed transformer-
based models and linguistic data to assess the seriousness of com-
plaints and predict their severity. Furthermore, multitask complaint

analysis models that incorporate sentiment and emotional infor-
mation have been developed specifically for text-based content
[35, 36]. Recently, two new tasks, complaint cause detection and
extraction, were introduced in [34], aiming to detect and extract the
reasons behind Twitter complaints, introducing an interpretability
dimension in complaint detection. Additionally, prior research has
categorized complaints based on factors such as the responsible
department, urgency, product hazards, and risks [3, 16, 39].
Complaint and Multimodality: The study discussed in [27, 31]
has contributed to linking vision and language in the related area of
polarity and emotion recognition. The study in [32] proposed a bi-
nary complaint classifier based on text and image information with-
out considering the particular features or aspects about which the
user is complaining. The work also publicly released a multimodal
complaint dataset (CESAMARD) [32], a collection of consumer
feedback or reviews and images of products purchased from the
e-commerce website Amazon, which has aided additional investiga-
tions into complaint detection inmultimodal setup. This dataset was
further used for developing a fine-grained aspect-based complaint
detection model in the work [33]. They proposed a multimodal-
bitransformer-based architecture where in the first phase the aspect
category is identified and then in the next phase the aspect-category
complaint detection is performed using self-attention and BiGRU
layers.
Vision-and-Language Models: In recent years, significant ad-
vancements have been made in training models to comprehend
both vision and language simultaneously, leveraging vast multi-
modal datasets [4, 19, 20]. These models integrate both modalities
into a unified input and are trained using objectives akin to masked
language modelling. However, most existing methods for text-video
retrieval [8, 23] rely on pre-trained visual backbones, which densely
extract video features for each frame offline. Nevertheless, since
these visual backbones are typically pre-trained on image and/or
video datasets without textual information, their features are less
effective for tasks involving both video and language.
Recent approaches such as ClipBERT [17] have shown promising
results by fine-tuning the visual backbone end-to-end using only
a small number of sparsely sampled frames. However, since Clip-
BERT is pre-trained on image-text data, it struggles to effectively
aggregate information across frames. In contrast, ALPRO [18], a
video-language pre-training method, learns robust cross-modal rep-
resentations from sparse video frames and accompanying texts.
Additionally, by leveraging instance-level video-text alignment,
ALPRO can generate accurate entity pseudo-labels with a wide
vocabulary, thereby enhancing the efficiency and effectiveness of
region-entity alignment learning. This motivates us to take advan-
tage of the ALPRO pre-training framework incorporated with audio
cues specifically for the ACDD task, improving the performance
specifically.

In recent years, while progress has been made in detecting text
and image-based complaints, the exploration of video-based com-
plaint detection remains largely uncharted. Videos offer a wealth of
information, incorporating visual and auditory cues that enable a
more comprehensive expression of concerns and grievances. Unlike
text and images, videos capture not only the content but also the
manner of delivery, providing nuanced details. This paper addresses



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Seeing Beyond Words: Multimodal Aspect-Level Complaint Detection in Ecommerce Videos ACM MM, 2024, Melbourne, Australia

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Table 1: Annotation guidelines for VCD dataset.

S.No. Annotation Guidelines
1 The aspect category should consider the complainant’s perspective.
2 Each selected aspect category should refer to either a complaint or non-complaint.
3 Each aspect category should be strictly marked with the start and end time stamps.
4 In case of confusion regarding annotation it should be reported and rectified.

the need to fill this research gap with video-based complaint detec-
tion at the fine-grained aspect level by introducing a novel problem
statement and dataset. It aims to foster the development of effective
models and techniques for identifying, categorizing, and analyzing
complaints within video content.

3 VIDEO COMPLAINT DATASET (VCD)
In this segment, we delve into the gathering of data and annota-
tions concerning different attributes at the level of individual ut-
terances. These attributes encompass aspect categories, complaint
and non-complaint labels at the aspect level, and commencement
and cessation timestamps.

3.1 Data Collection and Processing
We gathered a total of 130 review videos from YouTube, with a
specific focus on electronic products, including phones, laptops,
and cameras, with 450 total annotated utterances. Each utterance
within a discourse-oriented video is identified by its start and end
timestamps, defined as a segment of speech demarcated by breaths
or pauses [9]. Breaking down the data further, 95 reviews pertain
to the phone domain, 22 to the laptop domain, and 13 to the camera
domain. This distribution allows for a comprehensive exploration of
customer perspectives across different electronic product categories.
Transcripts are created manually for every video in cases where
they are not provided on YouTube.

The strategic focus on the domains of laptops, phones, and cam-
eras was driven by several compelling reasons. Firstly, these three
domains represent crucial segments within the broader electron-
ics industry, which is currently experiencing rapid growth and
technological advancements. By centring our collection efforts on
these three domains, we aimed to capture and analyze the evolving
consumer sentiments and preferences in these pivotal areas. More-
over, the decision to concentrate on these specific domains was
influenced by the widespread availability and popularity of gadget
reviews on YouTube, with electronic products garnering significant
attention from consumers seeking informed purchasing decisions.
Gadget reviews, particularly those related to phones, laptops, and
cameras, are highly sought after due to the constant innovation
and updates in these technologies. The extensive user-generated
content and discussions around these products on YouTube make
it an ideal platform for extracting diverse and valuable insights.

3.2 Annotator Details
In this study, we enlisted three annotators to evaluate aspect-level
complaints in our dataset. The selection process for these annotators
involved a competitive screening, open exclusively to students from
the computer science department with expertise in natural language
processing. After providing them with the annotation guidelines

(Table 1), they annotated a set of 20 video samples for aspect classes
and complaint/non-complaint labels. Based on the quality, accuracy,
and semantic coherence of their annotations, we selected three
students to annotate the video complaint dataset. Among them,
two hold Ph.D. qualifications, while the third is a post-graduate
student. All three are skilled in labelling tasks and possess a deep
understanding of the subject area, along with significant experience
in constructing supervised datasets. Notably, they are proficient
in English, having pursued their education in an English-based
academic environment.

3.3 Annotation Phase & Dataset Analysis
The annotators were provided with the annotation guidelines out-
lined in Table 1 and a set of 20 annotated video samples for reference.
This approach aimed to support the annotators during annotation
and to help resolve any uncertainties that might arise. Our anno-
tation methodology draws inspiration from previous studies in
aspect-based sentiment analysis, particularly SemEval shared chal-
lenges [24–26]. Within the electronics domain, various relevant
aspect categories were identified, including camera, OS, design,
battery, price, speaker, and storage. Annotators were tasked with
identifying the appropriate aspect category that best correlated
with the issue discussed in the review. This involved meticulous
examination of text, video, and audio data to pinpoint the aspect
category and its corresponding complaint/non-complaint label for
each speaker utterance.
The final aspect classes and corresponding complaint/non-complaint
labels were determined through majority voting. In cases where
the annotations differed among the three annotators, the authors
worked to resolve any ambiguity or uncertainty. We calculated the
Fleiss-Kappa [7] agreement scores to assess the overall agreement
among raters, a commonly used method for cases with more than
two annotators. The aspect category detection (ACD) and aspect
complaint classification (ACC) tasks yielded scores of 0.76 and 0.84,
respectively, indicating significant agreement among annotators for
both tasks [1]. Table 2 illustrates a few examples with the annotated
aspect categories and the corresponding aspect-level complaint la-
bels sourced from the VCD dataset. Kindly refer to Supplementary
Material for more details regarding the VCD dataset.

4 METHODOLOGY
In this section, we present the technical aspects of the proposed
framework. We begin by defining the problem, followed by an in-
depth examination of the overall architecture, depicted in Figure2.

4.1 Problem definition
Each data point consists of a video review consisting of a transcript
as textual data T, Video V as per the time stamp 𝑡𝑖 𝑗 , and audio clip
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Table 2: Examples from the VCD dataset with ACD, ACC task annotation.

Review Video Aspect Categories Label
I simply did not like the audio output;

from the headphone jack. If you listen Speaker Complaint
the sound output is very flat and sort of lifeless.
The device has Gorilla Glass 3 protection, ensuring good Design Non-Complaint

screen quality. Battery life appears to be commendable
lasting around 3 days. But the front-facing camera, Battery Non-Complaint
rated at 12 megapixels, offers only average performance. Camera Complaint

A, related to the electronic item being discussed in the video. The
ultimate output is a pair that includes both the aspect category
and the corresponding complaint or non-complaint label, identified
through the analysis of the dataset’s three modalities.

4.2 Moment-Retrieval of Relevant Frames
Accurate identification of relevant segments within review videos
is crucial for the task of aspect-level complaint detection from dis-
course (ACDD), particularly since we are dealing with videos with
inherent noise. Review videos often include extended introductions,
outros, or cutaway shots of the reviewer’s face (as shown in Table 2),
which hold no value for classifying the complaint or identifying
the aspect. Focusing on relevant segments allows for the extraction
of more concise visual features for classification.

Thus, we proposemoment retrieval as an important pre-processing
step to enhance the model’s performance. Moment retrieval is the
task of localizing the set of most relevant moments in an untrimmed
video according to the given natural language query. To identify
the relevant parts of the clip, we make use of CG-DETR [21], which
achieves state-of-the-art results in QVHighlights dataset [30] cre-
ated for moment-retrieval. CG-DETR leverages the correlation be-
tween the video and query to predict the saliency score for each
frame denoting the likelihood of relevancy.

Each clip is passed into the CG-DETR model with a set of simple
prompts denoting all the product categories in the dataset such as
"Phone", "Laptop", "Camera", etc. Then, the time frame correspond-
ing to the highest saliency score across all the prompts is taken.
Thus we retrieve the section of the clip where the product under re-
view is shown, thereby offering more relevant signals for complaint
and aspect classification. The comparison of using the moment-
retrieved clip and the entire clip as the input to the proposed model
is discussed in the ablation study, kindly refer to subsection 5.3.1.

4.3 Framework Components
As illustrated in Figure 2, the model consists of three uni-modal
encoders to obtain the feature representation of each modality and
two multi-modal encoders to capture the interaction between the
modalities. Also, other components such as Information Compres-
sion and Gated Multimodal Fusion modules are present, the details
of which will be outlined in the following sections.

(1) Text encoder: We use two instances of the 6-layer BERT-
encoders 𝐸𝑡𝑣 and 𝐸𝑡𝑎[6] to represent the text embedding

𝑍𝑡𝑣 and 𝑍𝑡𝑎 , for video feature alignment and audio feature
alignment respectively. The transcript 𝑋𝑡 corresponding to
the clip is tokenized and truncated/padded up to 𝑁𝑡 = 128
tokens and passed as inputs to the BERT-encoder. The value
for𝑁𝑡 was chosen upon careful consideration of the trade-off
between the time complexity of attention in the further steps
and the length of the transcript. Both the encoders output
an embedding sequence of 𝑡 = {𝑡𝐶𝐿𝑆 , 𝑡1, ...𝑡𝑁𝑡

} with 𝑡𝑖 ∈ 𝑅𝐷

where D is the text embedding dimension.

𝑍𝑡𝑣 = 𝐸𝑡𝑣 (𝑋𝑡 ) (1)

𝑍𝑡𝑎 = 𝐸𝑡𝑎 (𝑋𝑡 ) (2)
(2) Video encoder:We employ TimeSFormer [2] as the video

modality encoder 𝐸𝑣 . The moment-retrieved clip 𝑋𝑣 is fur-
ther sampled uniformly into T=16 frames of size 224x224x3.
Each frame is chunked into P patches, flattened, and mapped
to an embedding 𝑧𝑡𝑝 ∈ 𝑅𝐷 by a linear transformation. Layers
of multi-headed self-attention are applied along the tempo-
ral and spatial dimensions of the patch embedding inde-
pendently and combined to form patch embedding for each
frame 𝛼𝑡𝑝 ∈ 𝑅𝐷 . The frame-level features are pooled across
the temporal dimension to obtain video features 𝑍 ′

𝑣 of di-
mension 𝑣 ∈ 𝑅𝑁

′
𝑣𝑥𝐷𝑣 . where 𝐷𝑣 is the video embedding

dimension.
𝑍 ′
𝑣 = 𝐸𝑣 (𝑋𝑣) (3)

(3) Audio encoder:We leverage whisper-small [29] encoder 𝐸𝑎
to extract the audio features 𝑍 ′

𝑎 . Audio corresponding to the
text transcript is sampled at the rate of 16000 Hz and passed
to the Whisper encoder. Input audio is split into 30-second
chunks, converted into a log-Mel spectrogram, and then
passed into an encoder consisting of a series of self-attention
blocks. The output of the audio encoder has a dimension of
𝑎 ∈ 𝑅𝑁𝑎𝑥𝐷𝑎 representing the audio features 𝑍 ′

𝑎 , where 𝐷𝑎

is the audio embedding dimension.

𝑍 ′
𝑎 = 𝐸𝑎 (𝑋𝑎) (4)

(4) Information compression Bi-LSTM module: Two in-
stances of this Bi-LSTM [10] module exist, one correspond-
ing to the Video (𝑣) and the other to the Audio (𝑎) modal-
ities. The primary objective of this module is to condense
the representation of the input sequences 𝑍 ′

𝑣 and 𝑍 ′
𝑎 , while

retaining the essential information specific to each modal-
ity. For a given modality 𝑚 ∈ {𝑎, 𝑣}, the input sequence
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Figure 2: Architectural diagram of the proposed Multimodal Aspect-Aware Complaint Analysis (MAACA) framework

𝑍 ′
𝑚 is fed into the respective Bidirectional Long Short-Term

Memory (Bi-LSTM) module 𝐵𝐿𝑚 , resulting in an output se-
quence 𝑍𝑚 . This output sequence consists of the last 𝑁𝑚

timesteps of the modality-specific Bi-LSTM. The rationale
behind this approach stems from the observation that the
information encapsulated within an input sequence tends to
be concentrated in the latter part of the sequence. These fi-
nal 𝑁𝑚 timesteps are particularly significant as they are
exposed to the cumulative information of the preceding
timesteps, thereby inherently encoding the essence of the
entire sequence up to that point. This approach effectively
compresses the information while preserving the salient fea-
tures of each modality-specific input sequence. The shape
of the output sequence is 𝑅𝑁𝑚𝑥𝐷𝑚 , where 𝑁𝑚 < 𝑁 ′

𝑚 and𝑚
is the corresponding modality.

𝑍𝑚 = 𝐵𝐿𝑚 (𝑍 ′
𝑚),𝑚 ∈ {𝑎, 𝑣} (5)

.
(5) Fully connected layer for embedding dimension align-

ment: This linear projection layer is used to change the
embedding dimension of 𝑍𝑚 from 𝐷𝑚 to 𝐷 . Where 𝑚 is
the corresponding modality (𝑚 ∈ {𝑎, 𝑣}), 𝐷𝑚 and 𝑍𝑚 are
corresponding modality-specific embedding dimensions and
compressed feature representations, respectively. The dense
layer for embedding dimension alignment operates by trans-
forming the input feature representation 𝑍𝑚 of modality𝑚
to a new feature representation 𝑌𝑚 using a linear projec-
tion. Thus producing the final audio and video features as
𝑌𝑚 = {𝑚𝐶𝐿𝑆 ,𝑚1, ...𝑚𝑁𝑚

} with𝑚𝑖 ∈ 𝑅𝐷 , where𝑚 ∈ {𝑎, 𝑣}.
(6) Multimodal encoder module: There are two instances of

this module one each for video-text and audio-text pairs,
denoted as𝑀𝑀𝐸𝑡𝑣 and𝑀𝑀𝐸𝑡𝑎 respectively (denoting mul-
timodal encoders for both pairs). This encoder module com-
prises a 6-layer BERT encoder that employs self-attention

to encode the two-modality combinations. We concatenate
the text representation 𝑍𝑡𝑎 and 𝑍𝑡𝑎 with the compressed,
dimension-aligned video 𝑌𝑣 and audio 𝑌𝑎 representations
to produce 𝑌𝑡𝑣 and 𝑌𝑡𝑎 . This concatenated representation
is passed through the 6-layer BERT encoder, to generate
a unified multimodal representation through repeated self-
attention modules for each pair given by 𝐶𝑠

𝑚 where 𝑚 ∈
{𝑎, 𝑣}.

𝐶𝑠
𝑎 = 𝑀𝑀𝐸𝑡𝑎 (𝑌𝑡𝑎) (6)

𝐶𝑠
𝑣 = 𝑀𝑀𝐸𝑡𝑣 (𝑌𝑡𝑣) (7)

Here 𝑌𝑚 and 𝐶𝑠
𝑚 are given as a sequence of multimodal

(MM) tokens 𝑀𝑀𝑚,𝐶𝐿𝑆 , 𝑀𝑀𝑚,1, ...𝑀𝑀𝑚,𝑁𝑚+𝑁𝑡
with each

token𝑀𝑀𝑖 ∈ 𝑅𝐷 , where𝑚 ∈ {𝑎, 𝑣}.
(7) Gated multimodal fusion: To combine text-aligned video

and text-aligned audio tokens, we employ a gated attention
strategy. Unlike directly assigning weights to each vector,
the gate fusion mechanism enables varying contributions to
the prediction from different positions of vectors. The joint
representation resulting from the gate fusion is computed
as follows:

𝛼 = 𝜎 (P𝑣𝐶𝑠
𝑣 + P𝑎𝐶𝑠

𝑎 + 𝑏𝑔),
𝐽𝑣𝑎 = 𝛼 𝐶𝑠

𝑎 + (1 − 𝛼)𝐶𝑠
𝑣

(8)

Here, P𝑣 and P𝑎 represent weight matrices for the visual and
acoustic modalities, while 𝑏𝑔 denotes scalar bias and 𝜎 is the
sigmoid activation function.

4.4 Pretraining:
In this section, we outline the process to align the video, audio, and
text modalities through a unified pre-training objective where we
independently align the video and audio with the text modality.
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4.4.1 Contrastive Video-Text and Audio-Text Alignment: Extending
the contrastive video-text (VTC) loss proposed in ALPRO [18], we
introduce audio-text (ATC) loss. The objective of the contrastive
loss is to align the unimodal video and audio representations with
their text counterparts. This forces unimodal encoders to produce
embedding in the joint space of audio-text or video-text represen-
tation thereby facilitating the learning in multi-modal encoders.

For the set of video, audio, and text input features< 𝑌𝑣,𝑖 , 𝑌𝑎,𝑖 , 𝑍𝑡𝑚,𝑖 >

𝑚 ∈ {𝑎, 𝑣} in the batch, the similarity between two modality feature
is defined as the dot product of the CLS tokens of the feature vec-
tors. We are concerned about the alignment of the video and audio
with the text modality. So, the similarity function of 𝑖𝑡ℎ audio/video
feature with the 𝑗𝑡ℎ text feature is thus

𝑠 (𝑌𝑚,𝑖 , 𝑍𝑡𝑚,𝑗 ) =𝑚𝐶𝐿𝑆,𝑖 · 𝑡𝐶𝐿𝑆,𝑗 (9)

where𝑚𝐶𝐿𝑆,𝑖 ∈ 𝑅𝐷 , 𝑡𝐶𝐿𝑆,𝑗 ∈ 𝑅𝐷 ,𝑚 ∈ {𝑎, 𝑣}.
For each set of video, audio, and text features, the contrastive

loss is expressed as the mean of the following two negative log-
likelihood terms:

Lm2t = − log
exp

(
𝑠
(
𝑌𝑚,𝑖 , 𝑍𝑡𝑚,𝑖

)
/𝜏
)∑𝐵

𝑗=1 exp
(
𝑠
(
𝑌𝑚,𝑖 , 𝑍𝑡𝑚,𝑖

)
/𝜏
)

Lt2m = − log
exp

(
𝑠
(
𝑍𝑡𝑚,𝑖 , 𝑌𝑚,𝑖

)
/𝜏
)∑𝐵

𝑗=1 exp
(
𝑠
(
𝑍𝑡𝑚,𝑖 , 𝑌𝑚,𝑖

)
/𝜏
)

where 𝜏 is the temperature parameter which can be learnt, and
𝐵 is the batch size, and𝑚 ∈ {𝑎, 𝑣}. The video-text and audio-text
contrastive loss is the mean of the above two terms and can be
expressed as:

Lvtc =
1
2
(Lv2t + Lt2v) (10)

Latc =
1
2
(La2t + Lt2a) (11)

4.4.2 Visual and auditory text matching: The task involves visual-
text matching and auditory-text matching, where the objective is
to ascertain the similarity between pairs of videos or audio clips
and corresponding textual descriptions. This process relies on mul-
timodal encoders, denoted as𝑀𝑀𝐸𝑡𝑣 and𝑀𝑀𝐸𝑡𝑎 , which produce
joint representations of video-text and audio-text pairs, respec-
tively. Specifically, these multimodal encoders generate modality
pair-specific embeddings of the [CLS] token (𝑀𝑀𝑚,𝐶𝐿𝑆 , where
𝑚 ∈ {𝑎, 𝑣}) which act as comprehensive representations of the mul-
timodal input. Subsequently, a fully connected layer coupled with
softmax activation predicts the probability of a positive match for
each pair, resulting in visual-text matching probability (𝑝vtm) and
auditory-text matching probability (𝑝atm).

The loss functions for visual-text matching (Lvtm) and auditory-
text matching (Latm) are defined based on the cross-entropy be-
tween the predicted probabilities and the ground-truth labels -

Lvtm = E(𝑉 ,𝑇 )∼𝐷𝑆H
(
𝒚vtm,𝒑vtm (𝑉 ,𝑇 )

)
(12)

Latm = E(𝐴,𝑇 )∼𝐷𝑆H
(
𝒚atm,𝒑atm (𝐴,𝑇 )

)
(13)

Lvtm: Visual-Text Matching Loss, computed as the expected
value over the dataset 𝐷𝑆 of the cross-entropy between the ground-
truth labels (𝒚vtm) and the predicted probability distribution (𝒑vtm (𝑉 ,𝑇 ))
for a video-text pair (𝑉 ,𝑇 ).

Latm: Auditory-Text Matching Loss, also computed as the ex-
pected value over the dataset 𝐷𝑆 , representing the cross-entropy
loss between the ground-truth labels (𝒚atm) and the predicted prob-
ability distribution (𝒑atm (𝐴,𝑇 )) for an audio-text pair (𝐴,𝑇 ).

In both equations, 𝒚vtm and 𝒚atm are 2-dimensional one-hot
vectors representing the ground-truth labels, while 𝒑vtm (𝑉 ,𝑇 ) and
𝒑atm (𝐴,𝑇 ) denote the predicted probability distributions for visual-
text and auditory-text pairs, respectively. The expectations are
taken over the dataset 𝐷𝑆 , indicating the average loss over all
samples in the dataset.

Furthermore, a strategy is employed to uncover challenging in-
stances for both assignments, with the goal of refining training
without increasing computational demands. These challenging in-
stances, termed hard negatives, are pairs that exhibit comparable
semantics but diverge in nuanced details. They are identified us-
ing metrics of contrastive similarity. Within each mini-batch, one
adverse text/audio is selected based on the distribution of con-
trastive similarity, thereby increasing the likelihood of selecting
texts/audios that closely resemble the video/audio under considera-
tion. Moreover, for each text, one demanding video and audio pair
is chosen, optimizing both visual-text and auditory-text alignment
processes. This methodology enables the model to distinguish be-
tween positive instances and hard negatives, thereby enhancing its
performance in both tasks.

4.5 Cumulative Pretraining Loss:
Contrastive loss (4.4.1) aims to align the unimodal encoders to pro-
duce embedding in a common representation space before passing
the concatenated representation to the multimodal encoder. The
matching loss (4.4.2) aims to align the multimodal encoder with the
by learning to discern the positive video/text and audio/text pairs
from the negative ones. The cumulative pre-training loss is thus
expressed as the sum of contrastive loss and matching loss for the
video-text and audio-text modality pairs.

Lpre−training = Lvtc + Latc + Lvtm + Latm (14)

4.6 Downstream Fine-tuning:
With the aligned encoders, we fine-tune the model with the objec-
tive of complaint and aspect classification. Here the components
explained in section 4.3 are utilized as in Figure 2, with the addi-
tion of two task-specific fully connected heads for simultaneously
predicting the complaint and aspect classes. Each head comprises
two linear layers with a softmax function finally producing the
class probabilities of appropriate shape (2 for the complaint/non-
complaint classification task and 7 for the aspect identification
task). The loss function used in all tasks is categorical cross-entropy.
The final loss function for the downstream multitask classification
task (𝐿𝑜𝑠𝑠𝑤𝑚𝑡 ) is a weighted sum of individual task-specific losses
(𝐿𝑜𝑠𝑠𝑘 ) for𝑀 tasks, where the contribution of task 𝑘’s loss to the
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overall loss is determined by the loss weight 𝛽𝑘 as shown in Equa-
tion (15).

𝐿𝑜𝑠𝑠𝑤𝑚𝑡 =

𝑀∑︁
𝑘=1

𝛽𝑘𝐿𝑜𝑠𝑠𝑘 (15)

The parameters 𝛽𝑖 are learnt end-to-end, signifying task contribu-
tion from task 𝑘 to the multitask loss, enabling differential impor-
tance for parameter updates across tasks.

5 EXPERIMENTS AND RESULTS
5.1 Baselines
To analyze the contribution of different modality combinations
and the effect of multi-tasking on the dataset, we established base-
lines involving individual modalities (uni-modal) and each pair of
modalities (bi-modal).

In unimodal experiments, for text (𝑍𝑡𝑎 or 𝑍𝑡𝑣 ), audio (𝑍𝑎), and vi-
sual (𝑍𝑣 ) modalities, we derived final representations usingmodality-
specific encoders. These representations were then subjected to
a CLS pooling operation, resulting in the extraction of overall se-
mantic information contained within each modality. This extracted
information is denoted as𝑚𝐶𝐿𝑆 , where𝑚 belongs to the set {𝑡, 𝑎, 𝑣}.
Depending on single-task or multitask settings this was then passed
through task-specific heads comprised of linear layers and finally
through a softmax function to calculate the log probabilities for
all tasks present in that setting. This setting is fine-tuned with
the weighted aggregate of cross-entropy losses of all the present
task-specific heads (15).

For bi-modal experiments, the representations obtained from the
uni-modal encoders are concatenated and passed to the multimodal
encoder to obtain the multimodal representation 𝐶𝑠

𝑚 (6 and 7).
Pooling operation is applied on the CLS token 𝑀𝑀𝑚,𝐶𝐿𝑆 of the
multimodal representation and passed through task-specific heads
as described previously. The losses are calculated in either single-
task or multi-task manner and backpropagated.

The results for all the baseline experiments along with the pro-
posed MAACA framework are mentioned in Table 3. Detailed anal-
ysis is conducted in the following sections.

5.2 Experimental Settings
All experiments were conducted on a machine equipped with an
AMD EPYC 7552 48-Core Processor and 192 threads, coupled with
5 Nvidia A100 GPUs with VRAM memory of 40 GB per GPU card.
For the experiments’ preparation, the dataset was partitioned into
testing, validation, and training sets at ratios of 15%, 15%, and 70%,
respectively. To ensure robustness, the models were trained ten
times with different random splits, and the average performance
was reported. Hyperparameter configurations were tested rigor-
ously, with the best results achieved using the Adam optimizer [14]
and a learning rate set to 5𝑒−5. The max text length of the tokenizer
is set to 175 tokens which covers 95% of all the transcript lengths. A
batch size of 2 is used, and all models are trained for 10 epochs with
early stopping and patience of 2. All models were implemented in
the PyTorch framework3.

3https://pytorch.org/.

Table 3: Results of various baselines involving different
modality combinations on the VCD Dataset for the task of
aspect category detection (ACD) and aspect complaint clas-
sification (ACC). The proposed MAACA framework lever-
ages all three modalities. The bold results indicate the best-
performing modality configuration for each task in Uni-
modal, Bimodal and, Trimodal settings.

ACC ACDModality MultiTask Acc F1 Acc F1
Unimodal

No 66.32 65.89 48.74 48.03Video Yes 67.21 66.70 49.93 49.25
No 59.67 58.72 31.18 30.27Audio Yes 60.18 60.02 32.36 31.77
No 84.49 83.82 83.55 82.91Text Yes 85.68 84.96 84.60 83.75

Bimodal
No 61.60 61.17 32.48 30.27Video + Audio Yes 62.34 61.92 34.59 33.86
No 86.27 85.81 86.29 85.72Text + Video Yes 86.94 86.17 86.75 86.20
No 87.05 86.24 85.63 84.97Text + Audio Yes 87.49 86.38 86.12 85.83

Trimodal
No 87.16 86.31 86.68 86.03Text + Audio

+ Video (MAACA) Yes 88.53 87.44 87.32 86.54

Table 4: Ablation study to show the effect of removing pre-
training step,moment retrieval, andmultimodal gated fusion
from the proposed model MAACA on both the tasks

ACC ACDAblation Purpose Acc F1 Acc F1
Proposed Framework 88.53 87.44 87.32 86.54
- Pretraining 84.32 83.89 83.61 82.45
- Moment Retrieval 87.50 86.92 85.21 84.32
- Multimodal Gated Fusion 86.09 85.31 84.59 83.19

5.3 Results and Discussion
Table 3 presents the main findings regarding the impact of different
modalities on our analysis. Our uni-modal experiments reveal a
significant discovery that forms the cornerstone of our proposed
model: text (transcripts), contains the richest information for both
the complaint (ACC) and aspect (ACD) tasks.

Building upon this, our bimodal experiments underscore the
importance of text within the modality combinations. Models incor-
porating text alongside other modalities consistently outperform
those relying solely on video and audio inputs. This highlights the
pivotal role of textual data in our predictive framework.

Furthermore, our bimodal experiments shed light on another key
insight: audio cues are crucial for complaint detection and visual
information is conducive to aspect identification. This finding aligns
with intuition: audio captures the reviewer’s tone effectively, while
videos provide a clearer depiction of the discussed aspects.

https://pytorch.org/
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Consequently, these observations prompt us to integrate all three
modalities—text, video, and audio—into our model to achieve op-
timal results across both complaint detection and aspect identifi-
cation tasks. By leveraging the complementary strengths of each
modality, we aim to enhance the robustness and effectiveness of
our predictive framework. The optimal results were achieved on
our proposed framework MAACA, in the multitask settings for
both complaint and aspect tasks, amounting to 87.44% and 86.54%
weighted F1 scores.

Comparing in the same task settings (single-task/multitask), the
performance in Accuracy and weighted F1 scores follows a de-
scending trend of Trimodal (MAACA), Bimodal, and, Unimodal
configurations. This is further seen by the F1 score difference in
just text and MAACA to be 2.48 % and 2.79 % respectively. As
seen earlier Text and audio are better for complaint identification
as in complaint data, there are more explicit acoustic markers in
the audio as compared to the visual cues and MAACA leads Text
+ Audio in F1 scores by 1.04 %. As aspect identification is more
visual cue-based, Text + Video performs on it better than Text +
Audio, while MAACA still beats the first combination by an F1
score of 0.34 %. We further observe that across all modality com-
binations (Unimodal, Bimodal, and, Trimodal), multi-task models
outperform single-task counterparts for most experiments. This
can be intuitively explained by the fact that aspect and complaint
identification are complementary tasks. Thus, the multitask setting
aspect identification helps the framework in making an informed
complaint/non-complaint classification decision, thereby boosting
the quantitative metrics for both the classes.

5.3.1 Ablation Study: An ablation study is conducted to analyze
the role of pre-training, moment retrieval, and multimodal gated
fusion on the proposed framework MAACA. The findings are sum-
marized in Table 4. As evident from the table, pre-training plays
the biggest role in determining the performance of the model caus-
ing an increase of 3.55% in complaint F1 score and 4.09% in aspect
F1 score. Pre-training aligns both the modality encoders and the
multimodal encoders which results in better learning during the
down-stream fine-tuning for the classification tasks. Following that,
multi-modal gated fusion has a significant impact on the results.
Instead of fusing the two multi-modal representations 𝐶𝑠

𝑣 and 𝐶𝑠
𝑎

to 𝐽𝑣𝑎 using the gating process (8), they are simply concatenated,
and mean pooling is applied. The pooled representation is given
as the input to the task heads and trained in a multi-task manner.
Following the considerable decline in F1 score in both tasks, we see
that a simple pooling of the multimodal representations is not as ef-
fective as the proposed gated attention mechanism. Lastly, moment
retrieval’s importance is tested in the ablation. From the results,
we see the crucial role this pre-processing step plays in the identifi-
cation of both the aspect and complaint causing an improvement
of 0.52% and 2.22% in complaint and aspect F1 score respectively.
Therefore, we highlight the need of pertaining, moment retrieval
and multimodal gated fusion for the best model performance.

5.4 Limitations and Error Analysis
In this section, we examine certain challenges encountered by the
proposed framework:
1. Data Bias: Given that the pre-training model ALPRO leveraged

for the proposed work is trained on video-text corpus sourced from
the web, it’s susceptible to bias. This bias might manifest in the ob-
ject detector, text, or video encoders, addressing this issue requires
further analysis and training.
2. Modality Restrictions: The framework requires input from text,
video, and audio data concurrently. If any modality is missing or in-
complete, the model’s predictive accuracy is significantly hindered.
3. Incorrect Aspect Prediction: In cases where the reviewer discusses
a particular aspect with redundant information, the model fails to
correctly identify the correct aspect class. This redundancy leads
to inaccuracies in identifying the correct aspect class by the model.
Additionally, the presence of redundant information can exacerbate
the challenge of aspect prediction by introducing noise or irrelevant
details that distract the model from discerning the essential aspect
under consideration.
4. Incongruent Complaint Tone: We also observed that when the
reviewer’s audio tone doesn’t align with the content conveyed
through textual or visual modalities, leading to an incongruent
complaint tone. In such cases, the reviewer’s vocal expression or
intonation may not accurately reflect the intent conveyed by the ac-
companying text or visuals. This inconsistency between the modal-
ities confuses the model, making it difficult for it to accurately
predict whether the instance should be classified as a complaint
or not. For instance, the review "How have they still not managed
to trim it at the bottom? Why has the selfie camera been demoted
from 40 megapixels to just 12? Why are the colours of the phone
so boring and samey?", the reviewer expresses complaint in an
interrogative tone but the audio data point towards neutral tone,
perhaps due to social norms, politeness, or other contextual factors.

6 CONCLUSION
In this research, we introduced a new challenge called Aspect-Level
Complaint Detection from Discourse. The goal is to identify the
category of aspects and determine whether they contain complaints
or not, using the provided text, video, and audio data. To support
the ACDD task, we created a distinctive multimodal complaint
dataset named, VCD. This dataset underwent manual annotation,
encompassing aspect categories and complaint/non-complaint la-
bels based on textual, acoustic, and visual information extracted
from video reviews. We conduct thorough analysis of the effect
of various combinations of the modalities in predicting the aspect
and complaint. We propose the MAACA framework to incorpo-
rate all three modalities as they are important for both the tasks.
The results demonstrate that the inclusion of acoustic and visual
features, in addition to text, enhances our ability to identify com-
plaints at the aspect level. While the MAACA framework equipped
with the proposed pre-training loss, fusion strategy, and moment
retrieval step outperformed the baseline models, the error analysis
highlighted that there is still room for improvement, which could
be a focus for future research.
In the future, we aim to develop multimodal frameworks capable
of pinpointing complaint rationales and incorporating them into a
comprehensive summary beneficial for businesses. Additionally, we
plan to extend our scope to include code-mixed videos and develop
complaint-detection models tailored to such scenarios.
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