
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

EFFICIENT MODEL-BASED REINFORCEMENT LEARN-
ING THROUGH OPTIMISTIC THOMPSON SAMPLING

Anonymous authors
Paper under double-blind review

ABSTRACT

Learning complex robot behavior through interactions with the environment ne-
cessitates principled exploration. Effective strategies should prioritize exploring
regions of the state-action space that maximize rewards, with optimistic explo-
ration emerging as a promising direction aligned with this idea and enabling
sample-efficient reinforcement learning. However, existing methods overlook a
crucial aspect: the need for optimism to be informed by a belief connecting the re-
ward and state. To address this, we propose a practical, theoretically grounded ap-
proach to optimistic exploration based on Thompson sampling. Our model struc-
ture is the first that allows for reasoning about joint uncertainty over transitions
and rewards. We apply our method on a set of MuJoCo and VMAS continuous
control tasks. Our experiments demonstrate that optimistic exploration signifi-
cantly accelerates learning in environments with sparse rewards, action penalties,
and difficult-to-explore regions. Furthermore, we provide insights into when opti-
mism is beneficial and emphasize the critical role of model uncertainty in guiding
exploration.

1 INTRODUCTION

Reinforcement Learning (RL) is recognized as a promising approach to solving complex sequential
decision-making tasks in robotics (Levine et al., 2016). However, many popular RL algorithms
require millions of interactions with the real world to train effective policies (Schulman et al., 2017;
Mnih et al., 2015). This sample inefficiency is primarily due to the central challenge of balancing
exploration, gathering information about the world, with exploitation, maximizing rewards given
current knowledge (Sutton & Barto, 2018; Szepesvári, 2022). Sample inefficiency is especially
prohibitive for RL applied to robotics due to the high cost and potential wear on physical systems.

Efficient RL requires a careful balance between exploration and exploitation, and some approaches
are better suited for this than others. Our work centers on model-based RL, a class of algorithms
where agents build a predictive model of the environment dynamics from which they derive a policy.
Many works have demonstrated impressive sample efficiency using model-based RL by leveraging
the learned dynamics model to simulate future outcomes, thereby allowing agents to plan strategi-
cally and optimize the controller using fewer real-world trials (Ibarz et al., 2021; Chua et al., 2018;
Janner et al., 2019; Yang et al., 2020; Sekar et al., 2020; Hansen et al., 2024). However, learning
a model of the environment is a double-edged sword: a faithful model enhances efficiency by re-
ducing the number of interactions needed in the real world while a biased model severely hampers
performance by misguiding the policy (Gu et al., 2016). Planning with uncertainty-aware dynam-
ics reduces the effects of model errors (Deisenroth & Rasmussen, 2011; Deisenroth et al., 2013;
Gal et al., 2016) and allows model-based RL algorithms to reach state-of-the-art asymptotic perfor-
mance on benchmark control tasks (Chua et al., 2018; Janner et al., 2019). Furthermore, by learning
a probabilistic dynamics model, model-based RL enables directing exploration in a principled man-
ner towards unseen parts of the state-action space.

In this work, we focus on optimistic exploration using model-based RL with an uncertainty-aware
model. In a subtle departure from classical exploration, which prioritizes transitions with high uncer-
tainty under the model, we define optimistic exploration as favoring transitions likely to yield high
rewards. This approach aligns well with the RL objective of maximizing cumulative rewards (Sut-
ton & Barto, 2018). Notable works unite optimistic exploration with uncertainty-aware model-based
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RL to hallucinate plausible, optimistic training experiences for superior robustness and sample ef-
ficiency (Curi et al., 2020; Sessa et al., 2022), however these formulations ignore joint uncertainty
between the reward and dynamics. They also assume knowledge of a reward function, which can be
impractical in real-world applications due to the difficulty of specifying dynamic, variable, and sub-
jective reward functions accurately a priori. While learning the reward function is a straightforward
remedy, there is a dearth of efficient and principled approaches to integrating reward learning into
optimistic exploration for model-based RL.

Contributions. Our primary contribution is the first practical model-based RL algorithm, called
Hallucination-based Optimistic Thompson sampling with Gaussian Processes (HOT-GP), that can
be used with state-of-the-art off-policy RL algorithms for principled optimistic exploration. In-
spired by the premise that efficient exploration should be informed by joint uncertainty over state
and reward distributions, we propose a GP model to maintain this joint belief in order to simulate
transitions that are simultaneously plausible under the learned dynamics and optimistic with respect
to the estimated reward. We evaluate this approach on a set of MuJoCo (Todorov et al., 2012) and
VMAS (Bettini et al., 2022) continuous control tasks. The results reveal that HOT-GP matches or
improves sample efficiency on standard benchmark tasks and substantially accelerates learning in
challenging settings involving sparse rewards, action penalties, and difficult-to-explore regions. As
these findings validate our hypothesis, our secondary contribution is an empirically-supported argu-
ment for maintaining a belief over both the reward and state distributions, as this is key for effective
optimistic exploration. Moreover, we study the factors that influence the utility of optimism and
underscore the important role of model uncertainties in shaping exploration.

2 RELATED WORK

Model-based RL methods are promising for complex real-world decision problems due to their
potential for data efficiency (Kaelbling et al., 1996). Selecting the appropriate model is critical, as it
must facilitate effective learning in both low-data regimes (during early stages of training) and high-
data regimes (later in training). This requirement naturally aligns with the advantages of Bayesian
models. Non-parametric models like Gaussian processes (GPs) provide excellent performance in
settings with limited, low-dimensional data (Deisenroth et al., 2013; Deisenroth & Rasmussen, 2011;
Kamthe & Deisenroth, 2018). Neural network predictive models have also been effectively used
for tasks with non-smooth dynamics (Nagabandi et al., 2018) and high dimensions like the Atari
suite (Oh et al., 2015; Kaiser et al., 2020). As deterministic neural networks tend to overfit to
data in the early stages of training, uncertainty-aware neural network models have been shown to
achieve better performance with algorithms such as PETS (Chua et al., 2018) and MBPO (Janner
et al., 2019). However, designing scalable Bayesian neural networks remains an open problem (Roy
et al., 2024; Guo et al., 2017; Osband, 2016) and popular approximations using dropout (Gal et al.,
2017) and ensembles (Lakshminarayanan et al., 2017; Chua et al., 2018) fall short of the precise
uncertainty quantification that GPs provide. In order to benefit from both the high-capacity function
approximation of neural networks and probabilistic inference of GPs, in this work we model the
joint dynamics and reward functions using a GP with a neural network mean function (Iwata &
Ghahramani, 2017).

Thompson sampling is a provably efficient exploration algorithm in RL (Thompson, 1933). This
approach implicitly balances exploration and exploitation by sampling statistically plausible out-
comes from the posterior distribution over dynamics models and selecting actions based on the
sampled outcomes (Russo & Van Roy, 2014; Russo et al., 2018). Thompson sampling has been
studied on tabular MDPs (Osband et al., 2013) and extended in theory to continuous state-action
spaces with sublinear regret under certain conditions (Chowdhury & Gopalan, 2019).

Optimism in the face of uncertainty is another theoretically grounded approach to guide explo-
ration that selects actions that optimize for optimistic outcomes. The motivation is to promote
exploration guided by beliefs about future value to facilitate efficient learning. While optimism has
been extensively studied in tabular MDPs (Brafman & Tennenholtz, 2002; Jaksch et al., 2010) and
linear systems (Jin et al., 2020; Abbasi-Yadkori & Szepesvári, 2011; Neu & Pike-Burke, 2020),
optimism in continuous state-action MDPs with non-linear dynamics remains less explored. GP-
UCRL (Chowdhury & Gopalan, 2019) is one such theoretical approach that targets dynamics mod-
els that lie in a Reproducing Kernel Hilbert Space. Another is LOVE (Seyde et al., 2021), which
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uses an ensemble of networks to direct exploration towards regions with high predicted potential for
long-term improvement. TIP (Mehta et al., 2022) also employs optimism by selecting actions ac-
cording to an optimistic acquisition function. Curi et al. (2020) proposes a reparameterization of the
dynamics function space in order to reduce optimistic exploration to greedy exploitation with the H-
UCRL algorithm. H-UCRL has sublinear regret bounds under certain conditions and demonstrates
efficient exploration on deep RL benchmark tasks with action penalties. The H-MARL algorithm
extends this to the multi-agent setting for general-sum Markov games and introduces a practical
approximation for generating optimistic states (Sessa et al., 2022). While these methods all de-
rive useful optimistic exploration strategies for RL, they ignore the relationship between uncertainty
around dynamics and uncertainty around the reward. Moreover, TIP, H-UCRL, H-MARL use the
ground-truth reward function throughout training. Our approach, inspired by H-UCRL (Curi et al.,
2020), improves optimistic hallucination for model-based RL by learning and leveraging the joint
uncertainty over state transitions and associated rewards.

Reward learning is commonly applied in RL for reward shaping (Hu et al., 2020). This is closely
related to exploration, as intrinsic rewards learned through curiosity-driven methods help guide ex-
ploration by reducing uncertainty over the agent’s knowledge of the environment (Pathak et al.,
2017). Reward learning also plays an important role in model-based RL. Receding-horizon plan-
ning approaches like PETS (Chua et al., 2018), Dreamer (Hafner et al., 2020; 2019; 2023), and
TD-MPC (Hansen et al., 2022; 2024) use estimated rewards to evaluate and optimize sequences
of actions, while model-based policy learning approaches like MBPO (Janner et al., 2019) use esti-
mated rewards to inform policy updates. Some of these approaches explicitly account for uncertainty
in the learned reward function (Chua et al., 2018; Janner et al., 2019; Chowdhury & Gopalan, 2019),
however they treat it as independent from the uncertainty in the dynamics. We argue that learning an
uncertainty-aware reward-dynamics function and strategically leveraging the joint uncertainty leads
to the most principled and effective optimistic exploration.

3 PROBLEM STATEMENT

We consider a stochastic environment with states s ∈ S ⊆ Rp and actions a ∈ A ⊆ Rq . Given the
current state st and action at, the agent transitions to the next state st+1 and incurs reward rt with(

st+1

rt

)
= f(st, at) =

(
ft(st, at)
fr(st, at)

)
(1)

for transition dynamics ft : S × A → S and reward function fr : S × A → R. Our objective is to
learn optimal control for this system within episodes of finite time horizon T . To control the agent,
we learn a deterministic or stochastic policy π that selects actions given the current state. For ease
of notation, we write the policy deterministically as π : S → A so that at = π(st). We consider
a specific transition dynamic f̂t and reward function f̂r, denoted with a hat to indicate realizations
that are drawn from random functions. The performance of the policy is measured by the sum of
accumulated rewards during an evaluation episode,

J(π, f̂t, f̂r) =

[
T∑

t=0

f̂r(st, at)

]
, s.t. at = π(st), st+1 = f̂t(st, at). (2)

The optimal policy π∗ maximizes performance over the true dynamics and reward function with,

π∗ = argmax
π∈Π

J(π, ft, fr). (3)

In model-based RL, the true dynamic ft is unknown and must be learned by interactions with the
environment. In our setting, the ground-truth reward function fr is also unknown.

4 BACKGROUND

In this section, we introduce relevant background on model-based reinforcement learning and exist-
ing exploration strategies.
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4.1 MODEL-BASED REINFORCEMENT LEARNING

When systems have unknown dynamics, we consider the dynamics ft to initially be random. There-
fore, learning a model of the environment dynamics entails fitting an approximation p(ft) over the
space of dynamics functions, given observations from the real system. The same approach can be
used to estimate the true reward function fr. We consider model-based RL algorithms that, on each
iteration of training, roll out the current policy π on the real system for an episode and update p(f)
using the newly observed transition data. Standard approaches use the model to simulate sequential
transitions and use this data to update the policy (Sutton, 1990). We opt to update the policy based
on short k-length model-generated rollouts branched from the state distribution of a previous policy
under the true environment, as recommended by Janner et al. (2019) to reduce compounding model
errors over extended rollouts. Algorithm 1 gives an overview of the process.

Algorithm 1 Model-based Policy Optimization

1: Require: max environment steps N , model rollouts M , steps per rollout T , steps per model
rollout K, initial state distribution d(s0), policy-learning algorithm PolicySearch

2: Initialize: policy π, reward-dynamics model p(f), environment dataset Denv
3: while |Denv| < N do
4: /*Simulate Data*/
5: Initialize model dataset Dmodel = ∅
6: for m = 1, 2, . . . ,M do
7: Sample ŝ0 uniformly from Denv
8: for k = 1, . . . ,K do
9: Compute action âk from π(ŝk)

10: Select next state ŝk+1 and reward r̂k using p(f | Denv) ▷ This is algorithm-specific
11: Append transition to buffer (ŝk, âk, ŝk+1, r̂k)→ Dmodel

12: /*Optimize Policy*/
13: π ← PolicySearch(π,Dmodel)
14: /*Optimize Dynamics Model*/
15: Start from initial state s0 ∼ d(s0)
16: for t = 1, 2, . . . , T do
17: Compute action at from π(st)
18: Observe next state and reward st+1, rt = f(st, at)
19: Append transition to buffer (st, at, st+1, rt)→ Denv

20: Retrain model p(f) using Denv

Model Design. We use an uncertainty-aware model to represent the prior distribution of dynamics
models p(ft) aligned with the 1-step transition data in Denv. Probabilistic models allow for exploit-
ing correlations in observed data by generalizing to unseen states and actions. Popular approaches
include probabilistic ensembles of neural networks, which provide mean µ(s, a) and confidence es-
timates Σ(s, a) by averaging outputs over multiple trained models (Lakshminarayanan et al., 2017;
Chua et al., 2018). Bayesian inference with neural networks is computationally expensive and it
is an open question if parameter uncertainties lead to relevant posterior function estimates (Sharma
et al., 2023; Roy et al., 2024). Alternatively, GPs provide distributions directly over the function
space, enabling direct estimation of the posterior distribution p(ft | Denv) over dynamics models.
Since GPs incorporate strong and interpretable prior beliefs, they naturally capture uncertainty due
to limited data (epistemic uncertainty) and variability in the data (aleatoric uncertainty) (Rasmussen
& Williams, 2006), which contributes to GPs’ effectiveness in low-data regimes. GP priors, de-
fined by a mean and covariance function, describe how the function varies around the mean. With
flexible mean functions, GPs offer principled uncertainty estimates for complex functions (Iwata &
Ghahramani, 2017; Fortuin et al., 2019; Fortuin, 2022).

4.2 EXPLORATION STRATEGIES

It is challenging to learn the reward-dynamics model while solving for optimal control. Performance
depends on the utility of model-generated data for updating the policy and likewise the value of
real experiences gathered by the policy for updating the model. Solving this problem efficiently
requires balancing exploitation of current knowledge with exploration of the state-action space.

4
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The mechanism for selecting the next model-generated state plays an important role, with different
strategies incorporating varying degrees of uncertainty to encourage exploration. In this section, we
provide an overview of the relevant exploration strategies, as categorized in Curi et al. (2020).

Greedy Exploitation. Most model-based RL approaches approximate p(ft | Denv) and maximize
the policy greedily over the uncertainty in the dynamics model. They use this greedy policy:

πGreedy = argmax
π∈Π

Ep(ft|Denv)J(π, f̂t, f̂r). (4)

For instance, GP-MPC (Kamthe & Deisenroth, 2018) and PETS (Chua et al., 2018) are MPC-based
methods that use greedy exploitation and represent p(ft | Denv) with a GP and ensemble of neural
networks respectively. Similarly, PILCO (Deisenroth & Rasmussen, 2011) uses a GP with moment
matching to estimate p(ft | Denv) and greedy exploitation to optimize the policy. While such algo-
rithms can converge to optimal policies under certain reward and dynamics structures (Mania et al.,
2019), greedy exploitation is generally inefficient for exploration.

Thompson Sampling. This is a theoretically-grounded approach that offers a principled balance
between exploration and exploitation (Russo et al., 2018; Chapelle & Li, 2011). Under Thompson
sampling (Thompson, 1933), the policy is optimized with respect to a single model sample f̂ on
each episode,

f̂ ∼ p(f | Denv), πTS = argmax
π∈Π

J(π, f̂t, f̂r). (5)

This optimization problem is equivalent to greedy exploitation (equation 4) after sampling f̂ ∼ p(f |
Denv). Under certain assumptions, Thompson sampling satisfies strong Bayesian regret bounds (Os-
band & Van Roy, 2016; 2017), theoretically positioning it as the optimal strategy.

Hallucinated Upper-Confidence Reinforcement Learning (H-UCRL). This is a tractable version
of the UCRL algorithm (Jaksch et al., 2010), which optimizes an optimistic policy over the set
of statistically plausible dynamics models. Curi et al. (2020) propose reparameterizing plausible
dynamics models in order to optimize over a smaller class of variables. Specifically, they write
dynamics functions as f̂t(s, a) = µ(s, a) + β Σ(s, a)η(s) for some function η : Rp → [−1, 1]p
and optimize over η(·) instead. As this problem is still challenging to optimize, Sessa et al. (2022)
propose sampling nj ∼ Uniform([−1, 1]p) for j = 1, . . . , Z and updating the policy with

πH-UCRL = argmax
π∈Π

max
ηj ,j∈1,...,Z

J(π, f̂t, f̂r), s.t. f̂t(s, a) = µ(s, a) + β Σ(s, a)ηj . (6)

Unlike greedy exploitation, this approach effectively optimizes an optimistic policy over the modi-
fied dynamics f̂t in equation 6, although the reward function is assumed to be known. H-UCRL also
does not model or utilize the joint uncertainty over transitions and rewards.

5 THE HOT-GP ALGORITHM

We introduce a new exploration strategy based on the insight that principled optimism should reason
about uncertainty over transitions and rewards jointly. Importantly, this requires a joint model of
the transition dynamics and reward function so that optimism about the reward can be connected
to a distribution over states. Given such a model, there are many possible acquisition strategies.
A natural approach uses Thompson sampling, which we adapt for optimistic exploration with our
method, Hallucination-based Optimistic Thompson sampling with Gaussian Processes (HOT-GP).

5.1 MODEL STRUCTURE

Optimistic exploration implies biased exploration towards regions of the state-action space believed
to yield high rewards. Thus, optimistic learning requires a reward-dynamics model that describes
the correlation of state and reward. In this work, we use a Gaussian process (GP) prior to describe
our belief over the product space of reward and state,

f̂ ∼ GP
((

µs(·)
µr(·)

)
,

(
Kss(·, ·) Ksr(·, ·)
KT

sr(·, ·) Krr(·, ·)

))
, (7)
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where µs : S × A → S and µr : S × A → R are the dynamics and reward mean functions and
Kss,Ksr,Krr represent covariance functions (S × A)× (S × A) → R. Traditional GPs describe
outputs as conditionally independent given the input and hence factorize across the state dimen-
sions and the reward. However, we hypothesize that this assumption is unfounded in most RL tasks
and furthermore antithetical to principled optimistic exploration. Therefore, we want to explicitly
model the correlation structure between the dimensions of the predicted state, and more impor-
tantly, between the predicted state and its associated reward. While this correlation can naturally
be included in the GP by parameterizing the full covariance structure across examples and output
dimensions, this is computationally intractable due to cubic scaling with the size of the covariance
matrix (Rasmussen & Williams, 2006). Instead, we adopt a linear model of coregionalization (Grze-
byk & Wackernagel, 1994; Wackernagel, 2003) where the covariance between output dimensions is
restricted to be linear combinations of the input covariance. This induces a Kronecker structured co-
variance function that allows for efficient factorization while still meaningfully directing optimistic
exploration.

In most GP regression use cases, the mean function is a constant function. While this is a valid
modeling assumption for simple data, the dynamics and reward structures we encounter in RL tasks
vary in a non-constant manner across different regions of the input space. To better predict these
complex transition-reward relationships, we use a GP model with a multi-layer perceptron (MLP)
mean function, as in Iwata & Ghahramani (2017); Fortuin et al. (2019), and use the covariance
function to learn the uncertainty, representing the residual around the MLP. This flexible model can
capture intricate transitions while providing useful uncertainty estimates that can be leveraged in an
optimistic fashion. To learn the mean and covariance functions, we perform approximate inference
by optimizing a variational lower bound on the marginal likelihood, as done by Titsias (2009).
This updates the posterior distribution p(f̂ | Denv), which we use to obtain the posterior predictive
distribution p(st+1, rt | st, at). Given the current state st and action at, this multivariate Gaussian
distribution reflects the model’s predictions and uncertainty over the next state and reward.

5.2 USING THOMPSON SAMPLING IN THE GP ACQUISITION FUNCTION

Thompson sampling proscribes optimizing the policy using a single reward-dynamics model from
the distribution of predictive models. A naive approach would sample from p(st+1, rt | st, at) until
discovering a good model as a function of the predicted reward rt. Instead, we observe that we
can condition the reward value rt to be high, specifically greater than some minimum percentile
threshold rmin over the reward distribution, and sample once from this distribution. Crucially, this
induces optimism into the sampling procedure because we only consider transitions where the next
state is plausible under the dynamics model and whose associated reward we believe to be large.

To do this, we sample independent realizations from one non-parametric reward-dynamics model
for each episode of length T , denoted as

f̂ (t:0→T ) ∼
T∏

t=0

p(st+1, rt | st, at, rt > rmin) (8)

for st sampled uniformly from Denv and at = π(st) under the current policy. Then the optimistic
Thompson sampling algorithm is

f̂ (0→T ) ∼ p(st+1, rt | st, at, rt > rmin), πHOT-GP = argmax
π∈Π

J(π, f̂
(0→T )
t , f̂ (0→T )

r ). (9)

Performing Thompson sampling following the joint distribution in equation 9 predicts both the next
state and its associated reward in an optimistic manner. We argue that this would lead to a suboptimal
exploration strategy as we are only interested in optimism over the state to the extent that it relates to
optimism over the reward. To address this, we instead sample reward-dynamics model realizations
using a two-step approach where only the reward is explored in an optimistic manner:

1. Sample an optimistic reward r̂t from p(rt | st, at, rt > rmin), a truncated normal distribu-
tion, using inverse transform sampling or another sampling technique.

2. Compute the expected transition ŝt+1 = Ep(st+1|st,at,rt=r̂t)[st+1] conditioned on the sam-
pled optimistic reward r̂t.

6
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Figure 1: Learning curves on MuJoCo tasks averaged over 10 seeds. HOT-GP demonstrates equiva-
lent or superior sample efficiency and performance for all tasks considered. The dashed line denotes
SAC performance at convergence within 1,000,000 environment steps (3,000,000 for Half-Cheetah).

This approach deviates from traditional Thompson sampling, and hence allows us to disentangle op-
timism over the state from optimism over the reward so that we can concentrate solely on optimism
over the reward from the states. This aligns well with our goal of sample-efficient reinforcement
learning as the objective is to maximize the reward in as few environment steps as possible.

6 EXPERIMENTS

We evaluate the performance of our proposed algorithm, HOT-GP, on continuous state-action control
tasks by measuring the mean total rewards across evaluation episodes. Since inaccurate reward
estimates are likely initially, we increase rmin linearly throughout training to become more optimistic
as the model becomes more reliable. In our experiments, we consider three variations of HOT-GP
where rmin begins at 0.1 and increases to either 0.3, 0.5, or 0.7. We also consider the alternative
Thompson sampling and greedy exploration strategies. Our Thompson sampling implementation
follows the HOT-GP procedure but draws samples from the reward-conditioned distribution p(st+1 |
st, at, rt = r̂t) rather than taking the expectation. For greedy exploitation, we predict the next state
and reward as the mean from the model.

First, we compare these approaches on standard MuJoCo benchmark tasks (Todorov et al., 2012)
and extended MuJoCo sparse maze tasks from the D4RL suite (Fu et al., 2020) against additional
model-free and model-based methods. Then we evaluate these approaches on a practical robotics
task using the VMAS simulator (Bettini et al., 2022) and provide an analysis of the individual com-
ponents. In-depth algorithmic descriptions of HOT-GP, along with the model-based methods we
use for comparison, are given in Appendix A. Details about training are discussed in Appendix B,
specific tasks are described in Appendix C, and code for reproducing the experiments can be found
in the supplementary materials.

6.1 MUJOCO BENCHMARKS

Comparison Methods. In these experiments, we consider HOT-GP with varying levels of optimism
using SAC (Haarnoja et al., 2018) as the underlying PolicySearch algorithm, as done in Janner
et al. (2019) with MBPO. We compare performance against SAC, Thompson sampling, greedy
exploitation, and MBPO. SAC is a model-free actor-critic algorithm that is known to achieve better
sample efficiency than DDPG (Lillicrap et al., 2015) on MuJoCo tasks (Chua et al., 2018). MBPO is
a model-based approach that uses an ensemble of probabilistic neural networks to model uncertainty
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as done in Chua et al. (2018). Predictions are drawn from a Gaussian distribution with diagonal
covariance over the reward and dynamics: p(st+1, rt | st, at) = N (µ(st, at),Σ(st, at)), where
µ(st, at) and Σ(st, at) are bootstrapped from the ensemble. For an optimistic baseline, we introduce
an optimistic version of MBPO where the reward is sampled from p(rt | st, at, rt > rmin) and
expected next state Ep(st+1|st,at)[st+1] is selected. This is the same procedure as HOT-GP, however,
due to MBPO lacking a joint model over the state and reward distributions, this implies a naive
optimistic exploration as there is no explicit relationship between the predicted next state and reward.

Figure 2: Learning curves on sparse maze tasks
averaged over 10 seeds. HOT-GP achieves equiv-
alent sample efficiency and performance. The
dashed line denotes SAC performance at conver-
gence within 1,000,000 environment steps.

Standard Benchmarks. The learning curves
for all methods on Half-Cheetah, Reacher, and
Pusher are given in the top row of Figure 1. In
each case, the HOT-GP variants attain SAC-best
performance with comparable or superior sam-
ple efficiency to other approaches. For instance,
on Half-Cheetah, HOT-GP with rmin from 0.1
to 0.3 achieves the same final performance as
SAC in 250,000 environment steps rather than
3 million. We observe that the deterministic
approach used in greedy exploitation leads to
slower learning on Half-Cheetah compared to
uncertainty-aware methods, while showing no
impact on performance on Pusher. This indicates
that model uncertainty is key for efficient learn-
ing on Half-Cheetah, likely because the dynam-
ics are more challenging to model, which makes
model biases more detrimental to learning (Chua
et al., 2018). Interestingly, uncertainty-aware
learning alone is insufficient on Pusher as opti-
mistic exploration methods enhance sample effi-
ciency compared to MBPO and greedy exploita-
tion. This is likely due to the task dynamics as

the agent must navigate a landscape of negative rewards and sparse feedback. Optimistic exploration
allows the agent to discover valuable actions more effectively by pursuing riskier options with po-
tential to help reach the goal state. Next, we examine the impact of optimistic exploration in sparse
reward settings more closely.

Sparse Reacher Task. The Sparse Reacher task provides reward rdist(s) that is nonzero only when
the agent is within a small threshold of the target location, thus demanding clever exploration strate-
gies to reach the target as there is no dense feedback. As in Curi et al. (2020), we introduce an action
penalty of the form r(s, a) = rdist(s)− ρ · cost(a) with the aim of penalizing random and encourag-
ing local exploration. This is described in greater detail in Appendix C. We evaluate HOT-GP and
the other comparison methods on Sparse Reacher using four different action penalty weights: ρ = 0,
ρ = 0.1, ρ = 0.3, and ρ = 0.5, and present the results in the bottom row of Figure 1 as well as
Figure 6 in Appendix D. HOT-GP demonstrates significantly superior sample efficiency over MBPO
and moderately improved sample efficiency over optimistic MBPO in each case. The findings on
Sparse Reacher with ρ = 0 indicate that all the HOT-GP variants perform robust optimistic explo-
ration and successfully uncover the signal despite sparse rewards. When using the action penalty
ρ = 0.1, HOT-GP with rmin from 0.1 to 0.3 performs poorly relative to higher levels of optimism.
This suggests that higher levels of optimism are necessary to overcome the prior against taking large
actions and explore the reward signal rdist. HOT-GP is able to do this by relating the action-based
penalty to the state to the overall reward through the joint model. The less efficient learning of
optimistic MBPO highlights the critical importance of having a joint model of the reward and state
distributions to facilitate efficient exploration. For ρ = 0.3 and ρ = 0.5, we observe that the cost
term accounts for up to half of the overall reward. As a result, the HOT-GP variants explore much
of the cost signal rather than rdist, leading to their similar performance in these settings.

Sparse Maze Tasks. The Sparse Maze tasks require an agent to navigate through a maze to a target
location, providing a reward of 1 when the agent is within a small threshold of the target location and
zero in other cases. Like the Sparse Reacher task, efficiently solving such tasks demands an effective
exploration strategy as there is no dense feedback to guide the agent. We consider the simpler U

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 3: Learning curves in the coverage environment averaged over 10 seeds. HOT-GP achieves
strong performance within 200,000 environment steps while other methods exhibit poorer sample
efficiency or asymptotic performance. The dashed line denotes DDPG performance at convergence
within 500,000 environment steps.

Maze and challenging Medium Maze environments with further details in Appendix C. The results
of HOT-GP and the comparison methods on the U Maze are given in Figure 2 (Medium Maze is in
progress). The results show that HOT-GP attains equivalent sample efficiency performance with the
greedy and Thompson sampling strategies, while MBPO and Optimistic MBPO are less stable. It is
likely that greedy exploitation does well on this task because of the simple dynamics.

6.2 ROBOT COVERAGE

Coverage Description. We consider a practically motivated continuous control robotics problem
where an agent must visit as many unique, high valued cells as possible within a finite episode. This
mirrors real-world target-tracking tasks where an agent monitors multiple regions of interest under
time constraints (Robin & Lacroix, 2016; Xin et al., 2024). The reward for visiting a new 2D cell is
distributed as the probability density function of a mixture of three randomly placed Gaussians over
the x and y axes, so there are cluster rewards that the agent must find and exploit. To incentivize
thorough coverage, the agent receives no reward for revisiting cells in an episode.

Comparison Methods. As in the MuJoCo tasks, we evaluate HOT-GP with three levels of optimism
and compare against Thompson sampling and greedy exploitation. A distinction is that, since DDPG
outperforms SAC in this task, we use DDPG with a probabilistic actor for the PolicySearch
algorithm. Learning a stochastic policy allows for a baseline level of exploration, which we found to
be helpful when also incorporating uncertainty induced by the reward-dynamics model. For model-
free baselines, we use DDPG, SAC, and the on-policy PPO algorithm (Schulman et al., 2017). For
an optimistic baseline, we use two variations of H-UCRL: one has privileged access to the ground
truth reward function fr while the other adapts to our unknown reward setting by learning the reward
function f̂r and applying it as in equation 6. In both cases, we use the same dynamics-reward model
with H-UCRL as in HOT-GP for a fair comparison of the optimistic exploration strategies.

Performance Analysis. The first two subfigures in Figure 3 show the training curves for these ap-
proaches with and without access to the ground-truth reward function. Our method outperforms the
model-based approaches in both settings and achieves DDPG-best performance marginally ahead of
DDPG. The poorer performance of greedy exploitation without access to the true reward function
suggests that strategic exploration is key to efficient learning for this task. Indeed, the agent must
explore the environment sufficiently well enough to learn the relationship between its observations
and the locations of the Gaussian centers, make informed decisions about which Gaussian center to
prioritize, and realize the importance of avoiding previously seen cells. HOT-GP also demonstrates
performance superior to H-UCRL, which does not converge to the optimal performance level within
200,000 environment interactions, with and without access to the ground truth reward. This may be
due to infeasible optimism where the rewards associated with perturbed states µ(s, a) + β Σ(s, a)η
are high but the states are not reachable in practice. HOT-GP avoids this problem by selecting states
conditioned on optimistic rewards from the joint distribution, thus ensuring the states are plausi-
ble under the learned model and reward value. These findings reinforce the benefits of principled
optimistic exploration for improving sample efficiency in tasks where exploration is key.
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Ablation Study. Finally, we conduct an ablation study over the main components of HOT-GP
to investigate their relative importance. The ablation study in Figure 3 presents the findings. We
observe that scaling rmin from 0.1 to 0.5 yields the best results, indicating that this task benefits
from a medium level of optimistic exploration. Since HOT-GP using other ranges of rmin values still
performs fairly well, our approach does not appear to be overly sensitive to rmin settings. Indeed, rmin
is an interpretable parameter that can be informed by the hypothesized level of exploration required.
The ablation study in Figure 3 shows that HOT-GP without k-branching results in consistently poor
performance. We also observe that k-branching with k = 5 leads to less optimal performance
than with k = 1. This aligns with prior findings that accumulating errors in the dynamics model
can be detrimental to learning (Janner et al., 2019; Gu et al., 2016). Furthermore, this highlights
the importance of learning a faithful model to benefit from optimistic exploration, as optimism
guided by an inaccurate belief harms learning. The ablation study also reveals the importance of
modeling the correlation between the predicted state and reward, as this is also essential to be able
to harness optimistic exploration. Lastly, sampling the next state from an optimistic distribution
with Thompson sampling leads to a larger variance in performance than selecting the expected next
state, thus validating our two-step sampling approach. Overall, this ablation study confirms that
each component of HOT-GP is necessary to learn effectively.

7 CONCLUSION

We have introduced a principled approach to optimistic exploration based on leveraging a joint belief
over the reward and state distribution. Our proposed algorithm, HOT-GP, uses a Gaussian Process
to approximate the reward-dynamics and allows us to simulate plausible transitions associated with
optimistic rewards, in a practical adaptation of Thompson sampling. Our experiments showed that
HOT-GP achieves comparable or superior sample efficiency relative to other model-based methods
and exploration strategies. Notably, we found that joint model uncertainty over outputs is crucial for
effective exploration, particularly in challenging settings with sparse rewards, action penalties, and
difficult-to-explore regions. Ultimately, this work establishes the importance of joint uncertainty
modeling for optimistic exploration and makes a meaningful advancement towards more sample-
efficient reinforcement learning.

Future Work. Future work should study how the schedule on rmin affects optimism and principled
ways for setting this value throughout training, as we only considered a linear schedule. Another
promising avenue would extend the planning horizon. We concentrated on learning 1-step looka-
head reward-dynamics as HOT-GP can implicitly propagate uncertainty across the horizon by using
pointwise uncertainty estimates from the model. Nevertheless, there may be benefits in explicitly
propagating uncertainty to facilitate optimism over longer-term reward predictions (Seyde et al.,
2021; Mehta et al., 2022; Hansen et al., 2024). Furthermore, our investigation indicates that the util-
ity of optimistic exploration depends on the complexity of the task, although our experiments were
limited to six tasks. Future research should explore the role of optimism across a broader range of
problems, including in real-world scenarios with on-robot learning.
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A ALGORITHM DETAILS

In this section, we provide more detailed information about the algorithms we use for evaluation.
Note that the code we used to implement these algorithms are available in the code that can be found
in the supplementary materials.

A.1 MODEL-FREE BASELINES

We compare model-based RL approaches with the following popular model-free algorithms:

SAC. We use a standard version of SAC as introduced in Haarnoja et al. (2018). Our implementation
utilizes a Gaussian policy and automatic entropy tuning.

PPO. We also use a standard version of PPO as introduced in Schulman et al. (2017).

DDPG. We use a variant of DDPG (Lillicrap et al., 2015) with a probabilistic actor network. In stan-
dard DDPG, the deterministic nature of the policy can lead to insufficient exploration of the action
space. We mitigate this tendency by using a probabilistic actor, which incorporates exploration into
the policy by sampling actions from a probability distribution. Specifically, the probabilistic actor
network outputs a mean µθ(s) and standard deviation σθ(s) for the current state s and we select the
action by sampling from the Gaussian distribution a ∼ N (µθ(s), σθ(s)

2). In our experiments, we
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compare with this version of DDPG using natural exploration under the label “DDPG w/o explore”.
With a deterministic policy, it is also common to facilitate exploration by adding noise to the ac-
tions. Therefore, we additionally evaluate our DDPG baseline with explicit exploration under the
label “DDPG w explore”. Specifically, we add Gaussian noise to the sampled action with a = a+ ζ
for ζ ∼ N (0, σ2

explore).

A.2 GREEDY EXPLOITATION

This exploration strategy follows the optimization rule given in equation 4. In particular, we hal-
lucinate the next state as the mean output from the model and disregard the uncertainty around the
prediction. In one variation, we assume access to the ground-truth reward function fr (referred to
as “Greedy w known reward”) for a comparison with H-UCRL. In another variation, we also learn
the reward function (referred to as “Greedy w/o known reward” in the coverage experiment and
“Greedy” in the MuJoCo experiments) and similarly hallucinate rewards as the mean output from
the model. In pseudocode, this approach follows Algorithm 1 exactly with the following algorithm-
specific routine replacing line 10 to select the next state and reward:

• Compute the next expected state as ŝk+1 = µs(ŝk, âk)

• Observe the expected reward r̂k = µr(ŝk, âk) or true reward r̂k = fr(ŝk, âk)

A.3 MBPO

We implement MBPO as described in Janner et al. (2019) and summarized in Section 6.1. Specif-
ically, the model is an ensemble of probabilistic neural networks that each predict a mean out-
put and variance (exponentiated log variance in practice) µi(sk, ak) and Σi(sk, ak) and param-
eterize a multivariate Gaussian distribution with diagonal covariance pi(sk+1, rk | sk, ak) =
N (µi(sk, ak),Σ

i(sk, ak)). To predict an output, the parameters are bootstrapped using expecta-
tion or randomly selecting a member and the outcome is drawn from the Gaussian distribution. This
is described with the following steps replacing line 10 in Algorithm 1:

• Compute the predictions for each ensemble member µi(ŝk, âk),Σ
i(ŝk, âk)← f̂ i(ŝk, âk)

• Bootstrap predictions to get µ̄(ŝk, âk), Σ̄(ŝk, âk)
• Sample outcome from the Gaussian distribution ŝk+1, r̂k ∼ N (µ̄(ŝk, âk), Σ̄(ŝk, âk))

For the optimistic MBPO baseline, we maintain the ensemble model structure but perform a proce-
dure similar to HOT-GP, following these steps to generate next states and rewards:

• Compute the predictions for each ensemble member µi(ŝk, âk),Σ
i(ŝk, âk)← f̂ i(ŝk, âk)

• Bootstrap predictions to get µ̄(ŝk, âk), Σ̄(ŝk, âk)
• Separate the reward distribution by taking its component
p(sk+1, rk | ŝk, âk)[r] = N (µ̄(ŝk, âk), Σ̄(ŝk, âk))[r]

• Sample reward from an optimistic reward distribution
r̂k ∼ p(sk+1, rk | ŝk, âk, r̂k > rmin)[r]

• Select expected next state from state distribution ŝk+1 = Ep(sk+1|ŝk,âk)[:r] [sk+1]

A.4 H-UCRL

We implement H-UCRL (Curi et al., 2020) using the sampling procedure introduced in (Sessa et al.,
2022). On each model-generated rollout step, this approach hallucinates Z candidate next states that
are plausible under the learned dynamics model and selects the one leading to the highest reward
under fr. Therefore, we assume access to the ground-truth reward function fr and only learn the
dynamics model ft in our implementation of H-UCRL. In pseudocode, this approach follows Algo-
rithm 1 exactly with the following steps replacing line 10 where we refer to σs(s, a) as the standard
deviation of an output from the GP dynamics model:

• Draw random perturbations ηj ∼ Uniform([−1, 1]p) for j = 1, . . . , Z
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Table 1: Task-specific hyperparameter values

Hyperparameter Half-Cheetah Reacher Pusher Sparse Reacher Coverage

Environment steps N 250,000 20,000 20,000 37,500 200,000
Steps per rollout T 1000 150 150 150 150
Model rollouts M adaptive adaptive adaptive adaptive 150
Model rollout steps K 1 1 1 1 1
Batch size B 256 256 256 256 150
Discount factor γ 0.99 0.99 0.99 0.99 0.9
Learning rate α 0.001 0.001 0.001 0.001 0.00005
Mixing factor τ 0.005 0.005 0.005 0.005 0.005
Replay buffer size unlimited unlimited unlimited unlimited 20,000

• Compute plausible next states ŝjk+1 = µs(ŝk, âk) + β σs(ŝk, âk)η
j

• Select next state ŝk+1 = argmaxŝjk+1
fr(ŝ

j
k+1, â

j
k+1) for associated actions âjk+1

• Observe the true reward r̂k = fr(ŝk, âk)

We also adapt H-UCRL to our setting where the reward is unknown with a variation we call “H-
UCRL Approx”. We do this by learning both the dynamics and reward models and selecting the
candiate state leading to the highest predicted reward, i.e., under f̂r rather than fr.

A.5 THOMPSON SAMPLING

This approach follows the optimization rule given in equation 5. Our Thompson Sampling imple-
mentation only differs from HOT-GP in that we sample both the reward and next state from the
optimistic reward-dynamics distribution. In practice, we implement this as described in Algorithm
1 with the following algorithm-specific routine replacing line 10:

• Compute predictive posterior distribution p(sk+1, rk | ŝk, âk) using p(f | Denv)

• Sample an optimistic reward r̂k ∼ p(rk | ŝk, âk, rk > rmin)

• Sample a plausible next state ŝk+1 ∼ p(sk+1 | ŝk, âk, rk = r̂k)

A.6 HOT-GP

In HOT-GP, we sample an optimistic reward and select the most likely next state associated with the
sampled reward on each step of the model-generated rollout, as described in equation 9. The steps
are detailed in Algorithm 1 with the following routine replacing line 10:

• Compute predictive posterior distribution p(sk+1, rk | ŝk, âk) using p(f | Denv)

• Sample an optimistic reward r̂k ∼ p(rk | ŝk, âk, rk > rmin)

• Select expected next state ŝk+1 = Ep(sk+1|ŝk,âk,rk=r̂k)[sk+1]

B TRAINING

Learning Framework. We implement our learning framework with MBRL-Lib (Pineda et al.,
2021) for the MuJoCo tasks and TorchRL (Bou et al., 2024) for the coverage task. Additionally, we
use GPyTorch (Gardner et al., 2018) to build the GP reward-dynamics model.

Gaussian Process with Neural Network Mean Function. A standard Gaussian Process is defined
by a mean function m(x) and a covariance function k(x, x′), where x and x′ are input vectors, and
m(x) is typically assumed to be a zero mean. In this work, we replace the traditional zero mean
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function with a neural network so that m(x) = fθ(x), where θ are the parameters of the network.
Given inputs X = [x1, . . . , xn] and outputs y = [y1, . . . , yn], the posterior distribution of this GP is

p(y|X, y) = N (m,K + σ2I),

where m = [fθ(x1), . . . , fθ(xn)] is the mean vector of neural network outputs for each input, K is
the kernel matrix Kij = k(xi, xj), σ2 is the noise variance, and I is the identity matrix. To optimize
this model, we follow the procedure in Iwata & Ghahramani (2017). This entails optimizing θ using
the Mean Squared Error loss and then optimizing the kernel hyperparameters and noise variance σ2

on the train dataset with transformed targets y −m, as described in the following section, on each
iteration. For predicting on a new input x∗, the predictive posterior distribution is p(y∗ | x∗, X, y) =
N (y∗ | u∗, σ∗) with:

µ∗ = m∗ +KT
∗
(
K + σ2I

)−1
(y −m)

σ2
∗ = K∗∗ −KT

∗
(
K + σ2I

)−1
K∗,

where m∗ = fθ(x∗), K∗ = [k(x∗, x1), . . . , k(x∗, xn)]
T , K∗∗ = k(x∗, x∗). Thus, the neural

network learns the non-zero mean function while the GP covariance function is modeled by the
kernel as usual, thus allowing the model to quantify uncertainty around complex functions.

Reward-Dynamics Model Training. Our approach requires access to the full posterior distribution
of the Gaussian process. To facilitate this in an efficient manner, we train the GP using a variational
bound based on inducing points (Hensman et al., 2015) following the approach given in Iwata &
Ghahramani (2017). This allows for efficient training using stochastic inference. To further reduce
the computational cost of learning the model, we do not train on the whole dataset on each iteration
and instead draw 1, 000 randomly sampled transitions fromDenv. This approach reduces the training
cost significantly and provides an additional source of stochasticity that helps training. Using a
Gaussian likelihood allows us to compute the predictive posterior in closed form, allowing us direct
access to its mean and variance.

Hyperparameters. We train all algorithms using a set of hyperparameters that we found to be
optimal through trial-and-error or were recommended. Table 1 describes the hyperparameter values
specific to the MuJoCo and VMAS tasks we considered. We also report additional algorithm-specific
hyperparameters used. In H-UCRL, we use the exploration-exploitation coefficient β = 0.01 and
number of samples Z = 5. In MBPO and optimistic MBPO, we use an ensemble of size 7. For
DDPG, we use an exploration noise σexplore from 1 to 0.1. For GP-based approaches, we use the
Matern kernel as the covariance function and learn from 100 inducing points. For the MuJoCo
tasks, we use a 4-layer MLP with 200 hidden units per layer and SiLU activation function. For the
VMAS coverage task we use a 2-layer MLP with 200 hidden units per layer and Mish activation
function. We use the Adam optimizer in all cases. For further information on our implementation,
please see our code under the supplementary materials.

Computation Time Comparison. We report the mean wall clock runtime and standard deviations
for a single run of each algorithm on the MuJoCo tasks considered in Table 2. These results are
averaged over 10 seeds. Our HOT-GP implementation incurs longer wall clock runtimes due to
computational cost of GP training. However, recent research proposes promising techniques that
can mitigate this overhead (Wenger et al., 2024; Chang et al., 2023). Also, note that our approach is
not tied to GP models and can seamlessly generalize to alternative models such as Bayesian Neural
Networks (BNNs), as the model is only needed to approximate the joint posterior distribution over
next states and rewards.

C EVALUATION TASKS

In this work, we evaluate HOT-GP on five continuous control tasks: four using the MuJoCo physics
engine and one using the VMAS simulator. In this section, we outline the setup for each task.

Half-Cheetah. The Half-Cheetah is a MuJoCo continuous control task where a 2D bipedal agent,
resembling a simplified cheetah, must learn to run as quickly as possible. The observations are 17-
dimensional vectors that include the position and velocity of the agent’s torso and 6 joints. Actions
are 6-dimensional vectors, where each component corresponds to the torque applied to one of the
agent’s joints. The reward is primarily based on the forward velocity of the agent’s torso while
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Table 2: Computation times in hours across tasks and algorithms

Wall Clock Runtime MBPO Optimistic MBPO Greedy HOT-GP

Half-Cheetah 24.5 ± 3.5 26.7 ± 4.88 18.5 ± 3 28.89 ± 4.1
Reacher 1.89 ± 0.1 2.04 ± 0.2 2 ± 0.1 5.18 ± 0.2
Pusher 1.87 ± 0.2 2.05 ± 0.2 1.92 ± 0.4 6.53 ± 0.1
Sparse Reacher 3.76 ± 0.3 4.1 ± 0.4 3.94 ± 0.3 8.55 ± 1.5
U Maze 12.45 ± 1.1 12.43 ± 1.7 11.75 ± 1.6 21.08 ± 3.8

Figure 4: Frames from a rollout of a HOT-GP trained policy in the coverage environment. The agent
(purple circle) drives around to cover target areas which are brightly colored. The target locations
change on each episode.

also penalizing excessive torques on the joints. Let x0 be the agent’s original position, x1 be the
position after a simulation step, and dt be the time between. Then the reward is given by r(s, a) =
x1−x0

dt − 0.1
∑6

i=1 a
2
i .

Pusher. The Pusher task in MuJoCo is a continuous control task where a robotic arm must
learn to push an object to a target location on a 2D plane. The agent controls a three-link pla-
nar arm and must manipulate an object to move it towards a fixed goal position. The observa-
tion space is a 23-dimensional vector, which includes the position and velocity of the robot arm’s
joints, position and velocity of the object being pushed, and the position of the target. The ac-
tion space is a 7-dimensional vector, where each component represents the torque applied to one
of the joints in the robotic arm. The reward function is based on the Euclidean distance be-
tween the object and the target location, incentivizing the agent to move the object closer to
the target while also penalizing large torques. Let pobj be the position of the object, pgoal be
the position of the goal, parm be the position of the arm’s tip. Then the reward is given by
r(s, a) = −∥pobj − pgoal∥2 + 0.1 ·

(
−
∑7

i=1 a
2
i

)
+ 0.5 · (−∥pobj − parm∥2).

Reacher. The Reacher task in MuJoCo is a continuous control environment where a robotic arm
must learn to position its end effector at a goal location in 3D space. The observations are 19-
dimensional vectors that include the joint angles and velocities of the robotic arm. Actions are
6-dimensional vectors, where each component corresponds to the torque applied at one of the arm’s
joints. The reward incentivizes the agent to reach the goal while also penalizing excessive control
actions. Letting EEpos(s) represent the position of the end effector and ρ be the action penalty, the
reward function is r(s, a) = −

∑3
i=1(EEpos(s)i − goali)

2 − ρ · ∥a∥2.

Sparse Reacher. The Sparse Reacher is the same as the Reacher task, except with a modified reward
structure. Let EE(s) represent the position of the end effector, ϵ be a small threshold distance, and
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ρ be the action penalty. The reward function is

r(s, a) = −ρ

(
exp

(
−

6∑
i=1

a2i

)
− 1

)
+

{
exp

(
−∥EE(s)− goal∥2

)
if ∥EE(s)− goal∥ < ϵ

0 otherwise.

The first term rewards the agent based on the negative squared distance between the end effector’s
position and the target goal if the distance is less than ϵ and gives no reward otherwise. The second
term penalizes the agent for applying excessive torques to the joints. This design creates a challenge
for exploration as the agent receives minimal feedback about its performance until it is sufficiently
close to the target. We take inspiration for this setup from Curi et al. (2020) although our rewards
are more sparse and we use ϵ = 0.2 in our experiments.

U Maze. In this task, the agent must navigate through a U-shaped maze to reach a designated target
location. The agent receives a sparse reward of 1 when it comes within a small threshold distance ϵ
of the target and 0 otherwise. Specifically, the reward function is

r(s, a) =

{
1 if ||Pos(s)− goal|| < ϵ

0 otherwise.

The agent observes its position (x, y) and 2-dimensional goal position. Actions are 2-dimensional
vectors representing velocity in the x and y dimensions.

Coverage. In this VMAS task, the agent must discover and visit unique, discretized cells with high
value in a continuous state-action space. The reward for visiting a new cell at coordinates (x, y) is
distributed as the probability density function of a mixture of three Gaussians over the x and y axes,

p(x, y) =
1

3

3∑
i=1

N ((x, y) | (µi,Σ)). (10)

To incentivize thorough coverage of the regions around each Gaussian center, the agent receives no
reward for revisiting cells in an episode. The agent observes its position (x, y), velocity, current
value p(x, y), values of neighboring cells p(xn, yn) for (xn, yn) ∈ N (x, y), and the target locations
{µi}3i=1. The target locations are randomly generated in each episode so that the agent must learn
the high-level pattern of reward distribution as a function of (x, y) and {µi}3i=1, and Σ. Throughout
our experiments, we use Σ = 0.05. We provide snapshots from sample rollouts on the coverage task
in Figure 4.

D EXTENDED EXPERIMENTS

In this section, we extend our experiments by evaluating H-UCRL approx and MBPO without un-
certainty clamping on the Half-Cheetah task, with the results given in Figure 5. We also provide
learning curves for all comparison methods on the Sparse Reacher task with action penalty 0.3.

Half-Cheetah. As described in Section A, H-UCRL approx differs from the algorithm presented
in Curi et al. (2020) in a few ways: (1) we use our GP model rather than a probabilistic ensemble,
(2) we use the sampling-based optimistic hallucination method in equation 6 to select states, and
(3) we use predicted rewards to guide optimism rather than the ground truth rewards. This version
of H-UCRL does not perform well on Half-Cheetah relative to MBPO and HOT-GP, with the best
seeds achieving mean evaluation episode rewards as high as 6000 after training with 250,000 envi-
ronment steps. As we observed when discussing H-UCRL performance on the coverage task, this
performance gap may stem from infeasible optimism, where the rewards associated with perturbed
states µ(s, a) + β Σ(s, a)η are high but unreachable in practice. Additionally, a suboptimal choice
of β could be a contributing factor, as we did not fine tune this parameter on Half-Cheetah due to
its extended runtime and instead used the optimal β finetuned on the coverage task. HOT-GP also
has a hyperparameter rmin, which controls the level of optimism during training. While the domain
dependence of rmin means some adaptation is required for new tasks, we found that setting rmin is
generally intuitive and, moreover, provides interesting insights into the nature of the task itself. For
instance, if the dynamics in the domain are simple, we can be more optimistic about exploration
(i.e., use a higher value of rmin), whereas if they are complex, we need to spend more time learning
the dynamics before becoming more optimistic.
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Figure 5: Learning curves for select methods
on Half-Cheetah averaged over 5 seeds. The
dashed line denotes SAC performance at con-
vergence within 3,000,000 environment steps for
Half-Cheetah.

Figure 6: Learning curves on the Sparse Reacher
with action penalty of 0.3. HOT-GP achieves su-
perior sample efficiency and performance. The
dashed line denotes SAC performance at conver-
gence within 1,000,000 environment steps.

We also experimented with removing uncertainty clamping from MBPO, which resulted in a com-
plete failure to learn as shown in Figure 5. Standard MBPO uses an ensemble of probabilistic
neural networks that predicts both the mean and log variance for a given input, with log variances
clamped to prevent excessive growth. Removing this clamping significantly degrades performance,
indicating that the model uncertainties are poorly calibrated and heavily dependent on clamping to
maintain stable learning. This finding reinforces our choice of model, as GPs provide well-calibrated
uncertainties (Chowdhury & Gopalan, 2017).

Sparse Reacher. To supplement the Sparse Reacher results presented in Figure 1, we provide
additional learning curves on the Sparse Reacher using action penalty of 0.3. These results are
consistent with the trends observed using other action penalties and HOT-GP variants perform the
best.
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