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Abstract

Massive-scale pretraining has made vision-language models increasingly popular
for image-to-image and text-to-image retrieval across a broad collection of domains.
However, these models do not perform well when used for challenging retrieval
tasks, such as instance retrieval in very large-scale image collections. Recent
work has shown that linear transformations of VLM features trained for instance
retrieval can improve performance by emphasizing subspaces that relate to the
domain of interest. In this paper, we explore a more extreme version of this
specialization by learning to map a given query to a query-specific feature space
transformation. Because this transformation is linear, it can be applied with minimal
computational cost to millions of image embeddings, making it effective for large-
scale retrieval or re-ranking. Results show that this method consistently outperforms
state-of-the-art alternatives, including those that require many orders of magnitude
more computation at query time. Code and pre-trained models are available at
https://github.com/mvrl/QuARI.

1 Introduction

Recent advances in language-image pretraining have significantly improved performance in various
vision-language tasks, including image-to-image and text-to-image retrieval. These models learn
to align images and their corresponding textual descriptions in a shared embedding space over
large-scale datasets. Yet, despite their success, they show notable limitations in retrieval scenarios.

Pretrained models often rely on global image features that encapsulate the overall content of an
image. While effective for general classification tasks, these global representations may not capture
fine-grained details essential for distinguishing between visually similar images based on specific
textual queries [51]. This limits retrieval performance when nuanced differences are critical.

To address the shortcomings of global feature representations, re-ranking methods have been proposed,
which involve a secondary, more expensive analysis of the top retrieval candidates. Techniques such
as two-stage retrieval pipelines [29] and re-ranking transformers [38] aim to refine initial retrieval
results. However, these approaches often entail substantial computational overhead, making them
impractical for real-time applications or large-scale deployments.

In this work, we propose a novel approach that integrates query-specific embedding projections into
the retrieval process. By dynamically adjusting the embedding space based on the input, our method
prioritizes the most relevant fine-grained semantic alignments between text and image features for
each specific query. Figure 1 contrasts our query-specific retrieval approach with non-specific retrieval
using a foundational vision-language model like CLIP [30] and domain-specific retrieval that has
been adapted for a given dataset or task. Our framework, Query Adaptive Retrieval Improvement
(QuARI), enhances retrieval accuracy without incurring the high computational costs associated with
traditional re-ranking methods. Our specific contributions are as follows:
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Figure 1: We propose a new query-specific approach to retrieval, QuARI. QuARI dynamically
adapts embeddings per-query to significantly improve retrieval performance compared to non-specific
retrieval with general-purpose embedding features like CLIP, and domain-specific retrieval with
transformations learned for a specific domain, with little computational overhead. Figure 2 shows the
details of the Query Adaptation Network.

• We identify and articulate the limitations of contrastively pretrained models in capturing
fine-grained details necessary for accurate retrieval, and analyze the inefficiencies of existing
re-ranking methods and their impact on retrieval performance.

• We introduce QuARI, an embedding projection framework that adapts global representations
to individual queries, improving accuracy while maintaining computational efficiency.

• We demonstrate that QuARI yields large improvements in retrieval accuracy on multiple
extremely challenging retrieval tasks.

2 Related Work

Text-Image Pretraining and Global Embeddings. Foundation models based on language-image
pretraining, such as CLIP [30] and the SigLIP family of models [41, 50], have achieved remarkable
success in aligning visual and textual modalities. These models learn global representations by
maximizing the similarity between paired image-text inputs. However, the reliance on global
features can be detrimental in retrieval tasks that require fine-grained discrimination. Methods
like RegionCLIP [51] attempt to address this by incorporating region-level features, but challenges
remain in capturing nuanced details essential for accurate retrieval. FILIP introduces token-wise
late interaction to capture patch–word similarities [47], while SPARC sparsifies such interactions for
efficiency in large-scale pre-training [5]. Region-centric pre-training further bridges image-level and
region-level semantics for open-vocabulary detection [15].

These methods highlight a growing recognition of the limitations of global embeddings and attempt
to address them through increasingly sophisticated alignment mechanisms. However, they still largely
rely on a single static representation per image. In contrast, our method is dynamic, modifying the
representation space per query to prioritize the learned aspects that are relevant for the query while
de-emphasizing irrelevant aspects.

Efficient Late-Interaction and Re-ranking Paradigms. Late-interaction retrievers (e.g., Col-
BERT [14]) decouple encoder computation from expensive cross-attentions, enabling scalable yet
fine-grained passage search. In vision, there have been a variety of approaches to re-ranking, includ-
ing local feature based geometric re-ranking approaches [28, 33, 34, 37], and the recent Re-ranking
Transformers [38], which refines top-k candidates with lightweight self-attention.
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Methods like two-stage retrieval pipelines [29] and re-ranking transformers [38] refine initial retrieval
results by re-evaluating top candidates with more sophisticated models. While effective, these
approaches introduce significant computational overhead, making them unsuitable for real-time
applications or large-scale systems. Our approach instead shifts the complexity into a lightweight
projection computed once per query. The approach is computationally lightweight enough that it can
be used to re-rank very large numbers of candidates, or even entire datasets.

Hypernetworks. Hypernetworks, or networks that predict the weights of other networks, were first
introduced by Ha et al. to generate recurrent neural network parameters on the fly [12]. Recent ad-
vancements have explored the use of hypernetworks for personalization in generative and task-specific
models. HyperDreamBooth [32] introduces a hypernetwork that generates customized weights for
text-to-image diffusion models, enabling the synthesis of subject-specific images with minimal data.
HyperCLIP [1] employs a hypernetwork to generate the weights of a task-specific image encoder.
These approaches demonstrate the potential of hypernetworks in capturing customized semantics
efficiently. However, reliance on task-level customization of entire encoders, as in HyperCLIP, yields
only modest performance gains on challenging retrieval tasks. Generating complete sets of encoder
weights is both computationally expensive and difficult to optimize. In contrast, we show that using
hypernetworks to adapt off-the-shelf features with lightweight, query-specific transformations can
achieve strong performance without significant computational overhead.

Transformers as Hypernetworks. The concept of using transformers as hypernetworks has been
explored in various domains. For example, Transformers as Meta-Learners [7] leverage transformers
to predict the weights of implicit neural representations, showcasing their capability in dynamic
weight generation. We draw inspiration from these works, employing a transformer to predict query-
specific projection matrices. In the following section, we discuss how we tailor this idea to the
retrieval setting.

3 Methodology

Our approach introduces a transformer-based hypernetwork for customized text-to-image retrieval.
Unlike traditional methods relying on static embeddings, QuARI predicts customized linear projec-
tions conditioned on each query embedding to adapt database features for each query.

3.1 Hypernetwork-Augmented Retrieval

We begin by extracting global embeddings for queries and candidate images using a pretrained
vision-language model, such as CLIP [30] or SigLIP [50]. Formally, for a query q and a set of
“gallery” images G = {In|n = 1, 2, ..., N}, we obtain embeddings for a query qi = Enc(qi) and a
database of gallery embeddings D = {d1,d2, ...,dN} = {Enc(I1),Enc(I2), ...Enc(IN )}. We learn
a hypernetwork Hθ as follows:

(q′
i, Ti) = Hθ(qi), (1)

Which outputs a transformed query representation q′
i and a transformation function Ti. Retrieval is

then performed by transforming the database:

D′
i = {d′

1,d
′
2, ...,d

′
N} (2)

= {T (d1), T (d2), ..., T (dN )} (3)

The transformed database of embeddings D′
i may then be used to perform retrieval by selecting

database indices maximizing some embedding similarity between the query sim(q′,d′
i).

3.2 Hypernetwork Architecture

Our query adaptation network, shown in Figure 2, is a hypernetwork which we will denote as Hθ. It
is a transformer-based module that conditions on the query embedding q ∈ RE and predicts both
a customized query embedding q′ ∈ RE and a transformation matrix T ∈ RE×E to adapt image
embeddings of dimension E. To constrain computation and promote generalization, we parameterize
T as a low-rank matrix of rank r = 64.
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Figure 2: An overview of our query adaptation network. A zero initialization of the transformation
matrix is tokenized by columns and passed to a transformer backbone with a conditioning token to
obtain refined columns. This process is repeated L times, refining the transformation.

Tokenization of the Projection Matrix. We define the transformation matrix T via a learned
low-rank decomposition:

T =

r∑
j=1

ujv
⊤
j , (4)

where each pair (uj ,vj) ∈ RE × RE represents a learned rank-one component of the projection
matrix. These pairs are generated from a shared set of column-wise tokens, which are iteratively
refined via a transformer encoder. Intuitively, each token pair (uj ,vj) defines a single direction in
the transformed feature space, contributing one semantic feature to the customized representation.

Initialization and Conditioning. We initialize a bank of 2r tokens per sample in the batch: r
U-tokens for projecting into the output space and r V-tokens for selecting features from the input
space. The initial token representations are zero-initialized and refined over L denoising steps. To
condition the generation process on the query embedding, we first encode q using a two-layer MLP
and add a learned timestep embedding to capture iterative update dynamics.

Iterative Refinement with Transformers. At each step t ∈ {1, ..., L}, we concatenate the query-
conditioned control token with the current U/V token sequence and apply a shared transformer
encoder. We also apply sinusoidal positional encodings [42] to the token sequence. The output of the
transformer updates the tokens via residual addition:

u
(t+1)
j = u

(t)
j +∆u

(t)
j , (5)

v
(t+1)
j = v

(t)
j +∆v

(t)
j . (6)

Decoding to Projection Matrices. Once the tokens are fully refined, we decode each U-token and
V-token using separate MLP decoders to produce vectors in RE . The final transformation matrix is
then constructed as:

T =

r∑
j=1

MLPu(uj) ·MLPv(vj)
⊤. (7)

The customized query representation q′ is decoded from the control token by another MLP.

3.3 Training

We train the model using a symmetric contrastive loss over the transformed query and image
embeddings. Given a minibatch of B text-image embeddings {(qi,di)}Bi=1, we first add noise to
every query embedding to help bridge the text-image modality gap. We borrow this formulation from
LinCIR [11]. This acts as a regularizer that also allows high performance with image queries, training
only on text-image datasets.

qi ← qi + U [0, 1]×N [0, 1] (8)

Then, we compute the customized query text embedding q′
i and the personalization matrix Ti using

the hypernetwork Hθ.
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Semi-Positive Sample Mining. In the standard contrastive formulation, there is only one positive
sample for each negative sample. This leads the learned transformations to overfit to the query. This
results in samples that are completely different from the target and samples which share some, but
not all, attributes with the target having near-equivalent similarities to the transformed query.

In order to address this, we also compute a set of “semi-positive” samples Pi for each target image.
For every target image we compute a set of 100 nearest-neighbors using precomputed backbone
embeddings and select the top 2 as “semi-positives.” We apply a softmax over the distribution of
these 100 cosine similarities and use their logits as target similarity values.

To train QuARI, we optimize a symmetric contrastive objective, as is standard for retrieval with
semi-positive samples:

pi,j =
exp(Si,j)

B∑
k=1

exp(Si,k)

, qj,i =
exp(Sj,i)

B∑
k=1

exp(Sk,i)

, Si,j =
q′

i · di
j

τ
, (9)

L =
1

2B

B∑
i=1

− B∑
j=1

αi,j log pi,j −
B∑

j=1

αj,i log qj,i

 , αi,j =


1 if j = i (positive),

wi,j if j ∈ Pi (semi-positive),

0 otherwise,
(10)

Where dj
i is the i-th target image embedding transformed by the j-th personalization transformation

Tj , and τ is a temperature parameter. We only consider similarities where the embedding similarity
of a transformed query q′

i is only computed with target image embeddings transformed by Ti.

The incorporation of semi-positive samples discourages the behavior of overfitting to training query-
target pairs, and encourages lower ranked images that seem visually similar to the target to be returned
with higher similarity than images that lack visual similarity.

Implementation Details We use the AdamW optimizer [23] with a cosine annealed learning rate
cycling between 1e-5 and 2e-7 and a weight decay of 1e-2. Experiments were conducted on an
NVIDIA H100 with 80GB of VRAM. At inference, retrieval is performed by computing cosine
similarity scores between the L2-normalized adapted embeddings of a query and database images.

4 Evaluation

Evaluation Datasets. We focus our evaluation on two challenging benchmarks: ILIAS and
INQUIRE. ILIAS (Instance-Level Image retrieval At Scale) is a large-scale dataset designed to assess
instance-level image retrieval capabilities [16]. It has 1,000 object instances, each represented by
query and positive images, totaling 5,947 manually collected images. To evaluate retrieval perfor-
mance under large-scale settings, ILIAS includes 100 million distractor images from YFCC100M [40].
It also includes a retrieval task over a curated set of 5M distractor images, and an image-to-image
retrieval re-ranking task.

INQUIRE [43] is a text-to-image retrieval benchmark tailored for expert-level ecological queries. It
is built on the iNaturalist 2024 dataset, containing five million natural world images across 10,000
species. The benchmark features 250 expert-crafted queries spanning categories such as species
identification, context, behavior, and appearance. INQUIRE evaluates two retrieval tasks: INQUIRE-
Fullrank, requiring models to perform retrieval over the entire dataset, and INQUIRE-Rerank,
focusing on refining initial retrieval results.

We also provide results on popular text-to-image and image-to-image retrieval benchmarks
COCO [19], Flickr30k [48], FORB [44], and TextCaps [35].

Training Datasets. Our framework can be trained on any paired text-image dataset. We utilize Mi-
crosoft Common Objects in Context (MS COCO) [19], Conceptual Captions 12M, and synthetically
augmented BioTrove [46] to train QuARI. MS COCO includes over 330,000 images annotated with
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model backbone resolution I2I @ 100M T2I @ 5M T2I @ 100M

OAI CLIP ViT-B 224 4.2 2.7 1.6
OAI CLIP + QuARI ViT-B 224 8.4 (+4.2) 11.5 (+8.8) 9.2 (+7.6)

SigLIP ViT-B 512 16.6 14.6 11.1
SigLIP + QuARI ViT-B 512 24.6 (+8.0) 28.9 (+14.3) 25.6 (+14.5)

SigLIP2 ViT-B 512 15.4 14.6 10.4
SigLIP2 + QuARI ViT-B 512 25.6 (+10.2) 30.7 (+16.1) 27.2 (+16.8)

OpenCLIP ViT-L 384 9.4 9.4 7.0
OpenCLIP + QuARI ViT-L 384 15.6 (+6.2) 20.9 (+11.5) 18.7 (+11.7)

OAI CLIP ViT-L 336 9.4 8.4 5.8
OAI CLIP + QuARI ViT-L 336 15.9 (+6.5) 20.6 (+12.2) 18.9 (+13.1)

SigLIP ViT-L 384 19.6 22.2 18.1
SigLIP + QuARI ViT-L 384 30.9 (+11.3) 36.5 (+14.3) 34.2 (+16.1)

SigLIP2 ViT-L 512 20.8 24.7 19.8
SigLIP2 + QuARI ViT-L 512 36.2 (+15.4) 41.2 (+16.5) 38.7 (+18.9)

(a) Comparison to baselines.

model I2I @ 100M

OAI CLIP + TA 7.9
OAI CLIP + QuARI 21.0 (+13.1)

SigLIP + TA 23.0
SigLIP + QuARI 42.3 (+19.3)

SigLIP2 + TA 23.5
SigLIP2 + QuARI 43.4 (+19.9)

OpenCLIP + TA 13.7
OpenCLIP + QuARI 28.4 (+14.7)

OAI CLIP + TA 15.2
OAI CLIP + QuARI 31.1 (+15.9)

SigLIP + TA 28.9
SigLIP + QuARI 45.8 (+16.9)

SigLIP2 + TA 31.3
SigLIP2 + QuARI 50.4 (+19.1)

(b) Comparison to static task
adaptation (TA).

Table 1: We show mAP@1k for image-to-image (I2I) and text-to-image (T2I) retrieval on ILIAS.

model COCO T2I R@1 Flickr30k T2I R@1 FORB mAP@5 FORB t-mAP@5 TextCaps T2I R@1

SigLIP2 55.2 85.3 93.74 69.24 44.6

FT SigLIP2 55.0 85.5 92.89 70.03 45.2

SigLIP2+QuARI 77.4 92.9 95.67 78.53 55.8

Table 2: Comparison on other benchmarks with SigLIP2 ViT-L @ 512.

five human-written captions per image. Conceptual Captions 12M [6] is a collection of approximately
12 million image-text pairs harvested from the web. BioTrove [46] contains 161.9 million images
across approximately 366,600 species, each annotated with taxonomic data. We extract a random
subset of 5M samples from BioTrove for training. Since the BioTrove dataset only includes taxonomic
and common-name level annotations, we use Qwen2.5-VL-7B-Instruct to caption a 500K subset
of BioTrove, providing natural-language captions that include visual information beyond species
identity (the prompt for constructing these captions is in the supplemental materials).

Metrics. On ILIAS, we measure mean Average Precision @1k (mAP@1k) across both the full
100M distractor set (@100M) and the 5M mini distractor set (@5M). On INQUIRE, we measure mean
Average Precision @50 (mAP@50), Normalized Discounted Cumulative Gain @50 (nDCG@50),
and Mean Recall Rank (MRR).

Baseline Models. We use popular contrastively pretrained backbone models CLIP [30], SigLIP [50],
OpenCLIP [13], and SigLIP2 [41] as backbone feature encoders. We replicate the baselines published
with ILIAS for image-to-image re-ranking built on local feature descriptors from DINOv2 [27]. These
include query expansion-based methods like αQE [8], local feature and geometric-based matching-
based methods like Chamfer Similarity (CS) and Spatial Verification (SP) [45], and transformer-based
methods like AMES [37]. αQE-k refers to query expansion with k nearest-neighbors. We also
replicate baselines from INQUIRE using vision-language models (VLMs) as re-rankers, including
open-source VLMs LLaVA [20–22], VILA [18], PaliGemma [4], InstructBLIP [9], and BLIP2 [17].

5 Results

5.1 Embedding-based Retrieval

ILIAS. In Table 1a, we report the retrieval performance using mAP@1k on the image-to-image and
text-to-image tasks on ILIAS. For each baseline row, there is a corresponding row building QuARI
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model backbone resolution mAP@50 nDCG@50 MRR

OAI CLIP ViT-B 224 10.4 20.9 0.40
OAI CLIP + QuARI ViT-B 224 15.7 (+5.3) 25.4 (+4.5) 0.44 (+0.04)

OAI CLIP ViT-L 336 23.4 37.7 0.59
OAI CLIP + QuARI ViT-L 336 32.5 (+9.1) 43.6 (+5.9) 0.64 (+0.05)

SigLIP ViT-L 384 31.1 46.6 0.68
SigLIP + QuARI ViT-L 384 41.3 (+10.2) 54.7 (+8.1) 0.72 (+0.04)

SigLIP SoViT-400m 384 34.2 49.1 0.69
SigLIP + QuARI SoViT-400m 384 45.4 (+11.2) 56.8 (+7.7) 0.74 (+0.05)

Table 3: Comparison of QuARI and baselines on INQUIRE

Re-ranking Method mAP@1k

Initial Ranking 19.6

αQE1 22.1
αQE2 20.4
αQE5 14.3

CS (Chamfer Similarity) 22.9
SP (Spatial Verification) 21.8
AMES 26.4

QuARI 29.1

(a) ILIAS Top-1k Re-ranking

Re-ranking Method mAP@50 nDCG@50 MRR

Initial ranking 33.3 48.8 0.69
Best possible re-rank 65.6 72.7 0.96

Open-source VLMs

BLIP-2 FLAN-T5-XXL 31.2 46.5 0.58
InstructBLIP-T5-XXL 33.0 48.3 0.64
PaliGemma-3B-mix-448 35.6 50.6 0.68
LLaVA-1.5-13B 32.2 47.9 0.64
LLaVA-v1.6-7B 32.3 47.9 0.62
LLaVA-v1.6-34B 35.7 51.2 0.69
VILA-13B 35.7 50.8 0.65
VILA-40B 40.2 54.6 0.72

Closed Source VLMs

GPT-4V 36.5 51.9 0.72
GPT-4o 43.7 57.9 0.78

SigLIP2 + QuARI 45.7 55.2 0.76

(b) INQUIRE Top-100 Re-ranking

Table 4: Comparison of Re-ranking Methods on ILIAS and INQUIRE

on the same frozen baseline as a backbone feature encoder. Across all backbones, QuARI provides a
strong performance boost from off-the-shelf encoders commonly used for retrieval.

Insufficiency of Static Task Adaptation. A common method to improve the performance of
large pretrained encoders is to adapt their features with a simple projection operation learned using a
dataset that is relevant to the specific task [24, 31]. While this allows models to be adapted for that
general task, we show that learning a task adaptation performs significantly worse than QuARI’s
query-specific adaptations. The authors of ILIAS show that a task adaptation trained on a sample of
1M images from the Universal Embeddings dataset [49] improves image-to-image instance retrieval
in ILIAS 100M by between 3.7 and 10.5 mAP@1k. In Table 1b, we compare this task adaptation
approach (TA) with a version of QuARI that was also trained on a 1M image sample of the Universal
Embeddings dataset. QuARI shows significant improvements, between 13.1 and 19.7 mAP@1k, on
top of task adaptation improvements.

INQUIRE. Table 3 shows retrieval performance across baseline model and backbone encoder
sizes, along with corresponding QuARI models built upon their frozen features. In all cases, QuARI
provides a significant performance improvement over general-purpose global features.

Other benchmarks. Table 2 provides results on other popular text-to-image and image-to-image
retrieval benchmarks. QuARI demonstrates strong performance improvements over both the off-the-
shelf and fine-tuned SigLIP2 backbone model.
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ILIAS INQUIRE
method I2I @ 100M T2I @ 5M mAP@50 nDCG@50

SigLIP2 20.8 24.7 37.2 52.3
Fine-tuned SigLIP2 21.1 25.1 38.9 53.1

QuARI w/o Iterative Generation 28.5 32.1 43.8 54.0
QuARI w/o Semi-Positives 30.3 35.6 45.9 53.8
QuARI w/o Noise 20.0 32.4 44.1 56.7
QuARI (query transformation only) 23.2 26.8 40.1 54.9
QuARI (database transformation only) 33.4 38.2 48.4 57.4
QuARI (query & database transformations) 36.2 41.2 50.9 58.4

Table 5: Algorithmic ablation studies on QuARI.

5.2 Re-ranking

In Table 4, we compare QuARI to other approaches for image-to-image re-ranking. We replicate
the baselines used by ILIAS [16], and pre-compute 100 local feature descriptors from DINOv2 [27]
for each gallery image, and 600 local feature descriptors for each query image. We evaluate these
methods on the image-to-image re-ranking task over a set of top-1000 initial retrievals.

We demonstrate higher performance than baseline methods, most of which require computing and
storing many local feature descriptors per query, while we only use global features that would
typically already be stored in a database index.

We also evaluate QuARI on text-to-image re-ranking in INQUIRE against large VLMs. Table 4b
shows that QuARI outperforms all open-source VLMs on text-to-image re-ranking on this task while
using precomputed global features and much lower computational overhead (explored further in
Section 5.5). QuARI is also competitive with closed-source VLMs GPT-4V and GPT-4o [25, 26].

5.3 Ablation Studies

We present ablations on both algorithmic design choices and hyperparameter selection.

5.3.1 Algorithmic Ablations

We use the SigLIP2 backbone as the frozen feature extractor and evaluate both image-to-image and
text-to-image tasks on ILIAS and INQUIRE. First, we compare the performance of the pretrained
SigLIP2 model with models that are fine-tuned on the same datasets on which we train QuARI. This
shows that fine-tuning alone, even on data from relevant domains, only provides a small improvement.
We also present ablations demonstrating that it is not sufficient to learn a model learning only query
transformations, and that it is relatively much more important to learn query-specific transformations
of the database embeddings.

We then consider the performance of QuARI when we remove different components of the algorithm.
First, we remove the iterative generation process and use a one-step generation process instead,
resulting in a 6.8 decrease in mAP@1k on image-to-image retrieval @ 100M, and an 8.5 decrease in
mAP@1k in text-to-image retrieval @ 5M on ILIAS, and a 6.9 decrease in mAP@50 on INQUIRE.
Next, we remove the consideration of semi-positive samples used during training. This results in
a degradation of 5.0 mAP@1k on both retrieval tasks on ILIAS and 4.8 mAP@50 on INQUIRE.
Finally, we consider the case where noise is not added to the query representation during training
to bridge the modality gap. This has the most significant impact on performance, with a drop of
15.3 image-to-image mAP@1k on ILIAS 100M, 8.2 text-to-image mAP@1k on ILIAS 5M, and 6.6
mAP@50 on INQUIRE. Notably, on the image-to-image task, QuARI without adding noise to the
query representation during training does worse than the baseline SigLIP2 model, indicating that with
only text-image data, this method could be prone to over-fitting without the additional regularization.
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rank I2I @ 100M T2I @ 5M

16 23.5 40.6
32 30.2 32.8
64 35.3 40.6
128* 33.6 38.9
256* 29.4 32.6

(a)

semi-positives I2I @ 100M T2I @ 5M

0 30.3 35.6
1 33.1 37.2
2 35.3 40.6
3* 35.1 39.8

(b)

Table 6: Hyperparameter ablation studies on the rank of the QuARI projection (left) and the number
of semi-positive examples considered during training (right). For some experiments, changed
hyperparameters necessitated a decrease in batch size—we note those cases with an asterisk. We
report all results using a SigLIP2 ViT-L backbone.

5.3.2 Hyperparameter Ablations

Table 6 provides ablation studies on the key parameters r, the rank of the learned transformation, and
the number of semi-positive samples used during training. We show that both a increasing rank and
increasing the number of semi-positive samples is beneficial until the batch size has to be reduced to
train on a single NVIDIA H100 GPU.

5.4 Embedding Visualizations

In Figure 3, we explore feature transformations for two queries—an image query from ILIAS and a
text query from INQUIRE. To visualize the original embedding space, the middle panel of each row
shows the SigLIP2 embeddings for a collection composed of the two queries, their corresponding
ground-truth images, and 5,000 distractor images (2,500 sampled at random from each of the ILIAS
and INQUIRE datasets). In each row, the query embedding is highlighted in blue and the ground-truth
responses in red. The right panel shows the t-SNE embedding of the same set after query-specific
adaptation; here, the ground-truth responses are mapped much closer to their query embedding.

5.5 Computational Efficiency

One of the primary strengths of QuARI is that it adapts features from a precomputed database of
off-the-shelf features. Figure 4 shows the time to run a fixed-size query versus the performance
of the method. QuARI not only achieves state-of-the-art performance, but is also very lightweight.
On the ILIAS image-to-image re-ranking task, QuARI achieves around 3% improvement over the
highest accuracy re-ranking approach in over two orders of magnitude less time, and over 6% better
than approaches that have similar speeds without the use of auxiliary local feature descriptors. On
the INQUIRE text-to-image re-ranking task, QuARI is almost 10% better than the best-performing
vision-language model, and is orders of magnitude faster.

6 Limitations

An inherent limitation of our method is that it applies a linear transformation to the retrieved results.
While this design choice enables fast inference, it restricts the expressiveness of the adaptation. If
the original representation space lacks relevant features for the retrieval, a linear transformation
of it will be insufficient to improve results. Additionally, like most re-ranking approaches, our
method is constrained by the set of top-k results initially retrieved: it cannot recover relevant items
that are excluded from this initial set. However, because QuARI is extremely efficient, this top-k
restriction is not as limiting in practice: we can afford to deploy QuARI over a very large initial
set. Exploring non-linear transformation strategies to overcome representational limitations while
maintaining computational tractability is a promising avenue for future research.

7 Conclusions

In this work, we introduced a query-specific retrieval framework, QuARI, that significantly outper-
forms strong baselines, including large vision-language models and models with learned domain-

9



Query Original SigLIP2 Features QuARI Adapted Features

“moray eel with open mouth
poking head out of burrows

or crevices”

Figure 3: t-SNE visualizations comparing original features and QuARI features.
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Figure 4: Comparison of re-ranking performance and inference cost for image-to-image retrieval on
the ILIAS dataset (left) and text-to-image retrieval on the INQUIRE dataset (right).

specific adaptations, on challenging retrieval benchmarks. By learning to predict transformations
tailored to each query, our method significantly improves image-to-image and text-to-image retrieval
performance without incurring substantial computational overhead. Unlike traditional re-ranking
pipelines that rely on expensive local descriptors or multi-stage processing, our approach operates
directly on global embeddings and scales efficiently for searching large databases of images. Our
results demonstrate that retrieval performance can be meaningfully improved not by making the
underlying encoders larger or more specialized, but by learning lightweight, query-conditioned
adaptations of their features.
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André Araujo. Towards universal image embeddings: A large-scale dataset and challenge for
generic image representations. In Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), pages 11290–11301, 2023.

[50] Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for
language image pre-training. In Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), pages 11975–11986, October 2023.

[51] Yiwu Zhong, Jianwei Yang, Pengchuan Zhang, Chunyuan Li, Noel Codella, Liunian Harold
Li, Luowei Zhou, Xiyang Dai, Lu Yuan, Yin Li, and Jianfeng Gao. Regionclip: Region-based
language-image pretraining. In Advances in Neural Information Processing Systems (NeurIPS),
2021.

14



NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction accurately reflect the main contributions of
the paper: the introduction of QuARI, a query-specific hypernetwork for retrieval; its
lightweight computational design; and its strong empirical performance on large-scale
datasets like ILIAS and INQUIRE. These contributions are all supported by experimental
results presented in Sections 4 and 5.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Section 6 (“Limitations”) explicitly discusses the primary limitations of the
method, including the reliance on linear transformations which can restrict expressive power
and the dependence on an initial shortlist from the base retriever. These reflections are
honest and appropriately scoped given the claims made.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: This paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper includes comprehensive implementation details in Section 3.3
(“Training”), including model architecture, loss functions, optimization parameters, datasets
used, and evaluation metrics. Additional configuration information such as token initial-
ization, noise injection, and ablation variants are described in detail. Additionally, code to
reproduce all experimental results will be released with the camera ready submission.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: All code and datasets will be released upon acceptance of this paper, but is not
included with this submission.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes] .
Justification: Section 3.3 and Section 4 provide details about training and evaluation setups,
including hyperparameters (optimizer, learning rate, weight decay), backbone models used,
dataset splits, and evaluation metrics.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Experiments conducted are too computationally expensive to run multiple
trials. Following conventions for large-scale datasets, we report experimental results based
on a single trial.
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Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have provided the most important details in the main paper, with a more
detailed section on hyperparameters in the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conforms to the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
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Answer: [Yes]
Justification: We include a section on Broader Impacts in the Supplemental Materials.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The models and datasets used in this work are not high-risk for misuse and
involve no sensitive or restricted assets. Therefore, no special safeguards were necessary or
implemented.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All datasets and models used (e.g., MS COCO, Conceptual Captions, BioTrove,
CLIP, SigLIP) are credited and cited with references in the bibliography. Their licenses (e.g.,
open access or research use) are respected.
Guidelines:
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• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We primarily leverage existing assets (datasets and models) that are publicly
available. The methods for generating the synthetic BioTrove data are included in the
Supplemental Materials. We will release trained model weights upon acceptance.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing or human subject studies.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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Answer: [NA]
Justification: This paper does not involve any crowdsourcing or human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs were only used for minor editing purposes and were not involved in the
core methodology or formulating ideas.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Implementation Details

QuARI’s transformer backbone is randomly initialized with 4-8 transformer layers depending on
the size of the backbone encoder. The query encoder and both the query and column decoders are
two-layer MLPs with GeLU activation functions and layer normalization [1]. We train with a batch
size of 320 and a contrastive temperature of 0.07. All backbone model embeddings are precomputed
before training.

B Data Generation Prompt

For all datasets other than BioTrove [6], we use the provided natural language annotations as the
text label. However, BioTrove does not provide natural language annotations outside of taxonomic
and common-name identities. Therefore, we provide the species annotation along with the image to
Qwen2.5-VL-7B-Instruct [5] with the following instruction:

“For the image shown, write one plain, human-sounding sentence that someone might type into an
image search system to find this exact picture of a {species_name}. Mention the main objects, their
key attributes, and any distinctive action or setting. Keep it brief and objective, avoiding flowery
descriptors unless they are essential to identify the scene. Output only this sentence."

We collect these annotations on 500K images sampled from BioTrove to augment our training dataset
with natural language descriptions of biodiversity-domain imagery.

C Broader Impacts

Improving retrieval systems to be both more accurate and more computationally efficient has broad
positive implications, especially in domains where real-time or large-scale search is critical – such as
recognizing where victims of human trafficking are photographed [4], monitoring biodiversity using
camera trap images in ecological surveys [2], or identifying the spread of disinformation through
manipulated visual media [3]. QuARI enables high-quality retrieval even with limited resources,
making advanced search capabilities more accessible in a wider range of applications. We do not
foresee unique negative societal impacts associated with QuARI beyond those that already exist with
general-purpose image retrieval systems. Nevertheless, the broader implications of visual search
technologies—including potential misuse in surveillance or disinformation—remain important areas
for ongoing community oversight and ethical consideration.
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