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Abstract

We consider the problem of optimizing the discriminator in generative adversarial networks
(GANs) subject to higher-order gradient regularization. We show analytically, via the
least-squares (LSGAN) and Wasserstein (WGAN) GAN variants, that the discriminator
optimization problem is one of high-dimensional interpolation. The optimal discriminator,
derived using variational calculus, turns out to be the solution to a partial differential
equation involving the iterated Laplacian or the polyharmonic operator. The solution is
implementable in closed-form via polyharmonic radial basis function (RBF) interpolation. In
view of the polyharmonic connection, we refer to the corresponding GANs as Poly-LSGAN
and Poly-WGAN. As a proof of concept, the analysis is supported by experimental validation
on multivariate Gaussians. While the closed-form RBF does not scale favorably with the
dimensionality of data for image-space generation, we employ the Poly-WGAN discriminator
to transform the latent space distribution of the data to match a Gaussian in a Wasserstein
autoencoder (WAE). The closed-form discriminator, motivated by the polyharmonic RBF,
results in up to 20% improvement in terms of Fréchet and kernel inception distances over
comparable baselines that employ trainable or kernel-based discriminators. The experiments
are carried out on standard image datasets such as MNIST, CIFAR-10, CelebA, and LSUN-
Churches. The training time in Poly-WGAN is comparable to those of kernel-based methods,
while being about two orders faster than GANs with a trainable discriminator.

1 Introduction

Generative adversarial networks (GANs) (Goodfellow et all |[2014) constitute a two players game between a
generator G and a discriminator D. The generator G accepts high-dimensional Gaussian noise as input and
learns a transformation (by means of a network), whose output follows the distribution p,. The generator is
tasked with learning pg4, the distribution of the target dataset. The discriminator learns a classifier between the
samples of pq and p,. The optimization in the standard GAN (SGAN) formulation of Goodfellow et al.|(2014),
and subsequent variants such as the least-squares GAN (LSGAN) (Mao et al. 2017)) or the f-GAN (Nowozin
et al., [2016) corresponds to learning a discriminator that mimics a chosen divergence metric between pg and
Pg (such as the Jensen-Shannon divergence in SGAN) and a generator that minimizes the divergence.

Integral Probability Metrics, Gradient Penalties and GANs: The divergence metric approaches fail if
paq and py are of disjoint support (Arjovsky & Bottou, [2017)), which shifted focus to integral probability metrics
(IPMs), where a critic function is chosen to approximate a chosen IPM between the distributions (Arjovsky
et al.l 2017, Mroueh & Sercu, 2017; [Bunne et al., 2019). Choosing the distance metric is equivalent to
constraining the class of functions from which the critic is drawn. The most popular variant, inspired by
optimal transport, is the Wasserstein GAN (WGAN) (Arjovsky et all [2017)), in which the objective is to
minimize the Wasserstein-1 or earth mover’s distance between pq and pg, and the critic is constrained to be
Lipschitz-1. |Gulrajani et al.| (2017)) enforced a first-order gradient penalty on the discriminator network to
approximate the Lipschitz constraint. Roth et al.| (2017));|Kodali et al.| (2017)); |Fedus et al.[ (2018]) and |Mescheder
et al.| (2018) showed the empirical success of the first-order gradient penalty on other GAN variants, such as
the SGAN or LSGAN, while [Bellemare et al.| (2017)); [Mroueh et al.| (2018) and |Adler & Lunz| (2018) consider
bounding the energy in the critic’s gradients correspond to Sobolev constraint spaces.
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Kernel-based GANSs:|Gretton et al.| (2012) showed that the minimization of IPM losses linked to reproducing-
kernel Hilbert space (RHKS) can be replaced equivalently with the minimization of kernel-based statistics.
Based on this connection, introduced generative moment matching networks (GMMNs) that
minimize the the maximum-mean discrepancy (MMD) between the target and generator distributions using
the RBF Gaussian (RBFG) and inverse multiquadric (IMQ) kernels. extended the GMMN
formulation to MMD-GANSs, wherein a network leans lower-dimensional embedding of the data, over which
the MMD is computed. Bintkowski et al.| (2018) and |Arbel et al.| (2018]) have also incorporated gradient-based
regularizers in MMD-GANs, while [Wang et al.| (2019) enforce a repulsive loss formulation to stabilize training.
Closed-form approaches such as GMMNs benefit from stable convergence of the generator, brought about by
the lack of adversarial training. A series of works by [Li et al.| (2017b)); Zhang et al.| (2018); Daskalakis et al.|
and have shown that employing the optimal discriminator in each step improves
and stabilizes the generator training, while Pinetz et al.| (2018); Korotin et al.| (2022) showed that in most
practical settings, the networks in GAN do not accurately learn the desired divergences or IPMs.

1.1 Our Motivation

In this paper, we strengthen the understanding of the optimal GAN discriminator by drawing connections
between IPM- and divergence-based GANs, kernel-based discriminators, and high-dimensional interpolation.
As shown by |Arjovsky & Bottou (2017)), divergence minimizing GANs suffer from vanishing gradients when
pa and p, are non-overlapping. The GAN discriminator can be viewed as a two-class classifier, which learns a
decision boundary between the reals and the fakes. However, as the generator optimization progresses, the
generated samples and target samples get interspersed, causing multiple transitions in the discriminator. This
severely impacts training due to lack of smooth gradients (Arjovsky et al.l [2017). As observed by
(2020)), gradient-based regularizers enforced on the discriminator provide a trade-off between the accuracy in
classification and smoothness of the learnt discriminator.

The WGAN discriminator can be seen as assigning a positive value to the reals and a negative value to
the fakes. Given an unseen sample x, the output of a smooth discriminator should ideally depend on the
values assigned to the points in the neighborhood of «, which is precisely what kernel based interpolation
achieves. Recently, [Franceschi et al| (2022)) and |[Zhang et al| (2022) have shown that neural networks
can be interpreted as high-dimensional interpolators involving neural tangent kernels. In general, gradient-
norm regularizers result in smooth interpolators, thereby giving rise to the well-known family of thin-plate
splines in 2-D (Harder & Desmarais, [1972; [Meinguet), [1979} [Bookstein|, [1989; [Wahba, (1990} [Bogacz et al.)
. A natural extension to these interpolators, in a high-dimensional setting, comes in the form of
higher-order gradient regularization [1977)). It is known that the optimization of the interpolant
with its higher-order derivatives bounded in Ly norm has a unique solution , which has led
to successful application of higher-order gradient regularization in image processing tasks such as image
interpolation (Tirosh et al., [2006) and super-resolution (Ren et al., [2013). What are the implications
of reformulating the gradient-regularized GAN optimization problem as one of solving a high-
dimensional interpolation? What insights does it give about the optimal GAN discriminator?
— These are the questions that we seek to answer in this paper. While the first-order penalty has been
extensively explored in GAN optimization, higher-order penalties and their effect on the learnt discriminator
have not been rigorously analyzed. We establish the connection between higher-order gradient regularization
of the discriminator and interpolation in LSGAN and WGAN. The most closely related work is that of
, where the Sobolev GAN cost evaluated in the Fourier domain is used to train a discriminator.

1.2 The Proposed Approach

This current work extends significantly upon the results developed as part of the non-archival workshop
preprint [Anonymous| (2022)), wherein we considered the optimization of the least-squares GAN (LSGAN)
discriminator cost, subject to Le-norm regularization on the mt"-order gradients, from a variational calculus
standpoint (Section . Our analysis shows that the optimal LSGAN discriminator in the proposed framework
involves a polyharmonic radial basis function (RBF) kernel-based interpolator. The proposed approach,
referred to as Poly-LSGAN, can be implemented via an RBF network for the optimal discriminator whose
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Figure 1: A comparison of generative model architectures. (a) WGAN (Arjovsky et al., 2017) trains
discriminator and generator networks with the Wasserstein loss; (b) A generative moment matching network
(GMMN) (Li et al., trains the generator with the closed-form maximum-mean discrepancy loss computed
on a batch of samples; and (c) The proposed Poly-LSGAN/Poly-WGAN architecture uses a polyharmonic
radial basis function discriminator whose weights and centers are computed based on batches of samples,
whereas the generator is trained employing standard GAN losses.

weights can be computed by solving a system of linear equations. We show experimentally that the Poly-
LSGAN algorithm does not scale favorably with the dimensionality of the data, owing to a combinatorial
explosion in the number of coefficients, and singularity issues in solving for the weights of the RBF (Section.

To circumvent the issues in Poly-LSGAN (Anonymous, [2022), we consider the WGAN-IPM discriminator
loss subjected to the m!*-order gradient regularizer, in a Lagrangian formulation. The resulting formulation,
referred to as Poly-WGAN, does not require solving a system of equations to compute the weights. We
show that this formulation of LSGAN and WGAN is equivalent to solving the GAN optimization with
the discriminator constrained to belong to the Beppo-Levi space, which is a semi-normed/pseudo-metric
space (Section . While standard GANs train a network to approximate a chosen metric, kernel based
approaches leverage the underlying RKHS structure, from which the norms and MMD kernels are selected.
However, as the discriminator is drawn from a semi-normed space, the optimum cannot be readily connected
with a kernel-mean statistic, but rather must be determined using Calculus of Variations. Across both
Poly-LSGAN and Poly-WGAN (jointly called the PolyGAN variants), our analysis shows that the optimal
discriminators are the solution to elliptic partial differential equations (PDEs), more specifically, the iterated
Laplacian/polyharmonic PDE (Section Appendices . The closed-form Poly-WGAN discriminator
can be represented as an interpolator using the polyharmonic RBF kernel, which we implement through the
RBF network approximation with predetermined weights and centers (Section .

Figure [ compares WGAN, GMMN, and PolyGAN variants. We show that Poly-WGAN outperforms the
baselines in terms of training stability and convergence on multivariate Gaussian and Gaussian mixture
learning (Section |§| and Appendix . Although Poly-WGANS scale favorably in comparison to Poly-LSGAN,
the sample-complexity of the RBF-based discriminator remains challenging on high-dimensional image dataset.
As a proof-of-concept, we apply Poly-WGAN to latent-space matching with the Wasserstein autoencoder
(WAE) (Tolstikhin et al],[2018) (Section[7)) and MMD-GAN architectures (Appendix [F]),
and show that the proposed RBF discriminator achieves performance improvements over comparable WAE
variants in terms of various standard metrics on MNIST (LeCun et al., 1998)), CIFAR-10 (Krizhevsky, |2009),
CelebA and LSUN-Churches (Yu et al., 2016) datasets. The emphasis in the proposed
PolyGAN formulation is less on outperforming the state of the art (Karras et al} [2019; 2020; 2021)), and more
on gaining a deeper understanding of the underlying optimal discriminator in gradient-regularized GANs,
opening up new avenues in generative modeling.
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2 LSGAN, WGAN and Gradient Penalties

Mao et al.| (2017) considered the GAN learning problem where the discriminator and generator networks
minimize the least-squares loss. To mimic the classifier nature of the standard GAN (Goodfellow et al., 2014]),
an a — b coding scheme is used, where a and b are the class labels of the generated samples and target data
samples, respectively. On the other hand, the generator is trained to generate samples that are assigned a
class label ¢ by the discriminator. The resulting formulation is as follows:

1 1 « .
LY = 3 Bap, [(D@) = ] + 5 Eany, [(D(@) — a)?] D* () = argmin £,
1 .
and L5 = 2 Bany, (D (2) — 07); pi(@) = argmin L5,

where E denotes the expectation operator. While Mao et al.| (2017)) show that settingb—a=2and c—a =1
lead to the generator minimizing the Pearson-x? divergence, a more intuitive approach is to set ¢ = b, which
enforces the generator to output samples that are classified as real by the discriminator.

Along a parallel vertical, |Arjovsky et al.| (2017) presented the GAN learning problem as one of optimal
transport, wherein the critic (or discriminator) minimizes the earth mover’s distance or Wasserstein-1 distance
between pq and pgy. Through the Kantorovich-Rubinstein duality, they defined the WGAN discriminator and
generator losses as follows:

LY = Eany, [D"(®)] ~ Epep, [DV(2)], and £ = £},

where D¥(x) denoted a Lipschitz-1 discriminator. While £} was first introduced in the context of WGANS,
it forms the basis for all IPM based GANs. |Arjovsky et al. (2017) clip the discriminator weights to
enforce the Lipschitz-1 constraint. |Gulrajani et al. (2017) consider the WGAN with a gradient penalty

Ezrpin [(HVD () |2 — 1)2}, where pin¢ is an interpolated distribution between pg and pg. As noted by [Rosca

et al| (2020), in general, the gradient penalties in GANs have the form Q% : Eg.,, [(||VD () |]2 — K)ﬂ,

where p, is the reference density and K is a suitable constant. Setting K > 0 enforces a Lipschitz constraint,
while K = 0 promotes the smoothness of the learnt discriminator. For example, |Kodali et al.| (2017) employed
pa * N'(0,1), while [Mescheder et al.| (2018) showed that the regularizer QF = E,,, [[|[VD(x)||3] with either
Pr = pq Or pr = pgy (called WGAN-Rq and WGAN-R,, respectively) guarantees local convergence even in
the case of discontinuous distributions. [Kodali et al.| (2017)) also show that the gradient regularization
improves the empirical performance of LSGAN and other f-GAN variants. Mroueh et al.| (2018) considered
a generalization of QF for any choice of p, defined over R", giving rise to the class of Sobolev GANs. Petzka
et al.| (2018) proposed WGAN with Lipschitz penalty (WGAN-LP), which applies a hinge-loss variant of
the gradient penalty, while Terjék (2020) proposed WGAN with adversarial LP (WGAN-ALP) to compute
the gradient penalty along the direction of maximum error. |Anonymous| (2023) considered the first-order
gradient-norm penalty, but obtained a closed-form expression for the discriminator given the generator for the
case when p,.(x) is the uniform measure. They employ a Fourier-series approximation for the discriminator
and do away with training a discriminator neural network. |Adler & Lunz (2018)) implemented m"-order
generalizations of the cost empirically through a Fourier representation of the cost, but do not explore the
theoretical optimum in these scenarios.

We now consider the LSGAN cost subject to high-order gradient regularization, and show that the discriminator
optimization is one of high-dimensional interpolation. Helpful background on higher-order derivatives and
the Calculus of Variations is provided in Appendix [A]

3 Regularized LSGAN and Least-squares Interpolation
We consider the m!"-order generalization of the gradient regularizer considered by Mroueh et al| (2018)
and |Anonymous| (2023). The penalty is enforced uniformly for all values of € X, which is the convex
hull of the supports of py and py (i.e., we set p, to be the uniform density over X). This can be viewed as
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interpolating over infinitely many samples drawn from pg and py. The regularizer is then given by

o = (31 [ IV D@)Ede - ). 1)

where |[V™D(x)||3 is the square of the norm of the m'-order gradient vector (cf. Eq. (13]), Appendix [A)),
and |X| denotes the volume of X'. Consistent with the literature on high-dimensional interpolation (Duchon|
[1977; Meinguet, [1979) and IPM-GANs (Mescheder et al., 2018} [Mroueh et al., 2018)), setting K = 0 promotes
smoothness of the learnt discriminator, thereby accelerating convergence of the training algorithm. The
corresponding regularized LSGAN cost is given by

L5 = L Bay[(D@) = 07 + 5 Bany, [(D(@) = 0] + A [ [V D@ de )
X

where Ay > 0 is the Lagrange multiplier associated with the gradient penalty. When K = 0, the regularization
of the LSGAN cost with Qp can be viewed as restricting the solution space to the Beppo-Levi space BL"P,
comprising all functions defined over R™, with m!"-order gradients having finite L,-norm. A more detailed
discussion on drawing the discriminator from BL™? is provided in Section [4.1

Consider an N-sample approximation of £%® in Equation 7 where Np samples are drawn from pg and p,
each (therefore, N = 2Np), represented by the dataset batch

N N N
D= {(Cmyi)}i:l = {(i%b) | Z; di}i:bl U{(xjaa) | T Npg}j:bl-
The corresponding discriminator optimization problem can be formulated as follows:

N
D* = argmin Z (D(¢;) —y:)* + /\d/ V™ D(z)|3 de. (3)
b= X
(ci,yi)~D

The above represents a regularized least-squares interpolation problem. When Ay = 0, the optimum D* is an
interpolator that passes through the target points (c;,y;) exactly. On the other hand, for positive values
of A4, the minimization leads to smoother solutions, penalizing sharp transitions in the discriminator. We
found out experimentally that Ay = 10 results in superior performance. A smoother discriminator allows for
more efficient training of the generator (Li et al., |2017b; Xu et al., 2018). The following theorem shows the
interpolating nature of the optimal discriminator.

Theorem 3.1. The optimal LSGAN discriminator that minimizes the cost given in Eqn. ]

||$||k fO?" k:17375u"'

4
lelFn(zl) for k=246

N
D*(@)= Y wipk(lz—cill) + Pla;v),  where sok(w){
(Cié;lND

is the polyharmonic radial basis function with the spline order k = 2m — n for a gradient order m, such
that k > 0, P(xz;v) € P _, is an (m — 1) order polynomial parametrized by the coefficients v € RY; L =

(n :—nTI 1), x € X CR", D={(c;,y:)} is the set of real and fake centers about which the polyharmonic
RBFs i(||-1) are localized, ||-|| denotes the €3 norm. The N weights w = [w1,ws, ..., wn]T and L polynomial
coefficients v = [v1,va,...,vr]T can be obtained by solving the linear system of equations:
A+ (-1)"X\CiI Bl [w] [y (5)
B' 0| |v] |o] "
11 ... 171"
c1 co - eN T
where [Alij = ¢x(llei —¢ill), B=| . . |,end y =y, y2,---,yn]",
Cm—l cgn—l . C'r](]L—l
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I is the N x N identity matriz, and CZ is a vectorized representation of all the terms of the j*"*-order polynomial
of ¢;, and Cy is a constant that depends only on the order k. The above system of equations has a unique
solution iff the kernel matriz A is invertible and B is full column-rank. Matrix A is invertible if the set of
real/fake centers are unique, and the kernel order k is positive. The matriz B is full rank if the set of centers

{¢;} are linearly independent, and more specifically, do not lie on any subspace of R™ 2004)).

Proof. The proof follows by applying the Euler-Lagrange equation from the Calculus of Variations to the
cost in Equation , which yields the following differential equation that the optimal discriminator satisfies:

<Z<D<w> )il - )> HED"MATDE@) e =0

i=1

The solution to the above PDE constitutes a polyharmonic sum which is the particular solution, and the
polynomial component which represents the homogeneous component, i.e., solutions to A™ f(x) =0
. Substituting the optimal discriminator into the loss in Equation (3| yields the family of equations that
the optimal weights and polynomial coefficients satisfy. The details are provided in Appendix [B] For k < 0,
the system of equations does not have a solution, as [A]; ; — co. Owing to the polyharmonic radial basis
kernel, the proposed approach is referred to as Poly-LSGAN. The solution is applicable for all © € X. Outside
of the domain, the loss vanishes, obviating the need for optimization. O

3.1 Experimental Limitations of Poly-LSGAN

We evaluate the optimal Poly-LSGAN discriminator for learning synthetic 2-D Gaussian and Gaussian mixture
models (GMMs), and subsequently discuss extensions to handle images. Detailed discussions are provided
in Appendices and We provide only a summary of the observations here. On low-dimensional
Gaussian learning tasks, using the polyharmonic RBF discriminator results in superior generator performance
(lower W22 scores). However, the Poly-LSGAN algorithm does not scale well with the dimensionality of the
data for image-space learning on datasets such as MNIST, Fashion-MNIST and CelebA. To illustrate the
limitation, we consider the polyharmonic spline of order k = 2 for learning 784-dimensional MNIST data.
This requires a % — 1 = 392"_degree polynomial consisting of O(10323) coefficients! In general, given N
centers in R™ and gradient order m, solving for the weights and coefficients requires inverting a matrix of size

M =N+ (n e 1), which requires O(M?3) computations. For example, given a batch size of N = 100 and

m—1
data in R'2® we have M ~ O(10%) for m = 3, and M ~ O(10°) for m = 4. However, as the Poly-LSGAN
solution is only valid for & > 0 or m > [§] (cf. Appendix , the problem becomes intractable, with
M = O(10°1) or higher! We therefore restrict the solution to include only 3" order polynomials. Although
clearly sub-optimal, this work-around results in an implementable solution.

The results of training Poly-LSGAN on image datasets are discussed in Appendix While the underlying
structure is learnt, the generated images are far from being realistic and below par compared with standard
GAN results. Poly-LSGAN failed to converge as the matrix B turned out to be rank-deficient. As noted in
the literature on mesh-free interpolation , B must be full column-rank for the system of equations
(Eq. ) to have a unique solution. This requires the centers ¢; to not lie on a subspace/manifold of R™.
However, from the manifold hypothesis (Kelley, 2017; [Vershyninl, [2018), we know that structured image
datasets lie precisely in such low-dimensional manifolds. One possible workaround is to avoid training GANs
on images, and instead perform adversarial score matching (Jolicoeur-Martineau et al., [2021). Yet another
approach is to not compute the weights through matrix inversion. In the remainder of this paper, we consider
the latter approach, wherein we enforce the higher-order gradient constraint on the Wasserstein GAN cost.
Through a variational analysis, we show that even in this setting, the links to high-dimensional interpolation
hold, but the weights can be computed without the need for solving a system of equations. We therefore
focus on WGAN with the higher-order gradient-norm constraint in the remainder of the paper.
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4 WGAN with Higher-order Gradient Regularization

We consider the WGAN-IPM loss, with the m'"-order gradient-norm regularizer Qp (cf. Equation (I))). The
resulting Lagrangian of the discriminator cost is given by:

LYYW By D(@)] — Egmp, [D(@)] + A </X V™ D(x)|3 de — KXI) (6)

= / D(z) (pg(x) = pa(x)) + Aa (V" D(2)]3 - K) de, (7)
o F(D,0*D;|a|=m)

where )y is the Lagrange multiplier associated with Qp, which is optimized as a dual variable. We show
in Appendix that the choice of K simply scales the optimal dual variable A} by a factor of \/LK’ but
the optimal generator distribution p;(w) remains unaffected. Therefore, to maintain consistency with the
LSGAN formulation, we consider K = 0 in the remainder of this paper, while the generalization to positive
K is discussed in Appendix Before proceeding with the optimality of Poly-WGANSs, we discuss the
implications of the chosen regularizer on the constraint space of the discriminator.

4.1 Constraint Space of the Discriminator

Both the Poly-LSGAN and the Poly-WGAN discriminator functions are solutions to gradient-regularized
optimization problems. The Poly-LSGAN optimization results in discriminator functions that are sufficiently
smooth (large m) and interpolate between the positive and negative class labels. On the other hand, the
smooth Poly-WGAN discriminator can be seen as approximating large positive values corresponding to the
reals, and large negative values corresponding to the fakes.

In both PolyGANSs, the optimization problem can be interpreted as restricting solutions to belong to the
Beppo-Levi space BL™? | endowed with the semi-norm || D|gpm» = [[V™D()|r,. The m'"-order gradient
penalty considered in Eq. @ corresponds to BL"2. Unlike a norm, the semi-norm does not satisfy the
point-separation property, i.e., |D|gLm» = 0 & D = 0. Contrast this with the Sobolev space WP,
which comprises all functions with finite L,-norms of the gradients up to order m, endowed with the norm
|D[lwm»> =>4 IV*D(x)||1,. The Sobolev space W™ is a Banach space, and for the case of p = 2, it
is a Hilbert space. The null-space of the Beppo-Levi semi-norm comprises all (m — 1)-degree polynomials
defined over R™, denoted by P}, (). The Sobolev semi-norm considered by [Mroueh et al| (2018) is the
first-order Beppo-Levi semi-norm. [Adler & Lunz| (2018) consider Sobolev spaces in Banach WGAN and
implement the loss through a Bessel potential approach, relying on a Fourier transform of the loss. They
provide experimental results, but an in-depth analysis of the discriminator optimization is lacking. We
optimize the GAN loss defined in Eq. @ within a variational framework and choose Beppo-Levi BL™? as
the constraint space and provide a closed-form solution for the optimal discriminator. Our approach also
highlights the interplay between the gradient order m and the dimensionality of the data n, and its influence
on the performance of the GAN.

4.2 The Optimal Poly-WGAN Discriminator and Generator

Consider the integral form of the discriminator loss given in Eq. @ The following Theorem gives us the
optimal Poly-WGAN discriminator.

Theorem 4.1. The optimal discriminator that minimizes the loss Lp is a solution to the following PDE:

(-1

A™D(x) =
(@) ="

(pg(2) —pa(x)), V@ € X, (8)

where A™ is the polyharmonic operator of order m. The particular solution Dy(x) is given by

(-1

Dp(w) = o

((pg = pa) * Yom—n) (z), 9)
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which is a multidimensional convolution with the polyharmonic radial basis function om—n(x), which in turn
is the fundamental solution to the polyharmonic equation: A™ 0o _n(x) = 6(x), for some constant o, and
1s given by

|| ™™ if 2m—n <0 or n is odd,

2m—n ; _ . (10)
]| In(|z|) i 2m—n>0 and n is even.

me—n(w) = {

The general solution D*(x) is given by D*(x) = Dy(x) + P(x), where P(x) € Py, which is the space of

m—1-
all (m — 1) order polynomials defined over R™.

Proof. From the integrand F in Eq. , we have

g% =pg(x) —pa(x), and (-1 Y 0™ (%) = (=1)™2A4A™D.

a:lal=m
Substituting the above in the Euler-Lagrange condition from the Calculus of Variations (Eq. ) results
in the PDE stated in Eq. . The solution to the PDE can be obtained in terms of the solution to the
inhomogeneous equation A™ f(x) = §(x). PDEs of this type have been extensively researched. The book on
Polyharmonic Functions by |Aronszajn et al.| (1983 is an authoritative reference on the topic. It has been
shown that ¥, (x) defined in Eq. (10) is the fundamental solution, up to a constant p. Convolving both

sides of Eq. with 1o, —n () yields Eq. @[) The value of o for various m and n is given by in Appendix

Equation [J] provides the particular solution to the PDE governing the discriminator. As in the case of
Poly-LSGAN, the general solution also includes the homogeneous component. The homogeneous component
belongs to the null-space P}, _; of the Beppo-Levi semi-norm. The general solution to the discriminator is
D*(z) = D,(x) + P(x), where P(x) € Pj,_;. The exact choice of the polynomial depends on the boundary
conditions and will be discussed in Appendix [C.5] O

The optimal Lagrange multiplier A can be determined by solving the dual optimization problem. A
discussion is provided in Appendix The polyharmonic function s, _, can be seen as an extension
of Poly-LSGAN kernel ¢ that permits negative orders. Since the optimal discriminator does not require
any weight computation, the associated singularity of the kernel matrix can be ignored. The optimal GAN
discriminator defined in WGAN-FS (Anonymous| [2023)) and Sobolev GANs (Mroueh et all, [2018) are a special
case of Theorem for m = 1.

Obtaining the optimal discriminator is only one-half of the problem, with the optimal generator constituting
the other half. In baseline GANSs, the discriminator can be interpreted as approximating the divergence or
IPM between distributions. Consequently, the generator is known to minimize the corresponding divergence,
or distance function between distributions, and therefore, the optimum is attained when the two distributions
match. However, in PolyGANs, the discriminator does not correspond to an IPM, as the Beppo-Levi space
is a semi-normed space with a null-space component. Therefore, it must be shown that a generator that
minimizes a loss employing the Poly-WGAN discriminator indeed results in the desired convergence of the
generator distribution to that of the target. Although in practice, the push-forward distribution of the
generator is well-defined, it remains to be shown that training the generator in PolyGANs indeed results in
the generator distribution approaching the target. As a mathematical safeguard, we incorporate constraints
to ensure that the learnt function is indeed a valid distribution, along the lines of |Anonymous| (2023). In
particular, we consider the integral constraint €2, : [ v Pg(x)dr = 1, and the point-wise non-negativity
constraint @, : py(x) >0, V & € X. While Q,, readily fits into the Euler-Lagrange framework, ®, must be
cast into an integral form with a point-wise Lagrange multiplier function p,(x) : X — R_, where R_ is the
set of negative real numbers. Effectively, p,(x) < 0V @ € X (Gelfand & Fomin, [1964), which yields the
Lagrangian of the generator loss function:

£6 = By [ (@)] = By, [D*(@)] + ( [ pita) da - 1) + [ @@ ae,ay

where A\, € R and pu,(x) are the Lagrange multipliers. The following theorem specifies the optimal generator
density that minimizes L given the optimal discriminator.
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Theorem 4.2. Optimal generator density: Consider the minimization of the generator loss L. The
optimal generator density is given by p;(x) = pa(x), V @ € X. The optimal Lagrange multipliers are

0 Vx: 0
A eER and py(x) =4 @: pa(x) >0,
Qlx) e Py _y(x), Va@: pa(x)=0,
respectively, where Q(x) is a non-positive polynomial of degree m — 1, i.e., Q(x) < 0V x, such that
pa(x) = 0. The solution is valid for all choices of the homogeneous component P(x) € Pl _,(x) in the
optimal discriminator.

Proof. As the cost function involves convolution terms, the Euler-Lagrange condition cannot be applied
readily, and the optimum must be derived using the Fundamental Lemma of Calculus of Variations (Geltand
& Fomin, [1964)), as in the case of WGAN-FS (Anonymous, [2023).

Consider the Lagrangian of the generator loss L5. Enforcing the first-order necessary conditions for a
minimizer of the cost yields the following equation that the optimum solution pj(x) satisfies the equation

pi(x) = pa(x) + (%") A" (). It is clear from the above solution that the optimum, pj(z), does not depend

on the choice of the homogeneous component P(x) in the optimal discriminator. The optimal Lagrange
multipliers can be determined through dual optimization and enforcing the complementary slackness condition
to obtain the result in Theorem [£.2] The detailed proof is provided in Appendix [C.3] O

4.3 Practical Considerations

The closed-form discriminator in Equation @ involves multidimensional convolution in a high-dimensional
space. For instance, considering MNIST database with 28 x 28 size images, the convolution must be carried
out in R7®4! Further, since closed-form expressions for pg and pg are not available in practice, the convolutions
cannot be computed. A practical alternative is needed, for which we propose a sample approximation to
D*(x), which also links well with other kernel-based generative models such as GMMNs. The following
lemma presents an implementable form of the optimal discriminator.

Theorem 4.3. The particular optimal discriminator Dy (x) given in Eq. @[) can be approximated through
the following sample estimate:

€
AN

Z ¢2m—n(m - ci) - )\fN

Ci~Pg

Di(z) =

Z me—n(m - Cj) (12)

Cj~Pd

Spg Spg

where Yom_n is the polyharmonic kernel, as described in Eq. .

Theorem [£.3] shows that the sample approximation of Poly-WGAN discriminator can be implemented through
an RBF network. The proof is given in Appendix [C.4] Incorporating the homogeneous component in the
solution becomes impractical in higher dimensions. However, by virtue of Theorem [4:2 and the first-order
methods employed in updating the generator parameters, we argue that not incorporating the homogeneous
component is not too detrimental to GAN optimization. Therefore, we set P(x) to be the zero polynomial
(i.e., set P(x) = 0). This argument is presented in Appendix

5 Interpreting The Optimal Discriminator in PolyGANs

Theorem [.I]shows that, in gradient-regularized LSGAN and WGAN, the optimal discriminators that trainable
neural networks learn to approximate are expressible as kernel-based convolutions. In particular, the gradient-
norm penalty induces a polyharmonic kernel interpolator. By virtue of Theorems [3.1] and [4:2] this takes the
form of a weighted sum of distance functions (for example, when n is odd, we have Zf\il wi|lz — ¢|*m ).
While in the case of Poly-LSGAN, the weights must be computed by matrix inversion, in the case of
Poly-WGAN, the analysis is tractable, because the weights reduce to :N:AZLN (cf. Equation )
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Figure 2: A comparison of the discriminator function and its gradient for WGAN-GP and Poly-WGAN
for various choices of m, when the target and generator distributions are Gaussian. (a) The discriminator
functions are normalized to [—1,1] to facilitate comparison. While the WGAN-GP discriminator is a
three-layer feedforward network trained until convergence, which took about 50 iterations, the Poly-WGAN
discriminator is computed in closed-form (Equations ) The Poly-WGAN discriminator for m = 1 is the
optimal form of the discriminator learnt in WGAN-GP. Across all variants, the Poly-WGAN discriminator
accurately changes in sign at the mid-point between the two distributions. (b) The unnormalized discriminator
gradients illustrate the convergence speed-up observed in Poly-WGAN. The gradient magnitude increases
with the penalty order. For orders m > 5, the generator training is unstable due to exploding gradients.

For order 2m — n < 0, the optimal discriminator acts as an inverse-distance weighted (IDW) interpolator,
where the centers closest to the sample & under evaluation have a stronger influence, while for 2m —n > 0, the
effect of the far-off centers is stronger. The latter is particularly helpful in pulling the generator distribution
towards the target distribution when the two are far apart. Additionally, when 2m — n < 0, the weights in
Poly-LSGAN cannot be computed, as A is no longer a valid kernel matrix, while in Poly-WGANS, although
tractable, the solution is singular at the target centers, causing training instability. As an illustration, Figure 2]
presents the learnt discriminator, and its unnormalized gradient in the case of 1-D learning with WGAN-GP,
and those implemented in Poly-WGAN for m € {1,2,3}. While the WGAN-GP discriminator is a three-layer
feedforward network trained until convergence, the Poly-WGAN discriminator is a closed-form RBF network.
The discriminator functions are normalized to the range [—1,1] to facilitate visual comparison, but the
gradients are presented unnormalized. For n = 1, the value of 2m — n is positive for all m. From Figure b)7
we observe that the magnitude of the gradient increases with the gradient order, resulting in a stronger
gradient for training the generator. We observed empirically (cf. Section that this causes exploding

gradients for large m, and in practice, the generator training is superior when the order m ~ 3.

The discriminator function D; (z) comprises the difference between two RBF interpolations: S,, operating
entirely on the real data (¢; ~ pq), and S, operating on the fake ones (¢; ~ py). For a test sample & drawn
from the generator, the value of S}, is smaller than S}, with a high probability, and vice versa for samples
drawn from pg. A reasonable generator should output samples that result in a lower value for S),, than S, ,
and eventually, over the course of learning, transport p, towards py, i.e., Sp, — Sp, = Dz*v () — 0.

5.1 Related Works

GANs and Gradient Flows: A prominent example where an RBF network has been used for the
discriminator is that of [Hu et al (2020), who solve 2-D flow-field reconstruction problems. KALE Flow
and MMD-Flow (Mroueh & Nguyen, [2021) also consider explicit forms of the discriminator
function in terms of kernels, as opposed to training a neural network to approximate a chosen divergence
between the distributions. However, unlike in PolyGANSs, they leverage the closed-form function to derive the
associated gradient field of the discriminator, over which a flow-based approach is employed to transform
samples drawn from a parametric noise distribution into those following the target distribution. Similarly, in
Sobolev descent (Mroueh et all [2019; [Mroueh & Rigotti, 2020), a gradient flow over the Sobolev GAN critic
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is implemented. A similar approach could also be explored in this context, considering the gradient field of
the Poly-WGAN discriminator, which is a promising direction for future research.

GANSs and Neural Tangent Kernels: Along another vertical, |Franceschi et al|(2022) and [Zhang et al.
(2022)) analyze the IPM-GAN losses from the perspective of neural tangent kernels (NTKs), and show that
the existing IPM-GAN losses optimize an MMD-kernel loss associated with the NTK of an infinite-width
discriminator network (under suitable assumptions on the network architecture) with the kernel drawn from
an associated RKHS. In contrast, we consider the functional form of the discriminator optimization, and
derive a kernel-based optimum considering both the WGAN and LSGAN losses with higher-order gradient
regularizers. Our formulation does not consider a distance metric, but a pseudo-norm, and the optimization
schemes used provides a general approach to analyzing regularized GAN losses.

6 Experimental Validation on Synthetic Data

We now compare Poly-WGAN with the following baselines: WGAN-GP, WGAN-LP, WGAN-ALP, WGAN-
R4 and WGAN-R, variants of WGANSs; and GMMN with the Gaussian (GMMN-RBFG) and the inverse
multiquadric (GMMN-IMQ) kernels (cf. Section [2)).

6.1 Two-dimensional Gaussian Learning

To serve as an illustration, consider the tasks of learning 2-D unimodal and multimodal Gaussian distributions.
The data preparation and network architectures are described in Appendix[D-2} For performance quantification,
we use the Wasserstein-2 distance between the target and generator distributions (WZ’Q(pd, pg)). Figure a)
shows W22 (pg, p,) versus the iteration count, on the 2-D Gaussian learning task. Two variants of Poly-WGAN
were considered, one with m = 1 and the other with m = 2. In both cases, the convergence of Poly-WGAN is
about two times faster than WGAN-R4, which is the best performing baseline. Figure b) shows W%2(pg, py)
as a function of iterations for GMM learning. Again, Poly-WGAN converges faster than the baselines and
to a better score (lower W2 (pg, p,) value). Images comparing the performance of the GAN models are
included in Appendix [E:2] and ablation experiments showcasing the computational speedup in Poly-WGAN
(of about two orders of magnitude) over baselines are provided in Appendix

Choice of the Gradient Order: Figure (e) shows the Wasserstein-2 distance W2 (pg, p,) for Poly-WGAN

as a function of iterations for various m. We observe that m = 5 = 1 is the fastest in terms of convergence

speed, while penalties up to order m = 6 also result in favorable convergence behavior. For values of m such
that 2m —n > 10, we encountered numerical instability issues. In view of these findings, we suggest m ~ [5].
A discussion on why this choice of m is also theoretically sound, based on the Sobolev embedding theorem, is
given in Appendix Poly-WGAN with m =1 is also robust to the choice of the learning rate parameter.

For instance, it converges stably even for learning rates as high as 1071,

6.2 Higher-dimensional Gaussian Learning

Next, we demonstrate the success of Poly-WGANSs in a high-dimensional setting. The target distribution
is the Gaussian AN(0.71,,0.21,), where 15 is the 2-D vector of ones, and Iy is the 2 X 2 identity matrix.
To consider both even and odd variants of the polyharmonic solution, we perform two experiments, one
with n = 16 and the other with n = 63. We also analyze the effect of varying m for the case when n = 6.
The generator has the DCGAN architecture (Radford et al.,|2016)), while the other training parameters and
architectures are identical to the 2-D learning scenario (cf. Appendix . The convergence is measured
in terms of the Wasserstein-2 distance, W?2(pq, py). Figure f) shows W?? as a function of iterations
for Poly-WGAN learning for various m. We observe that m = 7 performs the best, as suggested by the
theoretical analysis in Section [£.3] Similar to the 2-D Gaussian case, numerical instability was encountered
for 2m —n > 10. The instability can be overcome to a certain extent by reducing the learning rate, but at
n

the expense of slow training. Therefore, we consider m = {ﬂ as the most stable choice in the subsequent

experiments. Figures c) & (d) present the results for learning on 16-D and 63-D Gaussians, respectively,

where Poly-WGAN with [%W " _order penalty outperforms the baselines, converging by an order of magnitude
faster in both cases.
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Figure 3: Training GAN variants on multivariate Gaussians. Wasserstein-2 distance between the data and
generator distributions (W??(pq,py)) on learning (a) a 2-D Gaussian; (b) a 2-D Gaussian mixture model
(GMM) ; (c) a 16-D Gaussian; (d) a 63-D Gaussian; (e) a 2-D Gaussian using Poly-WGAN for various m; and
(f) a 6-D Gaussian using Poly-WGAN for various m. The legend is common to subfigures (a)-(d). Subfigure
(a) further depicts two scenarios of Poly-WGAN for m = 1 (solid line) and m = 2 (dashed line). In subfigures
(b)-(d) m = % (solid line). W*? based comparison shows that Poly-WGAN outperforms the WGAN variants
and the GMMN baselines in all the scenarios considered. Among the Poly-WGAN variants, the performance
is the best for m = [Z], which corresponds to () m =1 in the case of 2-D Gaussian learning; and (f) m = 3
for 6-D Gaussian learning.

6.3 Ablation Experiments

Having shown that the Poly-WGAN formulation indeed results in superior performance compared to the
baselines, we now perform ablation experiments to gain a deeper understanding into the advantages of
implementing the RBF-based Poly-WGAN discriminator, over the baselines.

To evaluate the computational speed-up achieved by Poly-WGAN over GANs with trainable discriminators,
we perform ablation experiments comparing the convergence of Poly-WGAN and the best-case baseline
WGAN-Ry (cf. Section [6.1]). The RBF discriminator in Poly-WGAN is compared against the WGAN-R,
discriminator trained for Diiers € {1, 2,5, 10,20,100} steps per generator update. We report results on the
2-D and 63-D Gaussian learning tasks. The convergence plots for W2 (pg, pg) as a function of iterations
are provided in Figure (4} while the converged W2’2(pd,pg) scores, and the time taken between generator
updates for different choices of Djers (referred to as Compute Time) are presented in Table [l We observe
that the baseline GAN performance converges to that of Poly-WGAN, as Djtes increases. On the 2-D
learning task, the compute time in Poly-WGAN is on par with the WGAN-Ry with Dy ~ 5. However, as
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Figure 4: A comparison of the Wasserstein-2 distance between pg and p; (W?2(pa, py)) on (a) 2-D Gaussian;
and (b) 63-D Gaussian learning. Poly-WGAN is compared against WGAN-R,, which is the best-performing
baseline (cf. Figure [3). While Poly-WGAN employs a closed-form discriminator, the discriminator in the
baseline is updated for Djsep iterations per generator update. We observe that, as the number of discriminator
updates increases, the baseline performance approaches the optimal discriminator considered in Poly-WGAN.

the dimensionality of the data increases, the advantage of Poly-WGAN becomes apparent. Poly-WGAN is
nearly twice as fast as WGAN-Ry with Djters = 1, while achieving W2 (pg, p,) scores that are two orders
of magnitude lower than the baseline. Experimentally, Poly-WGAN is two orders of magnitude faster in
training than WGAN-R,; with Djse;s = 100. These results clearly show that Poly-WGAN achieves superior
performance over the best-case baselines, in a fraction of the training time of the generator.

To gain insights into the discriminator in PolyGAN, we consider comparisons against two baseline discriminator
Scenarios — (i) A neural-network discriminator with four fully-connected layers and the hyperbolic tangent
activation, consisting of 256, 64 and 32 and one node(s), trained using the regularized Poly-WGAN loss
(cf. Equation @) We set K = 0 and replace the integral in the constraint with its sample estimate, akin
to WGAN-R; and WGAN-R,. The higher-order gradients are computed by means of nested automatic
differentiation loops. (ii) A trainable version of the Poly-WGAN discriminator, wherein the centers and
weights are initialized as in Poly-WGAN, but are subsequently updated by means of an un-regularized WGAN
loss. The regularization is implicit, enforced by the choice of the activation function, which corresponds to
the polyharmonic kernel of order m. We consider the 5-D Gaussian learning task (cf. Section.

Figure (a) compares the convergence of the Wasserstein-2 metric W?2(pq, py) as a function of iterations for
Poly-WGAN (solid lines), and the trainable discrimination in Scenario (i) (dashed lines), for various choices
of m. Akin to baseline GANSs, the discriminator is trained for 5 updates per generator update. In accordance
with the observations in Section [6.1} we observed that m = 3 results in the best performance. For each m, the
trainable baseline GAN is inferior to the corresponding Poly-WGAN. Kernel orders m = 1,2 lead to a poorer
performance as the kernel is singular when m < [4]. However, the trainable discriminator approach from
Scenario (i) does not scale with the dimensionality of the data, as the memory requirement in computing
the nested high-order gradients grows exponentially. For example, in the 5-D experiment considered above,
for m = 1, we require ~ 700 MB of system memory to store the value necessary to compute the gradient
penalty via back-propagation. However, for m = 4 we require ~ 9 GB of system memory! Given the choice
m = [§]| = 3, we also compare the effect of training the discriminator for Dijte;s updaters per generator
update. From Figure (b), we observe that the performance of the GAN with the trainable discriminator
converged to the performance of Poly-GAN as Djtes increases. To isolate the effect of the discriminator
architecture on Poly-WGAN’s performance, we compare Poly-WGAN with m = 3 against a trainable RBF
discriminator as described in Scenario (ii). From Figure C), we observe that, given the kernel order and the
network architecture, training the RBF discriminate via stochastic-gradient updates results in significantly
higher training instability. For small values of Djte,s, there are large oscillations in the early stages of training,
as the quality of the discriminator is sub-par. As Djters increases, we observed mode collapse in GANs with
a trainable RBF discriminator, as the variance of the learnt gaussian converges to a small value. These
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performance issues can be attributed to the learnable centers and weights, as the resulting discriminator
would be a poor approximation to the ideal classifier.

These ablation experiments show that the performance of Poly-WGAN is superior to that of a GAN with a
trainable RBF discriminator, which in turn is superior to the GAN with the discriminator trained on the
Poly-WGAN loss. However, the scalability of Poly-WGAN to high dimensions remains a bottleneck, which
we circumvent using latent-space optimization so that PolyGANs become viable on image datasets.
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Figure 5: Comparison of Poly-WGAN against baseline GANs with a trainable discriminator on learning 5-D
unimodal Gaussian data. Subfigures (a) & (b) consider a neural-network discriminator trained using the
regularized Poly-WGAN loss (cf. Equation @), while in (c) the RBF discriminator is trained to minimize
the unregularized WGAN loss. (a) For each m, the trainable baseline GAN is inferior to the corresponding
Poly-WGAN, while Poly-WGAN with m = 3 results in the best performance. (b) The performance of
the GAN with the trainable discriminator converges to the performance of Poly-GAN as Djies increases.
(c) Training the RBF discriminator via stochastic-gradient updates results in significantly higher training
instability compared to Poly-WGAN with the closed-form weights and centers.

Table 1: A comparison of training times for Poly-WGAN against the WGAN-R, baseline, considering various
number of updates steps of the discriminator (Djters), per generator update. The models are trained on
a workstation with a single NVIDIA 3090 GPU with 24 GB of Visual RAM, and 64 GB of system RAM.
Results are presented for learning 2-D and 63-D Gaussian data. The models are trained with a batch size of
500 in the case of 2-D Gaussian data, and 100 in the 63-D learning task. The table presents the (i) Compute
Time (in seconds) per generate update; and (ii) the Wasserstein-2 distance W??2 between the generator and
data distributions of the trained model. The compute requirement in Poly-WGAN is on par with the baseline
WGAN with 5 discriminator updates in low-dimensional learning tasks. As the dimensionality of the data
increases, the computational load in the baselines increase drastically, with Poly-WGAN achieving superior
performance with a fraction of the training time.

WCAN favor Divers H 2-D Gaussian H 63-D Gaussian
| Compute Time (s) L | W*2(pa,py) | || Compute Time (s) | | W22 (pa,py) |
Poly-WGAN - | 04951+00034 | 0.0107 || 0.0987+£0.0067 | 0.3187
100 1.2451 & 0.0044 0.0889 9.6541 + 0.0085 10.5561
20 0.6834 + 0.0055 0.0743 1.9622 £ 0.0071 21.1581
WOANR 10 0.5283 + 0.0023 0.0695 0.9412 + 0.0083 25.3296
¢ 5 0.4972 4 0.0043 0.1571 0.5325 £ 0.0073 29.3043
0.4856 + 0.0072 0.3880 0.2358 + 0.0032 42.0041
1 0.4420 + 0.0045 0.3880 0.1416 + 0.0051 68.8278
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7 Experimental Validation on Standard Image Datasets

We now apply the Poly-WGAN framework to benchmark image datasets considering image- and latent-space
matching. Akin to kernel based methods, Poly-WGAN is also affected by the curse of dimensionality (Bellman)
1957). Our aim is to develop a better understanding of the optimal discriminator in GANs and gain deeper
insights, and not necessarily to outperform state-of-the-art generative techniques such as StyleGAN (Karras
et al., [2021) or Diffusion models (Ho et all 2020). Therefore, to demonstrate the feasibility of implementing
the optimal discriminator, as opposed to designing networks in an uninformed way, we compare the RBF
discriminator against comparable latent-space learning algorithms. There are two approaches to learning
the latent-space representation in GANs — by introducing an encoder in the generator, or by introducing
an encoder in the discriminator. In the image-space setting, Poly-WGAN converges faster and outperforms
GMMN variants in terms of FID, although both variants generate images of poor visual quality. The
experiments are presented in Appendix

Latent-space encoders and GANs: Encoding networks were originally introduced in a GAN setting in
the context of adversarial autoencoders (AAEs) (Makhzani et al.l 2015)) considering the Jensen-Shannon
divergence (JSD) between the target standard Gaussian p, ~ A (0,I) and the latent distribution of data pg, .
A generalization incorporating Wasserstein costs was presented in the Wasserstein autoencoder (WAE) (Tol;
stikhin et al, 2018, where the generator also plays the role of an encoder network and the discriminator is
an IPM between pg, (the fake class) and p, (the real class). The decoder network learns a mapping from
the latent space to the image space. Training the encoder-decoder pair in WAEs is a stable alternative to
training GANs in the image space (Khayatkhoei et al., |2018; |Pinetz et al.| |2020; [Feng et al.| |2021). Tolstikhin
et al.| (2018]); [Patrini et al.| (2018)); [Kolouri et al.|(2019) and |Gong et al.| (2021) also consider kernel-based
metrics to improve computational efficiency. We compare the performance of PolyGAN approach applied
to WAE (PolyGAN-WAE) against the following baselines — WAE-GAN with the JSD based discriminator
cost (Tolstikhin et al., 2018)), the Wasserstein adversarial autoencoder with the Lipschitz penalty (WAAE-
LP) (Anonymous, 2023), WAE-MMD with RBFG and IMQ kernels (Tolstikhin et al.l |2018)), the sliced WAE
(SWAE) (Kolouri et al., 2019)), the Cramér-Wold autoencoder (CWAE) (Knop et al.,2020) and WAE with a
Fourier-series representation for the discriminator (WAEFR) (Anonymous, 2023). While WAE-GAN and
WAAE-LP have a trainable discriminator network, the other variants use kernel metrics between p, and pg,.

An alternative to encoding in the generator space, is to learn latents representations of the real and fake
images by an autoencoder discriminator architecture, as proposed in MMD-GANs by |Li et al|(2017al). The
need for adversarial training in the MMD-GAN discriminator results in less stable training in comparison
with the MMD kernel-based methods in WAE. We therefore carry out experiments on the WAE formulation
here, and provide comparisons with MMD-GAN in terms of FID and time-complexity in Appendix

7.1 Experimentation on Wasserstein Autoencoders

We consider four image datasets: MNIST, CIFAR-10, CelebA, and LSUN-Churches. The learning parameters
are identical to those reported by Knop et al.| (2020), while the network architectures are described in
Appendix We consider a 16-D latent space for MNIST, 64-D for CIFAR-10, and 128-D for CelebA and
LSUN-Churches. PolyGAN-WAE uses m = (%W in all the cases. The performance metrics considered are
Fréchet inception distance (FID) (Heusel et al., 2018), kernel inception distance (KID) (Binkowski et al.,
2018)), image sharpness (Arjovsky et al., [2017) and reconstruction error (RE). We present FID comparisons
here, while the other metrics are compared in Appendix

Figure [] presents examples of images generated by PolyGAN-WAE when decoding samples drawn from
the target latent distribution. Table [T1] presents the FID of the best case converged models. We reiterate
that, while these experiments are not designed to compete against state-of-the-art GANs, they compare
the performance of applying a network- or kernel-based discriminator agains the RBF approach. PolyGAN-
WAE outperforms the baseline WAEs in terms of FID on all datasets, with about 20% improvement on
low-dimensional data such as MNIST. All the models considered failed to generate good quality images when
trained on multi-class CIFAR-10, whereas SWAE failed to generate meaningful results on LSUN-Churches.
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Table 2: A comparison of the WAE variants including PolyGAN-WAE in terms of Fréchet inception distance
(FID). While WAE-GAN and WAAE-LP have a trainable discriminator, WAE-MMD, SWAE and CWAE
use closed-form kernel functions. PolyGAN-WAE attains the optimal discriminator in closed form, while
overcoming the instabilities of computing the Fourier-series expansions in WAEFR. PolyGAN-WAE achieves
the best (lowest) FID compared to the baseline latent-space matching variants.

WAE flavor | MNIST | CIFAR-10 | CelebA | LSUN-Churches
WAE-GAN 21.6762 123.8843 42.9431 161.3421
WAAE-LP 21.2401 110.2232 43.5090 160.4971
WAE-MMD (RBFG) 51.2025 143.7128 56.0618 160.4867
WAE-MMD (IMQ) 25.9116 106.1817 43.6560 155.9920
SWAE 28.7962 107.4853 51.0265 195.6828
CWAE 25.0545 108.4172 44.8659 170.9388
WAEFR 21.2387 100.7347 38.3044 156.2485
PolyGAN-WAE 17.2273 97.3268 34.1568 139.6939
MNIST CIFAR-10 LSUN-Churches
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Figure 6: Images generated by PolyGAN-WAE upon decoding Gaussian distributed inputs.

8 Discussion and Conclusions

Considering the LSGAN frameworks, we showed that the GAN discriminator effectively functions as a
high-dimensional interpolator involving the polyharmonic kernel. While Poly-LSGAN precisely matches the
interpolation schemes, limitations in computing the inverse of very large matrices, and singularity issues
potentially caused due to the manifold structure of images, made the approach impractical. We then extended
the formulation to the WGAN-IPM, and showed that the interpolating nature of the optimal discriminator
continues to hold. Poly-WGAN lies at the intersection between IPM based GANs and RKHS based MMD
kernel losses, where the loss constrains the discriminator to come from the semi-normed Beppo-Levi space.
Through a variational optimization, we showed that the optimal discriminator in both variants is the solution
to an iterated Laplacian PDE, involving the polyharmonic RBF. We explored implementations of the one-shot
optimal RBF discriminator and demonstrated speed up in GAN convergence, compared to both gradient-
penalty based GANs and kernel based GMMNs in terms of standard convergence metrics such as W22,
However, scaling the RBF discriminator to classify images in high-dimensional settings becomes impractical as
the number of centers required in R™ grows as n (Tavkhelidze, [2007). We therefore restricted the discriminator
to work on the latent-space distribution of the data, learnt by a Wasserstein autoencoder, which reduces
the dimensionality from O (10%) to O (10%) (cf. Section @ While this PolyGAN-WAE framework does
not outperform top-end high-resolution GAN architectures with massive compute requirements, such as
StyleGAN (Karras et al., [2019; 2020; 2021)) or vector quantized GANs (VQGAN) (Esser et al., [2021}
in terms of the image quality or FID, it does outperform alternative WAE frameworks that
deploy Cramér-Wold or sliced Wasserstein metric based losses. A key takeaway is that the proposed approach
results in superior FID and convergence performance with a closed-form optimal discriminator as opposed to
trainable discriminators or MMD based losses.
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Developing improved algorithms to compute the optimal closed-form discriminator in high-dimensional spaces
is a promising direction of research. Alternatives to the finite-sample RBF estimate, such as efficient mesh-free
sampling strategies (Iske, [2004), or numerical PDE solvers (Ho et al.l |2020; |Song et al., [2021)) could also be
employed. The curse of dimensionality encountered in scaling PolyGAN variants to high-dimensional data
could be circumvented by employing separable kernels for interpolation (Debarre et al.l [2019). Higher-order
gradient regularizers could also be incorporated into other popular GAN frameworks.
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Appendix

The Supporting Documents comprise the appendices, anonymized versions of |Anonymous| (2023) and |/Anony-
mous| (2022) for the reviewers’ reference, and the source code for PolyGANs. |Anonymous| (2023) has been
accepted for publication, conditioned on minor revisions, at Journal of Machine Learning Research|Anonymous
(2022)) has been accepted for publication at the non-archival venue INTERPOLATE: First workshop on
Interpolation Regularizers and Beyond, NeurIPS 2022 To comply with the double-blind review policy, we
provide an anonymized version of the manuscript as part of the Supplementary Material. The appendices
contain the proofs of the theorems stated in the Main Manuscript and results of additional experimentation
on synthetic Gaussians and image datasets.

A Mathematical Preliminaries

We recall results from the calculus of variations, which play an important role in the optimization of the new
GAN flavors introduced in this paper.

Consider a vector © = [x1,Z2, ... ,2,]T € R" and a function f : R® — R. The notation V" f(z) denotes the
vector of m**-order partial derivatives of f with respect to the entries of . VY is the identity operator. The
elements of V™ f are represented using the multi-index a = [a1, g, ... , ] T, as:
ol n
0% f = /s where acZl, |a= Zai,

0x{*0z3? ... 0z

where in turn Z7 is the set of n-dimensional vectors with non—negative integer entries. For example, with
n =4,m = 3, the index a = [2,0,0, 1]T yields the element 28 f(x). The square of the Ly-norm of V™ f
is given by a multidimensional sum:

i@ X (L) @) (13)

a: |a|=m

where a! = aplas! ... a,!. The iterated Laplacian, also known as the polyharmonic operator, is defined as:
1 >
A" f(x) = AA™ f(z),  where  Af(w) = V- Vf(z) = a362f< %)

is the Laplacian operator acting on f(x). Applying the multi-index notation yields the standard form of the
polyharmonic operator:

SCE () o= =@,

Calculus of Variations: Consider an integral cost £ with the integrand F dependent on f and all its
partial derivatives up to and including order ¢, given by

L(f(x),0°f;|al < ) = /X F(f(),0°f:|al < 0) da

defined on a suitable domain X over which f and its partial derivatives up to and including order ¢ are
continuously differentiable.

The optimizer f* must satisfy the Euler-Lagrange condition:

72| T ()| - "

j=1 o |a| =j f=F*
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B The Optimal Poly-LSGAN Discriminator

The proof of Theorem follows from the results in mesh-free interpolation literature (Aronszajn et al.,
1983; [Iskel, 2004} |[Fasshauer), 2007)) that deal with the generic polyharmonic spline interpolation problem. For
completeness, we provide the proof here. While the assumption may appear strong, we show that this is
implicitly satisfied by the optimal solution. Recall the discriminator optimization problem given in Eq.

N

arg min Z (D(c;) — i) + )\d/ V™ D(x)|3 dz p . (15)
b i=1 &
(ciyi)~D

To compute the functional optimum in the Calculus of Variations setting, the above cost must be cast into
an integral form. Using the Dirac delta function, we have:

N N
> (D) —w)’ = /X > (D) - yi)* oz — ;) da.
i=1 i=1

(ciyi)~D (ci,yi)~D

Then, Equation [15| can be rewritten as an integral-cost minimization:

N
arg mDin {/X ; (D(x) — 1:)° 6(x — ¢;) + \a||[ V" D(z)| 2 dm}.

(¢i,yi)~D

F(D,0%D; |al=m)

Computing the derivatives of the integrand F with respect to D and 9*D yields

0F |« o OF .
3D = 2 ; (D(x) —yi) 0(x — ¢;), and a.|z|: 0 (6(8%) = 2\4A™" D(x).
(ei:yi)~D o

Substituting the above into the Euler-Lagrange equation (Eq. gives us the partial differential equation
that the optimal discriminator D*(x) must satisfy:

=0.
D=D*(x)

N
(Z(D(w) —y:)o(x — q)) + (=1)™A\gA™ D ()

i=1
While the above condition is applicable for a strong solution, a weak solution to D(x) satisfies:

N
/X <<Z(D(w) —yi)o(x — ci)> + (1)m>\dAmD(w)> n(x) da

=1

D=D*(x)

where n(x) is any test function drawn from the family of compactly-supported infinitely-differentiable
functions. |Aronszajn et al| (1983), an authoritative resource on polyharmonic functions, has shown that,
functions of the form

Fo) = 3 wign (o — al) + Plaso), where pu(lzl)={ 121" for k=13, g
= Wi —C y V), wher . = X
oy T o lzlFIn(ell) for k=24,
(¢iyi)~D

satisfy the polyharmonic PDE:

N
A" f(x) = Crwid(x — c;),
i=1
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where P(x;v) € P, is the (m — 1) order polynomial parametrized by the coefficients v € R”, where:
m—1
- n+fl—1\ (n+m-—1
()=

For example, with m = 2, we have P(x;v) = (v, x) + vo; v = {ZO] € R"*!. Substituting the above back
1
into Equation , we get

N
/ <Z ((D(=) = yi) + (1) AaCrw;) 6(x — Ci)) n(x) de =0
X \i=1 D=D*(x)
N
= > ((D(e:) = ) + (=)™ AaCrwy) n(es) =0
i=1 D=D* ()

Since the above condition must hold for all possible test functions 1, we have:
D) —yi+ ()" AaChw; =0 Vi=1,2,---N,

where D* is given by Equation . Substituting for D* and stacking for all ¢ gives the following condition
that the weights and polynomial coefficients satisfy:

(A + (—1)"‘)\de1) w+ Bv = vy, (18)
where [A]'L] :wk(ch_C]H), w = [U}l,U}g,...ﬂUN]T, Yy = [y15y27"' 7yN]Ta
1 1 ... 1 71°¢
ci co CN
B = . ) ) .|, and v = [vg,v1,v0,...,01]".
c’in—l c;n—l L. Cx_l

The matrix B corresponds to a Vandermonde matrix when n = 1. The above system of equations has a
unique solution when the kernel matrix A is invertible and B is full column-rank. Matrix A is invertible if
the set of real/fake centers are unique, and the kernel order 2m — n is positive. On the other hand, matrix
B is full rank if the set of centers {¢;} are linearly independent, and more specifically, do not lie on any
subspace of R™ (Iskel [2004). The above system of linear equations only provides us with the conditions on
the weights and coefficients that the discriminator radial basis function expansion satisfies. In order to derive
the optimal discriminator, the one that minimizes the discriminator loss, we substitute the RBF form of the
discriminator into Equation and solve for the weights and polynomial coefficients.

To derive the second condition present in Equation (|5)), we first consider deriving the higher-order gradient
penalty in terms of the optimal RBF discriminator D*. Consider the inner-product space associated with the
higher-order gradient (the Beppo-Levi space BL™?), given by (Aronszajn et al., [1983):

)= [ (0 () da = [ ang) do
where the second inequality is via integration by parts. For any function D* of the form given in Equation :
N N
(D*,D*) =(-1)™ | D*(x) (Z Crw;0(x — cl)> de = (-1)"C} szD*(Cz)
R™ = i=1

Substituting for D* from Equation gives:

N N
/R IV™D*||3 dz = (D*, D*) = (-1)"C Y _ | wi | Y witn(llej — il]) + [Bul;
" i=1 i=1
(Cj,]yj)ND
= (-1)"CrwT Aw, (19)
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where the second equality holds as a result of Equation Substituting in D* and Equation [19]into the
optimization problem in Equation |15] yields:

N

argmin ¢ > (Dled) ~ )+ [ |97 D(@)]} da
i=1 X
(ci,y:)~D
= arg min { |Aw + Bv — y||2 + \Crw™ Aw } (20)

F(w,v)
Minimizing the cost function in Equation with respect to w and v yields:

S—F:2AT(Aw+Bv—y+2Ad0kw):O, and Z—F:2BT(Aw+Bv—y):O
w v

=BTw =0, (21)

which gives us the second necessary condition that the optimal weights and polynomial coefficients must satisfy.
Equation (21]) ensure that the solution obtained is such that the sum of the unbounded polyharmonic kernels
vanishes as @ tends to infinity. Essentially, in regions close to the centers ¢;, there is a large contribution in
D*(x) from the kernel function, and when far away from the centers, the polynomial has a large contribution
in D*(x) . This ensures that the the discriminator obtained by solving the system of equations does not
grow to infinity. This completes the proof of Theorem [3.1

C Optimality of Poly-WGAN

In this appendix, we present the proofs of theorems associated with the optimality of Poly-WGAN, and
derive bounds for the optimal Lagrange multiplier of the regularized Poly-WGAN cost.

C.1 Constants in the Fundamental Solution

Theorem contains a constant ¢ that is a function of m and n. The exact expression for the constant is
provided here. Consider the fundamental solution A™ gts,, () = §(x), where the polyharmonic radial
basis function is given by

||l ?>m—", if 2m—n <0 or nis odd,

llz|>™="In(||z|), if 2m —n >0 and n is even.

1/)2m—n (.’I}) = {

The value of g is given by (Aronszajn et al.| |1983]):

22-2m re-
2-7) , form=1,2,3,..., and n is odd,
(m—D!IT(m+1-71)
2272m _ —1)!
(—1)(7"’1)(m 1)'(7( ml)')’ form=1,2,3,...,(t —2) and n > 4 is even,
- (r=1)!
0= 92-2m .
(_1)(m71)!(772)!(m77)!’ form=(r—1),7,... and n > 4 is even,
21—m 2
_— , form=1,2,3,..., and n = 2,
(m—1)!

n
where 7 = 5 and I'(z) is the Gamma function given in terms of the factorial expression as I'(z) = (z — 1)!

for integer z, and by the improper integral I'(z) = / z*"te™ dx, Re(z) > 0, for z € C. As shown in the

0
subsequent sections, the exact value of ¢ turns out to be inconsequential for the optimal discriminator D*(x)
as its effect gets nullified by the optimal Lagrange parameter \}.
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C.2 Optimal Lagrange Multiplier

The optimal Lagrange multiplier A} can be computed by enforcing the gradient constraint 2p on the optimal
discriminator:

Qp - / |V D* () de = KX, (22)
X

where |X'| denotes the volume of the domain &X', and D*(z) = D} (x)+ P(z), where in turn P(x) € Py, _;(z) is
an (m—1)-degree polynomial, and Dy () is the particular solution. We have 9*P(z) = 0, V «, such that |a| =
m. Hence, we only consider Dy (z) in the subsequent analysis. Without loss of generality, assume that n is
odd. The analysis is similar for the case when n is even.

First, consider the radially symmetric function p(x) = Qol|z||*, where |Qo| < 1 is a zeroth-degree polynomial
(a constant), whose magnitude is bounded by 1. For multi-index a, we have

9%p(x) = 0% Qol|z|* = Qo ()| *~2I,
where Q|q|(k) is a |a|-degree polynomial in & consisting of at most nl®l terms, with the coefficient of each

term bounded by (|k| + 1)(Jk| +3) ... (|k| + 2|a] — 1). |Aronszajn et al.|(1983) showed that, when &k = 2m —n
and |a| = m, the following simplified bound holds:

T (2m + ntl o
( . )Hw\l : (23)

aaw2m—n< 2™
el < (o

Consider the integral form of the particular solution:

(-1

Dy(x) = 5%
d

P

/ )~ nalw) (=) dy.

Computing the a'” partial derivative with respect to x gives

o Ty _ (_1)m+19 fe 2m—n
02 Dy(x) = —5— pe(y)Og |z — y| dy —
2)‘d yeX

Pa(¥)o |z — gl dy) .
yex

Squaring on both sides yields:

2 2
* 2 g m—
;@) = () ([ uto) - patw) o2~ i ay)
d yex
252 2
<S5 ([ 0w - patw) e - vl ay)
d yex
)T (2m + i _pyme
where € = ( n)r ( ( _'_mn_-:-—l)Q ) and £ = ( )2 © and the inequality is a consequence of Eq. (23). A similar
OTES
2

analysis can be carried out for the case when n is even. In general, we have

(((pg = pa) * ¥-n) (@),

(02D (x))? <

where 1) is as defined in Section of the Main Manuscript. The square of the Lo-norm of V™ Dy (z) can be
bounded as follows:

(g — pa) ¥ ) @) 3 =

o!

VD@ = 3 o G2y’ < M

la]=m la|=m
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Substituting the above into Eq. 7 we obtain:

2= [ 19D @iae < 55 S (L) [ pa e oo @) a

d a
lae|=m
—_———

Se

Rearranging the terms and simplifying gives us an upper bound on the square of \}:

L2 omle?€28,

S TRl X(((pg—pd)*wm (z))* da. (24)

Practical Implementation: While Eq. gives a theoretical bound on A}, the integral, which in turn
involves a convolution integral, cannot be computed practically. We therefore replace it with a feasible
alternative, A} based on sample approximations. Replacing the integral over  with a sample estimate yields:

s ! 2 2

where |X| = M. Simplifying the convolutions similar to the approach used in Section of the Main
Manuscript, we obtain:

~*2 m'€2§2

A < KMJ”Z wmps [V-n(@e = Y)] = Eyrpy [ n(@e = 9)])°

Replacing the expectations with their N-sample estimates could be used as an estimate of the upper bound:

2
M

T2 m! 6262504 a N
Ay < KN2MZ Z Yon(xe —€i) — Z Von(®e—¢j) | (25)

£=1 \ci~pg;i=1 cj~pd; j=1
where ¢; and ¢; are drawn from p, and pq, respectively.

The sign of \): The choice of the sign on 5\2 is determined by the optimization problem. While the solution
to the Euler-Lagrange equation gives an extremum, whether it is a maximizer or a minimizer must be
ascertained based on the second variation of the cost, which is derived below.

Before proceeding further, we recapitulate the second variation of an integral cost. Consider the cost:
£(f.0°Filel <8 = [ F(f(@).0°filal < B)da (26)

Let f*(x) denote the optimizer of the cost. Consider the perturbations f(x) = f*(x) + en(x), characterized
by n(x) drawn from the family of compactly supported and infinitely differentiable functions. Then, the
second-order Taylor-series approximation of g(e) = L (f(x)) = L (f*(x) + en(x)) is given by

o(6) = L7 (@) + en(a))
= £(F* () + €OL(*m) + 56 L),

where OL(-) and 92L(-) denote the first variation and second variation of £, respectively, and can be evaluated
through the scalar optimization problems (Gelfand & Fomin, (1964):

oc( (@) =g = 5 ana
L (@) = g0 = T
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respectively. Evaluating 0L(f*(x)) corresponding to Eq. and setting it equal to zero yields the Euler-
Lagrange condition (first-order necessary condition) that the optimizer f* must satisfy (cf. Eq. ,
Main Manuscript). The second-order Legendre condition for f*(x) to be a minimizer of the cost L is
g"(0) > 0 (Gelfand & Fomin), [1964)).

We now derive the sign of the optimal Lagrange multiplier. Recall the discriminator cost:

£o= [ D@ (y(w) = pal@) + A (19" Dia) [ = 1) do.
The scalar function associated with the above cost is

gp(€) = /X (D" (@) + en(=)) (py (@) — pa(x)) + Aa (V™ (D*(2) + en()) |3 — 1)) da

— [ @@+ @) oo@ -pa@y 2 X (B @ (0 @)+ enfe)) - 2a | da

a: |a|l=m
Differentiating with respect to € yields

ool = o X((D*<w>+en<x>><pg<w>pd<w>>+Ad > () e (D*<w>+en<w>>>2xd> .

[e
lee|=m

- /X <n<m> (9o (@) — pa()) + 20 z < ) (0% (D* (@) + en(=))) (5‘“n(w))>dw-
\a\

The second variation can be obtained by differentiating the above with respect to € and equating it to zero.
The second derivative of the scalar function g is given by

dpte) = geante) =2 [ 3 () oo (K ) o) o

|a|_m

—on [ )y (Z,’) (0°n())? du

|e|=m

— 2 / V™ ()|2 da.
X

The Legendre condition for D*(z) to be a minimizer of £p is then given by

g(0) = 27y /X V()2 dz > 0,

which must be true for all compactly supported, infinitely differentiable functions n(x). Therefore, we have
Ay > 0. The following bound holds on the sample estimate of the optimal Lagrange multiplier given in

Eq. :

2

[V

M N

V (m!)Sa
0 < /\ (xe — ¢;) _n(xp — . 27
- i1 =1
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One could consider the right-hand side of the above inequality as the worst case bound on 5\2 Substituting
for A in Dy (x) yields

> Vomn(@—ci) = Y tamon(T—c))

- EMK? cimpy cimpa
Ppl@) = (as(m!sa)%) " 2
DD vnl@e—c) = D vl —cj)
=1 \ci~pgy Cj~Pd
_ (sgn({)MId) Spg — Spa
B s(m!Sa)% o 2’
S von@e—c) = > von(@e—c))
=1 \ci~py cj~pa

where sgn(-) denotes the signum function. This gives a closed-form solution to the polyharmonic PDE.
However, in practice, from experiments on synthetic Gaussian learning presented in Section [6] of the Main
Manuscript, we observe that 5\2 can be ignored, and its effect can be accounted for by the choice of the
learning rate of the generator optimizer.

C.3 Optimal Generator Distribution

We now present the derivation of the optimal generator distribution, given the optimal discriminator. The
derivation is along the same lines as presented by /Anonymous| (2023). Consider the Lagrangian of the
generator loss, described in Section of the Main Manuscript:

La z/XD*(ac) (pa() —py () +(Np+ptp () pg(x)dx — N,

Since the integral cost in turn involves a convolution integral, the Euler-Lagrange condition cannot be applied
readily. Instead, the optimum must be obtained from first principles. Let pj (x) be the optimal solution.
Consider the perturbed version py(x) = pj(x) + en(x), where n(z) is drawn from a family of compactly
supported, absolutely integrable, infinitely differentiable functions that vanish on the boundary of X. The
corresponding perturbed loss is given by

La.e(pg) = La(py(x) + en(x))
= [ (@) (ut@) = () = (@) + Oy + 1) () = en(@))) da .
where D¥(x) is the optimal discriminator corresponding to the perturbed generator and is given by

D () = fd ((pa— 7%, — en) * o) (@) + P(x).

The derivatives of L¢ .and D} (z) with respect to € are given by

o [ (P ) - pyte) - ) + O+ (@) - D)) ) d, and

dDg(z) ¢
de - )\2 (77 * 7/)2m—n) (:13),
respectively. The first variation of the loss L, denoted by dL¢, is given by 0L = dflf‘ N For the loss

at hand, the first variation is given by

OLq = f:i/(n * Yom—n)(X) (pd(az) —pZ(:c))da:—i— (/\p + pp(x) + £ ((pd — p;) * wgm,n) (w)—P(w)) n(x)dx.

Pt Ad

To

30



Under review as submission to TMLR

Consider the term

_ £

To =
d JxeXx

/ 1)o@~ 9) (na(a) ~ pi(@)) dy da

with the convolution integral expanded. Swapping the order of integration requires absolutely integrability
over the domain of interest X'. Assume pg and p, to be compactly supported, i.e., X' is compact. This is a
reasonable assumption even in practice because the data always has a finite dynamic range, pixel intensities of
images, for instance. The family of perturbations n(x) is assumed to be compactly supported and absolutely
integrable over X. It remains to show that the fundamental solution r(x) is finite-valued over X'. Consider
the case when 2m —n > 0. Then, r(x) is absolutely integrable over X for odd n. When n is even, we consider
the following approximation (Fasshauer, 2007} [Iske, [2004)):

|2t for || <1,

lz*™ =" (flz)) for ||z > 1,

][~ In(]]) ~ {

which overcomes the singularity of In(||x||) at the origin. With this approximation, r(x) becomes finite. By
Fubini’s theorem, the order of integration can be swapped resulting in

TO - )21/1;62( »/cceX n(y) me—n(m - y) (pd(:c) —p;(.’l))) de dy

Owing to radial symmetry of r, we write

To= f?i/yex n(y) /%X Vom—n(y — ) (pa(z) — pj(x)) dz dy,
- % n(Y) ((pa — ;) * Y2m-—n) (y) dy.
d Jyex

For the case when 2m — n < 0, the above analysis holds on X' — By 5, where Bg s represents a ball of radius ¢
centered around the origin (which is where the singularity is). Substituting Ty back into 0Lq yields

0c= [ (b iple) + 5 (3= 03) #2000 @) = Plo) ) n(aite
=0,

where the second equality is due to the fact that, when ¢ = 0, p, = pj;, which implies that 0Lg = 0. By the
Fundamental Lemma of Calculus of Variations (Gelfand & Fomin, [1964), we have

Ap + pip(x) + )\2 ((pd - p;) * ¢2m_n) (x) — P(x) =0.

Rearranging terms, we get

*

(9 Yo ) () = (P * ) () + (A;) (A + 1pla) — P(a)) (28)

In order to “deconvolve” the effect of r(x) on Py, we take advantage of the following property of the
polyharmonic operator: A™r(x) = é(x). Applying A™ to both sides of Eq. yields:

*

P2 (@) = pale) + (A;) A™ (), (20)

where A™P(x) = 0, since P(x) is an (m — 1)-degree polynomial. This implies that the optimal generator
distribution p; is independent of the choice of the homogeneous component P(x) € Py, _;(x). The solution is
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also independent of \,. We now focus our attention on computing ,u;(m). Applying the integral constraint
Qp on py(x) gives

[ i@ de = [ pata) + () Ami@) do =1,
= /X A", (z) de = 0. (30)

The non-negativity constraint implies that p,(x) <0, V & € X. Further, from the complementary slackness
condition, we have

*

(@) Pl (@) = i () pal) + (A;) (@) A ) = O, (31)

for all x € X. Two scenarios arise: (a) pa(x) = 0; and (b) pa(x) > 0. The solutions py(x) that satisfy the
conditions in Equations and are:

py(x) =0, Ve e X, or

() = 0, V @ such that py(x) > 0,
Hp\®) = Q(z) € P_,(x), V @ such that py(x) =0,

where Q(x) must be a non-positive polynomial of degree m — 1, i.e., Q(x) < 0V x, such that py(x) = 0. In
either case, p;(x) = pa(x), i.e., the optimal generator distribution that minimizes the chosen cost subject
to non-negativity and integral constraints is indeed the data distribution. This completes the proof of
Theorem [£.21

C.4 Sample Estimate of the Optimal Discriminator

Consider the closed-form optimal discriminator given in Equation @:

(=1)mtlg

D*(z) =
»(@) 20"

((pg - pd) * 1/)2m—n) (w)

Without loss of generality, we assume that n is odd. From the definition of the convolution, we have
(=1)"* o m—n
> (Pg(y) = pa(y)) llz — y[I*™ ™" dy
2X% x

_ fd(EN [l — l2™"] = Eyops [llz — y?™"] )

Dy (x) =

_qymA1
where £ = (1)#9’ The expectations can be replaced with N-sample estimates as follows:

* _ 5 _ a|12m—n __ 5 A 12m—n
D) =y | 2 el = op 3 e el )

Ci~DPg Cj~Pd

where D} is a polyharmonic RBF expansion. A similar analysis could be carried out for even n, and the
corresponding discriminators is:

Yo lle—elP (e —el) = D llz - el (2 - ¢)

Ci~Pg Cj~Ppd
The generic form for D; is given by The generic form for D; is given by

Dy(@) = 5o ( T vanonle—e) = ¥ dancnlo—cy)) (32)

Ci~Pg Cj~Pd

which completes the proof of Theorem [£.3]
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C.5 Practical considerations

In this appendix, we discuss additional practical considerations in implementing the polyharmonic RBF
discriminator. In particular, we discuss the choice of the homogeneous component P(x) and the gradient
order m.

Issues with the Homogeneous Component: The polynomial term P(x) in the PolyGAN discriminator
represents the homogeneous component of the solution. While in Poly-LSGAN, the coefficients can be
computed via matrix inversion, in Poly-WGAN, boundary conditions must be defined to determine the
optimal values of the coefficients. In either case, as discussed in Section the number of coefficients grows
exponentially with both the data dimension and the gradient order, which makes it impractical to incorporate
the homogeneous component in the solution. We argue that dropping the homogeneous component does not
significantly impact the gradient-descent optimization. The justification is as follows. The result provided in
Theorem shows that the optimal generator is independent of the homogeneous component. As far as
gradient-descent is concerned, ignoring the homogeneous component is not too detrimental to the optimization.
Consider the generator optimization in practice, given the empirical loss:

La(0) = AZJffM > > Yom-n(Go(zk) — i) = > Yom-n(Go(zr) — ;) + P(Go(z1)) | |

zp~pz(z) \Ci~Pg c;j~pd

obtained by simplifying Equation , considering only those terms that involve the generator Gy, parameter-
ized by 6. Updating the generator parameters §; — 04,1 through first-order methods such as gradient-descent
involve locally linear approximation of the loss surface L& about the point of interest 8; giving rise to the
update 0;41 = 6, + TV@/jg(Ht), where Vgﬁg(@t) denotes the gradient of the loss evaluated at 8 = 6, and 7 is
the learning rate parameter. The gradient of the loss involves the derivatives of the kernel 9,,%om—n(x — -),
and the polynomial 9., P(x). Given a gradient direction associated with the particular solution, the gradient
of the homogeneous component serves as a correction term, the effect of which can be neglected when the
learning rate 7 is small. As iterations progress and the optimization converges, the effect of the polynomial
term in the discriminator diminishes as the optimal WGAN discriminator is a constant function (Arjovsky
et al 2017). In view of the above considerations, we do not incorporate the the homogeneous component
P(x) in the Poly-WGAN discriminator.

Choice of the Gradient Order: For 2m —n > 0, the RBFs {¢)2,,—n(® — ¢¢) } increase with &, which might
result in large gradients particularly in the initial phases of training when p, is away from p4. On the other
hand, if 2m —n < 0, Yam—n(x — ¢¢) has a singularity at & = ¢y, which could result in convergence issues
in the later stages of training. Experimental results in support of this claim are presented in Section [6.2]
Though these observations were empirical, they can also be explained through the Sobolev embeddings
into continuous spaces. It is known that functions in the Lo-normed Sobolev spaces of order m, W2
will be Hélder continuous, i.e., f € C®< such that |f(z) — f(y)| = R||z — y||*, where R,a > 0, and
R+ a=m — 5 (Stein, [1970). If the discriminator has its mt" order derivatives bounded in Lp-norm and
m > %, then the discriminator will be continuous. Additionally, for a = 1, we get Lipschitz discriminators.
For an in-depth analysis on the embedding of Beppo-Levi spaces in Holder-Zygmund spaces, the reader is
referred to Beatson et al. (2005). In a similar vein, the relationship between Sobolev embeddings of the
discriminator and generator in Sobolev GANs was explored by |Liang (2021)).

D Implementation Details

In this section, we provide details regarding the network architectures and training parameters associated
with the experiments reported, and the Poly-LSGAN, Poly-WGAN and PolyGAN-WAE training algorithms.

D.1 Network Architectures

Tables describe the network architectures, a summary of which is given below.

2-D Gaussians and GMMs: The generator accepts 100-D standard Gaussian data as input. The network
consists of three fully connected layers, with 64, 32, and 16 nodes. The activation in each layer is ReLU. The
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output layer consists of two nodes. The discriminator is also a three-layer fully connected ReLU network with
10, 20, and 5 nodes, in order. The discriminator outputs a 1-D prediction. Table [3|depicts these architectures.

n-D Gaussians: In order to simulate DCGAN (Radford et al., 2016) based image generation, we use a
convolutional neural network for the generator as shown in Table[d The 100-dimensional Gaussian data is
input to a fully connected layer with 32 x 32 x 3 = 3072 nodes and subsequently reshaped to 32 x 32 x 3, and
provided as input to five convolution layers. Each convolution filter is of size 4 X 4 and a stride of two resulting
in a downsampling of the input by a factor of two. All convolution layers include batch normalization (ILoffe
& Szegedyl |2015). The discriminator is a four-layer fully-connected network with 512, 256, 64 and 32 nodes.

Autoencoder architecture: For the MNIST learning task, as shown in Table [5) we consider a 4-layer fully
connected network with leaky ReLLU activation for the encoder with 784, 256, 128 and 64 nodes in the first,
second, third, and fourth layers, respectively. The decoder has a similar architecture but exactly in the reverse
order. For CIFAR-10 and CelebA learning, the convolutional autoencoder architectures based on DCGAN
are used as shown in Tables [ and [} For LSUN-Churches, we consider a convolutional ResNet architecture.
As shown in Table [§] the encoder consists of four ResNet convolution layers with both batch and spectral
normalization (Roth et al. [2019). The decoder similarly consists of ResNet deconvolution layers. The CelebA
and LSUN-Churches images are center-cropped and resized to 64 x 64 x 3 using built-in bilinear interpolation.
We employ the ResNet based BigGAN architecture (Tolstikhin et al., [2018) from Table [§] for high-resolution
(192 x 192) experiments on CelebA, presented in Appendix In experiments involving the Wasserstein
autoencoder with a discriminator network, the discriminator uses the standard DCGAN architecture.

Table 3: GAN architectural details for 2-D Gaussian and Gaussian mixture learning tasks.

| Layer | Batch Norm  Activation | Output size
Input - - (100,1)
3| Dense 1 X ReLU (64,1)
5| Dense 2 X ReLU (32,1)
3| Dense 3 X ReLU (16,1)
Output X none (2,1)
5| Input - - (2,1)
2| Dense1l X ReLU (10,1)
£| Dense 2 X ReLU (20,1)
2| Dense 3 X ReLU (5,1)
Output X none (1,1)
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Table 4: GAN architectural details for n-dimensional Gaussian learning tasks.

Layer Batch Filters (Size, Stride)  Activation Output size
Norm
Input - - - - (100,1)
Dense 1 X - - leaky ReLU | (32 x 32 x 3,1)
~| Reshape - - - - (32,32,3)
£l Conv2D 1 v 1024 (4, 2) leaky ReLU | (16,16,1024)
g Conv2D 2 v 256 (4, 2) leaky ReLU (8,8,256)
G| Conv2D 3 v 128 (4, 2) leaky ReLU (4,4,128)
Conv2D 4 v 128 (4, 2) leaky ReLU (2,2,128)
Conv2D 5 v n (4, 2) leaky ReLU (1,1,n)
Flatten - - - - (n,1)
5 Input - - - - (n,1)
%l Dense 1 X - - leaky ReLU (512,1)
g Dense 2 X - - leaky ReLU (256,1)
E|  Dense 3 X - - leaky ReLU (64,1)
& Dense 4 X - - none (32,1)
A Output X - - none (1,1)

Table 5: Autoencoder architectural details for learning MNIST with a 11-D latent space.

‘ Layer ‘ Batch Norm Activation ‘ Output size
Input - - (28,28,1)
.| Flatten - - (784,1)
2| Dense 1 v leaky ReLU (512,1)
3| Dense 2 v leaky ReLU (256,1)
S| Dense 3 v leaky ReLU (128,1)
Dense 4 4 leaky ReLU (64,1)
Output X none (11,1)
Input - - (11,1)
5 Dense 1 4 leaky ReLU (64,1)
2| Dense 2 v leaky ReLU (128,1)
§ Dense 3 v leaky ReLU (256,1)
A| Dense 4 v leaky ReLU (784,1)
Reshape - - (28,28,1)
Activation - tanh (28,28,1)
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Table 6: Autoencoder architectural details for learning CIFAR-10 with a 64-D latent space.

Layer Batch Filters (Size, Stride)  Activation Output size
Norm
Input - - - - (32,32,3)

| ConvaD 1 v 128 (4, 2) leaky ReLU | (16,16,128)

2| Conv2D 2 v 256 (4, 2) leaky ReLU (8,8,256)

S| ConveD 3 v 512 (4, 2) leaky ReLU (4,4,512)

S| Conv2D 4 v 1024 (4, 2) leaky ReLU (2,2,1024)
Flatten - _ - _ (2% 2% 1024,1)
Dense 1 X - - none (64,1)

Input - - - - (64,1)
Dense 1 X - - none (4x4x1024,1)

_@ Reshape - - - - (4,4,1024)

§ Deconv2D 1 v 512 (4, 2) leaky ReLU (8,8,512)

A| Deconv2D 2 v 256 (4, 2) leaky ReLU (16,16,256)

Deconv2D 3 v 128 (4, 2) leaky ReLU | (32,32,128)
Deconv2D 4 X 3 4, 1) tanh (32,32,3)

Table 7: Autoencoder architectural details for learning 64-D CelebA with a 128-D latent space.

Layer Batch Filters (Size, Stride)  Activation Output size
Norm
Input - - - - (64,64,3)

| ComvaD 1 v 128 (4, 2) leaky ReLU | (32,32,128)

&l Conv2D 2 v 256 (4, 2) leaky ReLU | (16,16,256)

gl ConvD 3 v 512 (4, 2) leaky ReLU (8,8,512)

S| ConveD 4 v 1024 (4, 2) leaky ReLU | (4,4,1024)
Flatten - - - - (4x4x1024,1)
Dense 1 X - - none (128,1)

Input - - - - (128,1)
Dense 1 v - - none (8x8x1024,1)

g Reshape - - - - (8,8,1024)

S| Deconv2D 1 v 512 (4, 2) leaky ReLU | (16,16,512)

A| Deconv2D 2 v 256 (4, 2) leaky ReLU (32,32,256)

Deconv2D 3 v 128 4, 2) leaky ReLU (64,64,128)
Deconv2D 4 X 3 4, 1) tanh (64,64,3)
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Table 8: Autoencoder architectural details for learning 64-D LSUN-Churches with a 128-D latent space.

Layer Spectral Filters Activation Output size
Norm
Input - - - (64,64,3)
ResBlock Down 1 v 128 leaky ReLU (32,32,128)
5| ResBlock Down 2 v 256 leaky ReLLU (16,16,256)
2| ResBlock Down 3 v 512 leaky ReLU (8,8,512)
=| ResBlock Down 4 v 1024  leaky ReLU (4,4,1024)
= Flatten - - - (4x4x1024,1)
Dense 1 X - leaky ReLU (128,1)
Dense 2 X - none (128,1)
Input - - - (128,1)
Dense 1 X - none (4x4x1024,1)
) Reshape - - - (4,4,1024)
2| ResBlock Up 1 v 512 leaky ReLU (8,8,512)
2| ResBlock Up 2 v 256 leaky ReLU (16,16,256)
2l ResBlock Up 3 v 128 leaky ReLU | (32,32,128)
ResBlock Up 4 v 64 leaky ReLU (64,64,64)
Conv2D X 3 tanh (64,64,3)
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D.2 Training Specifications

System Specifications: The codes for both PolyGANs are written in Tensorflow 2.0 (Abadi et al.; [2016).
All experiments were conducted on workstations with one of two configurations: (I) 256 GB of system RAM
and 2xNVIDIA GTX 3090 GPUs with 24 GB of VRAM; or (II) 512 GB of system RAM and 8xNVIDIA
Tesla V100 GPUs with 32 GB of VRAM.

Experiments on 2-D Gaussians with Poly-LSGAN: On the unimodal learning task, the target is
N (515, 1.5l5), where 15 is the 2-D vector of ones, and I is the 2 x 2 identity matrix. On the GMM learning
task, we consider eight components distributed uniformly about the unit circle, each having a standard
deviation of 0.02.

On the unimodal Gaussian learning task, the generator is a single layer affine transformation of the noise
z € R?, given by = Mz + b, while on the GMM task, it is a three-layer neural network with Leaky ReLU
activations. The discriminator in baseline LSGANSs variants is a three-layer neural network with Leaky ReLU
activation in both the Gaussian and GMM learning tasks. Poly-LSGAN employs the RBF discriminator
while weights are computed by solving the system of equation given in Equation , while in Poly-WGAN
the weights are constant across all iterations. The networks are trained using the Adam optimizer (Kingma,
& Bay, |2015) with a learning rate of ny = 0.002 for the generator and 7g = 0.0075 for the discriminator. A
batch size of 500 is employed.

Experiments on 2-D Gaussians with Poly-WGAN: The experimental setup is as follows. In the
unimodal Gaussian learning task, the target distribution is A(3.519,1.25I5). For the multimodal learning
task, we consider an 8-component Gaussian mixture model (GMM), with components having standard
deviation equal to 0.02, identical to the Poly-LSGAN case.

The generators and discriminators in the baselines are three-layer neural networks with Leaky ReLLU activation.
The noise z is 100-dimensional. Poly-WGAN employs the RBF discriminator whereas the other models
use a discriminator network. All models use the ADAM optimizer (Kingma & Baj |2015) with a learning
rate of ny = 0.002 for the generator network. The learning rate for the baseline discriminator networks is
1nq = 0.0075. The batch size employed is 500.

Experiments on Image-space Learning: On image learning tasks, we employ the DCGAN (Radford
et al., 2016|) generator, trained using the Adam optimizer. The batch size is set to 100. The generator
learning rate is set to ng, = 10~*. The discriminator is the polyharmonic RBF with a gradient penalty of
order m = [2£L].

Experiments on PolyGAN-WAE: On MNIST, we consider a 4-layer dense-ReLLU architecture for the
encoder, whereas on CIFAR-10 and CelebA, we use the DCGAN model. For LSUN-Churches, we consider a
ResNet based encoder model with spectral normalization (Miyato et al., |2018]). The decoder is an inversion of
the encoder layers in all cases. We used the published TensorFlow implementations of SWAE (Kolouri et al.|
2019) and CWAE (Knop et al., |2020)), and the published PyTorch implementations of MMD-GAN (Li et al.,
2017a) and MMD-GAN-GP (Binkowski et al.| 2018), while other GAN and GMMN variants were coded anew.
The learning rates for all MMD variants follow the specifications provided by [Knop et al.| (2020), while the
learning rates for WAE-GAN and WAAE-LP follow those used by (Tolstikhin et al.|(2018). The WAE models
with a trainable discriminator fail to converge for higher learning rates, and consequently, the WAE-MMD
variants are an order (in terms of number of iterations) faster than the WAE-GAN variants.

D.3 Evaluation Metrics

Wasserstein-2 distance: We use the Wasserstein-2 (WW??2) distance between the generator and target
distributions to quantify the performance in Gaussian learning (Section [6] of the main manuscript). Given
two Gaussians pg = N (4, Xq) and pg = N (pg, X,), the Wasserstein-2 distance between them is given by

W22(pa, py) = ll1a = g + Tr (Sa + 3 — 2V/E5, )
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where Tr(-) denotes the trace operator and the matrix square-root is computed via singular-value decomposition.
In the case of Gaussian mixture data, W2 (pg, Pg) is computed using a sample estimate provided by the
python optimal transport library (Flamary et al., [2021)).

Fréchet Inception distance (FID): Proposed by [Heusel et al.| (2018), the FID is used to quantify how
realistic the samples generated by GANs are. To compute FID, we consider the InceptionV3 (Szegedy et al.|
2015) model without the topmost layer, loaded with pre-trained ImageNet (Deng et al., 2009) classification
weights. The network accepts inputs ranging from 75 x 75 x 3 to 299 x 299 x 3. We therefore rescale all
images to 299 x 299 x 3. Grayscale images are duplicated across the color channels. FID is computed as the
W?22 between the InceptionV3 embeddings of real and fake images. The means and covariances are computed
using 10,000 samples. The publicly available TensorFlow based Clean-FID library (Parmar et al., 2021)) is
used to compute FID.

Kernel Inception distance (KID): Proposed by [Bintkowski et al.| (2018)), the kernel inception distance is
an unbiased alternative to FID. The KID computes the squared MMD between the InceptionV3 embeddings,
akin to the FID framework. The polynomial kernel (%a}Ty + 1)3 is computed over batches of 5000 samples.
In the interest of reproducibility, we use the publicly available Clean-FID (Parmar et al.l 2021)) library
implementation of KID.

Average reconstruction error ((RE)): The WAE autoencoders are trained using the ¢; loss between the
true samples @ ~ pg and their reconstructions & = Dec(Enc(x)), given by L4 = ||& — &||;. On the MNIST,
CIFAR-10, and LSUN-Churches datasets, (RE) is computed by averaging £4x over 10* samples drawn from
the predefined Test sets, whereas on CelebA, a held-out validation set of 10* images is used.

Image sharpness: We employ the approach proposed by |Tolstikhin et al.[(2018]) to compute image sharpness.
The edge-map is obtained using the Laplacian operator. The variance in pixel intensities on the edge-map is
computed and averaged over batches of 50,000 images to determine the average sharpness.

D.4 Training Algorithm

The PolyGAN implementations uses a radial basis function (RBF) network as the discriminator. The RBF is
implemented as a custom layer in Tensorflow 2.0 (Abadi et all 2016]). The network weights and centers are
computed out-of-the-loop at each step of the training and updated, resulting in the optimal discriminator
at each iteration. The output of the RBF discriminator network is used to train the generator through
gradient-descent.

Algorithm [I]summarizes the training procedure of Poly-LSGAN, wherein the weights are polynomial coefficients
are computed through matrix inversion, adding additional compute overhead. Algorithm [2] presents the
Poly-WGAN training procedure, wherein the weights associated with all centers are identical, as given in
Equation . Additionally, as discussed in Appendix the polynomial component can be ignored,
allowing for fewer computations. Algorithm [3| summarizes the PolyGAN-WAE training framework, where an
autoencoder is used to learn the latent-space representations of the data, on which the Poly-WGAN algorithm
is applied.

D.5 Source Code

The source code for the TensorFlow 2.0 (Abadi et al.| [2016)) implementation of PolyGAN and high-resolution
counterparts of the images presented in the paper will be made available on GitHub as part of the camera-ready
submission of the manuscript. For the review process, anonymized source code has been attached as a
PolyGANs.zip folder in the Supplementary Material
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Algorithm 1: Poly-LSGAN — LSGAN with a trainable generator and radial basis function (RBF) discrimi-
nator and solvable RBF weights.

Input: Training data x ~ pg, Gaussian prior distribution p, = M(uz, X2)

Parameters: Batch size M, optimizer learning rate 7, number of radial basis function (RBF) centers N
Models: Generator: Geng; Polyharmonic RBF Discriminator: Dy.

while Geny not converged do

Sample: x ~ p; — A batch of M real samples.

Sample: z ~ p, — A batch of M noise samples.

Sample: & = Geng(z) — Generator output.

Sample: z. ~ p, — A batch of N noise samples for computing RBF centers.

Sample: c; ~ Geng(z.) — A batch of N generator data centers for the generator RBF interpolator S, .
Sample: c¢; ~ pg — A batch of N target data centers for the target RBF interpolator S, .
Compute: Matrices A and B.

Solve: System of equations for RBF weights w and polynomial coefficients v (Eq. )

Update: Discriminator RBF D* with centers {¢;}, {¢;}, weights w and coefficients v (Eq. ().
Evaluate: Generator Loss L (D;(x), D; (&)

| Update: Generator Geng < nVy[Ls]

Output: Samples output by the Generator: &

Algorithm 2: Poly-WGAN — GAN with a trainable generator and radial basis function (RBF) discriminator
and fixed RBF weights.

Input: Training data  ~ pg, Gaussian prior distribution p, = N (u,,X,)

Parameters: Batch size M, optimizer learning rate n, number of radial basis function (RBF) centers N,
gradient order m.

Models: Generator: Geng; Polyharmonic RBF Discriminator: Dy.

while Geng not converged do

Sample: x ~ p; — A batch of M real samples.

Sample: z ~ p, — A batch of M noise samples.

Sample: & = Geny(z) — Generator output.

Sample: z. ~ p, — A batch of N noise samples for computing RBF centers.

Sample: c¢; ~ Geng(z.) — A batch of N generator data centers for the generator RBF interpolator S, .
Sample: c¢; ~ py — A batch of N target data centers for the target RBF interpolator S,,.

Compute: RBF weights w = NLA;

Update: Discriminator RBF Dj with centers {¢;},{c;} and weight w (Eqn. (9)).

Evaluate: Generator Loss Lg(Dj(x), D (Z)

| Update: Generator Geng < nVy[Ls]

Output: Samples output by the Generator: &

E Additional Experiments On Gaussians

In this section, we present additional experimental results on learning 2-D Gaussians and 2-D Gaussian
mixtures with the Poly-LSGAN and Poly-WGAN frameworks. The network architectures and training
parameters are as described in Appendix

E.1 Learning 2-D Gaussians with Poly-LSGAN

We now evaluate the optimal Poly-LSGAN discriminator on learning synthetic 2-D Gaussian and Gaussian
mixture models (GMMs), and subsequently discuss extensions to learning images. We consider polyharmonic
spline order k£ = 2. For larger k, we encountered numerical instability. We compare against the base
LSGAN (Mao et al., 2017), and LSGAN subjected to the gradient penalty (GP) (Gulrajani et al.l [2017)) , Ry
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Algorithm 3: PolyGAN-WAE — Wasserstein autoencoder with a radial basis function discriminator.

Input: Training data & ~ pg, Gaussian prior distribution z ~ p, = N (uz, X,)

Parameters: Batch size M, optimizer learning rate 7, number of radial basis function (RBF) centers N
Models: Encoder/Generator: Encg; Decoder: Decy; Polyharmonic RBF Discriminator: Dy.
while Encg, Decg not converged do

Sample: x ~ p; — A batch of M real samples.

Sample: Z = Enc,(x) — Latent encoding of real samples.

Sample: & = Decy(2) — Reconstructed samples.

Evaluate: Autoencoder Loss: Lag(x, )

Update: Autoencoder Ency < nV4[Lag]; Decy < nVo[Lag]

Sample: ¢; ~ N (pz,X.) — A batch of N centers for the target RBF interpolator.
Sample: x. ~ pg — A batch of N real samples to compute data centers.

Sample: c¢; = Encg(x.) ~ pq, — A batch of N centers for the generator RBF interpolator.
Compute: RBF weights w = NL)\;

Update: Discriminator RBF D} with centers {¢;},{c;} and weight w (Eqn. (9)).
Sample: z ~ N (uz,YX,) — A batch of M prior distribution samples.

Evaluate: Generator Loss Lg(D;(2), D} (2))

Update: Generator Ency < nVy4[Lg]

Output: Reconstructed random prior samples: Decy(z)

and R, (Mescheder et all [2018)), Lipschitz penalty (LP) (Petzka et al., 2018) and the DRAGAN (Roth et al.|
2017) regularizers.

On the unimodal learning task, the target is A(512,1.5I3), where 15 is the 2-D vector of ones, and Iy is the
2 x 2 identity matrix. On the GMM learning task, we consider eight components distributed uniformly about
the unit circle, each having a standard deviation of 0.02. To quantify performance, we use the Wasserstein-2
distance between the target and generator distributions ()/\/2*2 (pd, pg)). Network parameters are given in
Appendix Figure E] presents the W22 distance as a function of iterations on the Gaussian and Gaussian
mixture learning tasks. On both datasets, using the polyharmonic RBF discriminator results in superior
generator performance (lower W22 scores). In all scenarios considered, the polyharmonic RBF discriminator
learns the perfect classifier, compared to LSGAN with a trainable network discriminator.

Figures [§ and [J] present the generated and target data samples, superimposed on the level-sets of the
discriminator, for the 2-D Gaussian, and 8-component Gaussian mixture learning tasks, respectively. For the
Gaussian learning problem, we observe that Poly-LSGAN does not mode collapse upon convergence to the
target distribution. However, in the baseline GANs, depending on the learning rate, the generator converges
to a distribution of smaller support than the target, before latching on to the desired target. Similarly, on the
GMM learning task, Poly-LSGAN learns the target distribution more accurately compared to the baselines.

E.2 Learning 2-D Gaussians with Poly-WGAN

Figure [10] shows the Wasserstein-2 distance (W?%?(pq4, py)) as a function of iterations for various number of
centers N of the RBFs on the 2-D unimodal and multimodal Gaussian and 8-component GMM learning task.
On the unimodal data, we observe that the performance is comparable for all N on a linear scale. Compared
on a logarithmic scale (Figure [L0}(b)), it is clear that as N increases, the model results in better performance,
as indicated by the lower W*?(pg, p,) scores. From figure [L0[c) we infer that, on multimodal data, choosing
insufficient number of centers could lead to mode hopping, where p, latches on to different modes of the
data as iterations progress (observable as sharp spikes in W22 for the case of N = 5). This is attributed
to the fact that the number of centers drawn is insufficient to represent the underlying modes in the target
data. On the other hand, for larger values, such as N > 500, the additional computational overhead slows
down training. We found that N = 100 is an acceptable compromise. Figure 11| shows the samples from py
alongside those drawn from pg as the iterations progress. The contour plot shows the level-sets of the optimal
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Figure 7: The Wasserstein-2 distance versus iterations on learning (a) a 2-D Gaussian; and (b) a 2-D Gaussian
mixture, for various LSGAN variants. The performance of the Poly-LSGAN with the RBF discriminator is
superior to the baselines in both scenarios. The convergence is also relatively smoother and stabler, unlike
the baselines, which have fluctuations on the 2-D Gaussian learning task.

discriminator D*(x) (blue: low; yellow: high). When N is small, some of the modes in p; are missed out by
the discriminator, thus destabilizing training, whereas for large N, all the modes are captured accurately.

Similar convergence plots, juxtaposed with the discriminator level-sets (in WGAN based variants), for the
two experiments conducted in Section [6.1] of the Main Manuscript are shown in Figures [I3] and [I2] We
observe that in both the unimodal and multimodal cases, Poly-WGAN converges faster than the baselines,
and the one-shot optimal discriminator learns a better representation of the underlying distributions than the
baseline GANs and GMMNs. Poly-WGAN also outperforms the non-adversarial GMMN variants, and there
is no mode-collapse upon convergence.
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Figure 8: Convergence of generator distribution (green) to the target 2-D Gaussian data (red) on the considered
LSGAN variants. The heatmap represents the values taken by the discriminator. The Poly-LSGAN approach
leads to a better representation of the discriminator function during the initial training iterations when
compared to baseline approaches, leading to a faster convergence. Poly-LSGAN also does not experience
mode collapse.
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Figure 9: Convergence of generator distribution (green) to the target multimodal Gaussian data (red) on the
considered LSGAN variants, superimposed on the level-sets of the discriminator. The ideal D(x) assigned a

value of b =1 to reals and a = —1 to fakes. Poly-LSGAN is able to identify the modes of the GMM more
accurately than the baselines.
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Figure 10: Training Poly-WGAN on 2-D Gaussian data: Plots comparing (a) the Wasserstein-2 distance
between pg and p; (W?2(pa, py)); and (b) the natural logarithm of W*2(p,, p,) for various number of centers
N in the RBF network. The generator converges to a lower W22 (pg, pg) as N increases. Convergence plots
on training Poly-WGAN on learning 2-D Gaussian mixture data comparing (c¢) the Wassersting-2 distance
W22(p4,pg); and (d) the natural logarithm of W22 (pg, py), for various choices of N. For small N, the
discriminator is unable to capture all the modes in the data, resulting in training instability. Choosing large
N increases computational load. Setting NV = 100 is a viable compromise.
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Figure 11: Tlustration of convergence of the generator distribution (green dots) to the target multimodal
Gaussian data (red dots) with Poly-WGAN as iterations progress, as a function of the number of RBF centers
N. The contours are the level-sets of the discriminator. For small N, mode coverage is not adequate, whereas
for large N, the computational overhead is large. A moderate value of N = 100 was found to be a workable
compromise.
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Figure 12: Convergence of generator distribution (green dots) to the target unimodal Gaussian data (red
dots) on the considered WGAN and GMMN variants. The contours represent the discriminator level-sets in
the GAN variants. Poly-WGAN converges significantly faster than the baseline variants.
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Figure 13: Convergence of generator distribution (green dots) to the target multimodal Gaussian (red dots)
on the GMMN and WGAN variants. The contours represent discriminator level-sets. Poly-WGAN learns a
better representation of py leading to a faster convergence.
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F Additional Experiments on Images

In this section, we provide additional experimental results on both image-space and latent-space matching
approaches. On Poly-LSGAN, we discuss image-space generation, while of Poly-WGAN we present results
for both image-space and latent-space generation tasks.

F.1 Image-space matching with Poly-LSGAN

We train Poly-LSGAN on the MNIST, Fashion-MNIST and CelebA datasets, employing the 4-layer DC-
GAN (Radford et alJ 2016) generator architecture. As discussed in Section we set k = 2, but restrict the
solution to only include about 3" or 4** order polynomials allows for training. Figure [L4] depicts the images
generated by Poly-LSGAN. In all scenarios, we observe that, although the generator is able to generate
images resembling those from the target dataset, the visual quality of the images is sub-par compared to
standard GAN approaches. Additional training of these models resulted in gradient explosion caused by the
singularity of the matrix B as the iterations progress.

F.2 Image-space matching with Poly-WGAN

We compare the performance of Poly-WGAN and baseline GMMN with the IMQ kernel. The generator is a
4-layer DCGAN (Radford et al., [2016). The kernel estimate as well as the polyharmonic RBF discriminator
operate on the 784-dimensional data. For Poly-WGAN, we consider m = § + 2 = 394. The generator
learning rate is set to ny = 0.01 for both models considered. Figure [15|shows that the images generated by
Poly-WGAN are comparable to those generated by GMMN-IMQ. Quantitatively, Poly-WGAN achieved an
FID of 81.341, while GMMN-IMQ achieved an FID of 98.109 after 50,000 iterations.
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Figure 14: Tmages generated by training Poly-LSGAN on vectorized images drawn from (a) MNIST; (b)
Fashion-MNIST; and (c) CelebA datasets. While Poly-LSGAN learns meaningful representations (although
visually sub-par compared to standard GANs) on MNIST and Fashion-MNIST, the generator fails to converge
in all scenarios. The poor performance of Poly-LSGAN can be attributed to training instability issues caused
by the singularity of the matriz B in solving for the optimal discriminator weights.
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F.3 Latent-space matching with Poly-WGAN

Motivated by the training paradigm in latent diffusion models (Rombach et al [2022), as an intermediary
between Poly-WGAN and PolyGAN-WAE, we consider training Poly-WGAN to learn the latent-space
distribution of various datasets. We train convolutional autoencoders with 16- and 63-dimensional latent-
space on MNIST and CelebA datasets, respectively. The various WGAN baselines and Poly-WGAN are
trained to map a 100-dimensional noise distribution to the latent space of the target data. We also compare
against a trainable version of Poly-WGAN (called Poly-WGAN(T)), which employs a single-layer RBF
network with 10% nodes, but whose centers and weights are learned via stochastic gradient-descent with the
un-regularized WGAN loss. The gradient-penalty order is set to m = [§] in both Poly-WGAN variants.
The choice of the activation implicitly enforces the gradient penalty in Poly-WGAN(T). Motivated by the
experimental results reported in Appendix [6.3] in all variants with a trainable discriminator, we update the
discriminator five times per generator update. The models are evaluated in terms of the FID and compute
time, which is the time elapsed between two generator updates. Due to the inclusion of an autoencoder in
the formulation, we also compare the models in terms of their relative FID (rFID) (Rombach et al., [2022),
where the reference images for FID computation are obtained by passing the dataset images through the
pre-trained autoencoder.

Figure [T6] presents the convergence of rFID as a function of iterations, while Table [J] presents the converged
FID and rFID scores, and the compute times of Poly-WGAN and the baselines. From Figure [I6 we observe
that, on the 16-D learning task, the convergence behavior of Poly-WGAN is on par with the baselines, while
on the 63-D data, Poly-WGAN converges significantly faster. The converged FID and rFID scores achieved by
Poly-WGAN are superior to the baseline variants. On the 63-D learning task, Poly-WGAN is nearly an order
of magnitude faster than the baselines in terms of compute time. Poly-WGAN(T) performs sub-optimally
on both tasks, indicating that the choice of the centers and the weights indeed plays a crucial role in the
performance of Poly-WGAN.

F.4 Latent-space matching with PolyGAN-WAE

The base Poly-WGAN algorithm can be used to learn image-space distributions. Similar to GMMNs,
PolyGANS also suffer from the curse of dimensionality. Although this can be alleviated to a certain extent by
employing a generator that learns the latent-space of datasets, or PolyGAN-WAE that employ an autoencoding
generator, these models are limited by the representation capability of the latent space, and the autoencoder
performance. In order to explore this limitations of the WAE based approaches, we trained PolyGAN-WAE on
high-resolution (192 x 192) images where encoder and decoder networks use the unconditional BigGAN
architecture. Figure presents the images generated by PolyGAN-WAE in this scenarios. The
converged model achieves an FID of 32.5. We observe that, while the images generated are not competitive
in comparison to the high-resolution compute-heavy GAN variants such as StyleGAN, the generated images
are superior to BigWAE-MMD and BigWAE-GAN variants with similar network complexities (having FID
scores of 37 and 35, respectively) (Tolstikhin et al., 2018).

We include results of additional experiments conducted on PolyGAN-WAE and the baselines. Figures
show the samples generated by the various WAE models. The WAE-GAN and WAAE-LP models that
incorporate a trainable discriminator are slower to train than the models that employ a closed for discriminator.
We observe that PolyGAN-WAE generates perceptibly sharper images on MNIST. PolyGAN-WAE generates
visually more diverse images than the baselines on CelebA and LSUN-Churches datasets. WAE-MMD (RBFG)
and SWAE suffered from mode collapse on CIFAR-10 and LSUN-Churches, respectively.

Latent-space continuity: A visual assessment of latent space continuity is carried out by interpolating the
latent vectors for two real images and decoding the interpolated vectors. Representative images are presented
in Figures 27 to [30] Interpolated images from PolyGAN-WAE are comparable to those generated by CWAE
and WAE-MMD (IMQ) on CIFAR-10 and LSUN-Churches, respectively, while they are sharper than the
baselines on MNIST and CelebA datasets.

Latent-space alignment: As the various GAN flavors are employed in transforming the latent-space
distribution of the generator to a standard normal distribution, we compare their performance in terms of their
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latent-space alignment. Table [10] presents the Wasserstein-2 distance between the latent-space distribution of
the encoder/generator network, and the target Gaussian W?2(py,, p.), while Figure [18| presents W22 (pq,, p.)
as a function of the training iterations. Across all datasets, we observe that PolyGAN-WAE attains the
lowest Wasserstein-2 distance, indicating close alignment between the latent-space distributions.

Image reconstruction: Figures show the images reconstructed by PolyGAN-WAE and the WAE
variants. The images reconstructed by PolyGAN-WAE are sharper and closer to the ground-truth images.
These are also in agreement with the qualitative results presented in Table Figure 33| plots reconstruction
error as a function of iterations for the various models considered. In order to have a fair comparison, we
do not consider WAE-GAN and WAAE-LP in these comparisons, as the learning rates considered for the
models are lower by an order. We observe that PolyGAN-WAE is on par with the baselines when trained
on low-dimensional latent data (as in the case of MNIST and CIFAR-10), but outperforms the baselines,
saturating to lower values in the case of CelebA and LSUN-Churches.

Image sharpness: Table [L1| shows the image sharpness metric computed on both random and interpolated
images. PolyGAN-WAE outperforms the baselines on the random sharpness metric, while achieving compet-
itive scores on interpolation sharpness. These results indicate that, while the baseline WAE-MMDs have
learnt accurate autoencoders, the latent space distribution has failed to match the prior distribution, resulting
in lower scores when computing the sharpness metric on samples decoded from the prior. The closed-form
optimal discriminator used in PolyGAN-WAE alleviates this issue.

Inception Distances: We plot FID and KID as a function of iterations in Figures|31{and respectively. In
both cases, we observe that PolyGAN-WAE saturates to the lowest (best) scores in comparison to the baselines.
The improvements are more prominent on experiments involving higher-dimensional latent representation
(for example, LSUN-Churches, using a 128-D latent space). Best case KID scores are presented in Table
The KID for PolyGAN-WAE is nearly 35% lower than that of the best-case baseline (CWAE) in the case of

MNIST.
ELEERERIE IEIIEII

Illllﬂ
2% ll IIIIEEH
EEAEEEL

&3
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GMMN (IMQ) Poly-WGAN

Figure 15: Images generated by GMMN-IMQ and Poly-WGAN on the MNIST image-space matching task.
While Poly-WGAN generates images marginally superior to GMMN (IMQ), both the results are inferior to
the WAE and WGAN counterparts. The poor performance is a consequence of the curse of dimensionality,
which is also the reason why we considered latent-space matching with PolyGAN-WAE.
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Table 9: A comparison of WGAN flavors and Poly-WGAN when trained to learn the latent-space distribution
of a pre-trained autoencoder network on MNIST and CelebA learning tasks. Poly-WGAN(T) is a trainable
version of Poly-WGAN, where the weights are initialized based on Poly-WGAN, and subsequently learnt
through back-propagation on the discriminator. The baseline GAN and Poly-WGAN(T) discriminators
are updated five times per generator update. The performance is reported in terms of (i) The FID of the
converged models; (ii) The relative FID (rFID) between the target samples and the output of the pre-trained
autoenoder (AE); and (iii) The Compute Time between two generate updates. The FID of the benchmark
pre-trained autoencoder is provided for reference. The rFID value is approximately the difference between the
FID of the GAN samples, and that of the samples generated by the benchmark AE. Poly-WGAN achieves
lower FID scores on both the MNIST and CelebA learning tasks, in a tenth of the compute time.

WOAN flavor MNIST (16-D) H CelebA (63-D)
FID | ‘ rFID | ‘ Compute Time | H FID | ‘ rFID | ‘ Compute Time |
WGAN-GP 19.441 6.363 0.132 + 0.003 49.840 11.935 0.491 =+ 0.008
WGAN-LP 17.825 5.657 0.144 + 0.008 50.694 11.789 0.462 =+ 0.005
WGAN-Ry 17.948 6.780 0.119 + 0.007 48.064 12.159 0.450 = 0.002
WGAN-R, 18.498 6.330 0.127 4 0.006 51.104 14.199 0.452 + 0.005
Poly-WGAN(T) 17.445 5.277 0.150 + 0.003 48.385 11.480 0.357 = 0.003
Poly-WGAN 17.397 | 5.229 0.034 4 0.004 45.886 | 8.981 0.039 4+ 0.003
Benchmark AE | 12562 0 - | 36.261 0 -
120 400
WGAN-GP WGAN-GP
100 —A— WGAN-LP —#— WGAN-LP
A —8— WGAN-Ry A 300 —8— WGAN-R4
= 80 —¥— WGAN-R, = ¥ WGAN-R,
L; —&— Poly-WGAN (T) E —&— Poly-WGAN (T)
= 60 1 —*— Poly-WGAN = 200 —*— Poly-WGAN
& = 100
0 : : 0 ! .
5000 10000 10000 20000
ITERATIONS ITERATIONS
(a) (b)

Figure 16: A comparison of the relative FID (rFID) of various WGAN and Poly-WGAN variants when trained
on latent representations of (a) MNIST; and (b) CelebA datasets. The latent-space representations are drawn
from a pre-trained deep convolutional autoencoder. The relative FID is computed between the fakes generated
by decoding the generator outputs, and reals generated by decoding the latent representations of the dataset
images. Poly-WGAN(T) is a trainable version of Poly-WGAN, where the discriminator RBF weights are
learnt through back-propagation. We observe that Poly-WGAN performs on par with the baselines in learning
low-dimensional latent representations, as in the case of MNIST, while converging faster (by an order) on
higher-dimensional data (63-D on CelebA).
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Figure 17: (& Color online) High-resolution (192 x 192) CelebA images generated by PolyGAN-WAE.

Table 10: A comparison of the converged WAE models, including PolyGAN-WAE;, in terms of the Wasserstein-
2 distance between the latent-space distribution of the data, and the target noise distribution (W?2(pg,,p.)).
WAE-GAN and WAAE-LP incorporate a trainable discriminator, while WAE-MMD variants, SWAE and
CWAE compute closed-form kernel statistics between the latent-space distributions. WAEFR, and PolyGAN-
WAE employ a closed-form discriminator network with predetermined weights, to approximate a Fourier-series
or RBF approximation, respectively. When learning relatively low-dimensional latent spaces (as in the case
of MNIST), all models perform comparably, while PolyGAN-WAE is superior to the baselines in learning on
higher-dimensional latent spaces. PolyGAN-WAE achieves the lowest /22 scores in all the four scenarios

considered.
WAE flavor MNIST CIFAR-10 CelebA LSUN-Churches
(16-D) (64-D) (128-D) (128-D)
WAE-GAN 1.9468 20.03773 12.6205 5.5128
WAAE-LP 1.8828 24.9344 23.6597 5.2301
WAE-MMD (RBFG) 0.8615 16.3907 27.3071 16.0910
WAE-MMD (IMQ) 1.1316 14.4645 5.4592 12.8840
SWAE 1.1441 18.6906 14.4378 53.4751
CWAE 0.5154 7.04151 6.2632 12.6781
WAEFR 0.6272 11.8180 6.0705 9.2847
PolyGAN-WAE 0.3388 6.1055 3.6195 5.0831
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Figure 18: Wasserstein-2 distance between the latent-space distribution of the data, and the target noise
distribution (W?2(pg,,p.)) versus iterations for the WAE flavors under consideration. PolyGAN-WAE
converges to better (lower) W22 scores in all cases, indicating a superior match between the latent-space
data distribution and the target Gaussian prior.
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Table 11: A comparison of the WAE variants including PolyGAN-WAE in terms of kernel inception distance
(KID), average reconstruction error (RE), and image sharpness. Sharpness (Random Image) corresponds to
the sharpness computed on random samples drawn from the prior distribution, whereas Sharpness (Interpolated
Image) is computed on the interpolated images. The benchmark sharpness is computed over images drawn
from the target dataset. PolyGAN-WAE achieves the best (lowest) KID on all the datasets, while generating
images with sharpness scores comparable to the baselines.

H WAE flavor H MNIST ‘ CIFAR-10 ‘ CelebA ‘ LSUN-Churches
WAE-GAN 0.0221 0.1015 0.0423 0.1395
WAAE-LP 0.0210 0.0832 0.0445 0.1398

WAE-MMD (RBFG) 0.0533 0.1316 0.0623 0.1397

g WAE-MMD (IMQ) 0.0204 0.0908 0.0459 0.1379
K SWAE 0.0270 0.0929 0.0440 0.2129
CWAE 0.0192 0.0794 0.0537 0.1858

WAEFR 0.0206 0.0859 0.0416 0.1364
PolyGAN-WAE 0.0120 0.0756 0.0366 0.1279
WAE-GAN 0.0827 0.1250 0.0939 0.1450
WAAE-LP 0.0747 0.1161 0.0776 0.1547
WAE-MMD (RBFG) 0.1615 0.2246 0.1365 0.1408

/;\ WAE-MMD (IMQ) 0.0584 0.1218 0.0920 0.1402
3 SWAE 0.0574 0.1210 0.0885 0.1410
CWAE 0.0768 0.1503 0.0982 0.1408

WAEFR 0.0538 0.1185 0.0820 0.1387
PolyGAN-WAE 0.0525 0.1190 0.0676 0.1365
WAE-GAN 0.1567 0.0011 0.0015 0.0077
WAAE-LP 0.1520 0.0029 0.0044 0.0082
WAE-MMD (RBFG) 0.2231 0.0030 0.0034 0.0076

gf’ WAE-MMD (IMQ) 0.1709 0.0100 0.0049 0.0091

P SWAE 0.1660 0.0136 0.0048 0.0087
"§ CWAE 0.2206 0.0035 0.0038 0.0068
e WAEFR 0.1717 0.0171 0.0066 0.0103

2 PolyGAN-WAE 0.1776 0.0174 0.0052 0.0149
% WAE-GAN 0.1681 0.0027 0.0032 0.0122
% o WAAE-LP 0.1706 0.0041 0.0045 0.0125
éﬂ WAE-MMD (RBFG) 0.2251 0.0015 0.0044 0.0120

?’3 WAE-MMD (IMQ) 0.1416 0.0071 0.0043 0.0124
”g SWAE 0.1292 0.0059 0.0044 0.0130

j“::’ CWAE 0.2073 0.0019 0.0034 0.0107

- WAEFR 0.1396 0.0064 0.0065 0.0113
PolyGAN-WAE 0.1496 0.0069 0.0067 0.0134

H Benchmark H 0.1885 0.0358 0.0338 0.1029
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Figure 20: (& Color online) Images generated by decoding samples drawn from the target prior distribution
on the CIFAR-10 dataset. WAE-GAN, WAE-MMD (RBFG) and SWAE did not converge on CIFAR-10.
While WAE-MMD (IMQ), CWAE and PolyGAN-WAE are comparable, the images generated have little
visual similarity with those of the target dataset.
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Figure 21: (® Color online) Images generated by the WAE variants on decoding samples drawn from the
prior distribution when trained on the CelebA dataset. Images generated by PolyGAN-WAE on CelebA are
more diverse (in terms of face and background color, facial expression, etc.) compared with the baselines.
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Figure 22: (& Color online) Images generated by the WAE variants on decoding samples drawn from the prior
distribution. PolyGAN-WAE is on par with CWAE and WAE-MMD variants on LSUN-Churches. SWAE
failed to converge, while WAE-GAN and WAAE-LP resulted in smoother images, as opposed to the other
WAE variants.
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Figure 23: A comparison of the image reconstruction performance on MNIST dataset. The WAE-MMD
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60



Under review as submission to TMLR

e S P 2 e 7
H6 v J RS

I ed 5 0”2 g 7
B8 v J RS

=3 1 Cle [ BT ba,

ERRDESeR

WAAE-LP

WAE-GAN
> uWe el

R ,
EEaNEC 2N

WAE-MMD (RBFG)

Rl S 0 M e 7
BEs ) R ED

=) 1 Cle N ha,

WAE-MMD (IMQ)

N el 50 3 ¥ e 7
WS S

= ] Se T

SWAE

oml o (5 RS 1 o,

TEL
= 1 T

CWAE

R ol S5 0" M e

B - NS
= 1Sl Rl

WAEFR

B e Y M s 7
5 - J S
= 1 Tle P H=TT0

PolyGAN-WAE (Ours)

EH!SEH-E

Bl S
!

=i

Ground Truth

Figure 24: (& Color online) Comparing the image reconstruction performance on CIFAR-10 dataset. PolyGAN-
WAE reconstructions are sharper than the baselines. WAE-MMD (RBFG) does not generate good recon-
structions. The adversarial nature of training in WAE variants with a trainable discriminator (WAE-GAN
and WAAE-LP) results in poorer performance and blurry reconstructions.
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Figure 25: (& Color online) Comparison of image reconstruction performance on CelebA dataset. PolyGAN-
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Figure 26: (& Color online) Image reconstruction performance on the LSUN-Churches dataset. PolyGAN-
WAE is comparable to WAE-MMD (IMQ) and CWAE on LSUN-Churches. As in the case of CIFAR-10 (cf.
Figure , WAE variants with a trainable discriminator result in images of poorer visual quality than those
with closed-form discriminators.
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Images generated by decoding the interpolated latent-space vectors of the CIFAR-10 dataset.
The interpolations in PolyGAN-WAE, WAEFR, and WAE-MMD (IMQ) are visually closer to the source and
target images than those generated by the other models.
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Figure 29:

images are drawn from a held-out validation set. The images generated by PolyGAN-WAE are visually

superior to the baselines. The PolyGAN-WAE generator also recreates the features of the source and target

images more accurately.
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Figure 30: Images generated by decoding interpolated points between the latent space representations of
pairs of images drawn from LSUN-Churches. Interpolations in SWAE are oversmooth, while those generated
by PolyGAN-WAE and CWAE are sharper and comparable with each other.
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Figure 31: Comparison of FID as a function of iterations for the various WAE flavors considered. PolyGAN-
WAE outperforms the baselines and saturates to better (lower) values of FID on all the datasets considered.
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Figure 32: A comparison of the kernel inception distance (KID) as iterations progress for PolyGAN-WAE
and the baselines. WAE-MMD with the Gaussian (RBFG) kernel fails to converge on most datasets.
PolyGAN-WAE achieves the lowest KID in all the cases, and convergence is twice as fast as the baselines on
LSUN-Churches dataset.
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Figure 33: Average reconstruction error (RFE) versus iterations for various WAE flavors considered. PolyGAN-
WAE is comparable to the baseline methods on MNIST and CIFAR-10, while achiveing superior convergence on
datasets involving high-dimensional (128-D) latent space representations, such as CelebA and LSUN-Churches.
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F.5 Latent-space Matching with PolyGAN-D

We present comparisons on using the Poly-WGAN discriminator in MMD-GAN architectures on the MNIST
and CIFAR-10 datasets. We consider the following baselines: (i) The MMD-GAN (RBFG) network with an
autoencoding discriminator (Li et all 2017al). The autoencoder is trained to minimize the Lo cost, while the
encoder is additionally trained to maximize the MMD kernel cost. The encoder weights are clipped to the
range [—0.01,0.01]. For every generator update in the first 25 updates, the discriminator is updated 100 times.
Subsequently, the discriminator is updated five times per generator update. (ii) The MMD-GAN-GP (RBFG)
and MMD-GAN-GP (IMQ) networks (Binkowski et al., 2018]), where the decoder network is removed, in
favor of training the encoder to simultaneously minimize the WGAN-GP gradient penalty and maximize the
MMD cost. As in the MMD-GAN case, the discriminator is updated five times per generator update.

In PolyGAN-D, we consider the MMD-GAN autoencoding discriminator architecture. The encoder and
decoder are trained to minimize the Lo reconstruction error. The latent-space of the encoder is provided as
input to the polyharmonic RBF network. Unlike MMD-GANSs, we do not train the PolyGAN-D encoder
on Lp. The generator network minimizes the WGAN cost in all cases. Following the approach of |Li et al.
(2017a), we pre-train the autoencoder for 2500 iterations. Subsequently, the autoencoder is updated once
per generator update. We compare the system times between generator updates over batches of data in the
MMD-GAN and WAE training configurations. The computation times were measured when training the
models on workstations with Configuration I described in Appendix [D.3] of the Supporting Document.

Figure [34) depicts the images output by the converged generator in PolyGAN-D and the baselines. The images
generated by PolyGAN-D are visually on par with those output by MMD-GAN (RBFG) and MMD-GAN-GP
(IMQ). MMD-GAN-GP (RBFG) performed poorly on CIFAR-10, which is in agreement with the results
reported by [Binkowski et al.| (2018]). Table [12| presents the best-case FID scores computed using PolyGAN-D
and the converged baselines. MMD-GAN-GP (IMQ) resulted in the lowest FID scores on both datasets.
PolyGAN-D performs on par with MMD-GAN (RBFG).

From Table [I3] we observe that MMD-GAN and MMD-GAN-GP have training times up to two orders
of magnitude higher than PolyGAN-WAE as they update the discriminator multiple times per generator
update. Among the WAE variants, WAE-GAN is slower by an order, owing to the additional training of the
discriminator network. PolyGAN-WAE is on par with other kernel-based methods, while still incorporating a
discriminator network, whose weights are computed one-shot. From Table [13| we observe that MMD-GAN
and MMD-GAN-GP have training times up to two orders of magnitude higher than PolyGAN-WAE as
they update the discriminator multiple times per generator update. PolyGAN-WAE scales better with
dimensionality, compared to WAE-MMD. We attribute this to the increased complexity in computing the
baseline RBFG and IMQ kernels in high dimensions. The Poly-WGAN discriminator complexity is only
affected by the number of centers in the RBF expansion.

Table 12: A comparison of MMD-GAN flavors and PolyGAN-D in terms of FID. The performance of
PolyGAN-D is comparable to MMD-GAN baseline with a trainable auto-encoder discriminator network.

GAN Flavor MMD-GAN MMD-GAN-GP MMD-GAN-GP (IMQ) PolyGAN-D
— (RBFG) (RBFG) (Ours)
MNIST 21.310 24.108 16.642 20.271
CIFAR-10 55.452 64.571 49.255 53.180
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Table 13: A comparison of average compute time per batch (in seconds) of samples when training
various WAE and MMD-GAN models. The standard deviation was approximately 1072 in all the cases
considered. #D denotes the number of discriminator updates performed per generator update. Kernel
methods are, on the average, an order of magnitude faster than GANs with a trainable discriminator network.
The training time per batch is lowest for PolyGAN-WAE, on par with WAE-MMD based approaches, while
implementing the optimal GAN discriminator one-shot. PolyGAN-WAE is least affected by increasing the
dimensionality of the latent space of the input data.

GAN #D || WAE- | WAE- | SWAE | CWAE| WAEFR | PolyGAN-| MMD- MMD- PolyGAN-D
Flavor GAN | MMD WAE GAN GAN-GP
MNIST 1 0.072 0.029 0.052 0.029 0.036 0.022 0.321 0.163 0.201
(16-D) 5 0.294 - - - - - 1.053 0.869 -
CIFAR-10 1 0.082 0.036 0.047 | 0.036 0.039 0.023 0.338 0.243 0.258
(64-D) 5 0.328 - - - - - 1.110 0.938 -

Table 14: A comparison of number of trainable (T) and fixed (F) parameters present in each WAE and
MMD-GAN variant considered. An X denotes that the network is not present in that flavor. The inclusion of
an RBF discriminator in PolyGAN-WAE does not change the training performance as the number of trainable
parameters remains unaffected. MMD-GAN-GP has the fewest number of parameters, but incorporates
adversarial training, unlike the WAE variants.

GAN flavor Adversarial Generator Encoder Decoder Discriminator Total
Training Paramerters
12 x 108 11.5 x 108 X 23.5 x 106
WAE-MMD X
F X 4 x 103 2 x 103 X 6 x 103
12 x 106 11.5 x 108 X 23.5 x 106
SWAE X
F X 4% 103 2 x 102 X 6 x 103
12 x 108 11.5 x 108 X 23.5 x 106
CWAE X
F X 4 x 103 2 x 103 X 6 x 108
12 x 106 11.5 x 108 0 23.5 x 106
WAEFR X
F X 4 %103 2 x 103 2.5 x 10° 2.56 x 10°
12 x 109 11.5 x 106 0 23.5 x 106
PolyGAN-WAE X
F X 4% 103 2 x 102 4% 103 9 x 103
2 x 108 12 x 108 11.5 x 108 X 25.5 x 106
MMD-GAN v/
F 2.5 x 104 4 x 103 2 x 103 X 3.1 x 104
2 x 106 12 x 106 X X 14 x 108
MMD-GAN-GP v
F 2.5 x 10% 4 x 103 X X 2.9 x 104
2 x 108 12 x 108 11.5 x 108 0 25.5 x 106
PolyGAN-D v
F 2.5 x 10% 4 x 103 2 x 102 4% 103 3.5 x 10*
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Figure 34: Images output by the generator in PolyGAN-D and baseline MMD-GAN variants. The performance
of PolyGAN-D is comparable to that of MMD-GAN (RBFG) with the autoencoder discriminator architecture.
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