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ABSTRACT

In this paper, we study the problem of the visual prompt at the pixel level. Recent
works demonstrate flexibility and generalization of visual-only prompt. However,
it still cannot achieve superior results compared with linear probe in terms of ac-
curacy and parameter efficiency. We believe that the full power of visual prompt
remains to be harnessed through a novel perspective, which bridges adversarial
attack and visual prompt considering the high similarity in both formats and ob-
jective functions. Bringing in the “old ideas” in adversarial attacks to enhance
visual prompt is promising since there are extensive theoretical and empirical so-
lutions to improve the performance of adversarial attack. Therefore, we propose
a novel and concise visual prompting method incorporating simple and effective
training strategies inspired by ideas from adversarial attack. Specifically, we intro-
duce the input diversity and gradient normalization into visual prompt learning to
obtain better generalization ability. Moreover, to avoid disruptions to the original
image caused by perturbation without changing the spatial size of inputs, we sepa-
rate the prompt and image by shrinking and then padding the image with learnable
visual prompts, which can significantly improve the performance further without
increasing FLOPs. Extensive experiments are conducted on various large-scale
pre-trained models across several downstream datasets under different scenarios.
We show that with a CLIP-based model, our enhanced visual prompt can suc-
cessfully outperform linear probe by 1.9% across 12 datasets on average with a
comparable number of parameters, and can even match fully fine-tuning paradigm
in some settings by training with only 0.04% parameters.

1 INTRODUCTION

Deep learning models have witnessed pre-training on increasingly large-scale data as a general and
more effective path to success (He et al.|[2022; Radford et al., [2021; [Bao et al.| 2021} Devlin et al.,
2018)). At the same time, the model’s size is getting larger along with the scale of the data. These
large foundation models can achieve state-of-the-art performance in both vision (He et al., 2022;
Radford et al., 2021} Bao et al.} 2021)) and natural language processing (Devlin et al.,|2018)) domains
for various downstream tasks. One de-facto standard tuning paradigm of these large-scale models is
fully fine-tuning, which not only introduces extra parameters, e.g., linear layer, but also requires the
whole access to the model’s parameters and enormous space to store them. Hence, for these ever-
growing models, researchers devote more efforts to designing parameter-efficient turning pipelines.

In NLP, prompting method is one of the effective and efficient strategies, which can only modify
input space to adapt the model for the downstream task (Gao et al.| 2021} [Lester et al., 2021} |Li &
Liang}|2021). The text prompt can match the performance of fully fine-tuning (Liu et al.,2021b). In
the visual field, whether or not prompt can replicate such success has attracted the attention of many
researchers. Recently, authors in (Jia et al., [2022) added a small amount of learnable parameters as
tokens into large vision transformers to adapt specific downstream tasks. Concurrently, inspired by
adversarial reprogramming, researchers in (Bahng et al., [2022) found that adding learnable pertur-
bation at the pixel level can be an alternative way to utilize large-scale pre-trained models in specific
downstream tasks. Both works demonstrate the potential representation power of visual prompt.
However, if we take a close look at the trade-off between performance and parameter efficiency in
these works as shown in Fig [T} current state-of-art visual prompting VPT (Jia et al., 2022) cannot
achieve superior performance in terms of accuracy (77.2% v.s. 80.7%) compared to linear probe
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Figure 1: The trade-off between the number of parameters and accuracy. Our method outperforms linear probe
and other prompting methods by a large margin with a similar amount of parameters.

paradigm. It is natural to ask if visual prompt can be a preferable alternative of a simple linear layer
in different scenarios empirically.

With this curiosity, we delved into how to make universal visual prompts gain a stronger represen-
tation of learning capability without compromising efficiency. More concretely, the question is how
visual prompt can improve the generalization ability across different datasets and models by only
using the gradient information through backward propagation. To answer this, researchers in VP
(Bahng et al.,2022) have built an early bridge between visual prompt and adversarial attack because
of similarities in both format and objective function. Without accessing and storing the whole model,
the VP achieves promising results with a small amount of parameters. However, it is still far behind
the linear probe method as shown in Fig [l We believe that the full power of visual prompt at the
pixel level remains to be harnessed. The bridge can be strengthened through more advanced tools in
adversarial attack, which has tons of well-established theoretical and empirical solutions to improve
generalization and transferability of adversarial examples (Xie et al.l | 2019; |Dong et al., [2017). In-
spired by these works, we investigate how to integrate these on-the-fly adversarial attack tools into
visual prompt deeply. Surprisingly, we find that gradient normalization (Goodfellow et al., 2015)
and input diversity (Xie et al.,2019), which play an important role in adversarial examples, can also
significantly improve the generalization ability of visual prompt at the pixel level. Furthermore, we
notice that additive visual prompt on the original image may cover up the original image informa-
tion. Thus, it becomes a new burden to improve classification performance further. To alleviate this
problem, we separate the visual prompt and image by simply shrinking the original image into a
smaller size and then padding it with learnable parameters back to the original size. Such separation
not only preserves the image information, which can remarkably improve the performance, but also
guarantees that the model FLOPs remain the same. Moreover, such a natural padding approach can
make full use of positional embeddings, which we also find critical in prompting design.

Driven by these important findings, we design a novel and concise visual prompting method in-
corporating a simple and effective training strategy. To demonstrate the effectiveness, we conduct
extensive experiments on three large-scale pre-trained models across 17 datasets. Specifically, on
the CLIP-based model (Radford et al., 2021}, our enhanced visual prompt can successfully outper-
form linear probe across 12 downstream tasks by 1.9% and beat the previous state-of-the-art visual
prompt methods by 5.5% on average with similar or fewer parameters. Our method can also improve
performance by a large margin on other pre-trained models that contains a specific linear classifi-
cation layer. Attributed to the flexibility of visual prompting, we can further explore the potential
of visual prompt in few-shot learning and out-of-distribution scenario. Surprisingly, our proposed
visual prompt can achieve superior performance over linear probe with limited labeled data. On the
out-of-distribution benchmark, our method even matches fully fine-tuning paradigm. We hope our
enhanced visual prompt can inspire both vision and language prompt learning study in the future.
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2 RELATED WORKS

Prompt Learning in NLP The key idea of prompting is to reformulate the input text in down-
stream tasks so that the frozen language models can “understand” the downstream task (Liu et al.
20214). GPT-3 (Brown et al.,[2020) demonstrates that manually operating text prompts can achieve
remarkable representation capacity in few-shot or even zero-shot learning paradigm. Following this,
recent works (Petroni et al.| 2019 |Cui et al., 2021)) show that delicately hand-designed text prompt
can further improve the generalization ability. Since designing the text prompts manually needs spe-
cific domain knowledge, more and more researchers devote efforts to prompt tuning (Li & Liang,
2021} Liu et al., [2021bf} [Lester et al., [2021)), which directly optimizes the continuous prompt vector
via gradient information. Compared with these works, we focus on visual prompt learning at the
pixel level, which is a different type of signal from human language that contains high-level semantic
information. Thus, visual prompt is more challenging than prompt learning in NLP.

Visual Prompt Learning After witnessing the success of prompt learning in language models,
some prior works (Zhou et al.,[2022} [Bahng et al., 2022) aim at investigating the prompts on vision-
language models like CLIP (Radford et al.,|2021). For example, CoOp (Zhou et al., 2022) applies
the prompt tuning to the vision-language models, which learns the soft prompt via minimizing the
classification loss on the downstream tasks. Due to the different modalities between vision and
language, there are few works (Bahng et al.l 2022; Jia et al., 2022) to prompt with images. VP
(Bahng et al.| [2022) aims at optimizing the prompts in pixel space, which builds an early connection
between attack and visual prompt learning. VPT (Jia et al.| 2022)) proposes visual prompts specific
to ViT (Dosovitskiy et al.l 2020) architecture. It adopts deep prompt tuning (Lester et al., [2021)
by inserting a set of learnable tokens into each Transformer encoder layer. Although these works
show the potential of visual-only prompt learning, we find their performance is still not promising
compared with linear probe. We enhance the visual prompt by exploring the cooperation power of
advanced adversarial attack tools and successfully outperform linear probe baseline by a notable
margin on a wide range of datasets and tasks.

Adversarial Attack Previous works (Dalvi et al.l 2004} Biggio et al., 2013} |[Huang et al., 2011}
show that machine learning models are vulnerable to adversarial attacks. Researchers have devoted
significant efforts to designing adversarial examples for several years. Goodfellow er al. (Goodfel-
low et al., 2015) proposed the fast gradient sign method to perturb a normal example for one step
along the gradient direction. The methods were extended by Madry et al. to Projected Gradient
Descent (Madry et al., [2018]), which perturbs normal examples for several steps with a smaller step
size. Adversarial reprogramming (Elsayed et al., [2018)) tries to build class-agnostic and universal
adversarial examples. Although different from adversarial goals, to our surprise, we find that pixel-
level visual prompting is amenable to using the same optimization strategy to improve performance.
There are also many works that focus on improving transferability in adversarial attacks. Xie et al.
(Xie et al., 2019) proposed a method by creating diverse input patterns. Momentum-based iterative
algorithms (Dong et al.| 2017)), proposed by Dong et al., can build robust adversarial example. We
also find that applying the input diversity, i.e., augmentation in visual prompt, can further improve
performance.

3 METHODOLOGY

We propose a visual prompting method at the pixel level with a simple but effective training strategy
inspired by the adversarial attack for adapting large pre-trained models to downstream tasks, espe-
cially for the pre-trained CLIP model. We first review previous visual prompting methods, including
VP (Bahng et al.l 2022) and VPT (Jia et al., [2022)). Then, we present our approach with technical
details, including prompt design and the training strategy.

3.1 PRELIMINARIES

VP (Bahng et al.,|2022) aims to adapt the pre-trained models to downstream tasks by modifying
some learnable pixels in original images. The key idea of VP is to learn an input-agnostic, task-
specific visual prompt v, on the border of the images (as shown in Fig. [2| (b)), so as to maximize
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the likelihood of the correct label y in the training stage: max P(y|x + vg4). Then during inference
stage, optimized visual prompt is added to all test images: Xyes = {@1 + Vg, ..., Tn + Vg }.

Though VP builds an early connection between attack and prompt, we believe the full power of
attack is unexplored very well in visual prompt. We first enhance the representation ability by
incorporating a simple training strategy (i.e., gradient normalization and augmentation) inspired by
attack. Secondly, we find that learnable pixels may obscure information from the original image(e.g.,
in 2(b), cat ears are obscured by learnable pixels). Hence, we shrink original images to preserve
complete information and pad learnable pixels around the image. Both methods can significantly
improve the performance over the VP baseline. More results can be found in Section 4}

VPT (Jia et al., 2022) Since we aim to explore the efficacy of visual prompting at the input
space, we consider VPT-SHALLOW for a fair comparison, which only inserts prompts into the first
transformer layer, namely as VPT. After patch embedding layer, the input z € RY*? contains a
learnable class token [CLS] of D-dimension and a sequence of patch embeddings F = {e;|e; €
RP i =1,...,N —1}. VPT inserts a set of continuous embeddings between CLS and image patch
embeddings. Formally, a collection of p prompts is denoted as P = {pk S Rd|k eN,1 <k <p},
and the input to Transformer layer can be formulated as: = = [CLS, P, E].

Though VPT achieves competitive performance to linear probe, we notice that the visual prompt in
VPT lacks positional information since their learnable tokens are inserted after positional embed-
ding. Importantly, We find that positional embeddings are critical in visual prompting at both pixel
and token levels. Results are demonstrated in Section[5.1]

3.2 PROMPT DESIGN

As shown in Fig. [2fc), we first resize the input image to an appropriate size to preserve the origin
information. Let # € R****3 be images after shrinking, and X € R¥**3 be images generated
from # by padding zero around the image to restore the input size of pre-trained model, where
k < K. We denote our Enhanced Visual Prompt (EVP) as V, € RE*X*3 'and value in the location
corresponding to  is always zero. Therefore, the number of parameters is (K2 — k?) x 3. During
training, our goal is to maximize the probability P(y|X + V.) of the correct label y. During testing,
the optimized visual prompt EVP is added to all test images.

3.3 TRAINING STRATEGY INSPIRED BY ADVERSARIAL ATTACK

In adversarial attack, given an image x;, the aim is to learn an imperceptible pixel perturbation g; to
mislead the network, which can be formulated as: min,, P(y;|x;+g;). In contrast, visual prompting
aims to learn a visual prompt template v to maximize the likelihood of the correct label y, which can
be considered as the inverse process of adversarial attack: max, P(y\f( + v) . Though the attack
is input-specific while visual prompting is input-agnostic, there may be some training strategies in
adversarial attack which is helpful in visual prompting.

Augmentation Previous work (Xie et al.,|2019) shows that input diversity can improve the trans-
ferability of adversarial examples. In visual prompting, transferability is essential since the prompt
template is input-agnostic. Therefore, we explore various data augmentation to increase input diver-
sity. The range of augmentation is {RandomHorizontalFlip, RandAug (Cubuk et al.}2020), Mixup
(Zhang et al., |2018), Cutmix (Yun et al.,2019) }. We find that RandomHorizontalFlip can achieve
satisfactory results. More details are shown in the ablation section.

Normalization In adversarial attack, there are various normalization ways (Madry et al., [2018),
e.g., L1 norm, Ly norm, and L, norm. For example, in Ly norm, the gradient of X is divided by its
Ly norm, which is shown in Eq. [T}

thJ(-T, y)

t+1 t
A i e e ST
Ve T (2, y)[2

(D

where « is learning rate, .J is the loss function, V:J is the gradient of the loss function w.r.t. z*.
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Figure 2: Overview of different designs of visual prompting. (a). VPT: Inject some learnable parameters
into token space (b): VP: Modify learnable pixels on the border of original images. (c): Our method: Shrink
images to preserve the complete semantic information, then apply data augmentation and pad learnable pixel
perturbation around the image. The learnable pixels are updated by normalization strategies inspired by the
adversarial attack.

Borrowing the normalization strategy in attack, we find that Lo norm can stabilize the training stage
and improve the generalization of visual prompting.

In practice, we define our EVP as V., = W © M, where W € REXEX3 gre parameters that need
gradient, and M is a mask matrix where is 1 for the location that corresponds to the prompt location.
Then, we find that dividing the gradient of EVP by the L, norm of the gradient of W can achieve
the best performance:

o

2
Vw12 @

Vt+1 Vt B .

where 7 is learning rate, J is the loss function, V¢ J and Vyy J are the gradient of the loss function

w.rt. V! and the gradient of the loss function w.r.t W, respectively. More details about different
normalization strategies are provided in the ablation section.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTING

Datasets We evaluate our prompt on 17 downstream classification datasets, including 12 classical
classification datasets (CIFAR100, CIFAR10 (Krizhevsky et al., [2009), Flowers102 (Nilsback &
Zisserman), |2008), Food101 (Bossard et al.l [2014), EuroSAT (Helber et al., 2019), SUN397 (Xiao
et al., [2010), SVHN (Netzer et al., [2011), DTD (Cimpoi et all, 2014), OxfordPets (Parkhi et al.
2012), Resisc45 (Cheng et al., [2017), CLEVR (Johnson et al 2017), and DMLab (Beattic et al.
2016)), 3 out-of-distribution datasets (Koh et al.,2021) (Camelyon17, FMoW, and iWildCAM), and
2 corruption datasets (Hendrycks & Dietterich, |2018)) (CIFAR100-C and CIFAR10-C).

Baselines We compare with other commonly used fine-tuning protocols: TP (text prompt), VP,
VPT, LP (Linear Probe), and FT (Fully fine-tuning). Text prompt is equivalent to zero-shot in CLIP.
Linear probe inserts a linear layer as the classification head. Fully fine-tuning updates all backbone
and classification head parameters.
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Figure 3: Performance gain of our approach compared to linear probe and VPT on each downstream dataset.
The bars indicate the gain (or loss) in accuracy compared to linear probe and VPT, respectively. (a) Compared
with linear probe, EVP outperforms linear probe on 7 out of 12 datasets. (b) Compared with VPT, EVP beats
the VPT on 10 out of 12 datasets by 5.4% on average.

4.2 THE EFFECTIVENESS OF VISUAL PROMPT ON CLIP

Table|[T] presents the full results on 12 classical classification datasets. We can see that:

1 Our visual prompt outperforms all previous parameter-efficient prompt protocols
with similar or fewer parameters. Specifically, our method outperforms VP and VPT on
average by 6.3% and 5.4%, respectively.

2 Our visual prompt outperforms linear probe. The table shows that the performance
of our methods is higher than the linear probe on 7 out of 12 datasets, and our average
accuracy is 82.6%, which is 1.9% higher than the linear probe. In addition, our method is
more flexible compared with linear probe, since the number of parameters of our method is
basically the same across different datasets, while the number of parameters of linear probe
depends on the number of downstream classes.

3 Our method is more parameter-efficient compared with fully fine-tuning method. The
number of parameters of our prompt is only 0.04% of fully fine-tuning, while the perfor-
mance is competitive.

Table 1: Comparisons with previous prompting methods across 12 datasets on CLIP. EVP outshines the
linear probe 7 out of 12 with similar number of parameters. The results where EVP outperforms linear probe
are shown in bold.

Adaptation | CIFARI00 | CIFARI0 | Flowers | Food | EuroSAT | SUN | DMLab | SVHN | Pets | DTD | RESISC | CLEVR | Average

TP 63.1 89.0 61.8 83.2 34.1 58.0 30.2 11.0 859 4238 42.4 20.2 51.8
VP 75.3 94.2 62.0 83.2 97.4 60.6 419 884 850 57.1 89.0 81.4 76.3
VPT 76.6 95.0 76.2 84.7 96.1 69.0 48.4 86.1 92.1 60.8 833 58.6 77.2
EVP(Ours) 81.2 96.6 823 84.1 99.0 71.5 60.9 90.5 90.0 684 92.3 74.6 82.6
LP 80.0 95.0 94.1 88.3 95.6 76.2 49.3 654 892 735 95.3 66.1 80.7
FT 82.1 95.8 97.4 87.8 95.8 65.3 63.5 957 885 723 89.7 94.4 85.7

4.3 'THE EFFECTIVENESS OF VISUAL PROMPT ON OTHER MODELS

In general, the last layer of the visual pre-trained model is fixed to a set of predefined classes and re-
quires a separate task-specific head to adapt to the downstream tasks. In our experiments, we aim to
explore whether purely visual prompting in input space can adapt pre-trained models to downstream
tasks without any modification to pre-trained architecture and weights. VP arbitrarily maps down-
stream classes to pre-trained classes and discards unassigned classes. However, we hypothesize
some similarity between pre-trained and downstream classes, but the correspondence is unknown.
Therefore, we design a simple and efficient pre-processing stage before visual prompting.

For each downstream class, we feed downstream images in this class into pre-trained model and in-
vestigate the prediction in pre-trained classes. Then, we choose the pre-trained class with the highest
prediction frequency as the corresponding class of this downstream class. After pre-processing, we
fix the correspondence and train our visual prompting.

Table 2] shows that when using arbitrary mapping, EVP outperforms VP a little. When we apply our
pre-processing stage, the performance outperforms EVP and VP significantly. It even matches the
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Table 2: Performance on other models except CLIP. E_VP* indicates that we train EVP using classes after
preprocessing stage. EVP slightly exceeds VP and EVP" outperforms EVP and VP by a large margin. The
bold indicates cases that the performance of EVP" is competitive with linear probe.

Model | Adaptation | CIFARI00 | CIFARIO | Flowers | Food | EuroSAT | SUN | SVHN | Pets | DTD | RESISC | CLEVR | Average

Instagram VP 16.7 62.1 4.8 6.5 85.8 22 53.8 18.6 29.1 41.4 30.9 32.0
Instagram EVP 13.6 67.2 9.2 7.1 87.2 79 50.8 163 29.0 40.0 48.1 342
Instagram EVP" 60.3 93.5 11.4 8.4 88.0 19.6 553 744 444 48.1 50.5 50.4
Instagram LpP 64.0 90.1 92.7 65.8 95.5 58.1 48.0 945 709 95.7 30.2 732
Instagram FT 77.8 71.8 94.5 75.6 97.4 57.6 96.8 939 735 93.4 89.3 84.1
RN50 VP 10.1 54.5 4.7 5.1 82.8 1.1 57.1 10.8 8.2 29.9 29.5 26.9
RN50 EVP 9.2 55.9 6.6 3.9 76.2 5.1 48.6 105 187 26.0 355 26.7
RNS50 EVP* 38.0 71.0 11.9 7.0 82.5 14.7 47.8 720 412 40.8 37.2 42.7
RNS50 LP 67.7 87.7 92.7 62.5 95.8 57.5 603  91.1 66.7 922 32.6 733
RNS50 FT 79.9 94.1 96.9 732 96.5 559 96.9 923  66.7 93.4 89.3 84.3
Average on 5 datasets EuroSAT OxfordPets
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Figure 4: Results of few-shot learning on five visual recognition datasets. Each figure shows the few-shot
results trained on 1%, 4%, 7%, 10% data respectively. All visual prompt methods show clear dominance
compared with linear probe. EVP (red line) outperforms other methods by a large margin on average.

performance of the linear probe on some datasets, indicating that our pre-processing stage chooses
some classes that are similar to downstream classes, and the visual prompting can modify the map-
ping from the pre-trained class to a downstream class. However, our EVP” fails on datasets of fine-
grained datasets, like Flowers102 and Food101. We think it is very difficult to find such fine-grained
classes from pre-trained classes.

4.4 THE EFFECTIVENESS OF VISUAL PROMPT ON FEW-SHOT LEARNING

We are interested in whether visual prompting has a good few-shot learning ability. To verify it, we
train our prompt using only 1%, 4%, 7%, and 10% data for each class in the training datasets, which
is sufficient to observe the trend.

The results are summarized in Fig[d} The results show that: (1). Visual prompting(VP, VPT, EVP)
shows clear dominance in few-shot settings compared to linear probe, which shows that visual
prompting has a stronger learning ability with limited labeled data. (2). Our method achieves
the best performance on average among visual prompting methods, indicating that our strategy of
normalization improves the generalization ability.

4.5 THE ROBUSTNESS OF VISUAL PROMPT TO DISTRIBUTION SHIFT

Since the parameters of the pre-trained model are frozen, visual prompting only provides infor-
mation about the downstream tasks. The backbone preserves the general pre-trained knowledge,
reducing the possibility of overfitting the downstream training set. Hence, we are interested in how
our visual prompt compares with other fine-tuning methods in terms of out-of-distribution robust-
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Table 3: Robustness comparison on out-of-distribution and corruption datasets. Left: out-of-distribution
datasets. Right: corruption datasets. Compared with fully fine-tuning, EVP even achieves better or comparable
results on both out-of-distribution setting and corruption setting, which shows the strong robustness of EVP.

Model | Adaptation | iwildcam | camelyonl7 | fmow | Average Model | Adaptation | CIFAR100-C | CIFARI0-C | Average
CLIP TP 12.5 47.3 13.7 24.5 CLIP TP 435 72.1 57.8
CLIP VP 57.3 91.4 62.2 37.8 CLIP VP 525 84.1 68.3
CLIP VPT 58.8 91.9 29.7 60.1 CLIP VPT 54.0 75.8 64.9
CLIP Ours 64.9 95.1 40.2 66.7 CLIP Ours 58.6 84.3 71.5
CLIP LP 66.7 86.0 36.3 63.0 CLIP LP 56.9 78.8 67.9
CLIP FT 64.0 84.3 49.7 66.0 CLIP FT 61.1 82.7 71.9

ness. Following prior studies, we use the WILDS benchmark (Koh et al.| 2021)). We train visual
prompts from training datasets from a specific domain. Then we test the model on datasets from a
different domain(e.g., images from different regions, cameras, and hospitals). As Table[3|shows, the
performance of our method outperforms linear probe on 2 of 3 datasets. The above results verify
that keeping the backbone fixed and providing task information with prompt can avoid overfitting.

4.6 THE ROBUSTNESS OF VISUAL PROMPT ON CORRUPTION DATASETS

We also test the robustness of visual prompt on corruption datasets, CIFAR100-C and CIFAR10-
C. These two corruption datasets introduce a set of 19 common visual corruptions and apply them
to the object recognition datasets, CIFAR100 and CIFARI1O0, respectively. These datasets serve as
general datasets for benchmarking robustness to image corruptions. We train the visual prompting on
datasets CIFAR100 and CIFAR10, then test the performance on corresponding corruption datasets.
Results are shown in Table[3] We can see that our EVP outperforms other prompt methods and linear
probe, showing the strong robustness of EVP. Since we shrink original images to preserve complete
information, our prmopt can focus on the global semantic information rather than the corruption.

5 ABLATION ON PROMPT DESIGN VARIANTS

Visual Image Patch Visual Image Patch
Prompt Embeddings Prompt Embeddings
Transformer Encoder Layer Transformer Encoder Layer ﬁ
o000 000 00 00
[ Transformer Encoder Layer [ Transformer Encoder Layer ﬁ
(a) VPT (b) VP, T

Figure 5: Ablation on positional embedding at token level. (a). Visual Prompting Tuning(VPT): Inject
learnable tokens between CLS and image patch embedding without positional embedding (b): VP, T: Inject
learnable tokens between CLS and image patch embedding with same positional embedding P,, (i.e, n-th posi-
tional embedding (n=1, 2, ..., 5)).

5.1 PROMPT POSITIONAL EMBEDDING

A significant distinction between VPT and our method is the positional embeddings(PE) of learnable
visual prompting. We apply positional embeddings to both image patch embeddings and visual
prompting, while VPT only adds positional embeddings to image patch embeddings. We ablate
different choices to show that positional embeddings of visual prompting are important, at both
pixel and token levels.

At the pixel level, denoting our main method as EVP-small w/ PE, then we define two other choices:
1. EVP-big w/ PE: We pad learnable pixels around the original image, and interpolate the original
positional embeddings to the appropriate size, then we add the positional embeddings to both image
patch embeddings and learnable pixels. 2. EVP-big w/o PE: We pad learnable pixels around the
original image and add positional embeddings only to the image patch embeddings.

Table [4] shows the effect of the positional embedding of visual prompting at the pixel level. We
can see that EVP-big w/ PE achieves the best performance, while EVP-big w/o PE is the worst.
EVP-small w/ PE outperforms EVP-big w/o PE though the number of parameters is less and the
resolution is lower, demonstrating the efficacy of positional embedding.
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Table 4: Ablation on positional embedding at the
pixel level. EVP-small shrinks the image and pad it
with learnble pixels back to the origin size, while EVP-
big pads pixel patches around the origin image. EVP-
small w/ PE even can beat EVP-big w/o PE with fewer
the number of parameters and smaller input resolution,
indicating that the positional embedding are crucial.

Table 5: Ablation on positional embedding at token
level. VPT only adds positional embeddings to the im-
age patch embeddings, while VP1 T, VP25 T, VP50 T in-
dicate that we add the /-st, 25-th, 50-th positional em-
bedding to the learnable tokens, respectively. Simply
adding positional embeddings to learnable tokens can
improve the performance significantly.

Methods | CIFARI00 | CIFARIO | DTD | RESISC | EuroSAT | Average

Methods | CIFAR100 | CIFARIO | DTD | RESISC | EuroSAT | Average

EVP-small w/ PE 81.2 96.6 68.4 923 99.0 87.5
EVP-big w/ PE 81.4 96.9 68.9 93.3 99.0 87.9
EVP-big w/o PE 734 93.7 64.6 83.1 92.0 824

Table 6: Ablation on augmentation. We use CLIP-
Base/32 as pre-trained model and evaluate on CI-

VPT 76.6 95.0 60.8 833 96.1 82.4

VP, T 71.3 96.0 67.7 88.3 96.7 85.2
VPy5T 76.8 95.5 66.6 88.1 96.1 84.6
VP50 T 71.0 96.0 66.4 87.2 96.3 84.6

Table 7: Ablation on gradient normalization. Ap-
plying L2 norm on gradient can significant improve

FAR100. RandomFilp works the best. Stronger aug-
mentation degrades performance.

performance. Adapting whole image’s gradient to nor-
malize can improve further.

Augmentation i izati
Fiip Mixup . RandAug —Cutvii | Performance ” gzdlergzi(;?ilzlhzaizl—lwhole Performance
80.5 775
v 81.2 v 77.2
v % 79.6 v 71.9
v 4 79.4 v 79.4
v v 79.7 4 81.2

At the token level, we find that simply adding positional embeddings to learnable tokens can improve
performance. Since the positional information of Transformer architecture is only dependent on
the positional embeddings, adding different positional embeddings to learnable tokens indicates
inserting learnable tokens into different positions. Based on this, we design different prompt choices
at the token level by adding different positional embeddings to the learnable tokens. Specifically,
we denote prompt choices as VP,, T, which means that we add the n-th positional embeddings to the
learnable tokens, which is shown in Fig. [5]

Table [5] shows the results. We can see that adding the positional embeddings to learnable tokens in
different ways can improve the performance significantly, indicating that the positional embeddings
are significant in visual prompting.

5.2 ABLATION ON TRAINING STRATEGY

In adversarial attack, data augmentation can improve the transferability of adversarial examples.
We aim to borrow this strategies to improve visual prompting. We ablate augmentation methods,
like RandomHorizontalFlip, mixup, randAug, and cutmix on CIFAR100 dataset. As shown in Ta-
ble [6] we find that simple RandomHorizontalFlip can achieve satisfactory results, and some strong
augmentation like mixup or randAug may decrease the performance.

In adversarial attack, there are many normalization strategies, e.g. L1 norm, Ls norm, and L, norm.
Table [/| shows the Lo norm achieves the best performance among all strategies on CIFAR100. In
addition, We explored what the optimal Lo norm consists of. We find that using the whole gradient of
the image to calculate Ly norm (Ly-whole) is better than using the gradient of the visual prompting
pixels (Ly-partial).

6 CONCLUSION

We propose EVP, a new parameter-efficient visual prompting method at the pixel level to adapt large
pre-trained vision model to downstream tasks. EVP builds the connection between adversarial attack
and visual prompting, then borrows training strategies from attack to improve the transferability. In
addition, EVP preserves the complete information and keeps the same FLOPs with origin images.
We show that EVP can outperform other visual prompting methods at the input space and surpass
linear probe on many settings.
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A APPENDIX

Implementation details We implement all experiments in Python using Pytorch (Paszke et al.,
2019) framework. We use CLIP-B/32, Instagram (Mahajan et al.| 2018)), and ResNet50 (He et al.,
2016) as our pre-trained model, and the batch size is 256, 32, 128, respectively. All visual prompts
in our experiments are trained for 1000 epochs. For EVP, we use SGD with a learning rate of 70,
which decayed using cosine schedule (Loshchilov & Hutter, |2017). The prompt size is 30 pixels by
default. To compare fairly with VP, we follow the text prompt as VP (Bahng et al., [2022) in CLIP
model. Specifically, we use “This is a photo of a [LABEL]” as default for the text prompt. For
CLEVR datasets, we use “This is a photo of [LABEL] objects”, for DMLab datasets, we use “The
distance is [LABEL1], and the reward is [LABEL2]”, and for Camelyon17, the text prompt template
is “a tissue region [LABEL] tumor”.

Prompt Size The prompt size is a hyper-parameter for EVP. We define prompt size p = %,
where k is the image size after shirinking, and K is the input size of pre-trained model. Therefore,
the number of parameters is 12p(K — p), which only depends on p since K is fixed for a given
model. In our experiment, the optimal prompt size varies across datasets, as shown in Fig. [6] Since
we shrink the original image and pad learnable pixels around it, the image resolution and the number
of parameters are traded off essentially. In some datasets with low resolution(e.g., CIFAR100), the
prompt of p=30 achieves the best performance. However, in some datasets wth high resolution,
decreased resolution may lead to decreased performance. We find that p=5 is the best in Food101
with resolution 512x512.
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Figure 6: Ablation on prompt size. The pre-trained model is CLIP-B/32. We vary the prompt size, which
determines the number of parameters, and show the performance on four datasets. The best prompt size varies
across datasets.
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