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ABSTRACT

Generalization has long been a central challenge in real-world image restoration.
While recent diffusion-based restoration methods, which leverage generative pri-
ors from text-to-image models, have made progress in recovering more realistic
details, they still encounter “generative capability inactivation” when applied to
out-of-distribution data. To address this, we propose using text as an auxiliary in-
variant representation to reactivate the generative capabilities of these models. We
begin by identifying two key properties of text input in diffusion-based restoration:
richness and relevance, and examine their respective influence on model perfor-
mance. Building on these insights, we introduce Res-Captioner, a module that
generates enhanced textual descriptions tailored to image content and degradation
levels, effectively mitigating response failures. Additionally, we present ReallR,
a new benchmark designed to capture diverse real-world scenarios. Extensive ex-
periments demonstrate that Res-Captioner significantly boosts the generalization
ability of diffusion-based restoration models, while remaining fully plug-and-play.

SUPIR Caption:

The image features a cat with a mix
of orange and white fur, sitting in a
dark environment ... The scene is
depicted in a black and white style ...

Res-Captioner: )

The image features an orange
with a fluffy fur coat. The

and have a sharp, attentive look with
a dark outline around them. The

, and have
some

SUPIR Caption:

The image features a woman with
long, curly hair, blowing in the
wind ... The image is captured in
black and white ...

Res-Captioner:
The image shows a woman wearing a
white jacket over a black shirt,
standing outdoors. She has long hair
that is being blown by the wind,

. The
‘woman’s eyes are
through the hair, and their gaze is
directed off to the side ...

00D LQ Restored by SUPIR Boosted with Res-Captioner Hallucinations

Figure 1: State-of-the-art methods like SUPIR (Yu et al., 2024a) face “generative capability inactiva-
tion” on out-of-distribution (OOD) data. Our Res-captioner reactivates their generative capabilities
by providing detailed and accurate descriptions.

1 INTRODUCTION

Diffusion-based image restoration methods (Yu et al., 2024a; Sun et al., 2024; Wu et al., 2024; Wang
et al., 2024b; Lin et al., 2023; Tao Yang & Zhang, 2023; Ai et al., 2024; Yu et al., 2024b; Zhang
etal., 2024), powered by pre-trained text-to-image (T2I) models (Rombach et al., 2022; Podell et al.,
2024), achieve superior texture and detail recovery compared to GAN-based methods (Zhang et al.,
20215 Wang et al,, 2021; Liang et al., 2021; 2022a; Chen et al., 2022). However, these models still
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face the out-of-distribution (OOD) challenge ( , ), arising from misalignment between
training data and real-world test cases. Real-world degradation simulations ( , ;
, ) offer a common mitigation approach, but a domain gap persists ( , ;
, ; , ), especially pronounced for device-induced degradations. As
depicted in Figure 1, even state-of-the-art methods struggle to restore fine textures under complex
degradations, a limitation we refer to as “generative capability deactivation”.

We define image restoration as ¢ = R(x;,), where x and x;, denote high-quality (HQ) and low-

quality (LQ) images, respectively, and R is the restoration model. To tackle domain generalization,

researchers propose learmng a cross-domain invariant representation z = G(;4) ( ,

; s ) and then train a prediction network conditioned on z:

x = H(z). However learmng degradatlon -invariant representations with strong generalization and

minimal information loss remains difficult in image restoration ( , ), as decouphng
content from degradation in the image modality is challenging (

, ). To address this, we propose transforming LQ images into the text modahty usmg an

image captioner C: y = C(x;q), leveraging recent multi-modal advancements ( ;a5

, ). This approach offers two advantages: first, in the text modality, degradatlon—

related descriptions y,., can be easily separated, leaving the content-related part Yeon: = {w | w €

Y, W ¢ Ydeq } as a degradation-invariant representation of ;4. Second, text naturally activates priors

in T2I diffusion models, facilitating enhanced texture recovery ( s ; , ;

> 5 > 5 > 5 ’ )'

However, due to significant information compression during the image-to-text transformation, re-
lying solely on y.on: cannot fully meet the high-fidelity requirements of image restoration tasks.
Therefore, we utilize Y.+ as an auxiliary invariant representation in conjunction with the LQ image
input, expressed as: & = R(xiq, Yeont)- In our framework, image restoration is treated as a dual-
conditioned image generation problem. Compared to the text input ¢, the LQ image x,;, serves
as a much stronger condition, being more closely aligned with the final output . However, when
the degradation domain of the LQ image shifts, the information that the model can extract from
x4 largely decreases, leading to the problem of generative capability deactivation (illustrated in
Figure 1). To address OOD data, we propose adaptively enhancing the auxiliary invariant represen-
tation y.,n¢ through our Restoration Captioner (Res-Captioner), compensating for the information
loss from x;, due to domain shifts.

To this end, we identify two key properties of text input in T2I diffusion-based restoration models:
richness and relevance. Richness is primarily reflected in the length of the text; the more detailed
the text, the richer the generated textures. Relevance, on the other hand, measures the correlation
between the description and the HQ image content, with higher relevance leading to greater fidelity
between the restored image and the ground truth. Building on these properties, we develop Res-
Captioner, which is designed to accommodate varying degradation types and image clarity levels.
Notably, Res-Captioner can be seamlessly integrated into restoration models, enhancing generaliza-
tion without requiring retraining of the restoration model itself.

Finally, given the limitations of current real-world image restoration benchmarks ( , ;

R ), such as the restricted variety of imaging devices, and narrow content diversity,
we introduce a new benchmark called RealIR. ReallR encompasses a broader range of degradation
sources, clarity levels, and diverse photographic scenarios. Through this benchmark, we demon-
strate that our Res-Captioner significantly improves the generalizability of diffusion-based methods,
delivering more detailed and high-fidelity restoration results.

The contributions of this paper can be summarized as:

* We identify the potential of utilizing text as an ancillary invariant representation to en-
hance generalizability in image restoration, highlighting two key properties—richness and
relevance—and their respective impacts on restoration performance.

* Building on our findings, we develop the Res-Captioner, which generates adaptively en-
hanced ancillary invariant representations, improving the generalizability of pre-trained
diffusion-based restoration models in a plug-and-play fashion.

* We introduce a new restoration benchmark, ReallR, to comprehensively assess generaliz-
ability. Using both our benchmark and existing public datasets, we demonstrate the effec-
tiveness of the Res-Captioner across multiple restoration methods.
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2 RESTORATION CAPTIONER

2.1 PROPERTIES OF TEXT INPUT

We start by investigating how the text input y affects the performance of restoration methods built
on text-to-image (T2I) models. We identify two key properties of the text: richness and relevance.
Richness refers to the amount of information conveyed, often reflected in text length, while rele-
vance measures the degree of correlation between the text and the corresponding high-quality (HQ)
image. Additionally, we observe that degradation-related or photography-specific descriptions can
negatively affect restoration results, highlighting the importance of extracting content-specific de-
scriptions, denoted as Ycon¢-
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Figure 2: Visualization of the text richness property. (Left) The richness of textures and details in
the restored results increases with text richness. Text that is too short can result in the “generative
capability inactivation” problem. Excessively long text can lead to messy generation and artifacts.
(Right) We can classify image content into three categories based on the effect of increased text
richness: I beneficial, II insensitive, and III detrimental.

2.1.1 RICHNESS PROPERTY

Observation 1. The richness of restored textures and details increases proportionally with the
richness of the text description.

As illustrated in Figure 2, we observe that for all low-quality (LQ) images, increasing text richness
(i.e., text length) consistently enhances texture restoration. To explore this further, we prepare a
dataset of 120 HQ images from diverse scenarios and generate the corresponding LQ images using
Real-ESRGAN (Wang et al., 2021). GPT-4 is employed to generate detailed descriptions for the
HQ images. We then evaluate two representative restoration models, SUPIR (Yu et al., 20242a) and
StableSR (Wang et al., 2024b), for verification. The text input is encoded using CLIP (Radford et al.,
2021) to generate 77 tokens. We then repeatedly append the last 20 tokens, excluding the EOS token,
and follow (Xia et al., 2024) to integrate and inject these length-varying tokens into the restoration
models to produce the restored results. Texture richness is assessed using two non-reference metrics:
MANIQA (Yang et al., 2022) and MUSIQ (Ke et al., 2021). As shown in Figure 3 (a, b), both metrics
demonstrate a positive correlation with the number of text tokens, supporting Observation 1.
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Figure 3: Demonstration of the richness property. (a, b): There is a positive correlation between
text richness and the richness of textures in the restored results. (¢, d): The optimal text richness
(indicated by an asterisk) is proportional to the degree of deviation between the test degradation
domain and the training degradation domain. Best viewed zoomed in.

We attribute this property to the data bias inherent in pre-trained T2I models, where images with
richer content are typically paired with more detailed descrlptlons during training. Similar observa-
tions have been made in T2I research ( , , ), where longer prompts
lead to more enriched scenes. However, in the context of image restoration, this effect primarily
enhances texture quality rather than introducing new objects or elements.

Observation 2. The optimal level of text richness is influenced by factors such as degradation
severity, and image content.

As discussed, detailed text descriptions improve texture restoration. However, as shown in Figure 2,
exceeding the optimal range of text richness may lead to undesirable artifacts or messy generation.
For instance, the squirrel’s eyes and mouth are misaligned with the LQ image, and the bee shows
over-sharpening effects. We posit that the optimal text richness is proportional to the domain gap
between training and testing degradations. To validate this, we prepare LQ images either simulated
or captured in the wild with different zoom ratios and evaluate the performance of SUPIR and
StableSR in relation to text richness. As illustrated in 3 (¢, d), as the test degradation increasingly
diverges from the training setting (e.g., 4x Real-ESRGAN degradation), the optimal text richness
similarly increases. This is because, as degradation severity intensifies, the useful information the
model can extract from LQ images diminishes, necessitating more informative textual inputs to
compensate for the information loss.

We also find that the optimal text richness is influenced by the content of the LQ image. Follow-
ing ( , ), we categorize three groups based on the impact of increased text richness
on image content: beneficial, insensitive, and detrimental. Category I, “beneficial”, includes fine-
grained textures (e.g., feathers, leaves, sand) and regular structures (e.g., walls, windows), which
benefit from longer text input as it activates the model’s generative capability. Category II, “in-
sensitive”, consists of smooth areas and large-scale structures (e.g., sky), where text richness has
minimal effect. Category III, “detrimental”, includes non-rigid structures (e.g., text, crowds), where
excessively long text may compromise fidelity.

2.1.2 RELEVANCE PROPERTY

Observation 3. The fidelity of restored textures improves in correlation with the relevance of the
text description.

To quantitatively characterize the text relevance property, we introduce the concept of the “text-
replacing ratio”. This is defined as the ratio of original words in the text input y that are replaced
with non-meaningful words like “the” or “for”. As the text-replacing ratio increases, the relevance
between the text input and the corresponding HQ image decreases, while the text richness remains
unchanged. As shown in Figure 4, we observe that although restored results retain rich textures as
the text-replacing ratio increases, they suffer from a decline in fidelity. This is confirmed by the
decreasing DISTS scores (lower is better), measured between the HQ image and the restored output.
At higher text-replacing ratios, even the overall semantics of the restoration become distorted. For
instance, at a ratio of 1.0, a lizard’s head is incorrectly restored as flowers. In such cases, the model
continues to generate textures but lacks the appropriate guidance to produce accurate ones.
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Figure 4: Visualization and demonstration of the text relevance property. Left: The accuracy of
textures and details in the restored results decreases as the text-replacing ratio increases, indicating
that text relevance contributes to the fidelity of the restoration. Right: DISTS increases with a higher
text-replacing ratio, further indicating a decrease in the fidelity of the restored results.

2.1.3 HARMFUL DESCRIPTION

Observation 4. Descriptions related to degradation or photography can lead to global or localized
blurring in the restored images.

We discover that degradation-related descriptions such as “blur” or “blurred”, and photography
terms like “shallow depth of field” or “bokeh effect”, may lead to blurred outputs. Even when
descriptions like “the background is blurred, while the main subject is sharp” accurately reflect the
HQ image, they can cause overall blurring in the restored results. This is likely due to the lim-
ited spatial control capabilities of pre-trained T2I models (Avrahami et al., 2023), which amplifies
the blurring effect. To validate this, we use GPT-4 to generate two captions of similar length: one
without harmful descriptions and another including them. To exclude the effects of text richness
and relevance, we duplicate the harmless description, labeled “Without Harmful Description”, and
combine both harmless and harmful descriptions to create “With Harmful Description”. As shown
in Figure 5, the description without harmful terms successfully restores clearer and richer details,
while the harmful description does not.

With Harmful Description:

j (The image displays a collection
of lush green leaves.
Prominently featured are ...
The image displays a collection
of lush green leaves.
Prominently featured are ...
Length: 150

" 7 The image features a close-up

/ of .... The background is
moderately blurred ... from the
subtler, softer backdrop.
The image displays a collection
of lush green leaves. ...
Length: 150

The focus is sharp on most
of ... The background areas
1| have a soft bokeh effect. The
depth of field is shallow ...
The image shows fresh basil
leaves and tomatoes. ..
Length: 170

¥ ( The image shows fresh basil
leaves and tomatoes. The basil
g1 | leaves are ...

The image shows fresh basil
leaves and tomatoes. The basil
leaves are ...

Length: 170

Restored Text Input Restored Text Input

Figure 5: Harmful descriptions to the image restoration.

2.2 ANCILLARY INVARIANT REPRESENTATION ENHANCEMENT

Learning degradation-invariant representations from LQ images is highly challenging. To address
this, we propose using text free of degradation-related descriptions as an auxiliary invariant represen-
tation to improve generalization. As discussed in Section 2.1, text plays a crucial role in controlling
both the richness and fidelity of textures in restored results. However, existing image captioners (Liu
etal., 2024b;a; Chen et al., 2023), which are not specifically designed for image restoration, not only
generate harmful descriptions but also fail to adaptively enhance text richness. Consequently, they
may contribute to the “generative capability inactivation” problem (Figure 1) in real-world scenar-
ios. To address this issue, we introduce Res-Captioner, a restoration-specific captioner that generates
high-quality text descriptions for real-world LQ images across diverse degradation levels and con-
tent categories, ensuring adaptive control over both richness and relevance.

Training data generation. We first collect HQ images from (Unsplash), ImageNet (Deng et al.,
2009), and SAM (Kirillov et al., 2023), filtering out overly smooth ones using Sobel filters based on
image gradient standard deviation. This ensures a selection of rich-content, high-clarity HQ images
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Figure 6: (a) The generation and annotation process of our training data. (b) Chain-of-Thought
captioning of our Res-Captioner. (c¢) Network structure of our Res-Captioner.

from diverse scenarios. Next, as shown in Figure 6 (a), we leverage five pre-trained latent diffusion
models (LDM) (Rombach et al., 2022) to generate LQ images that simulate varying imaging devices
and zoom ratios. Training details for the LDM are provided in the appendix. We also include a
percentage of Real-ESRGAN-generated (Wang et al., 2021) LQ images to further enhance diversity.

To ensure high relevance while minimizing hallucination, as illustrated in Figure 6 (a), we use GPT-
4 to generate descriptions of varying lengths for each HQ image. Several prompting techniques,
detailed in the appendix, are applied to avoid degradation-related or photography-specific content.
These descriptions are fed into the restoration model, producing multiple restored candidates for
each LQ image. Human annotators select the optimal text input that provides the best visual result,
balancing texture richness and fidelity. The token length of the selected description is then calculated
and combined with the description to form the final caption output in the format <token length,
description>. In total, we curate 5,500 LQ image-caption pairs for training our Res-Captioner.

Chain-of-Thought captioning. Our goal is to generate accurate descriptions with appropriate rich-
ness for LQ images. As discussed in Observation 1 and Observation 2, the optimal text richness,
primarily reflected in token length, is determined by image content and degradation levels. Given
the diversity of real-world scenarios, we enhance the reasoning and decision-making capabilities
of Multimodal Large Language Models (MLLM) by adopting the “Chain of Thought” (CoT) strat-
egy (Wei et al., 2022) in Res-Captioner. Specifically, as shown in Figure 6 (b), the model first
predicts the optimal token number before generating the corresponding caption. As demonstrated in
Section 3.4, this approach significantly improves the accuracy of the description length.

Network structure. We fine-tune LLaVA-1.5 (Liu et al.,, 2024a) using low-rank adaptation
(LoRA) (Hu et al., 2021) to serve as our Res-Captioner. Since LLaVA is not designed for LQ
images, we enhance its ability to perceive image degradations. In addition to the original CLIP
visual encoder, we incorporate a degradation-aware visual encoder, as shown in Figure 6 (c). This
encoder consists of a pre-trained degradation extractor, known for its sensitivity to various degra-
dations (Chen et al., 2024; Liu et al., 2023a), and a lightweight adapter for improved degradation
extraction. Specifically, the adapter is built from several MLP layers, first compressing the token
count to 1 and then expanding it to N tokens (we set N = 36), enabling the encoder to focus on the
global degradation representation while ignoring spatially varying content.

2.3 REALIR BENCHMARK

The current real-world restoration benchmarks (Cai et al., 2019; Wei et al., 2020) are limited by a
narrow range of degradation types, insufficient diversity in imaging devices, and constrained content
scope. To overcome these limitations, we introduce ReallR, a new benchmark featuring 152 real LQ
images from eight imaging devices, including two DSLRs and six mobile phones, capturing images
with varying zoom ratios. We also incorporate 53 LQ images sourced from the internet to capture
degradations introduced by network transmission, which differ from device-specific degradations.
The dataset covers a wide range of content, including portraits, animals, plants, and architectural
scenes, enabling comprehensive evaluations of image restoration methods’ generalizability.
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3 EXPERIMENTS

3.1 IMPLEMENTATION DETAILS

Our Res-Captioner is built on LLaVA-1.5'. We train the model with a batch size of 128 over 500
steps using an A800 GPU, employing the Adam optimizer ( , ) with a learning rate
of 2 x 10~*. We integrate Res-Captioners into two diffusion-based restoration models: SUPIR (

s ), built on SDXL ( , ), and StableSR ( , ), using Stable
Diffusion 2.1 ( , ). Our models operate in a plug-and-play fashion, seamlessly
integrating with restoration models based on the same text-to-image (T2I) backbone. As in (

, ), we iteratively process the long text through the CLIP ( , ) text encoder.

Details of our training data generation and labeling process are provided in Section 2.2. We col-
lect 5,500 low-quality (LQ) image-caption training pairs for SUPIR. Recognizing that different T2I
backbones exhibit distinct text richness characteristics, we collect an additional 500 pairs for Sta-
bleSR for fine-tuning. To match the resolution requirements of the respective T2I backbones, we
resize the short edge of high-quality (HQ) images to 1024 for SUPIR and 512 for StableSR. The
parameters for LoRA follow the standard LLaVA settings.

3.2 EXPERIMENTAL SETTINGS

Test datasets. Our proposed ReallR dataset encompasses diverse content and degradations from
real-world scenes, making it ideal for assessing the generalization ability of restoration models.
However, due to the absence of ground-truth images in ReallR, we create an additional multi-
degradation test set comprising 120 LQ-HQ pairs using pre-trained latent diffusion models (LDM).
To ensure fair evaluation, the degradations used for LQ generation are distinct from those in our
training set. We categorize the LQ-HQ pairs into three degradation levels based on zoom ratio: light
(zoom ratio of 3 to 7), moderate (zoom ratio of 8 to 10), and heavy (zoom ratio of 15 to 20). These
two test sets enable a comprehensive evaluation of the restored results’ detail richness and fidelity
across varying degradation levels. Furthermore, we evaluate our approach on established real-world
benchmarks such as RealSR ( , ) and DRealSR ( R ), using randomly
cropped patches for more comprehensive analysis.

Compared methods. Our experiments include state-of-the-art (SOTA) real-world image restora-

tion methods, such as GAN-based approaches like Real-ESRGAN+ ( , ) and
DASR ( R ), as well as diffusion-based models including StableSR ( s
), SeeSR ( s ), CoSeR ( , ), and SUPIR ( s ). Addi-

tionally, we compare our Res-Captioner with leading image captioning models, such as LLaVA-1.5
and ShareCaptioner ( , ).

Evaluation metrics. For test sets without ground truth, such as ReallR, we use non-reference eval-

uation metrics aligned with human perception, including MUSIQ ( R ), MANIQA (

, ), LIQE ( , ), and NIQE ( , ). For datasets with ground
truth, we adopt perceptual distance metrics like DISTS ( ) and LPIPS
( ), alongside the LIQE metric, which leverages large vision-language models for robust evalu-
ation. Pixel-level metrics such as PSNR and SSIM are no longer considered, as they exhibit weak
correlation with human perception, as discussed in related works ( , ; , ).

3.3 COMPARISON WITH STATE OF THE ARTS

3.3.1 QUANTITATIVE RESULTS

Our quantitative results are organized into three parts. First, we assess the generalization ability of
existing restoration methods in real-world scenarios using the ReallR benchmark, showing that Res-
Captioner consistently improves their performance. Second, we evaluate the multi-degradation test
set and the existing benchmarks, confirming that Res-Captioner not only enhances detail generation
but also preserves fidelity across various degradation levels. Lastly, we compare the performance of
other image captioners to our Res-Captioner, highlighting its superior effectiveness.

'https://huggingface.co/liuhaotian/llava-v1.5-13b
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Table 1: Quantitative comparisons on our ReallR benchmark. We highlight best values for each
metric and the results of Res-Captioner-enhanced models .

Methods ReallR (Cameras) ReallR (Internet)
MUSIQT MANIQAT LIQET NIQE] MUSIQT MANIQAT LIQET NIQE|

Real-ESRGAN+ 58.54 0.1784 2.425 5.646 58.34 0.2048 2.157 5.646
DASR 53.82 0.1487 2.208 6.748 50.84 0.1397 1.594 6.748
CoSeR 56.91 0.1163 2.597 4.042 66.67 0.1842 3.822 4.042
SeeSR 70.19 0.2138 3.768 3.749 72.65 0.2694 4.243 3.749
StableSR 66.15 0.1924 3.466 4.033 67.66 0.2012 3913 4.033
StableSR w/ Ours 68.04 0.1955 3.615 3.888 70.90 0.2251 4.252 3.888
SUPIR 60.43 0.1651 2.983 3.492 71.94 0.2727 4.425 3.492
SUPIR w/ Ours 71.38 0.2543 4.056 3.389 73.26 0.3055 4.578 3.389

Table 2: Quantitative comparisons between the official model and the Res-Captioner-enhanced
model under different degradation levels. We show the improvement percentage on each metric.

Methods Light Degradation Moderate Degradation Heavy Degradation
DISTS| LPIPS| LIQEf DISTS| LPIPS| LIQEt DISTS] LPIPS| LIQEf
StableSR 0.1791  0.3311  3.699 0.1864 03209 3.603 0.2181 0.4008  3.047
StableSR w/ Ours 0.1661  0.3222 3.735 0.1692 03086 3.857 0.1918 0.3773  3.604
7.3% 2.7% 1.0% 9.2% 3.8% 7.1% 12.1% 5.9% 18.3%
SUPIR 0.1821  0.3444 3.148 0.1883 03473 3349 0.2159 04106 2.840
SUPIR w/ Ours 0.1680 0.3178 4.011 0.1621 03052 4.226 0.1873  0.3754  3.991
7.7% 7.7% 27.4% 13.9% 12.1%  26.2% 13.3% 8.6% 40.5%

Table 3: Quantitative comparisons on RealSR and DRealSR Table 4: Quantitative comparisons

datasets. Bold: Best results. of image captioners on restoration.
Methods RealSR DRealSR Methods DISTS| LPIPS|
DISTS| LPIPS| LIQEt DISTS| LPIPS| LIQET Llava-1.5 0.1886  0.3600
SUPIR 02660  0.3889 3477  0.2906 0.4741  3.655 ShareCaptioner ~ 0.1780  0.3394
SUPIR w/ Ours ~ 0.2474  0.3667  4.081  0.2699  0.4409  4.208 Res-Captioner ~ 0.1725  0.3328

ReallR benchmark. The results, shown in Table 1, evaluate both real LQ images captured by
various cameras and LQ images collected from the internet. Overall, diffusion-based models exhibit
superior visual quality compared to GAN-based models, due to their stronger generative capabilities.
Notably, when integrated with our Res-Captioner, diffusion models such as StableSR and SUPIR
show significant improvements across all metrics. This highlights how our approach fully activates
the generative power of T2I-based restoration models for diverse real-world LQ images.

However, the improvement introduced by Res-Captioner varies across different restoration models.
For example, Res-Captioner enhances the LIQE score of StableSR on manually captured ReallR
data by approximately 4.3 %, while it increases the LIQE score of SUPIR by an impressive 36 % . We
attribute this discrepancy to the differing generative capabilities of T2I models. In particular, SUPIR,
based on SDXL, suffers from the “generative capability deactivation” issue, which is effectively
reactivated by our Res-Captioner, unlocking its full potential.

Fidelity evaluation. We compare the original models with their Res-Captioner-enhanced versions
on the multi-degradation test set, as shown in Table 2. For both StableSR and SUPIR, Res-Captioner
consistently improves fidelity, demonstrated by significant gains in reference-based metrics like
DISTS and LPIPS. Notably, the performance improvements increase with the severity of degra-
dation. For instance, the DISTS score of enhanced StableSR improves by approximately 7.3%,
9.2%, and 12.1% for light, moderate, and heavy degradation, respectively. This trend supports our
approach of using text as an auxiliary invariant representation. As test degradation diverges further
from the training distribution, the restoration model extracts less useful information from the LQ
image, making the supplementary text provided by Res-Captioner increasingly beneficial.

Given the relatively simple and light degradation in RealSR and DRealSR, we use SUPIR as the ref-
erence model for evaluation. Our Res-Captioner significantly improves the performance of SUPIR
in Table 3, further demonstrating the robustness of our approach in real-world scenarios.
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Figure 7: Qualitative comparisons on in-the-wild images. Upper: Comparisons between SOTA
restoration methods and Res-Captioner-enhanced SUPIR. Lower: Visual quality improvements in-
troduced by Res-Captioner on StableSR and SeeSR.

Comparison of image captioners. We compare our Res-Captioner to LLaVA-1.5 and ShareCap-
tioner in a plug-and-play manner, integrating all captions into SUPIR as described in Section 3.1.
Results from the multi-degradation test set, shown in Table 4, demonstrate that Res-Captioner pro-
vides superior guidance for image restoration. LLaVA-1.5 typically generates shorter captions (aver-
age length of 80), while ShareCaptioner consistently produces overly long captions (average length
of 200). As noted in Observation 2, both overly short and excessively long captions can negatively
affect restoration results. In contrast, Res-Captioner dynamically adjusts text richness based on the
input image, optimizing restoration quality across varying degradation levels.

Beyond text richness, the generated descriptions differ significantly in quality. As discussed in
the appendix, other captioners may produce misleading descriptions or hallucinations that degrade
restoration quality, while our method generates highly relevant, accurate descriptions aligned with
HQ images, effectively enhancing restoration results.

3.3.2 QUALITATIVE RESULTS

We provide visual comparisons on in-the-wild LQ images in Figure 7. In the upper section, Real-
ESRGAN-+ struggles with its limited generative capability, failing to recover high-definition tex-
tures. Both SUPIR and StableSR experience “generative capability deactivation” when handling
out-of-distribution (OOD) data, leading to large areas of blurring. Although SeeSR responds better
to OOD data, the textures it generates tend to appear overly smooth and unrealistic. In contrast, our
Res-Captioner fully activates the generative potential of the T2I backbone in SUPIR, enabling the
recovery of clearer, more realistic textures, such as detailed flower petals and building facades.

The lower section of Figure 7 illustrates how Res-Captioner improves other restoration models.
When integrated with Res-Captioner, StableSR and SeeSR demonstrate an enhanced ability to re-
cover fine-grained textures and structures, such as goat fur and lantern mesh, significantly outper-
forming their original versions. Notably, Res-Captioner can be directly applied to restoration models
using the same T2I backbone without requiring fine-tuning.
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Table 5: Ablation studies on text richness, relevance, and harmful

descriptions. Bold: Best results. .
Method Light Degradation Moderate Degradation Heavy Degradation
DISTS| LPIPS| DISTS|  LPIPS|  DISTS| LPIPS| ...,
Ours 0.1680  0.3178  0.1621 0.3052 0.1873 0.3754 / v_°“\“\
w/ Min Len. 0.1718 0.3274 0.1753 0.3252 0.2033 0.4009 ;;P;
w/ Max Len. 0.1864 0.3525 0.1770 0.3184 0.1964 0.4039 w/ ours
w/ Low Rel. 0.1738 0.3389 0.1655 0.3061 0.1907 0.3914 ez 4 e s 0w
w/ Harmful Des.  0.1686 03191  0.1678 03178 0.1868 03883 Figure 8: User study.

3.3.3 USER STUDY

To further validate Res-Captioner’s ability to enhance generalization in real-world scenarios, we
conduct a user study on in-the-wild LQ images with 31 experienced researchers. Each participant
rates the visual perceptual quality (on a scale of 1 to 10, where higher is better) of results gener-
ated by Real-ESRGAN+, SeeSR, StableSR, StableSR with Res-Captioner, SUPIR, and SUPIR with
Res-Captioner. As illustrated in Figure 8, StableSR and SUPIR show significant performance im-
provements when paired with Res-Captioner. Notably, SUPIR, when enhanced with Res-Captioner,
delivers the highest visual quality among all methods.

3.4 ABLATION STUDY

We investigate the impact of the proposed text properties—richness, relevance, and harmful descrip-
tions—on restoration performance by ablating each aspect in experiments. All models are trained
under identical settings, with the only variation being the training data. Additionally, we analyze the
effect of our proposed Chain-of-Thought (CoT) captioning and degradation-aware visual encoder
on text richness. SUPIR is used as the restoration model in this section.

Text richness. To explore the impact of text richness, we create two training sets using the shortest
and longest captions generated by GPT-4, corresponding to the results of “w/ Min Len.” and “w/
Max Len.” in Table 5. The results show that Res-Captioner achieves the best performance under
varying degradation conditions due to its adaptive text richness capability. Moreover, we observe
that the “w/ Max Len.” model begins to outperform the “w/Min Len.” model as degradation severity
increases, which is consistent with our Observation 2.

Text relevance. To study this property, we first calculate the length of human-selected optimal
captions generated by GPT-4. We then produce same-length low-relevance captions using LLaVA-
1.5 for training, denoted as “w/ Low Rel.”. In contrast, our Res-Captioner (“Ours”) achieves superior
restoration results, highlighting the importance of high-relevance descriptions for restoration.

Harmful descriptions. In Section 2.1.3, we identify harmful descriptions that result in blurring
in the restored images. Using the optimal text richness, we employ GPT-4 to generate captions
incorporating these harmful descriptions. We fine-tune our Res-Captioner with this data, referred
to as “w/ Harmful Des.” in Table 5. The results show that harmful descriptions negatively affect
restoration performance, causing an average 2.7 % decrease in LPIPS.

CoT captioning and degradation-aware visual encoder. We manually annotate the optimal text
length, L,, for 100 LQ images from the ReallR and multi-degradation datasets. To quantify the
prediction error, we define the offset level FE as: F = max (|L, — L| — 15,0) /30, where L is the
captioner’s output length. The mean offset level for our Res-Captioner is 1.27. Without the CoT
captioning, the mean offset level increases by 66.7%, and without the degradation-aware visual
encoder, it rises by 31.5%. These results highlight the effectiveness of our model’s design.

4 CONCLUSION

We leverage text as an auxiliary invariant representation to enhance the generalizability of T2I-
diffusion-based restoration models. By focusing on two key properties of text inputs—richness and
relevance—we propose Res-Captioner, which significantly improves real-world restoration perfor-
mance in a plug-and-play manner.
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A APPENDIX

A.1 REAL-WORLD LQ IMAGE GENERATION

By reproducing high-definition images, we collect numerous real-world LQ-HQ pairs for training
the real-world LQ generation model. Data is gathered from five different devices, and five LQ
generation models are trained to represent different types of degradation.

We select the latent diffusion model (LDM) ( , ) as our LQ generator, training it
to produce LQ images conditioned on corresponding HQ images. Additionally, the zoom ratio used
during image reproduction is incorporated as another part of the conditional information.

For each degradation model, we retain one zoom ratio for the generation of multi-degradation test
set, and the rest are used to generate Res-Captioner training data.

A.2 DETAILS OF TRAINING DATA GENERATION

We use the following prompt to generate captions of varying lengths with GPT-4, while avoiding
harmful descriptions through the use of restrictive phrasing.

Please describe the actual objects in the image in a very detailed
manner. Please do not include descriptions related to the focus
and bokeh of this image. Please do not include descriptions like
the background is blurred. Please be careful to limit your answer
to about XXX words.

We generate a total of seven different caption lengths: 80 words, 110 words, 140 words, 200 words,
260 words, 350 words, and 440 words. The interval between lengths increases progressively, as
longer captions tend to cause smaller texture changes when recovering with the same richness inter-
val.

When training and testing the Res-Captioner, we use the following prompt:

Please determine the appropriate caption length and then describe

the actual objects in the image in a very detailed manner. Please
do not include descriptions related to the focus and bokeh of this
image. Please do not include descriptions like the background is

blurred.

A.3 CONTENT QUALITY COMPARISON OF IMAGE CAPTIONS

In Figure 10 and 11, we compare the caption content quality between our proposed Res-Captioner
and existing image captioners. Each caption was carefully examined, with hallucinations and harm-
ful descriptions that could negatively impact restoration clearly marked. We also compared captions
generated by Res-Captioner and other image captioners for the same image, highlighting the details
missing in the others. Our method clearly demonstrates fewer hallucinations, is free from harmful
descriptions, and produces a significant amount of detail closely aligned with the image content,
which greatly supports the restoration process.

A.4 MORE QUALITATIVE RESULTS

In this section, we provide additional visual comparisons between our method and state-of-the-art
(SOTA) methods. As illustrated in Figure 12, when paired with the SUPIR restoration method,
which features a powerful generative model backbone, our Res-Captioner shows clear advantages
in recovery performance compared to previous SOTA methods. Additionally, our approach signifi-
cantly improves visual quality when applied to the StableSR restoration method, as demonstrated in
Figure 9, highlighting the robustness of our approach across different restoration models.
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LQ StableSR StableSR w/ Ours LQ StableSR StableSR w/ Ours

Figure 9: Additional qualitative comparisons of Res-Captioner applied to StableSR on in-the-wild
images.

A.5 ANALYSIS ON DEGRADATION TOKEN NUMBER

We analyze the impact of the token length /V in our degradation-aware visual encoder on text rich-
ness prediction accuracy. As shown in Table 6, the token length is inversely proportional to the
text richness offset level F, indicating a positive relationship with text richness prediction accuracy.
Balancing computational cost with performance benefits, we select N = 36 as the final degradation
token number.

Table 6: Analysis of the token length in the degradation-aware visual encoder.

Token Length N' | Offset Level £

4 1.53
9 1.46
16 1.34
25 1.28
36 1.27
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ﬂ:’lease determine the appropriate caption \
length and then describe the actual objects
in the image in a very detailed manner. ...

& Res-Captioner

/The image shows a tiger resting on a large, flat\
rock. The tiger is lying down with its body
stretched out and 5
resting its head on its front paws. The tiger's
furis a golden-orange color with darker
stripes running vertically along its body. Each
paw is large, with
. The tiger's head has

distinctive markings, including black stripes
that run from the top of its head down to its
nose. Its ,and its
eyes appear calm and relaxed. The rock the
tiger is lying on is

. Behind the tiger, there
isa b
suggesting that the scene takes place in
some kind of enclosure or zoo exhibit. The
fence is partially covered in vegetation, with
green leaves hanging over it. There is also a

visible to the right of the

Ktiger. /

ﬂ?’lease determine the appropriate caption \
length and then describe the actual objects
in the image in a very detailed manner. ...

)

& Res-Captioner

/The image features a 5
The bird has a prominent with a light
grayish-black area at the base. Its plumage is
primarily green, with some

.The
, set against its
and surrounding it. The
parrot's shoulders and upper body are
densely covered in green feathers, which
have a glossy appearance. The parrot's
, making the bird
appear rounded and full. The feathers appear
, giving the bird a
sleek appearance. The texture and colors
indicate the bird\u2019s tropical
environment. The background consists of
various shades of green and brown,

Kenhancing the natural setting of the image. /

K,, SR

& ShareCaptioner
/In the tranquil setting of a zoo, a tiger, with its \

\the lives of these magnificent creatures. /

ﬂ’lease describe the image in a very detailed \
manner.

vibrant orange and black stripes, is captured
in a moment of rest. The tiger is comfortably
sprawled out on a large rock, its body relaxed
and at ease. Its head is gently resting on its
front paws, embodying the essence of
serenity. \n\nThe rock on which the tiger lies
is part of a larger enclosure that is adorned
with lush green foliage, providing a
naturalistic habitat for the tiger. In the
background, a fence can be seen, indicating
the boundary of the enclosure. \n\n

\n\nThe image beautifully
captures a moment of calm and tranquility in

ﬂ:’lease describe the image in a very detailed \
manner.

)

é ShareCaptioner

ﬂn the image, a vibrant green parrot is the \

main subject. The parrot, with its head and
stands out against the Llts
beak, a contrasting gray, is

. The parrot's wings, a mix
of blue and green, are folded neatly at its
sides. The background, , gives
the impression of a natural setting, possibly a
forest or a tree. The parrot's precise location
within the image is hard to determine due to

, but it appears to be

in the foreground. There are no discernible
texts or other objects in the image. The
relative position of the parrot to other objects
cannot be determined as the background is
indistinct. The image does not provide
enough detail to confidently count the
number of similar objects or describe their

Kactions. /

Figure 10: Content quality comparison between our proposed Res-Captioner and ShareCaptioner.
We use red to indicate some hallucinations and harmful descriptions in the caption. We use to
highlight the detailed descriptions provided by one captioner that are missing in the other.
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.

ﬂ’lease determine the appropriate caption \
length and then describe the actual objects
in the image in a very detailed manner. ...

Res-Captioner

(The image shows the exterior of a building N\
featuring an upper-level . The balcony
has a white wooden railing with vertical slats
and a small A

The balcony is supported by the building's

. There is a door on the lower level. The
door has and is bordered by a
white trim. Some green leafy vegetation and
bushes are visible at the bottom left corner of
the image, climbing up the side of the
building. The b
and there is a portion of a roofing edge visible
\along with a downspout on the brick column. Y,

ﬂ’lease determine the appropriate caption \
length and then describe the actual objects
in the image in a very detailed manner. ...

Res-Captioner

/The image depicts a lion standingon a grassy\
surface. The lion has a golden-brown coat,
with a

The grass around the lion is green and
dense, with some patches of short, brownish
grass visible among the green. There are also

. Overall, the lion
appears alert and observant, with a direct
gaze towards the camera, conveying a sense
of confidence and dominance. The texture of
its fur is apparent,

N )

ﬂ’lease describe the image in a very detailed \

manner.

)

LLaVA-1.5

4 The image features a large, two-story brick N
house with a white porch. The porch has a
white railing and is adorned with greenery,
giving it a charming and inviting appearance.
The house is situated on a hill, and the porch
overlooks the surrounding area. There are two
people visible in the scene, one standing near
the left side of the porch and the other closer
to the center. They seem to be enjoying the
view or engaging in a conversation. The house
is surrounded by trees, adding to the

\_ picturesque setting.

J

ﬂ’lease describe the image in a very detailed \
manner.

LLaVA-1.5

-

The image features a lion walking across a
grassy field. The lion is the main focus of the
scene, occupying a significant portion of the
image. The lion's fur, slightly blurred, appears
to be brown, and it is walking towards the
camera. The field is covered with grass,
providing a natural habitat for the lion.

Figure 11: Content quality comparison between our proposed Res-Captioner and LLaVA-1.5. We
use red to indicate some hallucinations and harmful descriptions in the caption. We use
highlight the detailed descriptions provided by one captioner that are missing in the other.
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LQ Real-ESRGAN+ StableSR SeeSR SUPIR SUPIR w/ Ours

Figure 12: Additional qualitative comparisons with SOTA methods on in-the-wild images.

18



	Introduction
	Restoration Captioner
	Properties of Text Input
	Richness Property
	Relevance Property
	Harmful Description

	Ancillary Invariant Representation Enhancement
	RealIR Benchmark

	Experiments
	Implementation Details
	Experimental Settings
	Comparison with State of the Arts
	Quantitative Results
	Qualitative Results
	User Study

	Ablation Study

	Conclusion
	Appendix
	Real-world LQ Image Generation
	Details of Training Data Generation
	Content Quality Comparison of Image Captions
	More Qualitative Results
	Analysis on Degradation Token Number


