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ABSTRACT

Generalization has long been a central challenge in real-world image restoration.
While recent diffusion-based restoration methods, which leverage generative pri-
ors from text-to-image models, have made progress in recovering more realistic
details, they still encounter “generative capability inactivation” when applied to
out-of-distribution data. To address this, we propose using text as an auxiliary in-
variant representation to reactivate the generative capabilities of these models. We
begin by identifying two key properties of text input in diffusion-based restoration:
richness and relevance, and examine their respective influence on model perfor-
mance. Building on these insights, we introduce Res-Captioner, a module that
generates enhanced textual descriptions tailored to image content and degradation
levels, effectively mitigating response failures. Additionally, we present RealIR,
a new benchmark designed to capture diverse real-world scenarios. Extensive ex-
periments demonstrate that Res-Captioner significantly boosts the generalization
ability of diffusion-based restoration models, while remaining fully plug-and-play.

Hallucinations Details

Res-Captioner:
The image features an orange tabby 
cat with a fluffy fur coat. The cat's 
eyes are prominent, almond-shaped, 
and have a sharp, attentive look with 
a dark outline around them. The cat's 
ears are large, pointed, and have 
some distinctive long white hairs 
protruding from the edges. …
Length: 400

SUPIR Caption:
The image features a cat with a mix 
of orange and white fur, sitting in a 
dark environment … The scene is 
depicted in a black and white style … 
Length: 80

Res-Captioner:
The image shows a woman wearing a 
white jacket over a black shirt, 
standing outdoors. She has long hair 
that is being blown by the wind, 
covering part of her face. The 
woman’s eyes are partially visible 
through the hair, and their gaze is 
directed off to the side …
Length: 290

SUPIR Caption:
The image features a woman with 
long, curly hair, blowing in the 
wind … The image is captured in 
black and white …
Length: 80

OOD LQ Restored by SUPIR Boosted with Res-Captioner 

Figure 1: State-of-the-art methods like SUPIR (Yu et al., 2024a) face “generative capability inactiva-
tion” on out-of-distribution (OOD) data. Our Res-captioner reactivates their generative capabilities
by providing detailed and accurate descriptions.

1 INTRODUCTION

Diffusion-based image restoration methods (Yu et al., 2024a; Sun et al., 2024; Wu et al., 2024; Wang
et al., 2024b; Lin et al., 2023; Tao Yang & Zhang, 2023; Ai et al., 2024; Yu et al., 2024b; Zhang
et al., 2024), powered by pre-trained text-to-image (T2I) models (Rombach et al., 2022; Podell et al.,
2024), achieve superior texture and detail recovery compared to GAN-based methods (Zhang et al.,
2021; Wang et al., 2021; Liang et al., 2021; 2022a; Chen et al., 2022). However, these models still
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face the out-of-distribution (OOD) challenge (Koh et al., 2021), arising from misalignment between
training data and real-world test cases. Real-world degradation simulations (Zhang et al., 2021;
Wang et al., 2021) offer a common mitigation approach, but a domain gap persists (Liu et al., 2023b;
Wang et al., 2024a; Kong et al., 2022), especially pronounced for device-induced degradations. As
depicted in Figure 1, even state-of-the-art methods struggle to restore fine textures under complex
degradations, a limitation we refer to as “generative capability deactivation”.

We define image restoration as x = R(xlq), where x and xlq denote high-quality (HQ) and low-
quality (LQ) images, respectively, and R is the restoration model. To tackle domain generalization,
researchers propose learning a cross-domain invariant representation z = G(xlq) (Arjovsky et al.,
2019; Nguyen et al., 2021; Li et al., 2022a) and then train a prediction network conditioned on z:
x = H(z). However, learning degradation-invariant representations with strong generalization and
minimal information loss remains difficult in image restoration (Liu et al., 2022), as decoupling
content from degradation in the image modality is challenging (Chen et al., 2024; Tran et al., 2021;
Li et al., 2022b). To address this, we propose transforming LQ images into the text modality using an
image captioner C: y = C(xlq), leveraging recent multi-modal advancements (Liu et al., 2024b;a;
Chen et al., 2023). This approach offers two advantages: first, in the text modality, degradation-
related descriptions ydeg can be easily separated, leaving the content-related part ycont = {w | w ∈
y, w /∈ ydeg} as a degradation-invariant representation of xlq. Second, text naturally activates priors
in T2I diffusion models, facilitating enhanced texture recovery (Yu et al., 2024a; Sun et al., 2024;
Wu et al., 2024; Tao Yang & Zhang, 2023; Yu et al., 2024b; Zhang et al., 2024).

However, due to significant information compression during the image-to-text transformation, re-
lying solely on ycont cannot fully meet the high-fidelity requirements of image restoration tasks.
Therefore, we utilize ycont as an auxiliary invariant representation in conjunction with the LQ image
input, expressed as: x = R(xlq,ycont). In our framework, image restoration is treated as a dual-
conditioned image generation problem. Compared to the text input ycont, the LQ image xlq serves
as a much stronger condition, being more closely aligned with the final output x. However, when
the degradation domain of the LQ image shifts, the information that the model can extract from
xlq largely decreases, leading to the problem of generative capability deactivation (illustrated in
Figure 1). To address OOD data, we propose adaptively enhancing the auxiliary invariant represen-
tation ycont through our Restoration Captioner (Res-Captioner), compensating for the information
loss from xlq due to domain shifts.

To this end, we identify two key properties of text input in T2I diffusion-based restoration models:
richness and relevance. Richness is primarily reflected in the length of the text; the more detailed
the text, the richer the generated textures. Relevance, on the other hand, measures the correlation
between the description and the HQ image content, with higher relevance leading to greater fidelity
between the restored image and the ground truth. Building on these properties, we develop Res-
Captioner, which is designed to accommodate varying degradation types and image clarity levels.
Notably, Res-Captioner can be seamlessly integrated into restoration models, enhancing generaliza-
tion without requiring retraining of the restoration model itself.

Finally, given the limitations of current real-world image restoration benchmarks (Cai et al., 2019;
Wei et al., 2020), such as the restricted variety of imaging devices, and narrow content diversity,
we introduce a new benchmark called RealIR. RealIR encompasses a broader range of degradation
sources, clarity levels, and diverse photographic scenarios. Through this benchmark, we demon-
strate that our Res-Captioner significantly improves the generalizability of diffusion-based methods,
delivering more detailed and high-fidelity restoration results.

The contributions of this paper can be summarized as:

• We identify the potential of utilizing text as an ancillary invariant representation to en-
hance generalizability in image restoration, highlighting two key properties—richness and
relevance—and their respective impacts on restoration performance.

• Building on our findings, we develop the Res-Captioner, which generates adaptively en-
hanced ancillary invariant representations, improving the generalizability of pre-trained
diffusion-based restoration models in a plug-and-play fashion.

• We introduce a new restoration benchmark, RealIR, to comprehensively assess generaliz-
ability. Using both our benchmark and existing public datasets, we demonstrate the effec-
tiveness of the Res-Captioner across multiple restoration methods.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 RESTORATION CAPTIONER

2.1 PROPERTIES OF TEXT INPUT

We start by investigating how the text input y affects the performance of restoration methods built
on text-to-image (T2I) models. We identify two key properties of the text: richness and relevance.
Richness refers to the amount of information conveyed, often reflected in text length, while rele-
vance measures the degree of correlation between the text and the corresponding high-quality (HQ)
image. Additionally, we observe that degradation-related or photography-specific descriptions can
negatively affect restoration results, highlighting the importance of extracting content-specific de-
scriptions, denoted as ycont.

LQ 81 Tokens 267 Tokens 327 Tokens GT

LQ 71 Tokens 133 Tokens 488 Tokens GT

LQ 80 Tokens 177 Tokens 321 Tokens GT

Text Richness Increase
Overshort Best Excessive Category I: beneficial

Category II: insensitive

Category III: detrimental

Restored Results

Text Richness Increase

Fine-grained textures:

Regular structures:

Smooth areas and large-scale structures:

Non-rigid structures:

Figure 2: Visualization of the text richness property. (Left) The richness of textures and details in
the restored results increases with text richness. Text that is too short can result in the “generative
capability inactivation” problem. Excessively long text can lead to messy generation and artifacts.
(Right) We can classify image content into three categories based on the effect of increased text
richness: I beneficial, II insensitive, and III detrimental.

2.1.1 RICHNESS PROPERTY

Observation 1. The richness of restored textures and details increases proportionally with the
richness of the text description.

As illustrated in Figure 2, we observe that for all low-quality (LQ) images, increasing text richness
(i.e., text length) consistently enhances texture restoration. To explore this further, we prepare a
dataset of 120 HQ images from diverse scenarios and generate the corresponding LQ images using
Real-ESRGAN (Wang et al., 2021). GPT-4 is employed to generate detailed descriptions for the
HQ images. We then evaluate two representative restoration models, SUPIR (Yu et al., 2024a) and
StableSR (Wang et al., 2024b), for verification. The text input is encoded using CLIP (Radford et al.,
2021) to generate 77 tokens. We then repeatedly append the last 20 tokens, excluding the EOS token,
and follow (Xia et al., 2024) to integrate and inject these length-varying tokens into the restoration
models to produce the restored results. Texture richness is assessed using two non-reference metrics:
MANIQA (Yang et al., 2022) and MUSIQ (Ke et al., 2021). As shown in Figure 3 (a, b), both metrics
demonstrate a positive correlation with the number of text tokens, supporting Observation 1.
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(a) (b) (c) (d)

Figure 3: Demonstration of the richness property. (a, b): There is a positive correlation between
text richness and the richness of textures in the restored results. (c, d): The optimal text richness
(indicated by an asterisk) is proportional to the degree of deviation between the test degradation
domain and the training degradation domain. Best viewed zoomed in.

We attribute this property to the data bias inherent in pre-trained T2I models, where images with
richer content are typically paired with more detailed descriptions during training. Similar observa-
tions have been made in T2I research (Betker et al., 2023; Yang et al., 2024), where longer prompts
lead to more enriched scenes. However, in the context of image restoration, this effect primarily
enhances texture quality rather than introducing new objects or elements.

Observation 2. The optimal level of text richness is influenced by factors such as degradation
severity, and image content.

As discussed, detailed text descriptions improve texture restoration. However, as shown in Figure 2,
exceeding the optimal range of text richness may lead to undesirable artifacts or messy generation.
For instance, the squirrel’s eyes and mouth are misaligned with the LQ image, and the bee shows
over-sharpening effects. We posit that the optimal text richness is proportional to the domain gap
between training and testing degradations. To validate this, we prepare LQ images either simulated
or captured in the wild with different zoom ratios and evaluate the performance of SUPIR and
StableSR in relation to text richness. As illustrated in 3 (c, d), as the test degradation increasingly
diverges from the training setting (e.g., 4× Real-ESRGAN degradation), the optimal text richness
similarly increases. This is because, as degradation severity intensifies, the useful information the
model can extract from LQ images diminishes, necessitating more informative textual inputs to
compensate for the information loss.

We also find that the optimal text richness is influenced by the content of the LQ image. Follow-
ing (Liang et al., 2022b), we categorize three groups based on the impact of increased text richness
on image content: beneficial, insensitive, and detrimental. Category I, “beneficial”, includes fine-
grained textures (e.g., feathers, leaves, sand) and regular structures (e.g., walls, windows), which
benefit from longer text input as it activates the model’s generative capability. Category II, “in-
sensitive”, consists of smooth areas and large-scale structures (e.g., sky), where text richness has
minimal effect. Category III, “detrimental”, includes non-rigid structures (e.g., text, crowds), where
excessively long text may compromise fidelity.

2.1.2 RELEVANCE PROPERTY

Observation 3. The fidelity of restored textures improves in correlation with the relevance of the
text description.

To quantitatively characterize the text relevance property, we introduce the concept of the “text-
replacing ratio”. This is defined as the ratio of original words in the text input y that are replaced
with non-meaningful words like “the” or “for”. As the text-replacing ratio increases, the relevance
between the text input and the corresponding HQ image decreases, while the text richness remains
unchanged. As shown in Figure 4, we observe that although restored results retain rich textures as
the text-replacing ratio increases, they suffer from a decline in fidelity. This is confirmed by the
decreasing DISTS scores (lower is better), measured between the HQ image and the restored output.
At higher text-replacing ratios, even the overall semantics of the restoration become distorted. For
instance, at a ratio of 1.0, a lizard’s head is incorrectly restored as flowers. In such cases, the model
continues to generate textures but lacks the appropriate guidance to produce accurate ones.
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LQ 0.0 0.75 1.0 GT

Text-replacing Ratio Increase

…

…

Figure 4: Visualization and demonstration of the text relevance property. Left: The accuracy of
textures and details in the restored results decreases as the text-replacing ratio increases, indicating
that text relevance contributes to the fidelity of the restoration. Right: DISTS increases with a higher
text-replacing ratio, further indicating a decrease in the fidelity of the restored results.

2.1.3 HARMFUL DESCRIPTION

Observation 4. Descriptions related to degradation or photography can lead to global or localized
blurring in the restored images.

We discover that degradation-related descriptions such as “blur” or “blurred”, and photography
terms like “shallow depth of field” or “bokeh effect”, may lead to blurred outputs. Even when
descriptions like “the background is blurred, while the main subject is sharp” accurately reflect the
HQ image, they can cause overall blurring in the restored results. This is likely due to the lim-
ited spatial control capabilities of pre-trained T2I models (Avrahami et al., 2023), which amplifies
the blurring effect. To validate this, we use GPT-4 to generate two captions of similar length: one
without harmful descriptions and another including them. To exclude the effects of text richness
and relevance, we duplicate the harmless description, labeled “Without Harmful Description”, and
combine both harmless and harmful descriptions to create “With Harmful Description”. As shown
in Figure 5, the description without harmful terms successfully restores clearer and richer details,
while the harmful description does not.

Without Harmful Description:

LQ Restored Text Input GT

The image displays a collection 
of lush green leaves. 
Prominently featured are …
The image displays a collection 
of lush green leaves. 
Prominently featured are …
Length: 150

The image shows fresh basil 
leaves and tomatoes. The basil 
leaves are … 
The image shows fresh basil 
leaves and tomatoes. The basil 
leaves are …
Length: 170

With Harmful Description:

Restored Text Input

The image features a close-up 
of … The background is
moderately blurred … from the 
subtler, softer backdrop.
The image displays a collection 
of lush green leaves. …
Length: 150

The focus is sharp on most 
of … The background areas 
have a soft bokeh effect. The
depth of field is shallow …
The image shows fresh basil 
leaves and tomatoes. …
Length: 170

Figure 5: Harmful descriptions to the image restoration.

2.2 ANCILLARY INVARIANT REPRESENTATION ENHANCEMENT

Learning degradation-invariant representations from LQ images is highly challenging. To address
this, we propose using text free of degradation-related descriptions as an auxiliary invariant represen-
tation to improve generalization. As discussed in Section 2.1, text plays a crucial role in controlling
both the richness and fidelity of textures in restored results. However, existing image captioners (Liu
et al., 2024b;a; Chen et al., 2023), which are not specifically designed for image restoration, not only
generate harmful descriptions but also fail to adaptively enhance text richness. Consequently, they
may contribute to the “generative capability inactivation” problem (Figure 1) in real-world scenar-
ios. To address this issue, we introduce Res-Captioner, a restoration-specific captioner that generates
high-quality text descriptions for real-world LQ images across diverse degradation levels and con-
tent categories, ensuring adaptive control over both richness and relevance.

Training data generation. We first collect HQ images from (Unsplash), ImageNet (Deng et al.,
2009), and SAM (Kirillov et al., 2023), filtering out overly smooth ones using Sobel filters based on
image gradient standard deviation. This ensures a selection of rich-content, high-clarity HQ images
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MLP

: Please determine 
the appropriate 
caption length and 
then describe the 
actual objects in the 
image in a very 
detailed manner. …

: Please determine the appropriate caption length and then 
describe the actual objects in the image in a very detailed manner.

: 134. The image showcases a goat standing outdoors, 
prominently centered in the frame. The goat features …
Token Number Prediction + Adaptive Length Caption

Corresponding 
Caption

Large Language Model
(LLaVA-1.5 with LoRA)

GPT-4o

Captions with varying lengths

…

The image shows a gray 
and white goat facing the 
camera…
Length: 80

The image features a 
goat with a distinctive 
appearance. The goat has 
a white face … 
Length: 110

The image showcases a 
goat standing outdoors, 
prominently centered in 
the frame. The goat 
features …
Length: 140

Human 
Annotator

Best Result

134. The image 
showcases a 
goat standing 
outdoors …

Training Pair

GT

LQ

…

(a) Training Data Generation

MLPTokenizer & 
Embedding

CLIP Image 
Encoder

Restoration 
Model

Result2

Degradation 
Models

Random
Model

Random
Zoom Ratio

LQ

LQ

…

(b) Chain-of-Thought Captioning

(c) Network Structure

Degradation 
Extractor

Degradation
Encoder

Caption1 Caption2 Caption3

Result1 Result3

Figure 6: (a) The generation and annotation process of our training data. (b) Chain-of-Thought
captioning of our Res-Captioner. (c) Network structure of our Res-Captioner.

from diverse scenarios. Next, as shown in Figure 6 (a), we leverage five pre-trained latent diffusion
models (LDM) (Rombach et al., 2022) to generate LQ images that simulate varying imaging devices
and zoom ratios. Training details for the LDM are provided in the appendix. We also include a
percentage of Real-ESRGAN-generated (Wang et al., 2021) LQ images to further enhance diversity.

To ensure high relevance while minimizing hallucination, as illustrated in Figure 6 (a), we use GPT-
4 to generate descriptions of varying lengths for each HQ image. Several prompting techniques,
detailed in the appendix, are applied to avoid degradation-related or photography-specific content.
These descriptions are fed into the restoration model, producing multiple restored candidates for
each LQ image. Human annotators select the optimal text input that provides the best visual result,
balancing texture richness and fidelity. The token length of the selected description is then calculated
and combined with the description to form the final caption output in the format <token length,
description>. In total, we curate 5,500 LQ image-caption pairs for training our Res-Captioner.

Chain-of-Thought captioning. Our goal is to generate accurate descriptions with appropriate rich-
ness for LQ images. As discussed in Observation 1 and Observation 2, the optimal text richness,
primarily reflected in token length, is determined by image content and degradation levels. Given
the diversity of real-world scenarios, we enhance the reasoning and decision-making capabilities
of Multimodal Large Language Models (MLLM) by adopting the “Chain of Thought” (CoT) strat-
egy (Wei et al., 2022) in Res-Captioner. Specifically, as shown in Figure 6 (b), the model first
predicts the optimal token number before generating the corresponding caption. As demonstrated in
Section 3.4, this approach significantly improves the accuracy of the description length.

Network structure. We fine-tune LLaVA-1.5 (Liu et al., 2024a) using low-rank adaptation
(LoRA) (Hu et al., 2021) to serve as our Res-Captioner. Since LLaVA is not designed for LQ
images, we enhance its ability to perceive image degradations. In addition to the original CLIP
visual encoder, we incorporate a degradation-aware visual encoder, as shown in Figure 6 (c). This
encoder consists of a pre-trained degradation extractor, known for its sensitivity to various degra-
dations (Chen et al., 2024; Liu et al., 2023a), and a lightweight adapter for improved degradation
extraction. Specifically, the adapter is built from several MLP layers, first compressing the token
count to 1 and then expanding it to N tokens (we set N = 36), enabling the encoder to focus on the
global degradation representation while ignoring spatially varying content.

2.3 REALIR BENCHMARK

The current real-world restoration benchmarks (Cai et al., 2019; Wei et al., 2020) are limited by a
narrow range of degradation types, insufficient diversity in imaging devices, and constrained content
scope. To overcome these limitations, we introduce RealIR, a new benchmark featuring 152 real LQ
images from eight imaging devices, including two DSLRs and six mobile phones, capturing images
with varying zoom ratios. We also incorporate 53 LQ images sourced from the internet to capture
degradations introduced by network transmission, which differ from device-specific degradations.
The dataset covers a wide range of content, including portraits, animals, plants, and architectural
scenes, enabling comprehensive evaluations of image restoration methods’ generalizability.
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3 EXPERIMENTS

3.1 IMPLEMENTATION DETAILS

Our Res-Captioner is built on LLaVA-1.51. We train the model with a batch size of 128 over 500
steps using an A800 GPU, employing the Adam optimizer (Kingma & Ba, 2014) with a learning rate
of 2× 10−4. We integrate Res-Captioners into two diffusion-based restoration models: SUPIR (Yu
et al., 2024a), built on SDXL (Podell et al., 2024), and StableSR (Wang et al., 2024b), using Stable
Diffusion 2.1 (Rombach et al., 2022). Our models operate in a plug-and-play fashion, seamlessly
integrating with restoration models based on the same text-to-image (T2I) backbone. As in (Xia
et al., 2024), we iteratively process the long text through the CLIP (Radford et al., 2021) text encoder.

Details of our training data generation and labeling process are provided in Section 2.2. We col-
lect 5,500 low-quality (LQ) image-caption training pairs for SUPIR. Recognizing that different T2I
backbones exhibit distinct text richness characteristics, we collect an additional 500 pairs for Sta-
bleSR for fine-tuning. To match the resolution requirements of the respective T2I backbones, we
resize the short edge of high-quality (HQ) images to 1024 for SUPIR and 512 for StableSR. The
parameters for LoRA follow the standard LLaVA settings.

3.2 EXPERIMENTAL SETTINGS

Test datasets. Our proposed RealIR dataset encompasses diverse content and degradations from
real-world scenes, making it ideal for assessing the generalization ability of restoration models.
However, due to the absence of ground-truth images in RealIR, we create an additional multi-
degradation test set comprising 120 LQ-HQ pairs using pre-trained latent diffusion models (LDM).
To ensure fair evaluation, the degradations used for LQ generation are distinct from those in our
training set. We categorize the LQ-HQ pairs into three degradation levels based on zoom ratio: light
(zoom ratio of 3 to 7), moderate (zoom ratio of 8 to 10), and heavy (zoom ratio of 15 to 20). These
two test sets enable a comprehensive evaluation of the restored results’ detail richness and fidelity
across varying degradation levels. Furthermore, we evaluate our approach on established real-world
benchmarks such as RealSR (Cai et al., 2019) and DRealSR (Wei et al., 2020), using randomly
cropped patches for more comprehensive analysis.

Compared methods. Our experiments include state-of-the-art (SOTA) real-world image restora-
tion methods, such as GAN-based approaches like Real-ESRGAN+ (Wang et al., 2021) and
DASR (Liang et al., 2022a), as well as diffusion-based models including StableSR (Wang et al.,
2024b), SeeSR (Wu et al., 2024), CoSeR (Sun et al., 2024), and SUPIR (Yu et al., 2024a). Addi-
tionally, we compare our Res-Captioner with leading image captioning models, such as LLaVA-1.5
and ShareCaptioner (Chen et al., 2023).

Evaluation metrics. For test sets without ground truth, such as RealIR, we use non-reference eval-
uation metrics aligned with human perception, including MUSIQ (Ke et al., 2021), MANIQA (Yang
et al., 2022), LIQE (Zhang et al., 2023), and NIQE (Zhang et al., 2015). For datasets with ground
truth, we adopt perceptual distance metrics like DISTS Ding et al. (2020) and LPIPS Zhang et al.
(2018), alongside the LIQE metric, which leverages large vision-language models for robust evalu-
ation. Pixel-level metrics such as PSNR and SSIM are no longer considered, as they exhibit weak
correlation with human perception, as discussed in related works (Yu et al., 2024a; Sun et al., 2024).

3.3 COMPARISON WITH STATE OF THE ARTS

3.3.1 QUANTITATIVE RESULTS

Our quantitative results are organized into three parts. First, we assess the generalization ability of
existing restoration methods in real-world scenarios using the RealIR benchmark, showing that Res-
Captioner consistently improves their performance. Second, we evaluate the multi-degradation test
set and the existing benchmarks, confirming that Res-Captioner not only enhances detail generation
but also preserves fidelity across various degradation levels. Lastly, we compare the performance of
other image captioners to our Res-Captioner, highlighting its superior effectiveness.

1https://huggingface.co/liuhaotian/llava-v1.5-13b
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Table 1: Quantitative comparisons on our RealIR benchmark. We highlight best values for each
metric and the results of Res-Captioner-enhanced models .

Methods RealIR (Cameras) RealIR (Internet)
MUSIQ↑ MANIQA↑ LIQE↑ NIQE↓ MUSIQ↑ MANIQA↑ LIQE↑ NIQE↓

Real-ESRGAN+ 58.54 0.1784 2.425 5.646 58.34 0.2048 2.157 5.646
DASR 53.82 0.1487 2.208 6.748 50.84 0.1397 1.594 6.748
CoSeR 56.91 0.1163 2.597 4.042 66.67 0.1842 3.822 4.042
SeeSR 70.19 0.2138 3.768 3.749 72.65 0.2694 4.243 3.749
StableSR 66.15 0.1924 3.466 4.033 67.66 0.2012 3.913 4.033
StableSR w/ Ours 68.04 0.1955 3.615 3.888 70.90 0.2251 4.252 3.888
SUPIR 60.43 0.1651 2.983 3.492 71.94 0.2727 4.425 3.492
SUPIR w/ Ours 71.38 0.2543 4.056 3.389 73.26 0.3055 4.578 3.389

Table 2: Quantitative comparisons between the official model and the Res-Captioner-enhanced
model under different degradation levels. We show the improvement percentage on each metric.

Methods Light Degradation Moderate Degradation Heavy Degradation
DISTS↓ LPIPS↓ LIQE↑ DISTS↓ LPIPS↓ LIQE↑ DISTS↓ LPIPS↓ LIQE↑

StableSR 0.1791 0.3311 3.699 0.1864 0.3209 3.603 0.2181 0.4008 3.047

StableSR w/ Ours 0.1661 0.3222 3.735 0.1692 0.3086 3.857 0.1918 0.3773 3.604
7.3% 2.7% 1.0% 9.2% 3.8% 7.1% 12.1% 5.9% 18.3%

SUPIR 0.1821 0.3444 3.148 0.1883 0.3473 3.349 0.2159 0.4106 2.840

SUPIR w/ Ours 0.1680 0.3178 4.011 0.1621 0.3052 4.226 0.1873 0.3754 3.991
7.7% 7.7% 27.4% 13.9% 12.1% 26.2% 13.3% 8.6% 40.5%

Table 3: Quantitative comparisons on RealSR and DRealSR
datasets. Bold: Best results.

Methods RealSR DRealSR
DISTS↓ LPIPS↓ LIQE↑ DISTS↓ LPIPS↓ LIQE↑

SUPIR 0.2660 0.3889 3.477 0.2906 0.4741 3.655
SUPIR w/ Ours 0.2474 0.3667 4.081 0.2699 0.4409 4.208

Table 4: Quantitative comparisons
of image captioners on restoration.

Methods DISTS↓ LPIPS↓
Llava-1.5 0.1886 0.3600
ShareCaptioner 0.1780 0.3394
Res-Captioner 0.1725 0.3328

RealIR benchmark. The results, shown in Table 1, evaluate both real LQ images captured by
various cameras and LQ images collected from the internet. Overall, diffusion-based models exhibit
superior visual quality compared to GAN-based models, due to their stronger generative capabilities.
Notably, when integrated with our Res-Captioner, diffusion models such as StableSR and SUPIR
show significant improvements across all metrics. This highlights how our approach fully activates
the generative power of T2I-based restoration models for diverse real-world LQ images.

However, the improvement introduced by Res-Captioner varies across different restoration models.
For example, Res-Captioner enhances the LIQE score of StableSR on manually captured RealIR
data by approximately 4.3%, while it increases the LIQE score of SUPIR by an impressive 36%. We
attribute this discrepancy to the differing generative capabilities of T2I models. In particular, SUPIR,
based on SDXL, suffers from the “generative capability deactivation” issue, which is effectively
reactivated by our Res-Captioner, unlocking its full potential.

Fidelity evaluation. We compare the original models with their Res-Captioner-enhanced versions
on the multi-degradation test set, as shown in Table 2. For both StableSR and SUPIR, Res-Captioner
consistently improves fidelity, demonstrated by significant gains in reference-based metrics like
DISTS and LPIPS. Notably, the performance improvements increase with the severity of degra-
dation. For instance, the DISTS score of enhanced StableSR improves by approximately 7.3%,
9.2%, and 12.1% for light, moderate, and heavy degradation, respectively. This trend supports our
approach of using text as an auxiliary invariant representation. As test degradation diverges further
from the training distribution, the restoration model extracts less useful information from the LQ
image, making the supplementary text provided by Res-Captioner increasingly beneficial.

Given the relatively simple and light degradation in RealSR and DRealSR, we use SUPIR as the ref-
erence model for evaluation. Our Res-Captioner significantly improves the performance of SUPIR
in Table 3, further demonstrating the robustness of our approach in real-world scenarios.
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LQ Real-ESRGAN+ StableSR SeeSR SUPIR SUPIR w/ Ours

LQ StableSR StableSR w/ Ours LQ SeeSR SeeSR w/ Ours

Figure 7: Qualitative comparisons on in-the-wild images. Upper: Comparisons between SOTA
restoration methods and Res-Captioner-enhanced SUPIR. Lower: Visual quality improvements in-
troduced by Res-Captioner on StableSR and SeeSR.

Comparison of image captioners. We compare our Res-Captioner to LLaVA-1.5 and ShareCap-
tioner in a plug-and-play manner, integrating all captions into SUPIR as described in Section 3.1.
Results from the multi-degradation test set, shown in Table 4, demonstrate that Res-Captioner pro-
vides superior guidance for image restoration. LLaVA-1.5 typically generates shorter captions (aver-
age length of 80), while ShareCaptioner consistently produces overly long captions (average length
of 200). As noted in Observation 2, both overly short and excessively long captions can negatively
affect restoration results. In contrast, Res-Captioner dynamically adjusts text richness based on the
input image, optimizing restoration quality across varying degradation levels.

Beyond text richness, the generated descriptions differ significantly in quality. As discussed in
the appendix, other captioners may produce misleading descriptions or hallucinations that degrade
restoration quality, while our method generates highly relevant, accurate descriptions aligned with
HQ images, effectively enhancing restoration results.

3.3.2 QUALITATIVE RESULTS

We provide visual comparisons on in-the-wild LQ images in Figure 7. In the upper section, Real-
ESRGAN+ struggles with its limited generative capability, failing to recover high-definition tex-
tures. Both SUPIR and StableSR experience “generative capability deactivation” when handling
out-of-distribution (OOD) data, leading to large areas of blurring. Although SeeSR responds better
to OOD data, the textures it generates tend to appear overly smooth and unrealistic. In contrast, our
Res-Captioner fully activates the generative potential of the T2I backbone in SUPIR, enabling the
recovery of clearer, more realistic textures, such as detailed flower petals and building facades.

The lower section of Figure 7 illustrates how Res-Captioner improves other restoration models.
When integrated with Res-Captioner, StableSR and SeeSR demonstrate an enhanced ability to re-
cover fine-grained textures and structures, such as goat fur and lantern mesh, significantly outper-
forming their original versions. Notably, Res-Captioner can be directly applied to restoration models
using the same T2I backbone without requiring fine-tuning.
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Table 5: Ablation studies on text richness, relevance, and harmful
descriptions. Bold: Best results.

Method Light Degradation Moderate Degradation Heavy Degradation
DISTS↓ LPIPS↓ DISTS↓ LPIPS↓ DISTS↓ LPIPS↓

Ours 0.1680 0.3178 0.1621 0.3052 0.1873 0.3754
w/ Min Len. 0.1718 0.3274 0.1753 0.3252 0.2033 0.4009
w/ Max Len. 0.1864 0.3525 0.1770 0.3184 0.1964 0.4039
w/ Low Rel. 0.1738 0.3389 0.1655 0.3061 0.1907 0.3914
w/ Harmful Des. 0.1686 0.3191 0.1678 0.3178 0.1868 0.3883

SUPIR 
w/ Ours

StableSR 
w/ Ours

SUPIR

StableSR

SeeSR

Real-
ESRGAN+

Ave: 6.18

Ave: 4.40

Ave: 6.63

Ave: 5.38

Ave: 5.33

Ave: 7.60

Figure 8: User study.

3.3.3 USER STUDY

To further validate Res-Captioner’s ability to enhance generalization in real-world scenarios, we
conduct a user study on in-the-wild LQ images with 31 experienced researchers. Each participant
rates the visual perceptual quality (on a scale of 1 to 10, where higher is better) of results gener-
ated by Real-ESRGAN+, SeeSR, StableSR, StableSR with Res-Captioner, SUPIR, and SUPIR with
Res-Captioner. As illustrated in Figure 8, StableSR and SUPIR show significant performance im-
provements when paired with Res-Captioner. Notably, SUPIR, when enhanced with Res-Captioner,
delivers the highest visual quality among all methods.

3.4 ABLATION STUDY

We investigate the impact of the proposed text properties—richness, relevance, and harmful descrip-
tions—on restoration performance by ablating each aspect in experiments. All models are trained
under identical settings, with the only variation being the training data. Additionally, we analyze the
effect of our proposed Chain-of-Thought (CoT) captioning and degradation-aware visual encoder
on text richness. SUPIR is used as the restoration model in this section.

Text richness. To explore the impact of text richness, we create two training sets using the shortest
and longest captions generated by GPT-4, corresponding to the results of “w/ Min Len.” and “w/
Max Len.” in Table 5. The results show that Res-Captioner achieves the best performance under
varying degradation conditions due to its adaptive text richness capability. Moreover, we observe
that the “w/ Max Len.” model begins to outperform the “w/ Min Len.” model as degradation severity
increases, which is consistent with our Observation 2.

Text relevance. To study this property, we first calculate the length of human-selected optimal
captions generated by GPT-4. We then produce same-length low-relevance captions using LLaVA-
1.5 for training, denoted as “w/ Low Rel.”. In contrast, our Res-Captioner (“Ours”) achieves superior
restoration results, highlighting the importance of high-relevance descriptions for restoration.

Harmful descriptions. In Section 2.1.3, we identify harmful descriptions that result in blurring
in the restored images. Using the optimal text richness, we employ GPT-4 to generate captions
incorporating these harmful descriptions. We fine-tune our Res-Captioner with this data, referred
to as “w/ Harmful Des.” in Table 5. The results show that harmful descriptions negatively affect
restoration performance, causing an average 2.7% decrease in LPIPS.

CoT captioning and degradation-aware visual encoder. We manually annotate the optimal text
length, Lo, for 100 LQ images from the RealIR and multi-degradation datasets. To quantify the
prediction error, we define the offset level E as: E = max (|Lo − L| − 15, 0) /30, where L is the
captioner’s output length. The mean offset level for our Res-Captioner is 1.27. Without the CoT
captioning, the mean offset level increases by 66.7%, and without the degradation-aware visual
encoder, it rises by 31.5%. These results highlight the effectiveness of our model’s design.

4 CONCLUSION

We leverage text as an auxiliary invariant representation to enhance the generalizability of T2I-
diffusion-based restoration models. By focusing on two key properties of text inputs—richness and
relevance—we propose Res-Captioner, which significantly improves real-world restoration perfor-
mance in a plug-and-play manner.
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A APPENDIX

A.1 REAL-WORLD LQ IMAGE GENERATION

By reproducing high-definition images, we collect numerous real-world LQ-HQ pairs for training
the real-world LQ generation model. Data is gathered from five different devices, and five LQ
generation models are trained to represent different types of degradation.

We select the latent diffusion model (LDM) (Rombach et al., 2022) as our LQ generator, training it
to produce LQ images conditioned on corresponding HQ images. Additionally, the zoom ratio used
during image reproduction is incorporated as another part of the conditional information.

For each degradation model, we retain one zoom ratio for the generation of multi-degradation test
set, and the rest are used to generate Res-Captioner training data.

A.2 DETAILS OF TRAINING DATA GENERATION

We use the following prompt to generate captions of varying lengths with GPT-4, while avoiding
harmful descriptions through the use of restrictive phrasing.

Please describe the actual objects in the image in a very detailed
manner. Please do not include descriptions related to the focus
and bokeh of this image. Please do not include descriptions like
the background is blurred. Please be careful to limit your answer
to about XXX words.

We generate a total of seven different caption lengths: 80 words, 110 words, 140 words, 200 words,
260 words, 350 words, and 440 words. The interval between lengths increases progressively, as
longer captions tend to cause smaller texture changes when recovering with the same richness inter-
val.

When training and testing the Res-Captioner, we use the following prompt:

Please determine the appropriate caption length and then describe
the actual objects in the image in a very detailed manner. Please
do not include descriptions related to the focus and bokeh of this
image. Please do not include descriptions like the background is
blurred.

A.3 CONTENT QUALITY COMPARISON OF IMAGE CAPTIONS

In Figure 10 and 11, we compare the caption content quality between our proposed Res-Captioner
and existing image captioners. Each caption was carefully examined, with hallucinations and harm-
ful descriptions that could negatively impact restoration clearly marked. We also compared captions
generated by Res-Captioner and other image captioners for the same image, highlighting the details
missing in the others. Our method clearly demonstrates fewer hallucinations, is free from harmful
descriptions, and produces a significant amount of detail closely aligned with the image content,
which greatly supports the restoration process.

A.4 MORE QUALITATIVE RESULTS

In this section, we provide additional visual comparisons between our method and state-of-the-art
(SOTA) methods. As illustrated in Figure 12, when paired with the SUPIR restoration method,
which features a powerful generative model backbone, our Res-Captioner shows clear advantages
in recovery performance compared to previous SOTA methods. Additionally, our approach signifi-
cantly improves visual quality when applied to the StableSR restoration method, as demonstrated in
Figure 9, highlighting the robustness of our approach across different restoration models.
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LQ StableSR StableSR w/ Ours LQ StableSR StableSR w/ Ours

Figure 9: Additional qualitative comparisons of Res-Captioner applied to StableSR on in-the-wild
images.

A.5 ANALYSIS ON DEGRADATION TOKEN NUMBER

We analyze the impact of the token length N in our degradation-aware visual encoder on text rich-
ness prediction accuracy. As shown in Table 6, the token length is inversely proportional to the
text richness offset level E, indicating a positive relationship with text richness prediction accuracy.
Balancing computational cost with performance benefits, we select N = 36 as the final degradation
token number.

Table 6: Analysis of the token length in the degradation-aware visual encoder.

Token Length N Offset Level E

4 1.53
9 1.46

16 1.34
25 1.28
36 1.27
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Please determine the appropriate caption 
length and then describe the actual objects 
in the image in a very detailed manner. …

Please describe the image in a very detailed 
manner.

The image shows a tiger resting on a large, flat 
rock. The tiger is lying down with its body 
stretched out and head slightly bent forward, 
resting its head on its front paws. The tiger's 
fur is a golden-orange color with darker 
stripes running vertically along its body. Each 
paw is large, with visible claws that are 
partially retracted. The tiger's head has 
distinctive markings, including black stripes 
that run from the top of its head down to its 
nose. Its ears are small and pointed, and its 
eyes appear calm and relaxed. The rock the 
tiger is lying on is light-colored, with a rough 
and textured surface. Behind the tiger, there 
is a chain-link fence with metallic posts, 
suggesting that the scene takes place in 
some kind of enclosure or zoo exhibit. The 
fence is partially covered in vegetation, with 
green leaves hanging over it. There is also a 
vertical pillar or post visible to the right of the 
tiger.

In the tranquil setting of a zoo, a tiger, with its 
vibrant orange and black stripes, is captured 
in a moment of rest. The tiger is comfortably 
sprawled out on a large rock, its body relaxed 
and at ease. Its head is gently resting on its 
front paws, embodying the essence of 
serenity. \n\nThe rock on which the tiger lies 
is part of a larger enclosure that is adorned 
with lush green foliage, providing a 
naturalistic habitat for the tiger. In the
background, a fence can be seen, indicating 
the boundary of the enclosure. \n\nAdding to 
the scene is a bird, perched confidently on a 
wire fence, seemingly undisturbed by the 
tiger's presence. The bird's presence adds a 
sense of harmony to the image, as it coexists 
peacefully with the tiger in their shared 
environment. \n\nThe image beautifully 
captures a moment of calm and tranquility in 
the lives of these magnificent creatures.

Res-Captioner
ShareCaptioner

Please determine the appropriate caption 
length and then describe the actual objects 
in the image in a very detailed manner. …

Please describe the image in a very detailed 
manner.

The image features a vibrant macaw parrot. 
The bird has a prominent red beak with a light 
grayish-black area at the base. Its plumage is 
primarily green, with some blue feathers 
visible near the top of its shoulder. The 
macaw's eye is round and light, set against its 
red beak and pale skin surrounding it. The 
parrot's shoulders and upper body are 
densely covered in green feathers, which 
have a glossy appearance. The parrot's wings 
are tucked close to its body, making the bird 
appear rounded and full. The feathers appear 
smooth and well-groomed, giving the bird a 
sleek appearance. The texture and colors 
indicate the bird\u2019s tropical 
environment. The background consists of 
various shades of green and brown, 
enhancing the natural setting of the image.

Res-Captioner

In the image, a vibrant green parrot is the 
main subject. The parrot, with its head and 
neck painted in a striking shade of red, 
stands out against the blurred backdrop. Its 
beak, a contrasting gray, is slightly open as if 
caught mid-squawk. The parrot's wings, a mix 
of blue and green, are folded neatly at its 
sides. The background, though blurred, gives 
the impression of a natural setting, possibly a 
forest or a tree. The parrot's precise location 
within the image is hard to determine due to 
the blurred background, but it appears to be 
in the foreground. There are no discernible 
texts or other objects in the image. The 
relative position of the parrot to other objects 
cannot be determined as the background is 
indistinct. The image does not provide 
enough detail to confidently count the 
number of similar objects or describe their 
actions.

ShareCaptioner

Figure 10: Content quality comparison between our proposed Res-Captioner and ShareCaptioner.
We use red to indicate some hallucinations and harmful descriptions in the caption. We use green to
highlight the detailed descriptions provided by one captioner that are missing in the other.
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Please determine the appropriate caption 
length and then describe the actual objects 
in the image in a very detailed manner. …

Please describe the image in a very detailed 
manner.

The image shows the exterior of a building 
featuring an upper-level balcony. The balcony 
has a white wooden railing with vertical slats 
and a small decorative post at each corner. 
The balcony is supported by the building's 
brick wall, which is composed of brown 
bricks. There is a door on the lower level. The 
door has multiple panes and is bordered by a 
white trim. Some green leafy vegetation and 
bushes are visible at the bottom left corner of 
the image, climbing up the side of the 
building. The roof appears to be made of tiles, 
and there is a portion of a roofing edge visible 
along with a downspout on the brick column.

The image features a large, two-story brick 
house with a white porch. The porch has a 
white railing and is adorned with greenery, 
giving it a charming and inviting appearance. 
The house is situated on a hill, and the porch 
overlooks the surrounding area. There are two 
people visible in the scene, one standing near 
the left side of the porch and the other closer 
to the center. They seem to be enjoying the 
view or engaging in a conversation. The house 
is surrounded by trees, adding to the 
picturesque setting.

Res-Captioner
LLaVA-1.5

Please determine the appropriate caption 
length and then describe the actual objects 
in the image in a very detailed manner. …

Please describe the image in a very detailed 
manner.

The image features a lion walking across a 
grassy field. The lion is the main focus of the 
scene, occupying a significant portion of the 
image. The lion's fur, slightly blurred,  appears 
to be brown, and it is walking towards the 
camera. The field is covered with grass, 
providing a natural habitat for the lion.

LLaVA-1.5

The image depicts a lion standing on a grassy 
surface. The lion has a golden-brown coat, 
with a slightly darker mane that is slightly 
tousled and extends around its neck and 
shoulders. The face of the lion is detailed, 
showing strong features with prominent eyes, 
a powerful snout, and white whiskers around 
its mouth. Its nose is broad, and the forehead 
appears smooth with a few short, fine 
furrows. The lion's body is robust with 
muscular limbs, each paw being large and 
powerful. The paws are placed firmly on the 
ground, with visible claws that are dark and 
sharp. The grass around the lion is green and 
dense, with some patches of short, brownish 
grass visible among the green. There are also 
small bits of debris or plant material 
scattered on the ground. Overall, the lion 
appears alert and observant, with a direct 
gaze towards the camera, conveying a sense 
of confidence and dominance. The texture of 
its fur is apparent, showing a soft but thick 
coat.

Res-Captioner

Figure 11: Content quality comparison between our proposed Res-Captioner and LLaVA-1.5. We
use red to indicate some hallucinations and harmful descriptions in the caption. We use green to
highlight the detailed descriptions provided by one captioner that are missing in the other.
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LQ Real-ESRGAN+ StableSR SeeSR SUPIR SUPIR w/ Ours

Figure 12: Additional qualitative comparisons with SOTA methods on in-the-wild images.
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