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Abstract001

While Large Language Models (LLMs) have002
developed rapidly across a range of natural lan-003
guage processing (NLP) tasks, they have also004
raised concerns about their security and relia-005
bility. One such concern is Input-Conflicting006
Hallucination (ICH), a type of hallucination007
that conflicts with user input. Since the data008
annotation in NLP tasks is expensive and labor-009
intensive, existing ICH attack methods have010
adopted Metamorphic Testing to bypass the011
oracle problem. However, these attacks are012
black-box methods that are restricted to ques-013
tion answering tasks, limited to a few Metamor-014
phic Relations (MRs), and easily defended by015
decoder-only LLMs. In response, we propose016
HALLU-TRIG, a simple yet effective grey-017
box method that constructs six semantic-guided018
MRs to generate attack cases, and proposes a019
diversity-guided test case prioritization method020
to enhance its efficiency. We evaluate HALLU-021
TRIG on four NLP datasets and three popularly022
used target LLMs. As a result, the designed023
MRs achieve higher hallucination trigger rates024
than existing state-of-the-art baselines, and the025
diversity-guided prioritization can efficiently026
trigger ICHs with less time.027

1 Introduction028

With dramatic evolution in recent years, Large Lan-029

guage Models (LLMs) such as BART (Lewis et al.,030

2019), GPT4 (OpenAI, 2023), Claude (Anthropic,031

2023) and LLaMA 3 (LlamA, 2024) have made032

unprecedented progress in natural language un-033

derstanding (Hendrycks et al., 2020) and gener-034

ation (Zhang et al., 2024), leading popular appli-035

cations in resolving various downstream tasks. As036

LLMs gain prominence in academia, industry, and037

daily use, their security and reliability have become038

an increasingly important topic. Input-conflicting039

hallucination (ICH), a type of hallucination that040

conflicts with source input provided by users, has041

grown challenging due to the free-form and lengthy042

nature of content generated by LLMs (Zhang et al., 043

2023; Huang et al., 2023). Therefore, it is necessary 044

to reveal the ICHs in LLMs. 045

In ICH attacks for LLMs, a key step is verifying 046

the correctness of LLMs’ outputs, also known as 047

the oracle problem in Software Engineering (Chen 048

et al., 2020). This typically relies on manual in- 049

spection and is complex and time-consuming to an- 050

notate the generations of LLMs precisely (Zhong 051

et al., 2021; Guerreiro et al., 2022; Dziri et al., 052

2022; Dale et al., 2022). Metamorphic Testing 053

(MT) is a solution to bypass the oracle problem. 054

Given an existing case (called the source case) 055

and the LLM under test, MT generates a new case 056

(called the follow-up case) based on a Metamor- 057

phic Relation (MR) and constructs a Metamorphic 058

test case Pair (MP). The MR is the core compo- 059

nent of MT, it defines how to generate a follow-up 060

case from the source case and the expected rela- 061

tion between the outputs of the two cases. After 062

executing the MP on target LLM, MT inspects the 063

relation between the outputs and MR. Once an ICH 064

is triggered if the two outputs violate the MR. 065

Existing studies have proposed a few MT-based 066

methods to reveal the violations in LLMs, which 067

are ICHs through our analysis. Chen et al. (Chen 068

et al., 2021) propose QAAskeR to generate new 069

questions and answers based on the synthesized 070

pseudo facts derived from original questions and 071

generated answers. Shen et al. (Shen et al., 2022) 072

proposed QAQA to construct MPs by inserting 073

redundant sentences searched from the training 074

set into source cases. Liu et al. (Liu et al., 2022) 075

propose QATest to generate follow-up cases by 076

grammatical component-based, sentence structural- 077

based, and adversarial perturbation-based transfor- 078

mations. However, these attacks: (i) are restricted to 079

question answering tasks, (ii) only consider the syn- 080

tax information and generate low-quality follow-up 081

cases, (iii) focus on attacking two types of LLMs, 082

i.e. UnifiedQA (Khashabi et al., 2020) and AL- 083
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Figure 1: An example of the format of user input and
input-conflicting hallucinations appearing in a general
LLM response.

BERT (Lan et al., 2020), and have poor attack ef-084

ficacy on decoder-only LLMs, and (iv) are black-085

box without utilizing the hidden outputs to identify086

ICH-sensitive MPs and facilitate the attack process.087

To address the aforementioned limitations, we088

propose a grey-box attacking method named089

HALLU-TRIG to effectively and efficiently trigger090

the ICHs in LLMs. HALLU-TRIG consists of two091

components: a multi-level MP construction module092

and a diversity-based MP prioritization module. In093

the first module, we design 4 MRs at the charac-094

ter level, one MR at the word level, and one MR095

at the semantic level. All the MRs can be applied096

to general NLP datasets and LLMs to reveal po-097

tential ICHs. Besides, we consider the syntax and098

semantic information to ensure the quality of gen-099

erated cases. In the second module, inspired by the100

test case prioritization method in traditional soft-101

ware and DNN testing (Cao et al., 2013; Xie et al.,102

2022), we involve two diversity metrics, i.e. Jensen-103

Shannon divergence (JS) and Hallengle Distance104

(HD), to perform MP prioritization and trigger105

ICHs efficiently with the prioritized MP sequences.106

Note that the diversity of each MP is calculated107

based on the hidden outputs of the decoder blocks108

in target LLMs. To measure the performances of109

the diversity-based MP prioritization, we propose110

the Average Percentage of Hallucination Triggered111

(APHT) and normalized APHT (NAPHT). In sum-112

mary, our primary contributions are as follows:113

• Effective MRs for triggering ICHs in LLMs.114

We propose six semantic-guided MRs that can115

be applied to different types of LLMs and116

NLP tasks. These MRs span multiple granular-117

ity levels, i.e. character, word, and semantic.118

• Efficient grey-box MP prioritization method.119

We make the first attempt to identify the ICH-120

sensitive MPs with LLMs’ hidden outputs and121

prioritize them with two diversity metrics. We 122

propose a new performance metric to measure 123

the performance of our prioritization method. 124

• Extensive evaluation of HALLU-TRIG. We 125

conduct the experiments on several popularly 126

used NLP tasks and LLMs. The results indi- 127

cate that our method can both effectively and 128

efficiently trigger ICHs in target LLMs. 129

2 Background and Related Work 130

2.1 Input-conflicting Hallucination in LLMs 131

ICH occurs when the content generated by LLMs 132

deviates from the input provided by the users. As 133

shown in Figure 1, it can happen in two ways: the 134

LLM’s responses contradict the task inputs or the 135

LLM’s responses contradict the task instructions. 136

This means the LLM misunderstands the users’ in- 137

tents or representations of the context. Although 138

ICH is relatively easy for users to identify accord- 139

ing to the contexts, evaluating it within LLMs is 140

particularly challenging since LLM generates con- 141

tent in a free and lengthy format. 142

2.2 Hallucination evaluation for LLMs 143

Recent hallucination evaluation methods in NLP 144

can be categorized as follows: (i) human evalu- 145

ation (Lin et al., 2021; Min et al., 2023) mainly 146

focuses on conducting human annotations or guide- 147

lines to ensure reliable evaluation, (ii) model-based 148

automatic evaluation (Zha et al., 2023) generally 149

trains a proxy LLM to evaluate whether the answer 150

of the subject model is correct, and (iii) rule-based 151

automatic evaluation (Bang et al., 2023; Yu et al., 152

2023; Lee et al., 2022) uses classic classification 153

metrics such as accuracy and F1 in classification 154

tasks. These methods all rely on the analysis of the 155

oracle. For these reasons, we adopt MT to bypass 156

the oracle problem (i.e., verify whether the out- 157

puts are ICHs without ground truths) and promote 158

revealing ICHs in LLMs. 159

2.3 Metamorphic Testing 160

MT is quite a popular technique due to its ability to 161

effectively bypass the oracle problem (Chen et al., 162

2020) and uncover the defects in target software or 163

DNNs. MT can be used both to generate test cases 164

and verify the correctness of results. A central com- 165

ponent of MT is a set of Metamorphic Relations 166

(MRs), which define the expected relation between 167

the target model, its inputs, and the outputs. Given 168

a set of source cases, MT uses the defined MRs 169
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to generate new test cases as follow-up test cases170

and construct Metamorphic test case Pairs (MPs).171

Instead of verifying the correctness of the outputs172

for the source and follow-up cases in each MP, MT173

checks whether the outputs adhere to the corre-174

sponding MR. If an MR is violated, at least one175

output is hallucination.176

2.4 Metamorphic Testing for LLMs177

Existing studies mainly focus on detecting ICHs in178

UnifiedQA and ALBERT. QAAskeR (Chen et al.,179

2021) constructs MRs based on the synthesized180

pseudo facts derived from questions and answers,181

it may incur a range of false positives. QAQA (Shen182

et al., 2022) proposes MRs that do not change183

the answer for equivalent relations nor affect the184

clear inference for inferential relations. These MRs185

are limited to datasets with contexts and questions.186

QATest (Liu et al., 2022) designs MRs based on187

transformations on grammatical components, sen-188

tence structure, and adversarial perturbation. These189

MRs may greatly disturb the semantics of the190

follow-up cases and even change their semantics.191

In addition, Li et al. (Li et al., 2024) use unique192

logic reasoning rules to establish MRs for detecting193

hallucinations in LLMs, but they aim to reveal the194

fact-conflicting hallucination.195

Different from these methods, HALLU-TRIG196

integers the syntax and semantic information to197

guarantee the quality of generated cases, and aims198

to effectively and efficiently reveal ICHs in popu-199

larly used open-source LLMs. Besides, we involve200

the diversity metrics to boost the trigger of ICHs.201

3 Hallu-TRIG202

3.1 Overview203

Figure 2 shows the overview of HALLU-TRIG,204

which can be divided into two modules: a multi-205

level MP construction module and a diversity-206

guided MP prioritization module. In the first mod-207

ule, we propose semantic-guided MRs at different208

granularities and use them to generate follow-up209

cases and construct MPs. Specifically, we propose210

four MRs at the character level, one MR at the211

word level, and one MR at the semantic level. In212

the second module, we select a decoder block from213

each target LLM as the compute unit, adopt two214

diversity metrics to calculate the diversity of each215

MP with the outputs of the compute unit, and sort216

all MPs in descending order. Refer to (Cao et al.,217

2013), MPs with high diversity are considered ICH-218
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Figure 2: The overview of HALLU-TRIG.

sensitive and are prioritized to be input into target 219

LLMs to check the results. 220

3.2 Problem Formulation 221

Oracle and ICH. Generally, the test oracles for 222

different types of tasks vary. The downstream tasks 223

of LLMs are primarily divided into classification 224

tasks and generation tasks. Given the human oracle 225

O, the source case x, and a target LLM θ, we design 226

an MRM and generate a follow-up case x′. The 227

function fθ : X → Y , where y = fθ(x) defines 228

the mapping of LLM θ’s input to its output. The 229

functionM : X → X ′, where x′ =M(x) defines 230

the mapping of the source case and follow-up case. 231

In classification tasks such as duplicate sentence 232

detection (DSD), the output of LLM is the concrete 233

label (e.g., “equivalent” or “not_equivalent”) of the 234

input. For ∀x′ ∈M(X ), the oracle of target LLM 235

θ can be defined as O(x′) = O(x). Then x′ is an 236

ICH if it satisfies the requirements: 237

fθ(x
′) ̸= fθ(x), s.t. fθ(x) = O(x) (1) 238

In generative tasks such as reading comprehen- 239

sion (RC), due to the lack of a standardized format 240

in LLM outputs, we refer to previous study (Shen 241

et al., 2022) and determine their accuracy by com- 242

paring the semantic similarity Sim between the 243

output fθ(x) and the ground truth label A. 244

Sim(fθ(x),A) =
emb(fθ(x)

T · emb(A)
∥emb(fθ(x))∥∥emb(A)∥

(2) 245

where emb(·) is the embedding function integrated 246

in Phrase-BERT (Wang et al., 2021) and Sim(·) is 247

the cosine similarity function. For ∀x′ ∈ M(X ), 248

the oracle of target LLM fθ is defined as follows: 249

O(x′) = O(x), s.t. Sim(fθ(x), fθ(x
′)) ≥ γ (3) 250

where γ is the similarity threshold. In this scenario, 251

x′ is an ICH if it satisfies the requirements: 252

Sim(fθ(x), fθ(x
′)) < γ, s.t. fθ(x) = O(x) (4) 253
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Attack Goal. Given a set of source cases as in-254

put S, each case that can be correctly recognized255

by target LLM fθ constitutes a set S ′ ⊂ S. The256

attack goal contains two aspects: (i) maximiza-257

tion of the hallucination trigger rate (HTR). Let258

S ′ = {x1, x2, ..., x|S′|} where xi is the i-th source259

case in S ′, |S ′| is the size of S ′, and x′i is the cor-260

responding follow-up case generated by MRM.261

In classification tasks, the HTR ofM on S can be262

calculated as follows:263

HTRM =

∑S′

i=1 [fθ(x
′
i) ̸= fθ(xi)]

|S ′|
(5)264

In generation tasks, it can be calculated as follows:265

HTRM =

∑S′

i=1 [Sim(fθ(x), fθ(x
′)) < γ]

|S ′|
(6)266

We formulate the problem in this aspect as follows:267

M← argmax
M

HTRM (7)268

Our objective is to construct an MR M269

to maximize HTRM, and (ii) maximization of270

Average Percentage of Hallucination Triggered271

(APHT). Given a generated pile of MPs Γ =272

{MP1,MP2, ...,MP |Γ |} and the prioritized se-273

quence of MPs Γ ′ =
〈
MP ′

1,MP ′
2, ...,MP ′

|Γ |

〉
,274

where MP i is the i-th MP and |Γ | is the total275

number of MPs in Γ . Inspired by the testcase rank-276

ing metrics in traditional software and DNN test-277

ing (Rothermel et al., 1999; Xie et al., 2022), we de-278

sign a new rank-based metric (i.e., APHT) to eval-279

uate the performance of our prioritization method:280

APHT(Γ ′) = 1−
∑m

i=1RHi

|Γ | ·m
+

1

2 · |Γ |
(8)281

where m denotes the numbers of ICH-sensitive282

MPs in Γ ′, and RHi is the rank of the i-th ICH-283

sensitive MP in Γ ′. A higher APHT indicates that284

the ICH-sensitive cases are well identified and285

ranked. Furthermore, considering the reachable up-286

per and lower bounds of APHT, we scale it into the287

normalized APHT (NAPHT) which is calculated288

as follows:289

NAPHT(Γ ′) =
APHT(Γ ′)− APHTmin

APHTmax − APHTmin
(9)290

where APHTmax refers to the APHT that prior-291

itizes the ICH-sensitive MPs from 1 to m, and292

APHTmin refers to the APHT that prioritizes the293

ICH-sensitive MPs from |Γ | −m+ 1 to |Γ |. Then 294

we formulate the second problem as follows: 295

D ← argmax
D

NAPHT(Γ ′) (10) 296

In this scenario, our objective is to utilize a diver- 297

sity metric D to improve the effectiveness of MP 298

prioritization, i.e., maximize NAPHT(Γ ′). 299

3.3 Attack Methodology 300

Multi-level MP Construction. In our method, it is 301

necessary to construct a series of MRs to support 302

the process of MT and then trigger ICHs in target 303

LLMs. We comprehensively analyze the linguistic 304

structure of LLMs’ input and construct MRs at the 305

character, word, and semantic levels to attack target 306

LLMs effectively. 307

At the character level and word level, there 308

are two main steps: (i) find the most vulnerable 309

words in the source cases, and (ii) perturb the vul- 310

nerable words, to generate MPs. Given a source 311

case x = {w1, w2, ..., w|x|} and a BERT model 312

ϕ, where xi is the i-th word and |x| is the num- 313

ber of all words in x. The corresponding output 314

is gϕ(x) = {o1, o2, ..., o|x|} where ot is the output 315

logit for time step t. To find the most vulnerable 316

word in x, we replace wi with [MASK] such that 317

x\wi
= {w1, ..., wi−1,[MASK], wi+1, ..., w|x|}. 318

The output of x\wi
is gϕ(xwi) = {o′1, o′2, ..., o′|x|} 319

where o′t is the new output logit for time step t. The 320

influence score for wi is calculated as follow: 321

Iwi =

∣∣∣∣ |x|∑
t=1

ot −
|x′|∑
t=1

o′t

∣∣∣∣ (11) 322

We select wi with the maximum influence score. 323

To perform perturbation at the character level, 324

we randomly alter the character in the word from 325

the input and define four MRs: 326

❶ MR1: Random Character Deletion (RCDel). 327

RCDel generates a follow-up case by randomly 328

deleting a single character, excluding the first and 329

last characters. 330

❷ MR2: Neighboring Character Swap (NCSwa). 331

NCSwa generates a follow-up case by randomly 332

swapping the neighboring characters at once. 333

❸ MR3: Random Character Insertion (RCIns). 334

RCIns generates a follow-up case by randomly in- 335

serting a single character between the first and the 336

last characters. 337

❹ MR4: Random Character Substitution (RC- 338

Sub). RCSub generates a follow-up case by ran- 339

domly substituting a single character. 340
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Algorithm 1 Diversity-Guided MP Prioritization
Input: a pile of original MPs Γ , compute unit Dk.
Output: a sequence of prioritized MPs Γ ′.
Initilize: Γ ′ ← ∅.

1: forMP in Γ do
2: x, x′ ←MP
3: outputx = Dk(x)
4: outputx′ = Dk(x

′)
5: // Compute the execution diversity ofMP
6: ∆MP = Diversity(outputx, outputx′)
7: Γ ′ ← Γ ′ ∪ (MP,∆MP)
8: end for
9: // Prioritize all the MPs based on computed

diversities
10: Γ ′ = Prioritization(Γ ′)

To perform perturbation at the word level, we341

use BERT-MLM to generate N candidates for the342

vulnerable word and define one MR:343

❺ MR5: Similar Word Substitution (SWSub).344

SWSub generates a follow-up case by replacing the345

original word with a single word selected from the346

top-k candidates.347

Given a source case x, the perturbed follow-up348

case x′, and wi and w′
i refer to the words before and349

after perturbation, respectively. Considering their350

naturalness and semantics, with perplex(x′) =351

|x′|
√
Π

|x′|
i=1P (w′

i|x′\w′
i)

and the similarity function352

Sim′(·) proposed in SimCSE (Gao et al., 2021),353

we evaluate the quality of x′ as follows:354

Nat(x, x′) = |perplex(x)− perplex(x′)| (12)355

356
Scorex′ = −λ1Nat(x, x′)+λ2Sim

′(x, x′) (13)357

where λ1 and λ2 are weights, x′ is accepted with358

score greater than or equal to φ (i.e., Scorex′ ≥ φ).359

At the semantic level, we use the NLTK (Bird360

et al., 2001) tool to construct the syntactic parse tree361

of the source case and manipulate it to ensure the362

naturalness and semantic accuracy of the generated363

follow-up case (Loper and Bird, 2002). The MR in364

this scenario is defined as:365

❻ MR6: Semantic Negation (SNeg). SNeg gener-366

ates a follow-up case by negating the copular verb,367

auxiliary verb, etc. (See Appendix A for more de-368

tails of SNeg.)369

3.4 Diversity-Guided MP Prioritization370

Referring to traditional software and DNN test-371

ing (Chen et al., 2004; Xie et al., 2022; Cao372

et al., 2013), we prioritize the MPs with the guid- 373

ance of execution diversity. Given a LLM θ = 374

{D1,D2, ...,D|θ|}, the MP i = (xi, x
′
i), and the 375

generated pile of MPs Γ , where Dk denotes the k- 376

th decoder block and |θ| denotes the total number 377

of decoder blocks in θ. 378

The first key component of this module is the 379

diversity metrics. In HALLU-TRIG, we introduce 380

two accurate and cheap implementation diversity 381

metrics that work effectively on DNNs (Xie et al., 382

2022), i.e. Jensen-Shannon divergence (JS) and 383

Hellinger distance (HD). JS measures the differ- 384

ence between two distributions based on Kullback- 385

Leibler divergence (KL), which is symmetric and 386

bounded. To calculate the JS-based diversity of 387

MP i and Dk, we first calculate its KL-based di- 388

versity as follows: 389

∆KL(xi||x′i) =
∑

nk
j∈Lk

Dk(xi, n
k
j ) ln

Dk(xi, n
k
j )

Dk(x
′
i, n

k
j )

(14) 390

where Dk(xi, n
k
j ) and Dk(x

′
i, n

k
j ) denotes the out- 391

puts of the j-th neuron nk
j in last full connected 392

layer Lk of Dk for xi and x′i, respectively. Then 393

the corresponding JS-based diversity can be calcu- 394

lated as follows: 395

∆JS =
∆KL(Dk(xi)||M) + ∆KL(Dk(x

′
i)||M)

2
(15) 396

where M = 1
2(Dk(xi) + Dk(x

′
i)), and Dk(xi) 397

and Dk(x
′
i) is the final output of Dk for xi and 398

x′i, respectively. The HD-based diversity calculates 399

the divergence between two distributions using the 400

Hellinger integral. This type of diversity metric is 401

calculated as follows: 402

∆HD =

√√√√ ∑
nk
j
∈Lk

(√
Dk(xi,nk

j )−
√

Dk(x
′
i,n

k
j )
)2

2
(16) 403

The second key component is the MP prioritiza- 404

tion algorithm. We choose the k-th decoder block 405

Dk as the compute unit and compute the diversity 406

of each MP with the aforementioned metrics based 407

on the output of Dk. Specifically, for eachMP in 408

the generated pile of MPs Γ , we execute the source 409

case x and the follow-up case x′ in target LLM 410

θ, extract the outputs of the compute unit Dk to 411

calculate the diversities. After that, all the MPs are 412

sorted in descending order. The details are shown 413

in Algorithm 1. Generally, MPs with high execu- 414

tion diversity are regarded as ICH-sensitive (Cao 415
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Target Model Dataset
Attack Method

QAQA QATest MR1 MR2 MR3 MR4 MR5 MR6

Vicuna-13B

MNLI – 8.72% 12.15% 12.11% 11.09% 14.58% 38.58% 52.36%
QQP – 9.68% 9.65% 9.27% 9.17% 17.89% 34.00% 82.69%

SQuAD2 12.58% 16.97% 15.43% 15.59% 17.95% 24.41% 56.51% 53.61%
NarrativeQA 19.28% 17.79% 19.33% 19.88% 21.25% 26.84% 62.10% 64.72%

LLaMA-3-8B

MNLI – 10.30% 14.09% 13.59% 14.98% 19.40% 40.78% 57.13%
QQP – 11.80% 13.16% 9.81% 14.39% 18.10% 39.88% 82.90%

SQuAD2 17.13% 22.09% 20.94% 20.69% 22.95% 30.63% 54.68% 52.24%
NarrativeQA 19.93% 26.15% 28.18% 26.87% 27.22% 32.53% 66.20% 65.45%

BART-large

MNLI – 18.91% 17.22% 18.85% 19.01% 18.68% 38.67% 57.13%
QQP – 24.09% 24.66% 23.44% 24.91% 24.79% 56.66% 91.12%

SQuAD2 18.25% 25.85% 30.05% 34.66% 32.59% 33.55% 59.13% 57.31%
NarrativeQA – – – – – – – –

Table 1: The HTR of MRs: HALLU-TRIG vs. SOTA baselines across models and datasets.

Target Model MNLI QQP SQuAD2 NarrativeQA
Vicuna-13B 99% 99% 98% 97%

LLaMA-3-8B 98% 99% 97% 97%
BART-large 97% 98% 97% –

Table 2: The TPR across models and datasets.

et al., 2013; Xie et al., 2022). Their outputs will416

therefore be prioritized for inspection to identify417

potential ICHs efficiently.418

4 Experiments419

4.1 Experimental Setup420

Downstream Tasks and Datasets. We conduct421

a comprehensive evaluation of HALLU-TRIG by422

designing experiments across both classification423

and generation tasks. Referring to existing stud-424

ies (Yuan et al., 2024; Duan et al., 2024; Mc-425

Coy et al., 2019; Shen et al., 2022; Chen et al.,426

2021), we adopt three representative NLP tasks427

with corresponding datasets: (i) three-category428

natural language inference (NLI) task based on429

MNLI (Williams et al., 2017), (ii) binary classi-430

fication duplicate sentence detection (DSD) task431

based on QQP (Wang et al., 2018), and (iii) gen-432

erative reading comprehension (RC) task based433

on SQuAD2 (Rajpurkar et al., 2018) and Narra-434

tiveQA (Kočiskỳ et al., 2018). (See Appendix A)435

Target Models. For a comprehensive evaluation,436

we conduct experiments on three generative open-437

source LLMs. We pick the representative LLMs438

with state-of-the-art (SOTA) performances on gen-439

eral NLP tasks: (i) Vicuna: the latest version of440

Figure 3: Comparison of distributions between the
source and follow-up cases on MNLI and Vicuna-13B.

Vicuna-13b-1.5-16k (Vicuna-13B for short), (ii) 441

LLaMA: the latest version of Meta-LLaMA-3-8B 442

(LLaMA-3-8B for short), and (iii) BART: the ver- 443

sion of BART-large. (See Appendix A) 444

Attack Baselines. We compare HALLU-TRIG 445

with two SOTA MT-based attack methods, and use 446

the most effective MR in each attack method as 447

the baselines for a fair comparison: (i)QAQA (Shen 448

et al., 2022): Inserts another input from the training 449

set as redundant sentence into a given source case 450

to generate a follow-up case, and (ii) QATest (Liu 451

et al., 2022): Perturbs the source case with typos to 452

generate follow-up case. 453

Evaluation Metrics. We use hallucination trigger 454

rate (HTR) and true positive rate (TPR) to evalu- 455

ate the effectiveness of the proposed MRs, and use 456

NAPHT to assess the efficiency of the MP prioriti- 457

zation method. 458

Implementation Details. We conduct the experi- 459

6



(a) result on MNLI (b) result on QQP (c) result on SQuAD2 (d) result on NarrativeQA

Figure 4: Prioritization performance of different diversity metrics under each MR on Vicuna-13B.

(a) result on MNLI (b) result on QQP (c) result on SQuAD2 (d) result on NarrativeQA

Figure 5: Prioritization performance of different diversity metrics under each MR on LLaMA-3-8B.

(a) result on MR1 (b) result on MR2 (c) result on MR3 (d) result on MR4

(e) result on MR5 (f) result on MR6 (g) result on QAQA (h) result on QATest

Figure 6: Comparison of ICH triggered over time: unsorted vs. sorted MPs on SQuAD2 and Vicuna-13B.

ments with the Ubuntu 18.04 system with 32-core460

2.1GHz Xeon CPU, 196GB RAM and 4 NVIDIA461

GeForce RTX 3090 24G GPUs. We generate 5 and462

1 candidates for each source case at the character463

and word level, respectively. At the word level, we464

set the N and k as 30 and 5, respectively. Through465

manual inspection and analysis of the experiment466

results, we set the threshold of cosine similarity γ467

and quality φ, weight λ1 and λ2 as 0.76, 0.2, 0.5,468

and 0.5, respectively. MRs in HALLU-TRIG are469

applied to Premise or Question 1 in classification470

tasks, and to the questions in generation tasks.471

4.2 Effectiveness of Semantic-guided MRs472

Attack Effectiveness. For each dataset, we used473

the whole dataset to calculate the HTR, and ran-474

domly sampled 100 ICHs for manual review to475

calculate the TPR. Table 1 and Table 2 show the re-476

sults of HTR and TPR, respectively. In most scenar- 477

ios, the proposed MRs have higher HTR than the 478

SOTA baselines, especially the sentence-level and 479

semantic-level MRs. Besides, the TPR of HALLU- 480

TRIG on each dataset and target model is no less 481

than 97%. These indicate that HALLU-TRIG can 482

effectively trigger ICHs in target LLMs the trig- 483

gered ICHs are almost true positives. 484

Quality of MPs. We apply the t-SNE tech- 485

nique (Van der Maaten and Hinton, 2008) to the 486

final decoder outputs of target models to visualize 487

and analyze the distribution of source and follow- 488

up cases. The rationale is that the reported bugs 489

are meaningful for the system if the generated 490

cases are distributed consistently with the origi- 491

nal cases (Berend et al., 2020). Figure 3 depicts the 492

distribution of MPs on a subset of MNLI in Vicuna- 493

13B (See Appendix A for results on LLaMA-3-8B 494

7



(a) result on MNLI (b) result on QQP (c) result on SQuAD2 (d) result on NarrativeQA

Figure 7: HD-based MP prioritization using different decoder blocks as the compute unit on Vicuna-13B.

(a) result on MNLI (b) result on QQP (c) result on SQuAD2 (d) result on NarrativeQA

Figure 8: HD-based MP prioritization using different decoder blocks as the compute unit on LLaMA-3-8B.

and BART-large). We can observe that the distribu-495

tion within all the MPs is consistent, indicating the496

high quality of the generated follow-up cases.497

4.3 Effectiveness of MP Prioritization498

Evaluation with NAPHT. In this study, we set499

the implementation of no prioritization as the base-500

line (None), and select the middle decoder block501

in target models as the compute unit. In other set-502

tings, our prioritization method is also effective503

(see more details in Section 4.4). Figure 4 and Fig-504

ure 5 shows the results on Vicuna-13B and LLaMA-505

3-8B, respectively (See Appendix A for the result506

on BART-large). We find that applying our prior-507

itization method with any diversity metric can in-508

crease the NAPHT compared to no prioritization509

under each MR on all datasets and models. This510

demonstrates the effectiveness of our prioritization511

method. Additionally, HD can guide MP prioritiza-512

tion better than JS.513

Analysis on Efficiency. We also execute the un-514

sorted and sorted MP sequences, and record the515

number of triggered ICHs over time (min) to further516

analyze the efficiency of the prioritization method.517

Figure 6 depicts the result on SQuAD2 and Vicuna-518

13B. Intuitively, compared with the unsorted MP519

sequences, The sorted MP sequence can trigger520

more ICHs within the same time and requires less521

time to trigger the same number of ICHs.522

4.4 Ablation Study523

In this study, we aim to investigate the impact of the524

selection of the compute unit Dk, which is directly525

reflected through changes in NAPHT. Figure 7, 526

and Figure 8 shows the result on Vicuna-13B and 527

LLaMA-3-8B, respectively (See Appendix A for 528

the result on BART-large). From these figures, the 529

value of NAPHT increases with the increment of 530

k in most scenarios. Thus we can summarize that 531

the efficiency of MP prioritization is improved as 532

k increases, and a larger k tends to achieve a bet- 533

ter performance in prioritizing the ICH-sensitive 534

MPs in Γ ′. In particular, the NAPHT of these MRs 535

approach maximum when Dk is set to a middle 536

position. Therefore, we can set the intermediate 537

position in target models as the compute unit to 538

save diversity computing time while achieving near- 539

optimal prioritization performance. 540

5 Conclusion 541

In this paper, we introduce HALLU-TRIG, a grey- 542

box method to trigger the ICHs in the popularly 543

used open-source LLMs. It attacks the target mod- 544

els at the character, sentence, and semantic levels 545

with six semantic-guided MRs. To boost the reveal- 546

ing of ICHs, we use the hidden outputs in target 547

LLMs to identify the ICH-sensitive MPs and make 548

the first attempt to prioritize the generated MPs 549

with two diversity metrics. Besides, we propose a 550

new metric to measure the performance of the MP 551

prioritization method. Through a comprehensive 552

evaluation, HALLU-TRIG outperforms the SOTA 553

baselines in terms of attack effectiveness, attack 554

quality, and generalizability. The MP prioritization 555

method can stably improve the attack efficiency 556

both for HALLU-TRIG and the SOTA baselines. 557
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6 Limitations558

In this study, we mainly discuss the limitations of559

HALLU-TRIG in terms of threat to internal validity560

and threat to external validity.561

Threat to internal validity primarily lies in two562

aspects: (i) the effectiveness of the proposed MRs563

and NAPHT; (ii) the configuration sensitivity of564

HALLU-TRIG and the adopted diversity metrics.565

For the first concern, the MRs are constructed based566

on the common ideas of text mutation in NLP (Li567

et al., 2018; Gao et al., 2018; Garg and Ramakr-568

ishnan, 2020; Morris et al., 2020; Jin et al., 2019),569

and the NAPHT follows the NAPVD and NAPFD570

in traditional software and DNN testing. We per-571

form additional manual inspections to ensure their572

effectiveness in Section 4.2 and Section 4.3.573

For the second concern, the performance of the574

MP prioritization method has been confirmed on575

each diversity metric and target model under dif-576

ferent configurations. Note that we only need to577

extract the hidden output from a single decoder578

block of the target model to perform MP priori-579

tization on the CPU, which is entirely feasible as580

long as the target model can be executed.581

In summary, we find that the general setup can ef-582

fectively and stably work on various MRs, metrics,583

and target LLMs.584

Threat to external validity is mainly about the585

representativeness of the tasks, datasets, and target586

models adopted in our experiments. To counter587

this, we adopt three tasks (i.e., NLI, DSD, and588

RC), four datasets (i.e., MNLI, QQP, SQuAD2,589

and NarrativeQA), and three LLMs (i.e., BART-590

large, Vicuna-13B and LLaMA-3-8B), which are591

all widely used in the state-of-the-art research in592

NLP (Zhu et al., 2023; Peng et al., 2023).593
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A Appendix830

A.1 MR6: SemanticNegation831

Since the transformation under MR6 is not832

semantic-preservation, we define the semantic rela-833

tions on each task here to ensure the soundness of834

MR6. Given a source case x, a generated follow-up835

case x′, and a target model θ.836

• In MNLI, if the output of x is "neutral", then837

fθ(x
′) = fθ(x), otherwise fθ(x

′) ̸= fθ(x).838

• In QQP, fθ(x′) = fθ(x);839

• In SQuAD2, if the output of x is "unanswer-840

able", then the output of x′ is "unswerable",841

otherwise fθ(X ′) ̸= fθ(x).842

• In NarrativeQA, Sim(fθ(x), fθ(x
′)) < 0.76.843

Dataset Format Train/Test
MNLI Etailment/Neutral/Contradiction 392,702/19,647

QQP Equivalent/Not_equivalent 363,870/40,431

SQuAD2 Extractive 130,319/11,873

NarrativeQA Abstractive 32,747/3,461

Table 3: The format and statistics of the testing datasets

A.2 Downstream Tasks and Datasets844

The details about our datasets are shown as follows:845

• MNLI dataset is a large-scale dataset com-846

posed of sentence pairs with textual entail-847

ment annotations, where each sentence pair848

contains a Premise and a Hypothesis. It is849

designed to evaluate a model’s ability to un-850

derstand and infer the relationship between851

the Premise and Hypothesis. Based on MNLI,852

NLI is a three-category task, containing three853

labels: “entailment”, “neutral” and “contradic-854

tion”.855

• QQP dataset is a collection of question pairs856

from the community question-answering web-857

site Quora, annotated with whether the pairs858

are semantically equivalent. Based on QQP,859

DSD is a binary classification task, with labels860

of “equivalent” and “not_equivalent”.861

• SQuAD2 is an extractive reading comprehen-862

sion dataset in which the contexts, questions,863

and answers are collected from Wikipedia arti-864

cles by crowdworkers. Each question’s answer865

in the dataset is a segment or a certain span866

from the context. SQuAD2 also includes over 867

50,000 adversarially unanswerable questions, 868

with corresponding answers marked as “unan- 869

swerable”. 870

• NarrativeQA is an abstractive reading com- 871

prehension dataset that consists of stories in 872

the form of books and movie scripts. It con- 873

tains questions that require deep understand- 874

ing and reasoning over the entire narrative to 875

answer correctly. The answer to each question 876

is not limited to specific spans of text within 877

the story. 878

Table 3 shows the statistics of these four datasets. 879

In particular, the testing set in MNLI contains the 880

matched and mismatched testing sets. 881

A.3 Target Models 882

In this work, we aim to attack the generative 883

encoder-decoder and decoder-only LLMs and con- 884

sider BART, LLaMA, and Vicuna as the target 885

LLMs. Specifically, we chose BART-large, the lat- 886

est development Meta-LLaMA-3-8B, and the ver- 887

sion of Vicuna-13b-1.5-16k, where Vicuna-13b- 888

1.5-16k is fine-tuned on LLaMA 2. We select these 889

three LLMs for the following reasons: (1) the tar- 890

get LLMs should be open-source since we need 891

to extract the hidden outputs from them; (2) the 892

target LLMs should be scalable and deployable 893

within our limited computational resources; (3) the 894

target LLMs should achieve state-of-the-art perfor- 895

mances on general NLP tasks. As far as we know, 896

these LLMs satisfy the above three requirements 897

and the latter two LLMs achieve over 90% capabil- 898

ity of Bard/ChatGPT (Chiang et al., 2023). Hence, 899

we consider them the best-fit subject LLMs to de- 900

liver representative results and insights. To facili- 901

tate the evaluation of model performance, we refer 902

to PromptBench (Zhu et al., 2023) and adopt differ- 903

ent task instructions for tasks to guide the model in 904

generating content in a fixed format (shown in Ta- 905

ble 5). In our experiments, all the target models are 906

fine-tuned with LoRa (Hu et al., 2021). Through 907

an empirical study, we fine-tune the target models 908

with different sizes of datasets and find that: (i) 909

BART-large achieves the best performances with 910

1500 cases, and (ii) Vicuna-13B and LLaMA-3-8B 911

achieve the best performances with 600 cases. Ta- 912

ble 4 depicts the accuracy of the fine-tuned target 913

models. Note that the accuracy of each fine-tuned 914

BART-large model on NarrativeQA dataset is less 915
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Model MNLI QQP SQuAD2 NqrrativeQA
Vicuna-13B 85.41% 84.90% 81.60% 80.60%

LLaMA-3-8B 83.87% 83.10% 78.70% 81.40%

BART-large 82.06% 82.50% 76.60% –

Table 4: Performances of fine-tuned target LLMs

Task Task instruction

NLI
Assess the connection between the following sentences
and classify it as "entailment", "neutral", or "contradict-
ion":

DSD
Can these two statements be considered equal in mean-
ing? Answer with "equivalent" or "not_equivalent":

RC
Discover the best answer of the question based on the
context. If the context doesn’t include an answer, respo-
nd with "unanswerable":

Table 5: Task instructions used to fine-tune target LLMs

than 35%, and we do no conduct any experiment916

in this scenario.917

A.4 Results918

A.5 Distribution of MPs on Target Models919

On the randomly sampled subset of MNLI, Figure 9920

and Figure 10 depicts the distribution of MPs on921

LLaMA-3-8B and BART-large.922

A.6 MP Prioritization923

Figure 11 shows the performance of MP prioritiza-924

tion method on BART-large.925

A.7 Ablation study on BART-large926

Figure 12 depicts the impact of the selection of927

compute unit on BART-large.928

13



Figure 9: Distribution between the source
cases and follow-up cases in LLaMA-3-8B

Figure 10: Distribution between the source
cases and follow-up cases in BART-large

(a) result on MNLI (b) result on QQP (c) result on SQuAD2

Figure 11: Prioritization performance of different diversity metrics under each MR on BART-large

(a) result on MNLI (b) result on QQP (c) result on SQuAD2

Figure 12: HD-based MP prioritization using different decoder blocks as the compute unit on BART-large.
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