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Abstract

While Large Language Models (LLMs) have
developed rapidly across a range of natural lan-
guage processing (NLP) tasks, they have also
raised concerns about their security and relia-
bility. One such concern is Input-Conflicting
Hallucination (ICH), a type of hallucination
that conflicts with user input. Since the data
annotation in NLP tasks is expensive and labor-
intensive, existing ICH attack methods have
adopted Metamorphic Testing to bypass the
oracle problem. However, these attacks are
black-box methods that are restricted to ques-
tion answering tasks, limited to a few Metamor-
phic Relations (MRs), and easily defended by
decoder-only LLMs. In response, we propose
HALLU-TRIG, a simple yet effective grey-
box method that constructs six semantic-guided
MRs to generate attack cases, and proposes a
diversity-guided test case prioritization method
to enhance its efficiency. We evaluate HALLU-
TRIG on four NLP datasets and three popularly
used target LLMs. As a result, the designed
MRs achieve higher hallucination trigger rates
than existing state-of-the-art baselines, and the
diversity-guided prioritization can efficiently
trigger ICHs with less time.

1 Introduction

With dramatic evolution in recent years, Large Lan-
guage Models (LLMs) such as BART (Lewis et al.,
2019), GPT4 (OpenAl, 2023), Claude (Anthropic,
2023) and LLaMA 3 (LlamA, 2024) have made
unprecedented progress in natural language un-
derstanding (Hendrycks et al., 2020) and gener-
ation (Zhang et al., 2024), leading popular appli-
cations in resolving various downstream tasks. As
LLMs gain prominence in academia, industry, and
daily use, their security and reliability have become
an increasingly important topic. Input-conflicting
hallucination (ICH), a type of hallucination that
conflicts with source input provided by users, has
grown challenging due to the free-form and lengthy

nature of content generated by LLMs (Zhang et al.,
2023; Huang et al., 2023). Therefore, it is necessary
to reveal the ICHs in LLMs.

In ICH attacks for LLMs, a key step is verifying
the correctness of LLMs’ outputs, also known as
the oracle problem in Software Engineering (Chen
et al., 2020). This typically relies on manual in-
spection and is complex and time-consuming to an-
notate the generations of LLMs precisely (Zhong
et al., 2021; Guerreiro et al., 2022; Dziri et al.,
2022; Dale et al., 2022). Metamorphic Testing
(MT) is a solution to bypass the oracle problem.
Given an existing case (called the source case)
and the LLM under test, MT generates a new case
(called the follow-up case) based on a Metamor-
phic Relation (MR) and constructs a Metamorphic
test case Pair (MP). The MR is the core compo-
nent of MT, it defines how to generate a follow-up
case from the source case and the expected rela-
tion between the outputs of the two cases. After
executing the MP on target LLM, MT inspects the
relation between the outputs and MR. Once an ICH
is triggered if the two outputs violate the MR.

Existing studies have proposed a few MT-based
methods to reveal the violations in LLLMs, which
are ICHs through our analysis. Chen et al. (Chen
et al., 2021) propose QAAskeR to generate new
questions and answers based on the synthesized
pseudo facts derived from original questions and
generated answers. Shen et al. (Shen et al., 2022)
proposed QAQA to construct MPs by inserting
redundant sentences searched from the training
set into source cases. Liu et al. (Liu et al., 2022)
propose QATest to generate follow-up cases by
grammatical component-based, sentence structural-
based, and adversarial perturbation-based transfor-
mations. However, these attacks: (i) are restricted to
question answering tasks, (ii) only consider the syn-
tax information and generate low-quality follow-up
cases, (iii) focus on attacking two types of LLMs,
1.e. UnifiedQA (Khashabi et al., 2020) and AL-
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Figure 1: An example of the format of user input and
input-conflicting hallucinations appearing in a general
LLM response.

BERT (Lan et al., 2020), and have poor attack ef-
ficacy on decoder-only LL.Ms, and (iv) are black-
box without utilizing the hidden outputs to identify
ICH-sensitive MPs and facilitate the attack process.
To address the aforementioned limitations, we
propose a grey-box attacking method named
HALLU-TRIG to effectively and efficiently trigger
the ICHs in LLMs. HALLU-TRIG consists of two
components: a multi-level MP construction module
and a diversity-based MP prioritization module. In
the first module, we design 4 MRs at the charac-
ter level, one MR at the word level, and one MR
at the semantic level. All the MRs can be applied
to general NLP datasets and LLMs to reveal po-
tential ICHs. Besides, we consider the syntax and
semantic information to ensure the quality of gen-
erated cases. In the second module, inspired by the
test case prioritization method in traditional soft-
ware and DNN testing (Cao et al., 2013; Xie et al.,
2022), we involve two diversity metrics, i.e. Jensen-
Shannon divergence (JS) and Hallengle Distance
(HD), to perform MP prioritization and trigger
ICHs efficiently with the prioritized MP sequences.
Note that the diversity of each MP is calculated
based on the hidden outputs of the decoder blocks
in target LLMs. To measure the performances of
the diversity-based MP prioritization, we propose
the Average Percentage of Hallucination Triggered
(APHT) and normalized APHT (NAPHT). In sum-
mary, our primary contributions are as follows:

* Effective MRs for triggering ICHs in LLMs.
We propose six semantic-guided MRs that can
be applied to different types of LLMs and
NLP tasks. These MRs span multiple granular-
ity levels, i.e. character, word, and semantic.

* Efficient grey-box MP prioritization method.
We make the first attempt to identify the ICH-
sensitive MPs with LLMs’ hidden outputs and

prioritize them with two diversity metrics. We
propose a new performance metric to measure
the performance of our prioritization method.

* Extensive evaluation of HALLU-TRIG. We
conduct the experiments on several popularly
used NLP tasks and LLMs. The results indi-
cate that our method can both effectively and
efficiently trigger ICHs in target LLMs.

2 Background and Related Work

2.1 Input-conflicting Hallucination in LLMs

ICH occurs when the content generated by LLMs
deviates from the input provided by the users. As
shown in Figure 1, it can happen in two ways: the
LLM’s responses contradict the task inputs or the
LLM'’s responses contradict the task instructions.
This means the LLM misunderstands the users’ in-
tents or representations of the context. Although
ICH is relatively easy for users to identify accord-
ing to the contexts, evaluating it within LLMs is
particularly challenging since LLM generates con-
tent in a free and lengthy format.

2.2 Hallucination evaluation for LLMs

Recent hallucination evaluation methods in NLP
can be categorized as follows: (i) human evalu-
ation (Lin et al., 2021; Min et al., 2023) mainly
focuses on conducting human annotations or guide-
lines to ensure reliable evaluation, (i) model-based
automatic evaluation (Zha et al., 2023) generally
trains a proxy LLM to evaluate whether the answer
of the subject model is correct, and (iii) rule-based
automatic evaluation (Bang et al., 2023; Yu et al.,
2023; Lee et al., 2022) uses classic classification
metrics such as accuracy and F1 in classification
tasks. These methods all rely on the analysis of the
oracle. For these reasons, we adopt MT to bypass
the oracle problem (i.e., verify whether the out-
puts are ICHs without ground truths) and promote
revealing ICHs in LLMs.

2.3 Metamorphic Testing

MT is quite a popular technique due to its ability to
effectively bypass the oracle problem (Chen et al.,
2020) and uncover the defects in target software or
DNNs. MT can be used both to generate test cases
and verify the correctness of results. A central com-
ponent of MT is a set of Metamorphic Relations
(MRs), which define the expected relation between
the target model, its inputs, and the outputs. Given
a set of source cases, MT uses the defined MRs



to generate new test cases as follow-up test cases
and construct Metamorphic test case Pairs (MPs).
Instead of verifying the correctness of the outputs
for the source and follow-up cases in each MP, MT
checks whether the outputs adhere to the corre-
sponding MR. If an MR is violated, at least one
output is hallucination.

2.4 Metamorphic Testing for LLMs

Existing studies mainly focus on detecting ICHs in
UnifiedQA and ALBERT. QAAskeR (Chen et al.,
2021) constructs MRs based on the synthesized
pseudo facts derived from questions and answers,
it may incur a range of false positives. QAQA (Shen
et al., 2022) proposes MRs that do not change
the answer for equivalent relations nor affect the
clear inference for inferential relations. These MRs
are limited to datasets with contexts and questions.
QATest (Liu et al., 2022) designs MRs based on
transformations on grammatical components, sen-
tence structure, and adversarial perturbation. These
MRs may greatly disturb the semantics of the
follow-up cases and even change their semantics.
In addition, Li et al. (Li et al., 2024) use unique
logic reasoning rules to establish MRs for detecting
hallucinations in LL.Ms, but they aim to reveal the
fact-conflicting hallucination.

Different from these methods, HALLU-TRIG
integers the syntax and semantic information to
guarantee the quality of generated cases, and aims
to effectively and efficiently reveal ICHs in popu-
larly used open-source LLMs. Besides, we involve
the diversity metrics to boost the trigger of ICHs.

3 Hallu-TRIG

3.1 Overview

Figure 2 shows the overview of HALLU-TRIG,
which can be divided into two modules: a multi-
level MP construction module and a diversity-
guided MP prioritization module. In the first mod-
ule, we propose semantic-guided MRs at different
granularities and use them to generate follow-up
cases and construct MPs. Specifically, we propose
four MRs at the character level, one MR at the
word level, and one MR at the semantic level. In
the second module, we select a decoder block from
each target LLLM as the compute unit, adopt two
diversity metrics to calculate the diversity of each
MP with the outputs of the compute unit, and sort
all MPs in descending order. Refer to (Cao et al.,
2013), MPs with high diversity are considered ICH-

2 ~ B8

Diversity of MPs Sorted MPs

&

Source cases Decoder block k

o (comput unit) l
T B T Y J’ =9
G

enerated MPs Decoder block 1 Check ICHs

Decoder block N

,,,,,,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 2: The overview of HALLU-TRIG.

sensitive and are prioritized to be input into target
LLMs to check the results.

3.2 Problem Formulation

Oracle and ICH. Generally, the test oracles for
different types of tasks vary. The downstream tasks
of LLMs are primarily divided into classification
tasks and generation tasks. Given the human oracle
O, the source case x, and a target LLM 6, we design
an MR M and generate a follow-up case z’. The
function fy : X — ), where y = fp(x) defines
the mapping of LLLM 6’s input to its output. The
function M : X — X', where 2’ = M(x) defines
the mapping of the source case and follow-up case.

In classification tasks such as duplicate sentence
detection (DSD), the output of LLM is the concrete
label (e.g., “equivalent” or “not_equivalent”) of the
input. For V2! € M(X), the oracle of target LLM
6 can be defined as O(2’) = O(x). Then 2’ is an
ICH if it satisfies the requirements:

fo(z') # fo(x), st fo(x) = O(x) (1)

In generative tasks such as reading comprehen-
sion (RC), due to the lack of a standardized format
in LLM outputs, we refer to previous study (Shen
et al., 2022) and determine their accuracy by com-
paring the semantic similarity Sim between the
output fg(z) and the ground truth label A.

) emb(fo(z)T - emb(A)
SR A= femb ot emb(A)
where emb(-) is the embedding function integrated
in Phrase-BERT (Wang et al., 2021) and Sim(-) is
the cosine similarity function. For Y2/ € M(X),
the oracle of target LLM fy is defined as follows:

O(2') = O(x), s.t. Sim(fo(x), fo(z")) >~ (3)

where + is the similarity threshold. In this scenario,
2’ is an ICH if it satisfies the requirements:

Sim(fo(x), fo(x')) <, s.t. fo(x) = O(z) (4)




Attack Goal. Given a set of source cases as in-
put S, each case that can be correctly recognized
by target LLM fy constitutes a set S’ C S. The
attack goal contains two aspects: (i) maximiza-
tion of the hallucination trigger rate (HTR). Let
S ={x1,29, ..., |5/} where z; is the i-th source
case in &', |§’| is the size of §’, and 2 is the cor-
responding follow-up case generated by MR M.
In classification tasks, the HTR of M on S can be
calculated as follows:

S5 [falal) # folw:)]

HTR = 5

(5)
In generation tasks, it can be calculated as follows:

7 [Sim(fa(x), fo(z')) <A
S|

HTR v = (6)

We formulate the problem in this aspect as follows:

M <+ arg max HTR 4 @)
M

Our objective is to construct an MR M
to maximize HTR 4, and (ii) maximization of
Average Percentage of Hallucination Triggered
(APHT). Given a generated pile of MPs I' =
{MP1, MPs, ..., MP|p} and the prioritized se-
quence of MPs " = <M73’1, MP, ..., MPIF|>,
where MP; is the i-th MP and |I'| is the total
number of MPs in I'. Inspired by the testcase rank-
ing metrics in traditional software and DNN test-
ing (Rothermel et al., 1999; Xie et al., 2022), we de-
sign a new rank-based metric (i.e., APHT) to eval-
uate the performance of our prioritization method:

mCORH; 1
_ szl +

APHT(I) =1
") Dlom 2T

®)

where m denotes the numbers of ICH-sensitive
MPs in I, and R#H; is the rank of the i-th ICH-
sensitive MP in I". A higher APHT indicates that
the ICH-sensitive cases are well identified and
ranked. Furthermore, considering the reachable up-
per and lower bounds of APHT, we scale it into the
normalized APHT (NAPHT) which is calculated
as follows:

_ APHT(I") — APHT,;,

NAPHT(I") =
) APHT ;.00 — APHT 0,

€))

where APHT,,, refers to the APHT that prior-
itizes the ICH-sensitive MPs from 1 to m, and
APHT,,;,, refers to the APHT that prioritizes the

ICH-sensitive MPs from |I"| — m + 1 to |I"|. Then
we formulate the second problem as follows:

D < arg max NAPHT(I") (10)
D

In this scenario, our objective is to utilize a diver-

sity metric D to improve the effectiveness of MP

prioritization, i.e., maximize NAPHT(I").

3.3 Attack Methodology

Multi-level MP Construction. In our method, it is
necessary to construct a series of MRs to support
the process of MT and then trigger ICHs in target
LLMs. We comprehensively analyze the linguistic
structure of LLMs’ input and construct MRs at the
character, word, and semantic levels to attack target
LLM:s effectively.

At the character level and word level, there
are two main steps: (i) find the most vulnerable
words in the source cases, and (ii) perturb the vul-
nerable words, to generate MPs. Given a source
case z = {wi,wy,...,w|, } and a BERT model
¢, where z; is the i-th word and |z| is the num-
ber of all words in x. The corresponding output
is g¢(x) = {01, 09, ..., om} where o, is the output
logit for time step t. To find the most vulnerable
word in x, we replace w; with [MASK] such that
T\w; = {wy, ..., wj—1, [MASK], Wit1, ..., wm}
The output of 2\, i gg(zw;) = {07,0%, -, 0"33‘}
where o} is the new output logit for time step t. The
influence score for w; is calculated as follow:

|z |2’

|
D o= o
t=1

t=1

T, = (11)

We select w; with the maximum influence score.
To perform perturbation at the character level,
we randomly alter the character in the word from
the input and define four MRs:
O MR1: Random Character Deletion (RCDel).
RCDel generates a follow-up case by randomly
deleting a single character, excluding the first and
last characters.
® MR2: Neighboring Character Swap (NCSwa).
NCSwa generates a follow-up case by randomly
swapping the neighboring characters at once.
® MR3: Random Character Insertion (RClIns).
RClns generates a follow-up case by randomly in-
serting a single character between the first and the
last characters.
® MR4: Random Character Substitution (RC-
Sub). RCSub generates a follow-up case by ran-
domly substituting a single character.



Algorithm 1 Diversity-Guided MP Prioritization
Input: a pile of original MPs I, compute unit Dy,.
Output: a sequence of prioritized MPs I".
Initilize: I «+ (.

1: for MPin I' do
z, 7 +— MP
output, = Di(x)
output, = Dy(x')
/I Compute the execution diversity of MP
A pmp = Diversity(output,, output,)
I+~ T"U(MP,Apmp)

8: end for

9: // Prioritize all the MPs based on computed

diversities

10: " = Prioritization(I")

A A R ol

To perform perturbation at the word level, we
use BERT-MLM to generate N candidates for the
vulnerable word and define one MR:
® MRS: Similar Word Substitution (SWSub).
SWSub generates a follow-up case by replacing the
original word with a single word selected from the
top-k candidates.

Given a source case x, the perturbed follow-up
case 2/, and w; and w/ refer to the words before and
after perturbation, respectively. Considering their
naturalness and semantics, with perplex(z’) =

“”I\‘/H‘li/‘l P(wﬂx’\w;) and the similarity function
Sim/(-) proposed in SimCSE (Gao et al., 2021),
we evaluate the quality of z’ as follows:

Nat(z,2') = |perplex(x) — perplex(x’)| (12)

Scorey = —A\iNat(z, 2" )+ Sim/ (x,2") (13)

where A1 and )\ are weights, 2’ is accepted with
score greater than or equal to ¢ (i.e., Score, > ).
At the semantic level, we use the NLTK (Bird
etal., 2001) tool to construct the syntactic parse tree
of the source case and manipulate it to ensure the
naturalness and semantic accuracy of the generated
follow-up case (Loper and Bird, 2002). The MR in
this scenario is defined as:
® MR6: Semantic Negation (SNeg). SNeg gener-
ates a follow-up case by negating the copular verb,
auxiliary verb, etc. (See Appendix A for more de-
tails of SNeg.)

3.4 Diversity-Guided MP Prioritization

Referring to traditional software and DNN test-
ing (Chen et al., 2004; Xie et al., 2022; Cao

et al., 2013), we prioritize the MPs with the guid-
ance of execution diversity. Given a LLM 6 =
{Dl,D2, ...,'Dw‘}, the MP; = (LEi,SL‘;), and the
generated pile of MPs I, where Dy denotes the k-
th decoder block and |#| denotes the total number
of decoder blocks in 6.

The first key component of this module is the
diversity metrics. In HALLU-TRIG, we introduce
two accurate and cheap implementation diversity
metrics that work effectively on DNNs (Xie et al.,
2022), i.e. Jensen-Shannon divergence (JS) and
Hellinger distance (HD). JS measures the differ-
ence between two distributions based on Kullback-
Leibler divergence (KL), which is symmetric and
bounded. To calculate the JS-based diversity of
MP; and Dy, we first calculate its KLL-based di-
versity as follows:

Dk(m,nk)
Agp(will}) = Y Dplwi,nf)In——"—
b Dk(xianj)
TLjELk
(14)

where Dy (x;, n? ) and Dy (z, néf ) denotes the out-
puts of the j-th neuron nf in last full connected
layer £, of Dy, for z; and z}, respectively. Then
the corresponding JS-based diversity can be calcu-
lated as follows:

A
Js 5

(15)
where M = 3(Dy(z;) + Di(x})), and Dy(x;)
and Dy, (z}) is the final output of Dy, for x; and
'}, respectively. The HD-based diversity calculates
the divergence between two distributions using the
Hellinger integral. This type of diversity metric is

calculated as follows:

> (\/Dk(xz,néc)—\/pk(aZ;’n;c))?
n;?ellk
App = 5

(16)

The second key component is the MP prioritiza-
tion algorithm. We choose the k-th decoder block
Dy, as the compute unit and compute the diversity
of each MP with the aforementioned metrics based
on the output of Dy. Specifically, for each MP in
the generated pile of MPs I', we execute the source
case x and the follow-up case z’ in target LLM
0, extract the outputs of the compute unit Dy, to
calculate the diversities. After that, all the MPs are
sorted in descending order. The details are shown
in Algorithm 1. Generally, MPs with high execu-
tion diversity are regarded as ICH-sensitive (Cao



Attack Method

Target Model Dataset
QAQA QATest MRI1 MR2 MR3 MR4 MRS5S MR6
MNLI - 872% 12.15% 12.11% 11.09% 14.58% 38.58% 52.36%
Vicuna-13B QQP - 9.68% 9.65% 927% 9.17% 17.89% 34.00% 82.69%
SQuAD2 12.58% 16.97% 1543% 1559% 17.95% 24.41% 56.51% 53.61%
NarrativeQA  19.28% 17.79% 19.33% 19.88% 21.25% 26.84% 62.10% 64.72%
MNLI - 10.30% 14.09% 13.59% 14.98% 19.40% 40.78% 57.13%
QQP - 11.80% 13.16% 9.81% 14.39% 18.10% 39.88% 82.90%
LLaMA-3-8B
SQuAD2 1713% 22.09% 20.94% 20.69% 22.95% 30.63% 54.68% 52.24%
NarrativeQA  19.93% 26.15% 28.18% 26.87% 27.22% 32.53% 66.20% 65.45%
MNLI - 1891% 17.22% 18.85% 19.01% 18.68% 38.67% 57.13%
BART-large QQP - 24.09% 24.66% 23.44% 2491% 24.79% 56.66% 91.12%
SQuAD2 1825% 25.85% 30.05% 34.66% 32.59% 33.55% 59.13% 57.31%
NarrativeQA - - - - - - -

Table 1: The HTR of MRs: HALLU-TRIG vs. SOTA baselines across models and datasets.

Target Model MNLI QQP SQuAD2 NarrativeQA
Vicuna-13B 9%  99% 98% 97%

LLaMA-3-8B  98%  99% 97% 97%
BART-large 97%  98% 97% -

Table 2: The TPR across models and datasets.

et al., 2013; Xie et al., 2022). Their outputs will
therefore be prioritized for inspection to identify
potential ICHs efficiently.

4 Experiments

4.1 Experimental Setup

Downstream Tasks and Datasets. We conduct
a comprehensive evaluation of HALLU-TRIG by
designing experiments across both classification
and generation tasks. Referring to existing stud-
ies (Yuan et al., 2024; Duan et al., 2024; Mc-
Coy et al., 2019; Shen et al., 2022; Chen et al.,
2021), we adopt three representative NLP tasks
with corresponding datasets: (i) three-category
natural language inference (NLI) task based on
MNLI (Williams et al., 2017), (ii) binary classi-
fication duplicate sentence detection (DSD) task
based on QQP (Wang et al., 2018), and (iii) gen-
erative reading comprehension (RC) task based
on SQuAD2 (Rajpurkar et al., 2018) and Narra-
tiveQA (Kocisky et al., 2018). (See Appendix A)

Target Models. For a comprehensive evaluation,
we conduct experiments on three generative open-
source LLMs. We pick the representative LLMs
with state-of-the-art (SOTA) performances on gen-
eral NLP tasks: (i) Vicuna: the latest version of

t-SNE Visualization of the 40-th decoder output

o source case
s+ follow-up case

Figure 3: Comparison of distributions between the
source and follow-up cases on MNLI and Vicuna-13B.

Vicuna-13b-1.5-16k (Vicuna-13B for short), (ii)
LLaMA: the latest version of Meta-LLaMA-3-8B
(LLaMA-3-8B for short), and (iii) BART: the ver-
sion of BART-large. (See Appendix A)

Attack Baselines. We compare HALLU-TRIG
with two SOTA MT-based attack methods, and use
the most effective MR in each attack method as
the baselines for a fair comparison: (i)QAQA (Shen
et al., 2022): Inserts another input from the training
set as redundant sentence into a given source case
to generate a follow-up case, and (ii) QATest (Liu
et al., 2022): Perturbs the source case with typos to
generate follow-up case.

Evaluation Metrics. We use hallucination trigger
rate (HTR) and true positive rate (TPR) to evalu-
ate the effectiveness of the proposed MRs, and use
NAPHT to assess the efficiency of the MP prioriti-
zation method.

Implementation Details. We conduct the experi-
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Figure 6: Comparison of ICH triggered over time: unsorted vs. sorted MPs on SQuAD?2 and Vicuna-13B.

ments with the Ubuntu 18.04 system with 32-core
2.1GHz Xeon CPU, 196GB RAM and 4 NVIDIA
GeForce RTX 3090 24G GPUs. We generate 5 and
1 candidates for each source case at the character
and word level, respectively. At the word level, we
set the N and k as 30 and 5, respectively. Through
manual inspection and analysis of the experiment
results, we set the threshold of cosine similarity
and quality ¢, weight A\; and \; as 0.76, 0.2, 0.5,
and 0.5, respectively. MRs in HALLU-TRIG are
applied to Premise or Question I in classification
tasks, and to the questions in generation tasks.

4.2 Effectiveness of Semantic-guided MRs

Attack Effectiveness. For each dataset, we used
the whole dataset to calculate the HTR, and ran-
domly sampled 100 ICHs for manual review to
calculate the TPR. Table 1 and Table 2 show the re-

sults of HTR and TPR, respectively. In most scenar-
ios, the proposed MRs have higher HTR than the
SOTA baselines, especially the sentence-level and
semantic-level MRs. Besides, the TPR of HALLU-
TRIG on each dataset and target model is no less
than 97%. These indicate that HALLU-TRIG can
effectively trigger ICHs in target LLMs the trig-
gered ICHs are almost true positives.

Quality of MPs. We apply the t-SNE tech-
nique (Van der Maaten and Hinton, 2008) to the
final decoder outputs of target models to visualize
and analyze the distribution of source and follow-
up cases. The rationale is that the reported bugs
are meaningful for the system if the generated
cases are distributed consistently with the origi-
nal cases (Berend et al., 2020). Figure 3 depicts the
distribution of MPs on a subset of MNLI in Vicuna-
13B (See Appendix A for results on LLaMA-3-8B
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and BART-large). We can observe that the distribu-
tion within all the MPs is consistent, indicating the
high quality of the generated follow-up cases.

4.3 Effectiveness of MP Prioritization

Evaluation with NAPHT. In this study, we set
the implementation of no prioritization as the base-
line (None), and select the middle decoder block
in target models as the compute unit. In other set-
tings, our prioritization method is also effective
(see more details in Section 4.4). Figure 4 and Fig-
ure 5 shows the results on Vicuna-13B and LLaMA-
3-8B, respectively (See Appendix A for the result
on BART-large). We find that applying our prior-
itization method with any diversity metric can in-
crease the NAPHT compared to no prioritization
under each MR on all datasets and models. This
demonstrates the effectiveness of our prioritization
method. Additionally, HD can guide MP prioritiza-
tion better than JS.

Analysis on Efficiency. We also execute the un-
sorted and sorted MP sequences, and record the
number of triggered ICHs over time (min) to further
analyze the efficiency of the prioritization method.
Figure 6 depicts the result on SQuAD?2 and Vicuna-
13B. Intuitively, compared with the unsorted MP
sequences, The sorted MP sequence can trigger
more ICHs within the same time and requires less
time to trigger the same number of ICHs.

4.4 Ablation Study

In this study, we aim to investigate the impact of the
selection of the compute unit Dy, which is directly

reflected through changes in NAPHT. Figure 7,
and Figure 8 shows the result on Vicuna-13B and
LLaMA-3-8B, respectively (See Appendix A for
the result on BART-large). From these figures, the
value of NAPHT increases with the increment of
k in most scenarios. Thus we can summarize that
the efficiency of MP prioritization is improved as
k increases, and a larger k tends to achieve a bet-
ter performance in prioritizing the ICH-sensitive
MPs in I". In particular, the NAPHT of these MRs
approach maximum when Dy, is set to a middle
position. Therefore, we can set the intermediate
position in target models as the compute unit to
save diversity computing time while achieving near-
optimal prioritization performance.

5 Conclusion

In this paper, we introduce HALLU-TRIG, a grey-
box method to trigger the ICHs in the popularly
used open-source LLMs. It attacks the target mod-
els at the character, sentence, and semantic levels
with six semantic-guided MRs. To boost the reveal-
ing of ICHs, we use the hidden outputs in target
LLMs to identify the ICH-sensitive MPs and make
the first attempt to prioritize the generated MPs
with two diversity metrics. Besides, we propose a
new metric to measure the performance of the MP
prioritization method. Through a comprehensive
evaluation, HALLU-TRIG outperforms the SOTA
baselines in terms of attack effectiveness, attack
quality, and generalizability. The MP prioritization
method can stably improve the attack efficiency
both for HALLU-TRIG and the SOTA baselines.



6 Limitations

In this study, we mainly discuss the limitations of
HALLU-TRIG in terms of threat to internal validity
and threat to external validity.

Threat to internal validity primarily lies in two
aspects: (i) the effectiveness of the proposed MRs
and NAPHT; (ii) the configuration sensitivity of
HALLU-TRIG and the adopted diversity metrics.
For the first concern, the MRs are constructed based
on the common ideas of text mutation in NLP (Li
et al., 2018; Gao et al., 2018; Garg and Ramakr-
ishnan, 2020; Morris et al., 2020; Jin et al., 2019),
and the NAPHT follows the NAPVD and NAPFD
in traditional software and DNN testing. We per-
form additional manual inspections to ensure their
effectiveness in Section 4.2 and Section 4.3.

For the second concern, the performance of the
MP prioritization method has been confirmed on
each diversity metric and target model under dif-
ferent configurations. Note that we only need to
extract the hidden output from a single decoder
block of the target model to perform MP priori-
tization on the CPU, which is entirely feasible as
long as the target model can be executed.

In summary, we find that the general setup can ef-

fectively and stably work on various MRs, metrics,
and target LLMs.
Threat to external validity is mainly about the
representativeness of the tasks, datasets, and target
models adopted in our experiments. To counter
this, we adopt three tasks (i.e., NLI, DSD, and
RC), four datasets (i.e., MNLI, QQP, SQuAD?2,
and NarrativeQA), and three LLMs (i.e., BART-
large, Vicuna-13B and LLaMA-3-8B), which are
all widely used in the state-of-the-art research in
NLP (Zhu et al., 2023; Peng et al., 2023).

References

Anthropic. 2023. Introducing Claude. https://www.
anthropic.com/index/introducing-claude.

Yejin Bang, Samuel Cahyawijaya, Nayeon Lee, Wen-
liang Dai, Dan Su, Bryan Wilie, Holy Lovenia, Ziwei
Ji, Tiezheng Yu, Willy Chung, and 1 others. 2023.
A multitask, multilingual, multimodal evaluation of
chatgpt on reasoning, hallucination, and interactivity.
arXiv preprint arXiv:2302.04023.

David Berend, Xiaofei Xie, Lei Ma, Lingjun Zhou,
Yang Liu, Chi Xu, and Jianjun Zhao. 2020. Cats
are not fish: Deep learning testing calls for out-of-
distribution awareness. In Proceedings of the 35th
IEEE/ACM international conference on automated
software engineering, pages 1041-1052.

Steven Bird, Edward Loper, and Ewan Klein. 2001.
NLTK. https://www.nltk.org/.

Yuxiang Cao, Zhi Quan Zhou, and Tsong Yueh Chen.
2013. On the correlation between the effectiveness of
metamorphic relations and dissimilarities of test case
executions. In 2013 13th International Conference
on Quality Software, pages 153—-162. IEEE.

Songgiang Chen, Shuo Jin, and Xiaoyuan Xie. 2021.
Testing your question answering software via ask-
ing recursively. In 2021 36th IEEE/ACM Interna-
tional Conference on Automated Software Engineer-
ing (ASE), pages 104—116. IEEE.

Tsong Y Chen, Shing C Cheung, and Shiu Ming
Yiu. 2020. Metamorphic testing: a new approach
for generating next test cases. arXiv preprint
arXiv:2002.12543.

Tsong Yueh Chen, DH Huang, TH Tse, and Zhi Quan
Zhou. 2004. Case studies on the selection of useful
relations in metamorphic testing. In Proceedings of
the 4th Ibero-American Symposium on Software En-
gineering and Knowledge Engineering (JIISIC 2004),
pages 569-583. Citeseer.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E Gonzalez, and
1 others. 2023. Vicuna: An open-source chatbot
impressing gpt-4 with 90%* chatgpt quality. See
https://vicuna. Imsys. org (accessed 14 April 2023),
2(3):6.

David Dale, Elena Voita, Loic Barrault, and Marta R
Costa-jussa. 2022. Detecting and mitigating halluci-
nations in machine translation: Model internal work-

ings alone do well, sentence similarity even better.
arXiv preprint arXiv:2212.08597.

Haonan Duan, Adam Dziedzic, Nicolas Papernot, and
Franziska Boenisch. 2024. Flocks of stochastic par-
rots: Differentially private prompt learning for large
language models. Advances in Neural Information
Processing Systems, 36.

Nouha Dziri, Hannah Rashkin, Tal Linzen, and David
Reitter. 2022. Evaluating attribution in dialogue sys-
tems: The begin benchmark. Transactions of the
Association for Computational Linguistics, 10:1066—
1083.

Ji Gao, Jack Lanchantin, Mary Lou Soffa, and Yanjun
Qi. 2018. Black-box generation of adversarial text
sequences to evade deep learning classifiers. In 2018
IEEE Security and Privacy Workshops (SPW), pages
50-56. IEEE.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021.
Simcse: Simple contrastive learning of sentence em-
beddings. arXiv preprint arXiv:2104.08821.

Siddhant Garg and Goutham Ramakrishnan. 2020. Bae:
Bert-based adversarial examples for text classifica-
tion. arXiv preprint arXiv:2004.01970.


https://www.anthropic.com/index/introducing-claude
https://www.anthropic.com/index/introducing-claude
https://www.anthropic.com/index/introducing-claude
https://www.nltk.org/

Nuno M Guerreiro, Elena Voita, and André FT Martins.
2022. Looking for a needle in a haystack: A com-
prehensive study of hallucinations in neural machine
translation. arXiv preprint arXiv:2208.05309.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2020. Measuring massive multitask language under-
standing. arXiv preprint arXiv:2009.03300.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong,
Zhangyin Feng, Haotian Wang, Qianglong Chen,
Weihua Peng, Xiaocheng Feng, Bing Qin, and 1 oth-
ers. 2023. A survey on hallucination in large lan-
guage models: Principles, taxonomy, challenges, and
open questions. arXiv preprint arXiv:2311.05232.

Di Jin, Zhijing Jin, Joey Tianyi Zhou, and Peter
Szolovits. 2019. Is bert really robust? natural lan-
guage attack on text classification and entailment.
arXiv preprint arXiv:1907.11932, 2:10.

Daniel Khashabi, Sewon Min, Tushar Khot, Ashish
Sabharwal, Oyvind Tafjord, Peter Clark, and Han-
naneh Hajishirzi. 2020. Unifiedqa: Crossing format
boundaries with a single qa system. arXiv preprint
arXiv:2005.00700.

Tomas Kocisky, Jonathan Schwarz, Phil Blunsom, Chris
Dyer, Karl Moritz Hermann, Gabor Melis, and Ed-
ward Grefenstette. 2018. The narrativeqa reading
comprehension challenge. Transactions of the Asso-
ciation for Computational Linguistics, 6:317-328.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2020. Albert: A lite bert for self-supervised learning
of language representations. In International Confer-
ence on Learning Representations.

Nayeon Lee, Wei Ping, Peng Xu, Mostofa Patwary, Pas-
cale N Fung, Mohammad Shoeybi, and Bryan Catan-
zaro. 2022. Factuality enhanced language models
for open-ended text generation. Advances in Neural
Information Processing Systems, 35:34586—-34599.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Ves Stoyanov, and Luke Zettlemoyer. 2019. Bart: De-
noising sequence-to-sequence pre-training for natural
language generation, translation, and comprehension.
arXiv preprint arXiv:1910.13461.

Jinfeng Li, Shouling Ji, Tianyu Du, Bo Li, and Ting
Wang. 2018. Textbugger: Generating adversarial
text against real-world applications. arXiv preprint
arXiv:1812.05271.

10

Ningke Li, Yuekang Li, Yi Liu, Ling Shi, Kailong Wang,
and Haoyu Wang. 2024. Halluvault: A novel logic
programming-aided metamorphic testing framework
for detecting fact-conflicting hallucinations in large
language models. arXiv preprint arXiv:2405.00648.

Stephanie Lin, Jacob Hilton, and Owain Evans. 2021.
Truthfulga: Measuring how models mimic human
falsehoods. arXiv preprint arXiv:2109.07958.

Zixi Liu, Yang Feng, Yining Yin, Jingyu Sun, Zhenyu
Chen, and Baowen Xu. 2022. Qatest: A uniform
fuzzing framework for question answering systems.
In Proceedings of the 37th IEEE/ACM International
Conference on Automated Software Engineering,
pages 1-12.

Meta LlamA. 2024. LLaMA 3. https://llama.meta.com/
llama3/.

Edward Loper and Steven Bird. 2002. Nltk: The natural
language toolkit. arXiv preprint ¢s/0205028.

R Thomas McCoy, Ellie Pavlick, and Tal Linzen. 2019.
Right for the wrong reasons: Diagnosing syntac-
tic heuristics in natural language inference. arXiv
preprint arXiv:1902.01007.

Sewon Min, Kalpesh Krishna, Xinxi Lyu, Mike
Lewis, Wen-tau Yih, Pang Wei Koh, Mohit Iyyer,
Luke Zettlemoyer, and Hannaneh Hajishirzi. 2023.
Factscore: Fine-grained atomic evaluation of factual

precision in long form text generation. arXiv preprint
arXiv:2305.14251.

John X Morris, Eli Lifland, Jin Yong Yoo, Jake Grigsby,
Di Jin, and Yanjun Qi. 2020. Textattack: A frame-
work for adversarial attacks, data augmentation,
and adversarial training in nlp. arXiv preprint
arXiv:2005.05909.

OpenAl. 2023. Gpt-4 technical report.
arXiv:2303.08774.

Preprint,

Baolin Peng, Chunyuan Li, Pengcheng He, Michel Gal-
ley, and Jianfeng Gao. 2023. Instruction tuning with
gpt-4. arXiv preprint arXiv:2304.03277.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don’t know: Unanswerable questions
for squad. arXiv preprint arXiv:1806.03822.

Gregg Rothermel, Roland H Untch, Chengyun Chu,
and Mary Jean Harrold. 1999. Test case prioriti-
zation: An empirical study. In Proceedings IEEE
International Conference on Software Maintenance-
1999 (ICSM’99).’Software Maintenance for Busi-
ness Change’(Cat. No. 99CB36360), pages 179-188.
IEEE.

Qingchao Shen, Junjie Chen, Jie M Zhang, Haoyu Wang,
Shuang Liu, and Menghan Tian. 2022. Natural test
generation for precise testing of question answering
software. In Proceedings of the 37th IEEE/ACM
International Conference on Automated Software En-
gineering, pages 1-12.


https://llama.meta.com/llama3/
https://llama.meta.com/llama3/
https://llama.meta.com/llama3/
https://arxiv.org/abs/2303.08774

Laurens Van der Maaten and Geoffrey Hinton. 2008.
Visualizing data using t-sne. Journal of machine
learning research, 9(11).

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R Bowman. 2018.
Glue: A multi-task benchmark and analysis platform
for natural language understanding. arXiv preprint
arXiv:1804.07461.

Shufan Wang, Laure Thompson, and Mohit Iyyer. 2021.
Phrase-bert: Improved phrase embeddings from bert
with an application to corpus exploration. arXiv
preprint arXiv:2109.06304.

Adina Williams, Nikita Nangia, and Samuel R Bow-
man. 2017. A broad-coverage challenge corpus for
sentence understanding through inference. arXiv
preprint arXiv:1704.05426.

Xiaoyuan Xie, Pengbo Yin, and Songgiang Chen. 2022.
Boosting the revealing of detected violations in deep
learning testing: A diversity-guided method. In Pro-
ceedings of the 37th IEEE/ACM International Con-
ference on Automated Software Engineering, pages
1-13.

Jifan Yu, Xiaozhi Wang, Shangqing Tu, Shulin Cao,
Daniel Zhang-Li, Xin Lv, Hao Peng, Zijun Yao, Xi-
aohan Zhang, Hanming Li, and 1 others. 2023. Kola:
Carefully benchmarking world knowledge of large
language models. arXiv preprint arXiv:2306.09296.

Lifan Yuan, Yangyi Chen, Ganqu Cui, Hongcheng Gao,
Fangyuan Zou, Xingyi Cheng, Heng Ji, Zhiyuan
Liu, and Maosong Sun. 2024. Revisiting out-of-
distribution robustness in nlp: Benchmarks, analysis,
and llms evaluations. Advances in Neural Informa-
tion Processing Systems, 36.

Yuheng Zha, Yichi Yang, Ruichen Li, and Zhiting Hu.
2023. Alignscore: Evaluating factual consistency

with a unified alignment function. arXiv preprint
arXiv:2305.16739.

Tianyi Zhang, Faisal Ladhak, Esin Durmus, Percy Liang,
Kathleen McKeown, and Tatsunori B Hashimoto.
2024. Benchmarking large language models for news
summarization. Transactions of the Association for
Computational Linguistics, 12:39-57.

Yue Zhang, Yafu Li, Leyang Cui, Deng Cai, Lemao Liu,
Tingchen Fu, Xinting Huang, Enbo Zhao, Yu Zhang,
Yulong Chen, and 1 others. 2023. Siren’s song in the
ai ocean: a survey on hallucination in large language
models. arXiv preprint arXiv:2309.01219.

Ming Zhong, Da Yin, Tao Yu, Ahmad Zaidi, Mutethia
Mutuma, Rahul Jha, Ahmed Hassan Awadallah, Asli
Celikyilmaz, Yang Liu, Xipeng Qiu, and 1 oth-
ers. 2021. Qmsum: A new benchmark for query-
based multi-domain meeting summarization. arXiv
preprint arXiv:2104.05938.

11

Kaijie Zhu, Jindong Wang, Jiaheng Zhou, Zichen Wang,
Hao Chen, Yidong Wang, Linyi Yang, Wei Ye,
Neil Zhengiang Gong, Yue Zhang, and 1 others. 2023.
Promptbench: Towards evaluating the robustness of
large language models on adversarial prompts. arXiv
preprint arXiv:2306.04528.



A Appendix
A.1 MR6: SemanticNegation

Since the transformation under MR6 is not
semantic-preservation, we define the semantic rela-
tions on each task here to ensure the soundness of
MRG6. Given a source case z, a generated follow-up
case 7/, and a target model 6.

* In MNLI, if the output of z is "neutral", then

fo(z') = fo(x), otherwise fy(2') # fo(x).
* In QQP, fy(z') = fo(x);

* In SQuAD?2, if the output of z is "unanswer-
able", then the output of 2’ is "unswerable",

otherwise fy(X') # fo(x).
* In NarrativeQA, Sim(fo(z), fo(z)) < 0.76.

Dataset Format Train/Test

MNLI Etailment/Neutral/Contradiction 392,702/19,647
QQP Equivalent/Not_equivalent 363,870/40,431
SQuAD2 Extractive 130,319/11,873

NarrativeQA  Abstractive 32,747/3,461

Table 3: The format and statistics of the testing datasets

A.2 Downstream Tasks and Datasets

The details about our datasets are shown as follows:

* MNLI dataset is a large-scale dataset com-
posed of sentence pairs with textual entail-
ment annotations, where each sentence pair
contains a Premise and a Hypothesis. It is
designed to evaluate a model’s ability to un-
derstand and infer the relationship between
the Premise and Hypothesis. Based on MNLI,
NLI is a three-category task, containing three
labels: “entailment”, “neutral” and “contradic-

tion”.

QQP dataset is a collection of question pairs
from the community question-answering web-
site Quora, annotated with whether the pairs
are semantically equivalent. Based on QQP,
DSD is a binary classification task, with labels
of “equivalent” and “not_equivalent”.

SQuAD?2 is an extractive reading comprehen-
sion dataset in which the contexts, questions,
and answers are collected from Wikipedia arti-
cles by crowdworkers. Each question’s answer
in the dataset is a segment or a certain span
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from the context. SQuAD?2 also includes over
50,000 adversarially unanswerable questions,
with corresponding answers marked as “unan-
swerable”.

NarrativeQA is an abstractive reading com-
prehension dataset that consists of stories in
the form of books and movie scripts. It con-
tains questions that require deep understand-
ing and reasoning over the entire narrative to
answer correctly. The answer to each question
is not limited to specific spans of text within
the story.

Table 3 shows the statistics of these four datasets.
In particular, the testing set in MNLI contains the
matched and mismatched testing sets.

A.3 Target Models

In this work, we aim to attack the generative
encoder-decoder and decoder-only LL.Ms and con-
sider BART, LLaMA, and Vicuna as the target
LLMs. Specifically, we chose BART-large, the lat-
est development Meta-LLLaMA-3-8B, and the ver-
sion of Vicuna-13b-1.5-16k, where Vicuna-13b-
1.5-16k is fine-tuned on LLaMA 2. We select these
three LL.Ms for the following reasons: (1) the tar-
get LLMs should be open-source since we need
to extract the hidden outputs from them; (2) the
target LLMs should be scalable and deployable
within our limited computational resources; (3) the
target LLMs should achieve state-of-the-art perfor-
mances on general NLP tasks. As far as we know,
these LL.Ms satisfy the above three requirements
and the latter two LLMs achieve over 90% capabil-
ity of Bard/ChatGPT (Chiang et al., 2023). Hence,
we consider them the best-fit subject LLMs to de-
liver representative results and insights. To facili-
tate the evaluation of model performance, we refer
to PromptBench (Zhu et al., 2023) and adopt differ-
ent task instructions for tasks to guide the model in
generating content in a fixed format (shown in Ta-
ble 5). In our experiments, all the target models are
fine-tuned with LoRa (Hu et al., 2021). Through
an empirical study, we fine-tune the target models
with different sizes of datasets and find that: (i)
BART-large achieves the best performances with
1500 cases, and (ii) Vicuna-13B and LLaMA-3-8B
achieve the best performances with 600 cases. Ta-
ble 4 depicts the accuracy of the fine-tuned target
models. Note that the accuracy of each fine-tuned
BART-large model on NarrativeQA dataset is less



Model MNLI QQP SQuAD2 NgrrativeQA

Vicuna-13B 85.41% 84.90%  81.60% 80.60%

LLaMA-3-8B 83.87% 83.10%  78.70% 81.40%

BART-large  82.06% 82.50%  76.60% -

Table 4: Performances of fine-tuned target LLMs

Task Task instruction

Assess the connection between the following sentences

NLI  and classify it as "entailment", "neutral", or "contradict-

"

ion":

DSD Can these two statements be considered equal in mean-
ing? Answer with "equivalent" or "not_equivalent":

Discover the best answer of the question based on the
RC context. If the context doesn’t include an answer, respo-
nd with "unanswerable":

Table 5: Task instructions used to fine-tune target LLMs

than 35%, and we do no conduct any experiment
in this scenario.

A4 Results

A.5 Distribution of MPs on Target Models
On the randomly sampled subset of MNLI, Figure 9
and Figure 10 depicts the distribution of MPs on
LLaMA-3-8B and BART-large.

A.6 MP Prioritization

Figure 11 shows the performance of MP prioritiza-
tion method on BART-large.

A.7 Ablation study on BART-large

Figure 12 depicts the impact of the selection of
compute unit on BART-large.
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Figure 12: HD-based MP prioritization using different decoder blocks as the compute unit on BART-large.
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