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Abstract
From natural language processing to vision,001
Scaled Dot Product Attention (SDPA) is the002
backbone of most modern deep learning appli-003
cations. Unfortunately, its memory and com-004
putational requirements can be prohibitive in005
low-resource settings. In this paper, we im-006
prove its efficiency without sacrificing its ver-007
satility. We propose three attention variants008
where we remove consecutive linear transfor-009
mations or add a novel one, and evaluate them010
on a range of standard NLP and vision tasks.011
Our proposed models are substantially lighter012
than standard SDPA (and have 25-50% fewer013
parameters). We show that the performance014
cost of these changes is negligible relative to015
size reduction and that in one case (Super At-016
tention) we succeed in outperforming SPDA017
by up to 10% while improving its speed and018
reducing its parameters by 25%.019

1 Introduction020

Few ideas have had as profound an effect on the021

field of Artificial Intelligence (AI) as the attention022

mechanism (Bahdanau et al., 2015). Introduced023

as a method to improve machine translation, the024

attention mechanism revolutionized the way neural025

networks process and interpret data. It mimics a026

form of cognitive attention in humans by allowing027

models to focus on specific parts of the input while028

disregarding irrelevant information. This enhanced029

the capability and efficiency of Language Models030

(LM) and paved the way for the development of ad-031

vanced AI architectures like the Transformer model032

(Vaswani et al., 2017).033

These advances have had far-reaching impacts,034

extending beyond Natural Language Processing035

(NLP) to areas such as image recognition (Doso-036

vitskiy et al., 2021), autonomous systems (Mott037

et al., 2019), healthcare (Choi et al., 2016), and038

multi-modal application (Xu et al., 2023).039

The formulation of SDPA in all these domains040

has undergone very little change compared to the041

original formulation of Vaswani et al. (2017). In- 042

stead, the prevailing maxim has been “the bigger 043

the better", and Large Language Models (LLM), 044

such as Llama 3 (Touvron et al., 2023a,b), GPT- 045

4 (Achiam et al., 2023), and Gemini (Anil et al., 046

2023) have demonstrated unprecedented capabili- 047

ties in multi-modal domains. 048

The behemothic sizes of these models have intro- 049

duced numerous challenges. Expensive and slow 050

training and inference have resulted in high carbon 051

emissions (Dhar, 2020); and such models are im- 052

possible not only to run but even to store on edge 053

devices such as smartphones, consumer laptops, 054

and even powerful personal workstations. 055

Numerous attempts have been made to address 056

this problem using post-training techniques, like 057

quantization (Jacob et al., 2018), Low-Rank Adap- 058

tation (LoRA) (Hu et al., 2022), Quantized LoRA 059

(QLoRA) (Dettmers et al., 2023), and sparsification 060

(Ashkboos et al., 2024). Others have attempted to 061

optimise the speed and GPU utilization of attention- 062

based models, e.g., Flash Attention 1–3 (Dao et al., 063

2022; Dao, 2024; Shah et al., 2024). However, all 064

these approaches strive to improve the performance 065

of attention-based models but without altering the 066

attention mechanism. 067

In this paper, we propose a different approach: 068

modifying the attention mechanism itself. We em- 069

ploy two intuitive principles to design our alterna- 070

tive attention mechanism: (1) two consecutive lin- 071

ear transformations do not introduce non-linearity, 072

and (2) a learnable linear kernel between each two 073

inputs of SDPA enhances learning. We leverage 074

these two principles to propose 3 SDPA variants: 075

⋄ Optimized Attention (§3.1, Fig. 1b), replaces 076

W V linear transformation with a slicing oper- 077

ation (Principle 1), reducing the parameters in 078

the attention layer by 25% and its computational 079

cost by h matrix multiplications, where h is the 080

number of heads. Optimized Attention reduces 081
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Figure 1: Standard multi-head scaled dot product attention (1a) alongside the proposed variations: Optimized
Attention (1b), Efficient Attention (1c), and Super Attention (1d). The “Linear” block denotes a linear transformation
right while “Linear*” denotes a linear transformation from left.

the inference time by 2.5–7.5%, with little or no082

performance degradation (§4).083

⋄ Efficient Attention (§3.2, Fig. 1c) replaces W V084

and WK linear transformations by slicing opera-085

tions (Principle 1). This reduces the parameters086

in the attention layer by 50% and its computa-087

tional cost by 2h matrix multiplications, where088

h is the number of heads. Efficient Attention re-089

duces the inference time by 5–15%, with no/little090

performance degradation (§4).091

⋄ Super Attention (§ 3.3, Fig. 1d) introduces a092

new linear operation WA (Principle 2), which093

transforms the values V from the left. Super094

Attention can be used on top of standard or Opti-095

mized attentions (i.e., without replacing W V and096

WK). For simplicity, we build Super Attention097

on top of Efficient Attention. Super Attention098

reduces the attention layer’s size by ∼ 25% (de-099

pending on the attention’s context length) and its100

computational cost by h matrix multiplications.101

Super Attention outperforms standard attention102

by 2–10% in NLP and vision tasks and reduces103

the training and inference time by 2.5–10% (§4).104

Our evaluation is comprehensive and compares105

our proposed attention models with SDPA in the106

self-attention setting in transformers for multi-107

ple datasets and for 4 different tasks, including:108

(1) Natural Language Sentiment Classification on109

IMDB and Amazon Reviews datasets; (2) Machine110

Translation (NMT) on the combined Europarl and111

Anki English-to-Spanish translation dataset; (3)112

Generative Language Modeling and Natural Lan- 113

guage Inference (NLI) using NanoGPT (Karpathy, 114

2022) on the OpenWebText dataset; and to show 115

how these architectural changes generalize to trans- 116

formers for other modalities, we do complementary 117

experiments for (1) image classification on MNIST, 118

CIFAR100, and ImageNet datasets; 119

2 Preliminaries 120

We start by introducing the notation we use 121

throughout the paper. For natural numbers 122

dm, dk ∈ N, we denote the dm-dimensional real 123

vectors space by Rdm and the set of all real dm×dk 124

matrices by Rdm×dk , noting that all matrices can 125

be regarded as 2D tensors and vice versa. Given a 126

set A ⊆ Rdm , we denote the smallest real vector 127

space containing A by span(A). Similarly, given 128

a matrix W ∈ Rdm×dk , we denote the smallest 129

real vector space containing the columns of W ’s 130

by span(W ). For a subspace S ≤ Rdm , the dimen- 131

sion of S , denoted dim(S), is the size of the largest 132

linearly independent set in S . The rank of a matrix 133

W ∈ Rdm×dk , denoted rank(W ), is the number 134

of linearly independent columns (or rows) in W . 135

The rank-nullity theorem implies that rank(W ) = 136

dim(span(W )) and rank(W ) ≤ min(dm, dk).1 137

We use the widely-adopted definition of SDPA 138

as implemented in SotA open-source models such 139

as Llama-3 and Mistral, and machine learning 140

frameworks like Torch and JAX. For consistency, 141

we use the same notation as (Vaswani et al., 2017). 142

1For details see (Meyer, 2023, Chapters 2 & 4).
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Definition 2.1 (Standard Attention). The (multi-143

head) scaled dot-product attention on input tensors144

Q,K, V ∈ Rℓ×dm is defined as:145

O = (H1 H2 · · · Hh)W
O, (1)

Hi = SiV
′
i , (2)

Si = softmax(
Q′

iK
′⊺
i√

dk
), (3)

V ′
i = VW V

i , (4)

K ′
i = KWK

i , (5)

Q′
i = QWQ

i , (6)
146

where O is the output; Q′
i,K

′
i, V

′
i , Si, and Hi147

are the query, key, value, attention score, and head148

value of the i-th head, respectively. The natu-149

ral numbers ℓ, dm and h are the context length,150

model dimension, and number of heads, respec-151

tively. Moreover, WQ
i ,WK

i ∈ Rdm×dk and W V
i ∈152

Rdm×dv , where dk and dv are the key and value153

dimensions, respectively.154

Parameters dm, dk, dv and h are often chosen155

so that dk = dv = dm/h, and in recent models,156

including SotA Transformer models, Q,K, and V157

are set to X , a single input tensor; whereby, the158

attention mechanism is called self-attention.159

3 Revising the Attention Mechanism160

We introduce our three proposed attention variants161

and discuss the motivation behind each of them.162

3.1 Optimized Attention: Absorbing W V
i ’s163

into W 0164

In standard attention, the output O of the attention165

layer can be written as166

O = (H1 · · · Hh)W
O

= (S1VW V
1 · · · ShVW V

h )

WO
1
...

WO
h


= S1VW V

1 WO
1 + · · ·+ ShVW V

h WO
h ,

(7)167

where WO
i is the matrix with rows (i − 1)dv +168

1, . . . , idv of WO for i = 1, 2, . . . , h. By the rank-169

nullity theorem, for each head, we have that:170

dim(span(VW V
i WO

i ))

= rank(VW V
i WO

i ) ≤ rank(W V
i WO

i ),

≤ min(rank(W V
i ), rank(WO

i ))

= min(dm, dv) = dv.

171

That is, VW V
i WO

i has at most dv independent 172

columns, and the linear function V 7→ VW V
i WO

i 173

maps the columns of V into a dv-dimensional sub- 174

space of Rdm . Thus, standard attention uses two 175

consecutive matrix multiplications to embed the 176

columns of V into a dv-dimensional subspace of 177

Rdm , which does not align with Principle 1. 178

To address this, in Optimized Attention, we ab- 179

sorb W V
1 ,W V

2 , . . . ,W V
h into WO in Eqs. (1) and 180

(4), thus reducing the computational cost of the 181

attention layer by h matrix multiplications at a very 182

limited performance cost–which we evaluate in §4. 183

Optimized Attention uses one slicing and one 184

linear transformation (see Fig. 1b and Def. 3.1), in- 185

stead of the two consecutive linear transformations 186

(one downscaling and one upscaling). Specifically, 187

instead of multiplying V from the right by W V
i , 188

we slice V into V1, . . . , Vh, where Vi consists of 189

columns (i − 1)dv + 1, . . . , idv of V , and then, 190

instead of computing SiVW V
i WO

i , we compute 191

SiViW
O
i , which needs fewer parameters and ma- 192

trix multiplications (see Rem. 3.2 and § 4.3 for 193

theoretical and empirical evaluations, respectively.) 194

Definition 3.1 (Optimized Attention). Using the 195

notation of Def. 2.1, Optimized Attention is defined 196

as follows: 197

O = (H1, H2, . . . ,Hh)W
O, (8)

Hi = SiVi, (9)

Si = softmax(
Q′

iK
′⊺
i√

dk
), (10)

K ′
i = KWK

i , (11)

Q′
i = QWQ

i . (12)
198

Remark 3.2. Optimized Attention is more efficient 199

than standard attention, having h matrix multiplica- 200

tion and d2m parameters less than standard attention. 201

Proof. Compared to Optimized Attention, standard 202

attention has extra W V
1 ,W V

2 , . . . ,W V
h , which are 203

multiplied from the right to V . This amounts to 204

a total of dmdvh = d2m parameters and h matrix 205

multiplications. 206

3.2 Efficient Attention: Absorbing WK into WQ 207

In §3.1, we discussed our motivation behind drop- 208

ping W V . Here, we do the same for WK to fur- 209

ther reduce the computational cost of the attention 210

mechanism. Before this, we note that for the pre- 211
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softmax attention scores for each head, we have:212

dim(span(
QWQ

i WK⊺
iK

⊺

dk
)

= rank(QWQ
i WK⊺

iK
⊺) ≤ rank(WQ

i WK⊺
i ),

≤ min(rank(WQ
i ), rank(WK

i ))

= min(dm, dk) = dk.

213

More precisely, here two linear kernels, WQ
i and214

WK⊺
i , are stacked– this opposes Principle 1. Thus,215

following the same approach as in Optimized At-216

tention, we merge WK⊺
i into WQ

i and replace the217

WK
i linear transformation by slicing as depicted in218

Fig. 1c and defined in Def. 3.3.219

Definition 3.3 (Efficient Attention). Using the220

same notation as Def. 3.1, we define Efficient At-221

tention with the following equations:222

O = (H1, H2, . . . ,Hh)W
O, (13)

Hi = SiVi, (14)

Si = softmax(
Q′

iK
⊺
i√

dk
), (15)

Q′
i = QWQ

i , (16)
223

where Ki denotes the subtensor consisting of (i−224

1)dk + 1, . . . , idk rows from K.225

Remark 3.4. Efficient Attention is more efficient226

than standard and Optimized Attention as it has227

h matrix multiplication and d2m parameters less228

than Optimized Attention and 2h multiplication229

and 2d2m parameters fewer than standard attention.230

Proof. In Efficient Attention, we do not have231

WK
1 ,WK

2 , . . . ,WK
h , which are applied to K from232

left. Hence, we reduce the number of matrix mul-233

tiplications by h and parameters by d2m, compared234

to Optimized Attention. From this and Rem. 3.2, it235

follows that Efficient Attention has h+h = 2h ma-236

trix multiplication and d2m+d2m = 2d2m parameters237

fewer than standard attention.238

3.3 Super Attention: Introducing WA239

Looking at the Eqs. (1-6), we observe that in SDPA,240

there are learnable parameters between Q and K;241

however, there is no such parameter between K242

and V (even though a softmax is applied to the243

term containing K). Following Principle 2, we244

introduce a new learnable parameter WA that lin-245

early transforms the values from the left. To better246

observe this, let us write the equation for one head247

in one of the attention variants, e.g., Efficient At- 248

tention by combining Eqs. (14–16): 249

Hi = softmax(
QWQ

i K⊺
i

dm
)ViW

O. (17) 250

As we see in Eq. (17), there are no learnable param- 251

eters between K⊺ and V , and the attention scores 252

Si are directly applied to the values Vi. The in- 253

tuition behind directly applying Si to Vi is that 254

the attention scores in Si determine “how much 255

attention is paid” to each of the features of each 256

token in Vi. Despite this intuition, we found that in 257

practice the model can benefit from an additional 258

kernel which comes in between the scores Si and 259

values Vi. Specifically, with the introduction of 260

WA, Eq. (17) changes to 261

Hi = softmax(
QWQ

i K⊺
i

dm
)WAViW

O. (18) 262

The role of WA is to mix and align the values 263

vertically (token-wise). Thus, to prevent “look 264

ahead” in the attention mechanism for use in causal 265

language modelling, we can constrain WA to be 266

lower triangular, so that future tokens do not in- 267

fluence the current one in WA. Note that we use 268

the same WA for all heads. The reason here is 269

that we want to improve the model performance 270

while keeping the model size as small as possible. 271

Thus, in a more general formulation, one can use 272

different WA for each head to perhaps gain even 273

better performance, but at the cost of increasing the 274

number of parameters, and thereby the model size. 275

Definition 3.5 (Super Attention). Using the nota- 276

tion of Def. 3.3, we define Super Attention with the 277

following equations: 278

O = (H1, H2, . . . ,Hh)W
O, (19)

Hi = SiV
′
i , (20)

Si = softmax(
Q′

iK
⊺
i√

dk
), (21)

V ′
i = WAVi, (22)

Q′
i = QWQ

i , (23)
279

where WA ∈ Rℓ×ℓ is the alignment kernel, which 280

vertically (i.e., for values corresponding to differ- 281

ent tokens) aligns and mixes the values before the 282

attention scores are applied to them. 283

Remark 3.6. Super Attention is more efficient than 284

standard attention whenever the model dimension 285

dm is greater than or equal to the context length 286

4



ℓ. This means that Super Attention has at least287

h matrix multiplication and d2m parameters fewer288

than standard attention.289

Proof. Looking at Eqs. (13–16) and (19–23), Su-290

per and Efficient Attention have the same equations,291

except that Super Attention has an additional linear292

transformation in Eq. (22), where Vi’s are multi-293

plied by WA from the left. This amounts to ℓ2294

parameters and h matrix multiplication more than295

Efficient Attention. From Rem. 3.4, it follows that296

Super Attention has at least 2d2m− ℓ2 ≥ d2m param-297

eters and 2h− h = h matrix multiplications fewer298

than standard attention.299

4 Evaluation300

We evaluate the proposed mechanism on a range of301

NLP tasks (§4.1 and §B.5); we then show that the302

approach generalises to other modalities by evaluat-303

ing them on a number of vision benchmarks (§4.2).304

We also provided a detailed comparison of the com-305

putational costs and edge device performance in306

§ 4.3, B.1, and B.2.307

Evaluation Methodology. We evaluate on a308

range of benchmarks. In each benchmark, we fol-309

low the common practices for evaluating the perfor-310

mances. For all benchmarks, (1) we use the same311

model architecture and iterate between standard,312

Optimized, Efficient, and Super Attention; (2) we313

continue training until validation loss flattens or a314

given computational budget is reached; and (3) for315

benchmarks on smaller datasets, we report the re-316

sults by averaging over five runs to ensure fairness.317

Experimental Setup. All experiments in § 4.1318

and 4.2 are implemented in Keras with JAX back-319

end using keras.io/examples with minor dataset-320

specific adjustments, e.g., modifying the number of321

classes, layers, etc. The generative language mod-322

elling experiment in §4.1 is an adaptation of Andrej323

Karpathy’s NanoGPT (Karpathy, 2022). All the re-324

ported results are obtained by training on an Nvidia325

RTX 4090 GPU (24GB VRAM) or an Nvidia A100326

GPU (80GB VRAM); however, we have chosen327

model and batch sizes to ensure that they run on328

24GB VRAM. In each table, we report the train329

and test loss and accuracy (where relevant), the330

number of parameters in one attention layer (in the331

“# Param.” column), the average training time (in332

seconds) of models for one epoch on an RTX 4090333

GPU (in the “Epoch Time” column), as well as334

other related task-specific metrics.335

4.1 NLP Benchmarks 336

In this section, we evaluate the attention vari- 337

ants in Transformer models of different scales for 338

three NLP tasks: sentiment classification, Machine 339

Translation (MT) and generative language mod- 340

elling (LM) and NLI tasks. 341

Sentiment Classification. For sentiment classi- 342

fication (Tbl. 1), we use two widely-used bench- 343

marks, IMDB Movie Reviews (Maas et al., 2011) 344

and Amazon Reviews (Ni et al., 2019) datasets. 345

The dataset sizes for these two experiments in this 346

part are 50k and 3.65M, and the model sizes are 347

650K and 26M parameters, respectively. 348

Machine Translation (MT) For MT (Tbl. 2), we 349

use the combined Europarl (Koehn, 2005) and Anki 350

(Anki.net) dataset for English-to-Spanish transla- 351

tion. The dataset includes 2 million pairs and the 352

model sizes range from 93-104 million parameters 353

for different architectures. 354

Generative LM and NLI. For generative lan- 355

guage modelling (Tbl. 3), we use the OpenWebText 356

dataset (Gokaslan and Cohen, 2019) for training 357

and the HellaSwag dataset (Zellers et al., 2019) 358

for comparing the common-sense reasoning perfor- 359

mance of the trained models. This dataset includes 360

more than 9 Billion tokens and the model sizes 361

range between 110-124 million parameters for dif- 362

ferent architectures. The context window of the 363

language models is set to 1024 tokens. 364

NLP Results Analysis. Super Attention outper- 365

forms attention variants in terms of validation ac- 366

curacy (up to (68.10−65.55)/65.55 = 3.89% com- 367

pared to standard attention on Amazon Reviews) 368

in the sentiment classification task. Similarly, we 369

see for MT as well as generative LM and NLI 370

tasks that the Optimized and Efficient architec- 371

tures perform closely or on par with the Standard 372

mechanisms. We also observe that standard at- 373

tention is slower than all other variants (up to 374
(600−523)/523 = 14.72% slower than Efficient At- 375

tention in MT) with the highest number of parame- 376

ters (twice as many parameters per layer compared 377

to Efficient Attention). The generative LM exper- 378

iment reveals subtle differences in performance 379

among the models in training performance; How- 380

ever, our NLI experiment shows that when evalu- 381

ated on the HellaSwag benchmark, all three models 382

exhibit comparable performance, achieving accu- 383

racy rates between 30% and 31%. 384
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Table 1: Sentiment classification results, averaging over five runs on IMDB and Amazon Reviews datasets. Numbers
in parentheses indicate the ranking of each attention variant for a given metric and dataset. Ablation studies on the
number of heads for all experiments is available in §B.4. Efficient Attention models have the smallest attention
layer size and the Super Attention models perform the best in terms of accuracy and loss.

Dataset Att. h dm # Param. Epoch Time Acc. (%) Loss Val Acc. (%) Val Loss

Stn. 4 32 4,224 (4) 0.315 (4) 95.70 (4) 0.086 (3) 77.62 (4) 0.474 (4)
Opt. 4 32 3,168 (2) 0.305 (3) 96.31 (3) 0.095 (4) 77.85 (2) 0.472 (2)
Eff. 4 32 2,112 (1) 0.280 (1) 96.41 (2) 0.064 (1) 77.77 (3) 0.468 (1)IM

D
B

Sup. 4 32 3,168 (2) 0.299 (2) 97.45 (1) 0.070 (2) 78.34 (1) 0.472 (2)

Stn. 4 128 66,048 (4) 66.97 (4) 88.49 (3) 0.25 (3) 65.55 (4) 0.77 (3)
Opt. 4 128 49,536 (3) 61.75 (3) 89.56 (1) 0.23 (1) 65.67 (2) 0.75 (2)
Eff. 4 128 33,024 (1) 56.44 (1) 86.63 (4) 0.29 (4) 65.58 (3) 0.77 (3)

A
m

az
on

Sup. 4 128 42,336 (2) 59.86 (2) 88.56 (2) 0.24 (2) 68.10 (1) 0.71 (1)

Table 2: Machine translation results, averaging over five runs for English-to-Spanish MT on combined Europarl
and Anki translation datasets. Numbers in parentheses indicate the ranking of each attention variant for that metric.
Ablation on the number of heads is available in §B.4. Optimized and Efficient Attentions perform similarly to
standard attention on most metrics with 1/2 and 3/4 as many attention parameters, respectively. As the Super Attention
layer has a fixed context length and the decoder requires a varying context length, using Super Attention would
require using a sliding window, which would not be comparable to the full attention used for the other variants.

Att. h dm dk # Param. Epoch Time BLEU Acc. Loss Val BLEU Val Acc. Val Loss

Stn. 4 1024 256 4.2M (3) 600.0 (3) 23.1 (2) 81.11 (3) 0.83 (3) 22.8 (1) 81.41 (3) 0.84 (3)
Opt. 4 1024 256 3.1M (2) 586.8 (2) 24.5 (1) 82.06 (1) 0.78 (1) 22.6 (3) 81.98 (1) 0.80 (1)
Eff. 4 1024 256 2.1M (1) 523.0 (1) 22.6 (3) 81.15 (2) 0.82 (2) 22.3 (3) 81.44 (2) 0.83 (2)

4.2 Vision Transformers385

We experiment with three widely adopted vision386

datasets of varying size and complexity: MNIST387

(LeCun et al., 2010), CIFAR100 (Krizhevsky,388

2009), and ImageNet1K (Russakovsky et al., 2015).389

For Brevity, we refer to the ImageNet1K dataset390

throughout the paper as ImageNet. Note that for391

the reported ImageNet results in Tbl. 4, we first392

pre-trained the model on the ImageNet21K dataset.393

We report the training details in §B.3.394

ViT Results Analysis. The number of parame-395

ters in the models considered for the vision tasks396

range from 300K (MNIST) to 60M (ImageNet),397

their context length ranges from 64 (MNIST) to398

256 (CIFAR100 and ImageNet), the dataset sizes399

range from 60K (MNIST) to 1.28M (ImageNet),400

and the number of classes ranges from 10 (MNIST)401

to 1K (ImageNet). Similar to text Transformers,402

ViTs using Super Attention architecture perform403

better than all other variants despite having fewer404

parameters than standard attention. Also, Opti-405

mized and Efficient Attentions perform comparably406

to standard attention with fewer parameters.407

4.3 Speed and FLOPs Analysis408

§ B.1 and B.2 are dedicated to studying the com-409

putational complexity and inference speed of the410

considered attention variants. Eq. (24) formulates 411

the computational complexity for each algorithm. 412

Figs. 2 and 7 visualize a comparison between 413

the required FLOPs for each algorithm based on 414

“sequence length” and “projection dimension”. It 415

indicates Efficient Attention requires the least num- 416

ber of FLOPs under all scenarios. From an em- 417

pirical perspective, Tbl. 5 and Fig. 3 exhibit the 418

faster inference speed (lower latency) of Efficient 419

Attention compared to other variants in all datasets, 420

followed by Optimized and Super variants. 421
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Figure 2: 3D plots visualizing the number of FLOPs
for a forward + backward pass given different sequence
lengths and projection dimensions in single-head setting
for Efficient and Standard attention. Efficient Att. needs
substantially fewer FLOPs for completing a forward +
backward pass. Fig. 7 compares all architectures.
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Table 3: Averages of different metrics in generative LM using NanoGPT, a widely-referenced re-implementation of
GPT-2 124M by Andrej Karpathy, based on different attention variants. The models are trained on the OpenWebText
dataset (∼9B training tokens) for one epoch with a batch size of 500 and a micro-batch size of 5 using a single
A100 80GB node. The context window is 1024. In addition to the loss and perplexity, we provide the size of each
model and the result of NLI on the HellaSwag benchmark. Similarly to the MT task, a fair comparison of Super Att.
against other variants is not feasible as NanoGPT uses full attention but Super Att. requires using a sliding window.

Att. h dm dk Layer Size Model Size Train Loss Train PPL Val Loss Val PPL HellaSwag

Stn. 12 768 64 2.36M 124M 2.92 18.5 3.13 22.9 0.31
Opt. 12 768 64 1.77M 117M 2.96 19.3 3.14 23.1 0.31
Eff. 12 768 64 1.18M 110M 3.02 20.5 3.18 24.0 0.30

Table 4: Vision results, averaging over five runs on MNIST and CIFAR100, and one run on ImageNet. Numbers
in parentheses indicate the ranking of each mechanism for a given metric and dataset. An ablation study on the
number of heads is available in §B.3. An additional ablation study for models of the same size on ImageNet but
with different attention mechanisms is provided in §B.3. As expected, Efficient Attention models have the smallest
attention layer size, and the Super Attention models achieve the highest accuracy and lowest loss.

Dataset Att. h dm # Param. Epoch Time Acc. (%) Loss Top 5 Val Acc. (%) Val Loss Val Top 5

Stn. 4 128 66K (4) 8.31 (4) 93.73 (4) 0.209 (4) N/A 98.12 (4) 0.062 (4) N/A
Opt. 4 128 49K (3) 7.68 (3) 95.36 (2) 0.161 (2) N/A 98.43 (2) 0.046 (2) N/A
Eff. 4 128 33K (1) 7.05 (1) 94.28 (3) 0.197 (3) N/A 98.27 (3) 0.058 (3) N/A

M
N

IS
T

Sup. 4 128 37K (2) 7.58 (2) 96.96 (1) 0.112 (1) N/A 98.62 (1) 0.051 (1) N/A

Stn. 8 256 263K (4) 21.19 (4) 72.28 (2) 1.41 (2) 91.02 (2) 48.14 (3) 1.82 (3) 90.22 (4)
Opt. 8 256 197K (2) 20.39 (3) 72.26 (3) 1.47 (3) 93.01 (3) 48.63 (2) 1.71 (2) 90.99 (2)
Eff. 8 256 131K (1) 19.22 (1) 71.96 (4) 1.49 (4) 92.23 (4) 47.95 (4) 1.83 (4) 90.48 (3)

C
IF

A
R

10
0

Sup. 8 256 197K (3) 20.28 (2) 79.62(1) 1.28 (1) 94.34 (1) 49.28 (1) 1.55 (1) 91.69 (1)

Stn. 12 768 2.36M (4) 2572 (4) 92.07 (2) 1.02 (2) 98.41 (2) 74.35 (3) 1.47 (3) 94.10 (4)
Opt. 12 768 1.77M (3) 2426 (2) 91.78 (3) 1.03 (3) 98.36 (3) 77.12 (2) 1.47 (3) 94.21 (3)
Eff. 12 768 1.18M (1) 2374 (1) 90.36 (4) 1.05 (4) 98.37 (4) 75.67 (4) 1.44 (2) 95.46 (2)

Im
ag

eN
et

Sup. 12 768 1.22M (2) 2483 (3) 94.09 (1) 0.94 (1) 99.32 (1) 79.29 (1) 1.39 (1) 96.37 (1)
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Figure 3: Summary of relative inference latency of mod-
els using different attention variants relative to standard
attention on different datasets on Edge Device (Apple
Laptop M2). Efficient Att. is the fastest (Optimized and
Super Att. are also faster than standard attention). More
details and numerical results are available in Tbl. 5.

4.4 Scaling Analysis422

We analyzed scaling behaviour across three dimen-423

sions: attention heads, dataset size, and model size.424

Head scaling experiments across tasks (Tbls. 5, 6425

and 8 to 10) showed consistent performance im-426

provements with increased heads for all architec-427

tures. Dataset scaling ranged from IMDB (50K ex-428

amples) to OpenWebText (9B tokens) for language429

tasks, and MNIST (60K examples) to ImageNet430

(1.28M examples) for vision tasks, with our vari-431

ants maintaining their relative performance advan-432

tages across scales. Model scaling experiments on433

Amazon Reviews (Figs. 4 and 8) demonstrate that 434

as models grow from 5M to 25M parameters, Super 435

Attention consistently outperforms standard atten- 436

tion, while Optimized and Efficient variants match 437

standard’s performance with significantly fewer 438

parameters. Notably, standard attention’s compu- 439

tational inefficiency becomes more pronounced at 440

larger scales in both training and inference. 441

5 Related Work 442

Since their adoption, many research directions have 443

emerged to address various shortcomings of atten- 444

tion mechanisms and Transformer models. Sparse 445

attention, such as Longformer (Beltagy et al., 2020; 446

Zhang et al., 2021a), reduces the computational 447

complexity by focusing on key input parts (Child 448

et al., 2019). Despite handling long sequences ef- 449

ficiently, sparse mechanisms struggle with tasks 450

requiring a comprehensive sequence analysis. 451

Another line of research focuses on approximat- 452

ing the attention matrix to attain linear complexity. 453

Performer (Choromanski et al., 2021) uses random 454

feature maps and FAVOR+ mechanism; Linformer 455

(Wang et al., 2020) projects keys and values to 456
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Figure 4: Performance of different architectures on the Amazon Reviews as the size of models grows from 5 Million
parameters to 25 Million parameters. In terms of test accuracy and loss, Super Attention shows increasingly better
performance compared to all other architectures which are performing on par with each other. In terms of inference
speed, all variants (especially Efficient) perform better than the Standard attention.

lower dimensions by exploiting low-rank proper-457

ties. While these approaches achieve efficiency458

through approximation, they often compromise459

model quality. In contrast, our proposed variants460

achieve efficiency through structural modifications461

while maintaining or improving model quality.462

Recent work has explored architectures that com-463

bine transformers’ parallel training capabilities464

with RNNs’ inference efficiency, including RWKV465

(Peng et al., 2023) with linear recurrence and State-466

Space models like Mamba (Gu and Dao, 2024)467

and S4 (Gu et al., 2021). While these approaches468

show promise, they require fundamental architec-469

tural changes. Our work instead focuses on opti-470

mizing the attention mechanism itself, preserving471

the proven benefits and versatility of transformer472

architectures while reducing computational costs.473

Several approaches focus on reducing model re-474

dundancy. Voita et al. (2019) demonstrate that475

multi-head SDPA is over-parameterized, leading476

to collaborative frameworks that reduce projection477

sizes (Cordonnier et al., 2020). Similarly, sparsi-478

fication techniques reduce non-zero elements in479

weights, with recent work achieving 1-10% com-480

pression with minimal performance impact (Ashk-481

boos et al., 2024), though potentially affecting482

robustness (Timpl et al., 2022). While these ap-483

proaches focus on post-hoc optimization or prun-484

ing, our work fundamentally reimagines the atten-485

tion mechanism’s structure to achieve efficiency by486

design. We discuss further related attempts (includ-487

ing LoRA, Quantization and Flash Attention) for488

facilitating the deployability of transformers in §C.489

6 Discussion and Conclusions490

We proposed and evaluated three variants of SDPA491

that alter the standard arrangement of linear trans-492

formations to achieve better performance per com-493

putation cost and number of parameters (see Fig. 1494

for visualizations). Optimized and Efficient At-495

tention replace one (values) and two (values and 496

keys) linear transformations with slicing, resulting 497

in 25% and 50% size reductions and fewer ma- 498

trix multiplications, respectively. The third variant, 499

Super Attention, introduces a new linear transfor- 500

mation operating on the values from the left. While 501

Super Attention can be applied to standard, Opti- 502

mized, or Efficient Attention, we combined it with 503

Efficient Attention, resulting in approximately 25% 504

fewer parameters compared to standard attention. 505

Our evaluation spanned a wide range of tasks, 506

including sentiment classification on IMDB and 507

Amazon Reviews, Machine Translation on com- 508

bined Europarl and Anki datasets, generative LM 509

on OpenWebText dataset and NLI on HellaSwag. 510

We used benchmarks varying in size from 50,000 511

examples to 9 billion tokens. To verify if these 512

architectural benefits generalize across modalities, 513

we also evaluated all variants for image classifica- 514

tion on MNIST, CIFAR100, and ImageNet1K. 515

The experimental results demonstrate that Op- 516

timized and Efficient Attention performed compa- 517

rably to standard attention across different bench- 518

marks, despite having 25-50% fewer parameters 519

and being faster. Super Attention consistently out- 520

performed standard variant in all applicable bench- 521

marks, achieving improvements of up to 10% on 522

CIFAR100 and 4% on Amazon, while maintaining 523

fewer parameters and faster training and inference. 524

Our generative LM experiment using a 1.1B 525

Llama-based model in §B.5 provides insight into 526

these variants’ performance at larger scales. Yet 527

realizing their true potential requires evaluation at 528

even larger scales, which are beyond our compu- 529

tational resources. The promising results suggest 530

these attention variants could open new pathways 531

for training and deploying capable models on de- 532

vices with limited computational resources, like 533

smartphones and small personal devices. 534

8



Limitations535

There are two limitations in this paper. First, Su-536

per Attention supports fixed context length due to537

the fixed size of WA (see Eq. (22) and Fig. 1d).538

Nonetheless, these do not affect the advantages of539

Super Attention in many SotA applications such540

as in ViT. Moreover, this can be addressed using a541

sliding window, which is a future work currently542

in progress. Second, because of limited compu-543

tational resources, we could only validate our hy-544

potheses on models with up to 124 million (1.1545

billion considering the language model trained in546

§B.5) parameters trained on datasets with up to 9547

billion (30 billion considering §B.5) tokens. Fur-548

ther scaling the experiments beyond our computa-549

tional resources and training large multi-modal and550

language models using the proposed mechanisms551

could facilitate a better understanding of their per-552

formance on industrial scales.553
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A Reproducibility Statement 785

The code for all experiments is provided in the sup- 786

plementary materials. Publicly available datasets 787

are used, with automatic downloads included in 788

the code, except for the Amazon dataset (link 789

in README). The NanoGPT repository (linked 790

in Experimental Setup) details the generative lan- 791

guage modelling experiment. Further implementa- 792

tion details are in Section §4 and §B.3 and B.4. 793

B Additional Experiments 794

B.1 Edge Device Performance 795

Our main motivation for introducing Optimized, 796

Efficient, and Super Attention is to allow running 797

more capable models on edge devices. We calcu- 798

lated the inference times of the Transformer mod- 799

els, we trained before, on a MacBook Pro with 800

an M2 Chip for each task/attention mechanism in 801

Tbl. 5. As expected, Efficient models are the fastest. 802

Also, Super Attention and Optimized Attention 803

models are faster than their standard counterparts 804

with the same number of heads while performing 805

equally well as we discussed before. 806

B.2 Speed and Efficiency Comparison 807

In the main body and other sections of the Ap- 808

pendix, we present comprehensive theoretical com- 809

parisons and rigorous experiments on Vision and 810

NLP classification tasks as well as for English-to- 811

Spanish translation to compare the attention algo- 812

rithms. Optimized Attention and Efficient Atten- 813

tion perform on par with standard attention with 814

25% and 50% less parameters respectively. In ad- 815

dition, Super Attention outperformed all other al- 816

gorithms significantly while having 25% fewer pa- 817

rameters compared to standard attention. 818

As mentioned in the main body, according to the 819

definitions of our proposed algorithms, Efficient, 820

Optimized, and Super Attention mechanisms per- 821

form 2,1, and 1 fewer matrix multiplication per 822

head compared to standard attention respectively. 823

Here, we further analyze and compare the required 824

number of FLOPs for completing a single forward 825

and backward pass for all algorithms under study 826

to gain further insight into the efficiency of the 827

proposed algorithms. 828

FLOPs Versus Projection Dim. As depicted in 829

Fig. 5, we compare the number of required FLOPs 830

by each attention algorithm when we fixate the 831
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Table 5: Total inference times (in seconds) for each attention mechanism/dataset pair on an Apple M2 chip over
5,000 samples.

Name h MNIST CIFAR100 ImageNet IMDB Amazon

1 4.43 34.84 299.26 0.114 0.53
Standard 4 5.27 46.06 323.84 0.183 0.87

8 6.89 (4) 62.08 (4) 341.69 (4) 0.266 (4) 1.34 (4)

1 4.19 33.36 281.14 0.109 0.47
Optimized 4 5.22 44.17 301.30 0.176 0.76

8 6.37 (2) 60.63 (2) 320.49 (3) 0.262 (2) 1.21 (2)

1 3.78 31.50 259.71 0.101 0.44
Efficient 4 4.71 42.16 276.15 0.170 0.72

8 6.10 (1) 58.60 (1) 301.24 (1) 0.256 (1) 1.14 (1)

1 4.21 33.69 264.99 0.112 0.46
Super 4 5.07 44.47 284.49 0.178 0.74

8 6.65 (3) 60.73 (3) 309.72 (2) 0.264 (3) 1.19 (2)

sequence length (denoted as ℓ) and vary the projec-832

tion dimension. Even though the number of FLOPs833

scales linearly with the projection dimension for834

all algorithms, the slope of this increase differs835

significantly for each algorithm. Specifically, for836

Efficient Attention, the slope of the line is equal to837

9ℓ while for both Optimized and Super Attention838

this is equal to 12ℓ compared to 15ℓ for standard at-839

tention. This means that as we scale the projection840

dimension the FLOPs required for finishing a for-841

ward and backward pass using Efficient Attention842

increases 3/5 as fast as standard attention.843

FLOPs Equation. The number of FLOPs re-844

quired for finishing a forward and backward pass845

for each of the attention mechanisms is calculated846

according to the following equation:847

FLOPs = CAttnℓdm + 15hℓ2 (24)848

where CAttn is the attention algorithm constant849

which is 15 for standard attention, 12 for Optimized850

and Super Attention, and 9 for Efficient Attention,851

and ℓ, dm, and h represent the sequence length, pro-852

jection dimension, and number of heads consistent853

with the notation used throughout the paper.854

Fig. 2 shows the 3D plot summarizing the num-855

ber of FLOPs for each attention algorithm under856

varying sequence length and projection dimension857

in the single head setting. As evident in Fig. 2858

and Eq. (24), our proposed algorithms need fewer859

FLOPs as sequence length increases, which is an860

important consideration for use in LLMs.861

0 1000 2000 3000 4000 5000 6000 7000 8000
Projection Dim

0

2

4

6

8

M
illi

on
 F

LO
Ps

StandardMultiHeadAttention - 1 heads
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EfficientAttention - 4 heads
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SuperAttention - 1 heads
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SuperAttention - 8 heads

Figure 5: Number of Flops required to complete a single
forward plus backward pass for each attention mecha-
nism. While the complexity and therefore, the number
of FLOPs increases linearly as the projection dimen-
sion increases for all attention mechanisms, the slope of
the increase varies significantly as depicted in this plot.
Efficient Attention and Super Attention (Optimized At-
tention is not shown as it is exactly similar to Super
Attention) require significantly fewer FLOPs as the pro-
jection dimension increases compared to standard atten-
tion. Here sequence length is set to 64 (ℓ = 64). Trying
different values for ℓ changes the scale of the y-axis but
the chart looks the same.
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Figure 6: Heatmaps showing the ratio of FLOPs Standard Attention requires compared to the Efficient Attention
in 1, 2, 4, and 8 attention head settings. Standard attention requires up to 67% more FLOPs to complete a single
forward and backward pass. On average, standard attention requires 30%, 25%, 20%, and 16% more FLOPs than
Efficient Attention when using 8, 4, 2, and 1 heads respectively.

FLOPs Heatmaps. In addition to the previous862

analyses, in Fig. 6, we compare the ratio of FLOPs863

required to finish a single forward and backward864

pass by standard attention to Efficient Attention un-865

der different settings (i.e., varying sequence length866

and projection dimension) for different number of867

heads. In all scenarios, standard attention requires868

up to 66% more FLOPs in comparison to Efficient869

Attention. On average, Standard Efficient requires870

30%, 25%, 20%, and 16% more FLOPs in compar-871

ison to Efficient Attention when using 1, 2, 4, and872

8 heads, respectively.873

B.3 Vision Transformers874

MNIST. We trained ViT models with different875

attention mechanisms, all with two attention layers876

and model dimension dm = 128. As expected, Su-877

per Attention outperforms all other architectures,878

in terms of accuracy, by at least 2.68% and stan-879

dard attention by 3.23%. The smallest attention880

layer size belongs to Efficient Attention, which per-881

forms on par with standard attention. The complete 882

results are presented in Tbl. 6. 883

ImageNet. Scaling the vision experiments even 884

further, the ImageNet1k dataset presents much 885

more complexity as the labels comprise 1000 886

classes. We used a modified ViT-B/16 model archi- 887

tecture, employed different attention mechanisms 888

in its Transformers blocks, and trained the models. 889

Due to our computational constraints, we reduced 890

the number of transformer blocks from 12 to 8, 891

resized the images to 112×112 (instead of the orig- 892

inal 224×224) and reduced the patch size from 16 893

to 8 to enable training on our Nvidia RTX 4090 894

GPU. Other parameters are similar to the original 895

architecture; specifically, dm = 768 and h = 12. 896

Tbls. 4 and 7 present the results of our experiments 897

on the ImageNet dataset. 898

Val. results in Tbls. 4, 6 and 7 refer to models’ 899

performances on the official validation set for Ima- 900

geNet1K, and the official tests sets for MNIST and 901
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(c) Efficient Att.
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Figure 7: 3D plots visualizing the number of FLOPs for each variant in a forward + backward pass given different
sequence lengths and projection dimensions in single-head setting. Efficient Att. followed by Super and Optimized
Att. needs substantially fewer FLOPs for completing a forward + backward pass compared to standard attention.
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Figure 8: Performance of different architectures on the Amazon Reviews Classification task as the size of the models
increases from 5 Million parameters to 25 Million parameters. The results point to the overparameterization of the
Standard Attention as it puts an additional computational burden which is not accompanied with better performance
in terms of accuracy or loss.

CIFAR100 datasets.902

B.4 Natural Language Processing903

B.4.1 Transformer for Text Classification904

IMDB. The IMDB dataset includes 50,000 re-905

views with binary labels, indicating negative and906

positive sentiments. The Transformer models, used907

in this experiment, all have a single attention layer908

with model dimension and context length 32. The909

complete results are presented in Tbl. 8.910

Amazon Reviews. The Amazon Reviews dataset911

poses a different challenge than the IMDB dataset912

as it is a significantly larger dataset with 3,650,000913

reviews, containing a wider range of sentiments914

in 1, 2, . . . , 5; higher values indicate more positive915

sentiment. The Transformer models, used in this ex-916

periment, all have three attention layers with model917

dimension and context length 64. The complete918

results are presented in Tbl. 9.919

B.4.2 Transformer for Machine Translation 920

Europarl Parallel Corpus and Anki. Anki 921

dataset for English-Spanish translation consists of 922

more than 118,000 sentence pairs in both English 923

and Spanish languages. While training a model 924

on this dataset enables basic translation, the educa- 925

tional nature and size of the dataset are too simple 926

for training a capable translation model. Therefore, 927

we also add the Europarl Parallel Corpus which 928

has around 2 million examples in both English and 929

Spanish languages and has sentences with much 930

more technical and sophisticated terms to enable 931

training in a powerful English-to-Spanish trans- 932

lation model. We then shuffle the mix of both 933

datasets, and randomly split the dataset into 99.8%, 934

0.1%, and 0.1% for train, validation, and test splits 935

respectively. 936

We then train a translation model inspired by 937

the implementation available on the official Keras 938
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Table 6: Averages of different metrics over five runs in the MNIST experiment. The numbers in parentheses indicate
the ranking of each mechanism for that metric. An ablation study on the number of heads shows increasing the
number of heads enhances the performance of all algorithms. As expected, the Efficient Attention model has the
smallest attention layer size and the Super Attention model performs the best in terms of accuracy and loss.

Att. h dm dk # Param. Avg. Time (s) Acc. (%) Loss Val Acc. (%) Val Loss

1 128 128 66,048 8.15 93.26 0.227 98.02 0.063
Stn. 2 128 64 66,048 8.18 95.40 0.161 98.61 0.049

4 128 32 66,048 (4) 8.31 (4) 93.73 (4) 0.209 (4) 98.12 (4) 0.062 (4)

1 128 128 49,536 7.56 91.02 0.299 97.30 0.095
Opt. 2 128 64 49,536 7.57 93.70 0.215 97.93 0.071

4 128 32 49,536 (3) 7.68 (3) 95.36 (2) 0.161 (2) 98.43 (2) 0.046 (2)

1 128 128 33,024 6.89 93.29 0.228 97.78 0.073
Eff. 2 128 64 33,024 6.99 93.60 0.223 98.11 0.061

4 128 32 33,024 (1) 7.05 (1) 94.28 (3) 0.197 (3) 98.27 (3) 0.058 (3)

1 128 128 37,184 7.46 96.24 0.136 98.32 0.056
Sup. 2 128 64 37,184 7.50 96.59 0.124 98.52 0.050

4 128 32 37,184 (2) 7.58 (2) 96.96 (1) 0.112 (1) 98.62 (1) 0.051 (1)

Table 7: Performance of different architectures on the ImageNet dataset. Since different attention layer architectures
in the main ImageNet experiment had different numbers of parameters, an interesting ablation study is comparing
these architectures when the total number of parameters is very close. To achieve this, we change some hyperparam-
eters like dm or the number of attention layers from the previous experiment. The numbers in parentheses indicate
the ranking of each mechanism for that metric. We used a modified ViT-B/16 model, plugged in the attention
algorithms in the Transformers block, and trained the models. Super Attention significantly outperforms all other
algorithms. Unlike the results reported in Tbl. 4 in the main body, the models in this ablation experiment are not
pre-trained on ImageNet21K (as such the accuracies and validation accuracies are lower compared to the ones with
pre-training).

Att. h dm Att. Layers Tot. # Param. Acc. (%) Loss Top 5 Val Acc. (%) Val Loss Val Top 5

Stn. 12 768 8 60.54M (4) 51.18 (4) 2.09 (4) 76.05 (4) 32.74 (4) 3.36 (4) 56.48 (4)

Opt. 12 816 8 60.12M (2) 53.22 (2) 1.98 (2) 77.21 (2) 33.44 (3) 3.23 (3) 57.37 (3)

Eff. 12 804 9 60.09M (1) 51.28 (3) 2.06 (3) 76.66 (3) 35.49 (1) 3.13 (1) 59.69 (1)

Sup. 12 804 9 60.44M (3) 64.98 (1) 1.37 (1) 87.36 (1) 34.31 (2) 3.18 (2) 58.70 (2)

website for translation but with 2 decoder blocks939

and one encoder block for 6 epochs. Additionally,940

we set the dm = 1024 and try 1, 2, and 4 as the941

number of heads. We use Sparse Categorical Cross942

Entropy as our loss metric. The complete analysis943

of the results is available in Tbl. 10.944

All 3 algorithms perform comparably in terms945

of BLEU score, Accuracy, and Loss. How-946

ever, the number of attention parameters per en-947

coder/decoder layer is 1/2 and 3/4 of standard atten-948

tion in Efficient and Optimized Attention respec-949

tively. Additionally, Efficient attention is up to950
(556.5−472.7)/556.6 = 15.06% faster to train in com-951

parison to the standard attention.952

B.5 Evaluation For Use in LLMs 953

In addition to evaluating the standard SDPA and 954

its variants for generative language modelling in a 955

scale of around 125M parameters, we also trained a 956

Language Model (LM) with 1.1B parameters based 957

on Efficient Attention architecture to see the fea- 958

sibility and scalability of this variant of SDPA in 959

a large scale experiment. This Language Model 960

achieves lower loss than the similarly-sized TinyL- 961

lama model, which is based on Standard Attention 962

(details are provided in Tbl. 11 below). We could 963

not train more LMs based on other architectures 964

due to our limited computational resources. The 965

LM based on Efficient Attention was trained us- 966

ing a GPU credit donation that we used to train 967
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Table 8: Averages of different metrics over five runs in the IMDB experiment. Here, varying the number of heads
doesn’t meaningfully affect the performance of any of the algorithms. As expected, the Efficient Attention model
has the smallest attention layer size and the Super Attention model performs the best in terms of accuracy and loss.

Att. h dm dk # Param. Avg. Time Acc. (%) Loss Test Acc. (%) Test Loss

1 32 32 4,224 0.284 96.09 0.082 78.09 0.461
Stn. 2 32 16 4,224 0.297 95.51 0.112 78.14 0.467

4 32 8 4,224 (4) 0.315 (4) 95.70 (4) 0.086 (3) 77.62 (4) 0.474 (4)

1 32 32 3,168 0.283 96.62 0.070 78.00 0.461
Opt. 2 32 16 3,168 0.299 96.77 0.073 78.00 0.460

4 32 8 3,168 (2) 0.305 (3) 96.31 (3) 0.095 (4) 77.85 (2) 0.472 (2)

1 32 32 2,112 0.267 96.66 0.080 77.58 0.478
Eff. 2 32 16 2,112 0.273 96.86 0.068 77.74 0.473

4 32 8 2,112 (1) 0.280 (1) 96.41 (2) 0.064 (1) 77.77 (3) 0.468 (1)

1 32 32 3,168 0.272 97.68 0.063 78.21 0.472
Sup. 2 32 16 3,168 0.294 97.84 0.064 78.35 0.454

4 32 8 3,168 (2) 0.299 (2) 97.45 (1) 0.070 (2) 78.34 (1) 0.472 (2)

our LM over 8 weeks on 30 billion tokens of C4968

dataset (Raffel et al., 2019) using a single A100969

with 80GB of GPU.970

C Additional Related Work971

Flash Attention (Dao et al., 2022) and Flash Atten-972

tion 2 (Dao, 2024) optimize multi-head attention973

for modern GPUs without changing its structure,974

enabling faster processing and reduced memory975

demands. It’s worth mentioning our proposed algo-976

rithms also benefit from these optimizations.977

With the adoption of LLMs and Foundation978

Models (FMs), a lot of work has been done to im-979

prove their scalability and deployability. LoRA (Hu980

et al., 2022) adapts pre-trained models with mini-981

mal additional parameters, and QLoRA (Dettmers982

et al., 2023) incorporates quantization to reduce983

memory and computational demands.984

Quantization has revolutionized the adoption985

of FMs, particularly those based on Transform-986

ers. Recent advances include mixed-precision post-987

training quantization for vision transformers (Liu988

et al., 2021), quantization-aware training (Jacob989

et al., 2018; Nagel et al., 2022), mixed-precision990

training (Micikevicius et al., 2018), dynamic quan-991

tization (Zhang et al., 2021b), and layer-wise quan-992

tization (Chen et al., 2019).993

Moreover, Ding et al. (2022) unveiled a cutting-994

edge framework enhancing quantized model accu-995

racy without significant performance degradation.996

However, quantization faces challenges such as997

potential performance drops and increased vulner- 998

ability to adversarial attacks (Hong et al., 2021; 999

Gupta and Ajanthan, 2022). 1000
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Table 9: Averages of different metrics over five runs in the Amazon Reviews experiment. An ablation study on
the number of heads shows increasing the number of heads helps improve the performance of all algorithms. The
Efficient Attention model has the smallest attention layer size and the Super Attention model performs the best in
accuracy and loss.

Att. h dm dk # Param. Avg. Time Acc. Loss Val Acc. Val Loss

1 128 128 66,048 42.06 86.76 0.31 62.32 0.87
Stn. 2 128 64 66,048 50.91 87.13 0.30 63.66 0.81

4 128 32 66,048 (4) 66.97 (4) 88.49 (3) 0.25 (3) 65.55 (4) 0.77 (3)

1 128 128 49,536 38.68 89.41 0.25 63.03 0.82
Opt. 2 128 64 49,536 47.97 90.48 0.23 65.98 0.75

4 128 32 49,536 (3) 61.75 (3) 89.56 (1) 0.23 (1) 65.67 (2) 0.75 (2)

1 128 128 33,024 34.82 88.56 0.27 63.42 0.81
Eff. 2 128 64 33,024 42.19 88.36 0.27 63.81 0.80

4 128 32 33,024 (1) 56.44 (1) 86.63 (4) 0.29 (4) 65.58 (3) 0.77 (3)

1 128 128 42,336 37.78 89.11 0.26 65.73 0.74
Sup. 2 128 64 42,336 46.24 88.41 0.27 67.22 0.73

4 128 32 42,336 (2) 59.86 (2) 88.56 (2) 0.24 (2) 68.10 (1) 0.71 (1)

Table 10: Averages of different metrics over five runs trained on Europarl and Anki English-to-Spanish translation
datasets. The numbers in parentheses indicate the ranking of each mechanism for that metric. An ablation study on
the number of heads shows increasing the number of heads enhances the performance of all algorithms. Optimized
and Efficient Attentions perform on par or better than Standard Attention on most benchmarks with 1/2 and 3/4 as
many attention parameters.

Att. h dm dk # Param. Avg. Time BLEU Acc. Loss Val BLEU Val Acc. Val Loss

1 1024 1024 4,198,400 556.5 23.2 80.48 0.86 22.1 80.86 0.87
Stn. 2 1024 512 4,198,400 598.7 22.3 81.03 0.84 22.7 81.43 0.84

4 1024 256 4,198,400 (3) 600.0 (3) 23.1 (2) 81.11 (3) 0.83 (3) 22.8 (1) 81.41 (3) 0.84 (3)

1 1024 1024 3,148,800 552.0 22.5 81.15 0.87 22.6 81.11 0.84
Opt. 2 1024 512 3,148,800 583.8 22.1 81.61 0.82 23.0 81.57 0.82

4 1024 256 3,148,800 (2) 586.8 (2) 24.5 (1) 82.06 (1) 0.78 (1) 22.6 (3) 81.98 (1) 0.80 (1)

1 1024 1024 2,099,200 472.7 22.4 81.13 0.82 22.8 81.43 0.83
Eff. 2 1024 512 2,099,200 498.6 22.3 81.48 0.80 22.9 81.62 0.81

4 1024 256 2,099,200 (1) 523.0 (1) 22.6 (3) 81.15 (2) 0.82 (2) 22.3 (3) 81.44 (2) 0.83 (2)

Table 11: A Language Model (Based on Efficient Attention) compared to TinyLlama (Based on Standard Attention)
after training on 30 billion tokens of C4 dataset. We set the number of heads to 1 in this LM to make training faster.
Despite this, this LM performs favourably (5.8% smaller categorical cross-entropy loss) compared to TinyLlama.

name # layers # heads model dim intermediate size loss

TinyLlama 22 32 2048 5632 2.25
Efficient based LM 10 1 3072 8192 2.12
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