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Fig. 1: We present Point Policy, a framework that unifies robot observations and actions with key points and enables learning robot
policies exclusively from human videos. Point Policy enables learning policies with improved generalization capabilities, including spatial
generalization (i.e. generalization to new locations), generalization to novel object instances, and robustness to background distractors.

Abstract— Building robotic agents capable of operating across
diverse environments and object types remains a significant
challenge, often requiring extensive data collection. This is
particularly restrictive in robotics, where each data point must
be physically executed in the real world. Consequently, there
is a critical need for alternative data sources for robotics and
frameworks that enable learning from such data. In this work,
we present Point Policy, a new method for learning robot
policies exclusively from offline human demonstration videos
and without any teleoperation data. Point Policy leverages state-
of-the-art vision models and policy architectures to translate
human hand poses into robot poses while capturing object states
through semantically meaningful key points. This approach
yields a morphology-agnostic representation that facilitates
effective policy learning. Our experiments on 8 real-world tasks
demonstrate an overall 75% absolute improvement over prior
works when evaluated in identical settings as training. Further,
Point Policy exhibits a 74% gain across tasks for novel object
instances and is robust to significant background clutter. Videos
of the robot are best viewed at point-policy.github.io.
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I. INTRODUCTION

Recent years have witnessed remarkable advancements in
computer vision (CV) and natural language processing (NLP),
resulting in models capable of complex reasoning [1, 2, 3],
generating photorealistic images [4, 5] and videos [6], and
even writing code [7]. A driving force behind these break-
throughs has been the abundance of data scraped from the
internet. In contrast, robotics has yet to experience a similar
revolution, with most robots still confined to controlled or
structured environments. While CV and NLP can readily take
advantage of large-scale datasets from the internet, robotics
is inherently interactive and requires physical engagement
with the world for data acquisition. This makes collecting
robot data significantly more challenging, both in terms of
time and financial resources.

A prominent approach for training robot policies has been
the collection of extensive datasets, often through contracted
teleoperators [8, 9, 10], followed by training deep networks on
these datasets [10, 11, 12, 13]. While effective, these methods
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tend to require months or even years of human effort [9, 13]
and still result in datasets orders of magnitude smaller than
those used in CV and NLP [12, 13]. A potential solution to
this data scarcity in robotics is to tap into the vast repository
of human videos available online, showcasing individuals
performing a wide range of tasks in diverse scenarios.

The primary challenge in learning robot policies from
human videos lies in addressing the morphology gap between
robots and the human body [14, 15, 16, 17, 18]. Two notable
trends have emerged in efforts to utilize human data for
learning robot policies: (1) first learning visual representations
or coarse policies from human datasets and then finetuning
them for downstream learning on robot datasets [16, 17,
18, 19, 20, 21, 22, 23, 24], and (2) using human videos to
compute rewards for autonomous policy learning through
reinforcement learning [25, 14, 15, 26]. While the former
requires a substantial amount of robot demonstrations to learn
policies for downstream tasks, the latter often requires large
amounts of online robot interactions in the real world, which
can be time-consuming and potentially unsafe.

In this work, we introduce Point Policy, a new technique
to learn robot policies solely from offline human data
without requiring robot interactions during training. Our key
observation in building Point Policy is that both humans and
robots occupy the same 3D space in the world, which can be
tied together using key points derived from state-of-the-art
vision models.

Concretely, Point Policy works in three steps. First, given
a dataset of human videos, a motion track of key points
on the human hand and the object is computed using hand
pose detectors [27, 28] and minimal human annotation of
one frame per task. These key points are computed from
two camera views, which allows for projection in 3D using
point triangulation. Second, a transformer-based policy [29]
is trained to predict future robot points given the set of key
points derived in the previous stage. Third, during inference,
the predicted future robot points in 3D space are used to
backtrack the 6 DOF pose of the robot’s end-effector using
constraints from rigid-body geometry. The gripper state of
the robot end effector is predicted as an additional token.
The predicted end-effector pose and gripper state are then
executed on the robot at 6 Hz.

We demonstrate the effectiveness of Point Policy through
experiments on 8 real-world tasks on a Franka robot. Our
main findings are summarized below:
1) Point Policy exhibits an absolute improvement of 75%

over prior state-of-the-art policy learning algorithms across
8 real world tasks when evaluated in identical settings as
training. (Section V-D).

2) Point Policy generalizes to novel object instances, ex-
hibited a 74% absolute improvement over prior work
on a held-out set of objects unseen in the training data.
(Section V-E).

3) Policies trained with Point Policy are robust to the presence
of background distractors, performing at par with scenes
without clutter (Section V-F).

4) We provide an analysis of co-training Point Policy with

teleoperated robot data (Section E.2) and study the
importance of several design choices in Point Policy
(Section V-G).

All of our datasets, and training and evaluation code have
been made publicly available. Videos of our trained policies
can be seen here: point-policy.github.io.

II. RELATED WORKS

A. Imitation Learning

Imitation Learning (IL) [30] refers to training policies with
expert demonstrations, without requiring a predefined reward
function. In the context of reinforcement learning (RL), this
is often referred to as inverse RL [31, 32], where the reward
function is derived from the demonstrations and used to
train a policy [33, 34, 35, 36, 37]. While these methods
reduce the need for extensive human demonstrations, they
still suffer from significant sample inefficiency. As a result of
this inefficiency in deploying RL policies in the real world, be-
havior cloning (BC) [38, 39, 40, 41] has become increasingly
popular in robotics. Recent advances in BC have demon-
strated success in learning policies for both long-horizon
tasks [42, 43, 44] and multi-task scenarios [29, 45, 46, 16, 17].
However, most of these approaches rely on image-based
representations [47, 29, 48, 45, 46, 49], which limits their
ability to generalize to new objects and function effectively
outside of controlled lab environments. In this work, we
propose Point Policy, which attempts to address this reliance
on image representations by directly using key points as an
input to the policy instead of raw images. Through extensive
experiments, we observe that such an abstraction helps learn
robust policies that generalize across varying scenarios.

B. Object-centric Representation Learning

Object-centric representation learning aims to create struc-
tured representations for individual components within a
scene, rather than treating the scene as a whole. Common tech-
niques in this area include segmenting scenes into bounding
boxes [50, 43, 51, 52, 53] and estimating object poses [54, 55].
While bounding boxes show promise, they share similar
limitations with non object-centric image-based models, such
as overfitting to specific object instances. Pose estimation,
although less prone to overfitting, requires separate models
for each object in a task. Another popular method involves
using point clouds [56, 57], but their high dimensionality
necessitates specialized models, making it difficult to accu-
rately capture spatial relationships. Lately, several works have
resorted to adopting key points [58, 59, 60, 16, 17, 18, 61, 62,
63, 64, 65, 66, 67] for policy learning due to their generaliza-
tion ability. Further, key points also allow the direct injection
of human priors into the policy learning pipeline [16, 17, 18]
as opposed to learning representations from human videos fol-
lowed by downstream learning on robot teleoperated data [19,
20, 21, 22, 23, 24]. In this work, we leverage key points
as a unified observation and action space to enable learning
generalizable policies exclusively from human videos.
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Fig. 2: Overview of the Point Policy framework. (a) Point Policy leverages state-of-the-art vision models and policy architectures to
translate human hand poses into robot poses while capturing object states through sparse single-frame annotations. (b) The derived key
points are fed into a transformer policy to predict the 3D future point tracks from which the robot actions are computed through rigid-body
geometry constraints. (c) Finally, the computed action is executed on the robot using end-effector position control at a 6Hz frequency.

C. Human-to-Robot Transfer for Policy Learning

There have been several attempts at learning robot policies
from human videos. Some works first learn visual represen-
tations from large-scale human video datasets and learn a
downstream policy on these representations using limited
amounts of robot data [19, 20, 21, 22, 23, 24]. Another line
of work learns coarse policies from human videos, using key
points [16] and generative modeling [17], which are then
improved using downstream learning on robot data. Recently
proposed MT-π [18] alleviates the need for downstream learn-
ing by co-training a key point policy with human and robot
data. A caveat in all these works is that despite having access
to abundant human demonstrations, there is a need to collect
robot data to achieve a highly performant policy. A recently
emerging line of work [68] attempts to do away with this need
for robot data by doing in-context learning with state-of-the-
art vision-language models (VLMs) [2, 1, 3]. However, owing
to the large compute times of VLMs, these policies are re-
quired to be deployed open-loop and hence, are not reactive to
changes in the scene. In this work, we propose Point Policy, a
new framework that learns generalizable policies from human
videos, does not require robot demonstrations or online robot
interactions, and can be executed in a closed-loop fashion.

III. BACKGROUND

A. Imitation learning

The goal of imitation learning is to learn a behavior policy
πb given access to either the expert policy πe or trajectories
derived from the expert policy τe. This work operates in
the setting where the agent only has access to observation-
based trajectories, i.e. τe ≡ {(ot, at)Tt=0}Nn=0. Here N
and T denote the number of demonstrations and episode
timesteps respectively. We choose this specific setting since
obtaining observations and actions from expert or near-expert
demonstrators is feasible in real-world settings [69, 70] and
falls in line with recent work in this area [29, 71, 69, 48, 72].

B. Behavior Cloning

Behavior Cloning (BC) [73, 74] corresponds to solving
the maximum likelihood problem shown in Eq. 1. Here T e

refers to expert demonstrations. When parameterized by a
normal distribution with fixed variance, the objective can be
framed as a regression problem where, given observations
oe, πBC needs to output ae.

LBC = E(oe,ae)∼T e∥ae − πBC(oe)∥2 (1)

After training, it enables πBC to mimic the actions
corresponding to the observations seen in the demonstrations.



C. Semantic Correspondence and Point Tracking

Semantic correspondence and point tracking are fundamen-
tal problems in computer vision. Semantic correspondence
matches semantically equivalent points between images of
different scenes, while point tracking follows reference points
across video frames. We leverage these ideas using two
state-of-the-art models: DIFT [75] and Co-Tracker [76].
DIFT establishes correspondences between reference and
observed images, as illustrated in Figure 3, while Co-Tracker
tracks initialized key points throughout the video trajectory
(Figure 2). This integration enables robust identification and
tracking of semantically meaningful points across diverse
visual scenarios, forming a key component Point Policy. We
have included a more detailed explanation in Appendix A.

IV. POINT POLICY

Point Policy seeks to learn generalizable policies exclu-
sively from human videos that are robust to significant
environmental perturbations and applicable to diverse object
locations and types. An overview of our method is presented
in Figure 2. Before diving into the details, we first present
some of the key assumptions needed to run Point Policy.

Assumptions: (1) The pose of the human hand in the first
frame is known for each task. This is needed to initialize the
robot and set that pose as the base frame of operation. This
assumption can be relaxed with a hand-pose estimator [28],
which we do not investigate in this work. (2) We operate in
a calibrated scene with the camera’s intrinsic and extrinsic
matrices, and the transforms between each camera and the
robot base known. In practice this is a one-time process that
takes under 5 minutes when the robot system is first installed.

A. Point-based Scene Representation

Our method begins by collecting human demonstrations,
which are then converted to a point-based representation
amenable to policy learning.

1) Human-to-Robot Pose Transfer: For each time step t
of a human video, we first extract image key points on the
human hand pth using the MediaPipe [27] hand pose detector,
focusing specifically on the index finger and thumb. The
corresponding hand key points pth obtained from two camera
views are used to compute the 3D world coordinates Pt

h of
the human hand through point triangulation. We use point
triangulation for 3D projection due to its higher accuracy
as compared to sensor depth from the camera (Section V-
G). The robot position Rt

pos is computed as the midpoint
between the tips of the index finger and thumb in Pt

h. The
robot orientation Rt

ori is computed as

∆Rt
ori = T (P0

h,Pt
h)

Rt
ori = ∆Rt

ori · R0
ori

(2)

where T computes the rigid transform between hand key
points on the first frame of the video, P0

h, and Pt
h. The robot

end effector pose is then represented at T t
r ← {Rt

pos,Rt
ori}.

The robot’s gripper state Rg is computed using the distance
between the tip of the index finger and thumb. The gripper

is considered closed when the distance is less than 7cm,
otherwise open. Finally, given the robot pose T t

r , we define
a set of N rigid transformations T about the computed robot
pose and compute robot key points Pt

r such that

(Pt
r)

i = T t
r · T i, ∀i ∈ {1, ..., N} (3)

This process has been demonstrated in Figure 2. This
approach effectively bridges the morphological gap between
human hands and robot manipulators, enabling accurate
transfer of demonstrated actions to a robotic framework.

2) Environment state through point priors: To obtain key
points on task-relevant objects in the scene, we adopt the
method proposed by P3PO [58]. Initially, a user randomly
selects one demonstration from a dataset of human videos
and annotates semantically meaningful object points on the
first frame that are pertinent to the task being performed.
This annotation process is quick, taking only a few seconds.
The user-annotated points serve as priors for subsequent data
generation. Using an off-the-shelf semantic correspondence
model, DIFT [75], we transfer the annotated points from the
first frame to the corresponding locations in the first frames
of all other demonstrations within the dataset. This approach
allows us to initialize key points throughout the data set with
minimal additional human effort.

For each demonstration, we then employ Co-Tracker [76],
an off-the-shelf point tracker, to automatically track these
initialized key points throughout the entire trajectory. By lever-
aging existing vision models for correspondence and tracking,
we efficiently compute object key points for every frame in
the dataset while requiring user input for only a single frame.
This process, illustrated in Figure 3, capitalizes on large-scale
pre-training of vision models to generalize across new object
instances and scenes without necessitating further training.
We prefer point tracking over correspondence at each frame
due to its faster inference speed and its capability to handle
occlusions by continuing to track points. The corresponding
object points from two camera views are lifted to 3D world
coordinates using point triangulation to obtain the 3D object
key points Po. During inference, DIFT is employed to identify
corresponding object key points on the first frame, followed
by Co-Tracker tracking these points during execution.

It is important to note that Point Policy utilizes multiple
camera views only for point triangulation, with the policy
being learned on 3D key points grounded in the robot’s base
frame. More details on point triangulation can be found in
Appendix B.1.

B. Policy Learning

For policy learning, we use BAKU [29]. Instead of
providing raw images as input, we provide the robot points
Pr and object points Po grounded in the robot’s base frame
as input to the policy. A history of observations for each key
point is flattened into a single vector which is then encoded
using a multilayer perceptron (MLP) encoder. The encoded
representations are fed as separate tokens along with a gripper
token into a BAKU [29] transformer policy, which predicts
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Fig. 3: Results of the correspondence model when used for the put
bottle on rack and sweep broom tasks. On the left is a frame with
human annotations for the object points. On the right, we show
that semantic correspondence can identify the same points across
different positions, new object instances, and background clutter.

the future tracks for each robot point P̂r and the robot gripper
state Ĝr using a deterministic action head. Mathematically,
this can be represented as

Ot−H:t = {Pt−H:t
r , Pt−H:t

o }
P̂t+1
r , Gt+1

r = π(·| Ot−H:t)
(4)

where H is the history length and π is the learned policy.
Following prior works in policy learning [69, 48], we use
action chunking with exponential temporal averaging to
ensure temporal smoothness of the predicted point tracks.
The transformer is non-causal in this scenario and hence the
training loss is only applied to the robot point tracks.

C. Backtrack Robot Actions from Predicted Key Points

The predicted robot points P̂r are mapped back to the
robot pose using constraints from rigid-body geometry. We
first consider the key point corresponding to the robot’s wrist
P̂wrist
r as the robot position R̂pos. The robot orientation R̂ori

is computed using Eq. 2 considering R0
ori is fixed and known.

Finally, the robot action Ar is defined as

Âr = (R̂pos, R̂ori, Ĝr) (5)

Finally, the action Âr is executed on the robot using end-
effector position control at a 6Hz frequency.

V. EXPERIMENTS

Our experiments are designed to answer the following
questions: (1) How well does Point Policy work for policy
learning? (2) How well does Point Policy work for novel
object instances? (3) Can Point Policy handle background
distractors? (4) Can Point Policy be improved with robot
demonstrations? (5) What design choices matter for human-
to-robot learning?

A. Experimental Setup

Our experiments utilize a Franka Research 3 robot equipped
with a Franka Hand gripper, operating in a real-world
environment. We use the Deoxys [53] real-time controller for
controlling the robot. The policies utilize RGB and RGB-D

images captured using Intel RealSense D435 cameras from
two third-person camera views. The action space encompasses
the robot’s end effector pose and gripper state. We collect a
total of 190 human demonstrations across 8 real-world tasks,
featuring diverse object positions and types. Additionally, for
studying the effect of co-training with robot data (Section E.2),
we collect a total of 100 robot demonstrations for 4 tasks
(Section E.2) using a VR-based teleoperation framework [70].
All demonstrations are recorded at a 20Hz frequency and
subsequently subsampled to approximately 6Hz. For methods
that directly predict robot actions, we employ absolute
actions during training, with orientation represented using a
6D rotation representation [77]. This representation is chosen
for its continuity and fast convergence properties. The learned
policies are deployed at a 6Hz frequency during execution.

B. Task Descriptions

We experiment with manipulation tasks with significant
variability in object position, type, and background context.
Figure 5 depicts rollouts for all of our tasks. For each task,
we collect data across various object sizes and appearances.
During evaluations, we add novel object instances that are
unseen during training. The variations in positions and object
instances for selected tasks are depicted in Figure 4, with
more examples provided in Appendix E.3. We provide a brief
description of each task below.

a) Close drawer: The robot arm is tasked with pushing
close a drawer placed on the table. The position of the drawer
varies for each evaluation. We collect 20 demonstrations for
a single drawer and run evaluations on the same drawer.

b) Put bread on plate: The robot arm picks up a piece
of bread from the table and places it on a plate. The positions
of the bread and the plate are varied for each evaluation. We
collect 30 demonstrations for the task of a single bread-plate
pair. During evaluations, we introduce two new plates.

c) Fold towel: The robot arm picks up a towel placed
on the table from a corner and folds it. The position
of the towel varies for each evaluation. We collect 20
demonstrations for a single towel. During evaluations, we
introduce two new towels.

d) Close oven: The robot arm is tasked with closing
the door of an oven. The position of the oven varies for each
evaluation. We collect 20 demonstrations for the task on a
single oven and run evaluations on the same oven.

e) Sweep broom: The robot arm picks up a broom and
sweeps the table. The position and orientation of the broom
are varied across evaluations. We collect 20 demonstrations
for a single broom. During evaluations, we introduce a new
broom.

f) Put bottle on rack: The robot arm picks up a bottle
from the table and places it on the lower level of a kitchen
rack. The position of the bottle is varied for each evaluation.
We collect 15 demonstrations for 2 different bottles, resulting
in a total of 30 demonstrations for the task. During evaluations,
we introduce three new bottles.
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Fig. 4: (left) Illustration of spatial variation used in our experiments. (right) Range of objects used in our experiments, where the objects
on the left are in-domain objects while on the right are unseen objects used in our generalization experiments.

g) Put bowl in oven: The robot arm picks up a bowl
from the table and places it inside an oven. The position of the
bowl varies for each evaluation. We collect 20 demonstrations
for the task with a single bowl. During evaluations, we
introduce a new bowl.

h) Make bottle upright: The robot arm pick up a bottle
from the table and places it in an upright position. The
position of the bottle varies for each evaluation. We collect
15 demonstrations for 2 different bottles, resulting in a total
of 30 demonstrations for the task. During evaluations, we
introduce two new bottles.

C. Baselines

We compare Point Policy with 4 baselines - behavior
cloning (BC) [29] with RGB and RGB-D images, Motion
Tracks [18], and P3-PO [58]. We describe each method below.

a) Behavior Cloning (BC) [29]: This method performs
behavior cloning (BC) using the BAKU policy learning
architecture [29], which takes RGB images of the human
hand as input and predicts the extracted robot actions as
output.

b) Behavior Cloning (BC) with Depth: This is similar
to BC but uses both RGB and depth images as input.

c) Motion Track Policy (MT-π) [18]: Given an image of
the scene and robot key points on the image, MT-π predicts
the future 2D robot point tracks to complete a task. This
approach generates future 2D point tracks for robot points
across multiple views, which are then triangulated to obtain
3D points on the robot. These 3D points are subsequently
converted to the robot’s absolute pose (similar to our proposed
method) and treated as the robot’s action. Implementation
details for MT-π have been provided in Appendix D.

d) P3-PO [58]: This method utilizes image points
representing both the robot and objects of interest, projecting
them into 3D space using camera depth information. These
3D points serve as input to a transformer policy [29], which
predicts robot actions. P3PO’s 3D point representations,

akin to those in Point Policy, enable spatial generalization,
adaptability to novel object instances, and robustness to
background clutter.

D. How well does Point Policy work for policy learning?

We evaluate Point Policy in an in-domain setting, using the
same objects seen during training. The evaluation consists of
10 trials per object for each task, resulting in a variable total
number of trials per task. The results of this evaluation are
summarized in Table I. Baselines that rely on RGB images as
inputs (RGB, RGB-D, MT-π) perform poorly when trained
exclusively on human hand videos. This is largely due to the
significant visual differences between the human hand and
the robot manipulator. While appearance-agnostic, P3-PO
struggles due to noisy depth data from the camera. Point
Policy achieves an average success rate of 88% across all
tasks, outperforming the strongest baseline MT-π by 75%.
Overall, these results demonstrate that Point Policy’s ability
to effectively address challenges related to visual differences
and noisy depth data, achieving state-of-the-art performance
in an in-domain setting.

E. How well does Point Policy work for novel object in-
stances?

Table II compares the performance of Point Policy when
evaluated on new object instances unseen in the training
data. We perform this comparison on a subset of our tasks.
We observe that Point Policy achieves an average success
rate of 74% across all tasks, outperforming the strongest
baseline by 73%. Compared to P3PO[58], where each task
is trained with a variety of object sizes, most of our tasks
are trained on a single object instance. Despite this limited
diversity in the training data, Point Policy demonstrates robust
generalization capabilities. Figure 6 depicts rollouts of Point
Policy for novel object instances. For a visual reference of
the novel object instances used for each task, please refer
to Appendix E.3. These results affirm Point Policy’s strong



TABLE I: Policy performance of Point Policy on in-domain object instances on 8 real-world tasks.

Method Close
drawer

Put bread
on plate

Fold
towel

Close
oven

Sweep
broom

Put bottle
on rack

Put bowl
in oven

Make bottle
upright

BC [29] 0/10 0/20 0/10 0/10 0/10 0/30 1/10 0/20
BC w/ Depth 0/10 0/20 0/10 0/10 0/10 0/30 0/10 0/20
MT-π [18] 2/10 2/20 0/10 4/10 0/10 8/30 0/10 0/20
P3-PO [58] 0/10 0/20 0/10 0/10 0/10 0/30 0/10 0/20
Point Policy (Ours) 10/10 19/20 9/10 9/10 9/10 26/30 8/10 16/20

TABLE II: Policy performance of Point Policy on novel object instances on 6 real-world tasks.

Method Put bread
on plate

Fold
towel

Sweep
broom

Put bottle
on rack

Put bowl
in oven

Make bottle
upright

BC [29] 0/20 0/20 0/10 0/30 0/10 0/20
BC w/ Depth 0/20 0/20 0/20 0/30 0/10 0/20
MT-π [18] 1/20 0/20 0/10 0/30 0/10 0/20
P3-PO [58] 0/20 0/20 0/10 0/30 0/10 0/20
Point Policy (Ours) 18/20 15/20 4/10 27/30 9/10 9/20

TABLE III: Policy performance of Point Policy with background distractors on both in-domain and novel object instances.

Background distractors Put bread on plate Sweep broom Put bottle on rack

In-domain Novel object In-domain Novel object In-domain Novel object

✗ 19/20 18/20 9/10 4/10 26/30 27/30
✓ 18/20 18/20 9/10 2/10 23/30 23/30

Close drawer Put bread on a plate

Close ovenFold towel

Sweep with broom Put bottle on rack

Put bowl in oven Make bottle upright

Fig. 5: Real-world rollouts showing Point Policy’s ability on in-domain objects across 8 real-world tasks.

generalization capabilities, making it suitable for real-world
applications where encountering unseen objects is common.

F. Can Point Policy handle background distractors?

We evaluate the robustness of Point Policy in the presence
of background clutter, as shown in Table III. This study is
conducted on three tasks - put bread on plate, sweep broom,



TABLE IV: The effect of triangulated depth on P3PO and Point
Policy.

Method Put bread
on plate

Sweep
broom

Put bottle
on rack

P3PO 0/20 0/10 0/30
P3PO + Triangulated Depth 17/20 4/10 23/30
Point Policy 19/20 9/10 26/30
Point Policy - Triangulated Depth 0/20 0/10 0/30

TABLE V: Importance of object point inputs for policy learning.

Method Close
drawer

Put bread
on plate

Fold
towel

Make bottle
upright

MT-π 2/10 2/20 0/10 0/20
MT-π + object points 8/10 1/20 6/10 2/20
Point Policy 10/10 19/20 9/10 16/20

and put bottle on rack. Trials are conducted using both in-
domain and novel object instances. Examples of the distractors
used are illustrated in Figure 2, with Figure 6 depicting
rollouts of Point Policy in the presence of background
distractors. We observe that Point Policy is robust to
background clutter, exhibiting either comparable performance
or only minimal degradation in the presence of background
distractors. This robustness can be attributed to Point Policy’s
use of point-based representations, which are decoupled from
raw pixel values. By focusing on semantically meaningful
points rather than image-level features, Point Policy enables
policies that are resilient to environmental perturbations.

G. What design choices matter for human-to-robot learning?

This section examines the impact of key design decisions
on learning from human videos.

a) Depth Sensing: In Point Policy, we utilize point
triangulation from two camera views to obtain 3D key
points, rather than relying on depth maps from the camera.
We hypothesize that noisy camera depth leads to imprecise
3D key points, resulting in unreliable actions. Table IV
tests this hypothesis on 4 real-world tasks by comparing
the performance of P3PO and Point Policy with and without
triangulated depth. We observe that adding triangulated depth
to P3PO improves its performance from 0% to 72%. Further,
removing triangulated depth from Point Policy reduces its
performance from 90% to 0%. These results emphasize the
importance of obtaining accurate 3D key points from human
hands when learning robot policies from human videos.
Appendix E.4 includes an illustration of imprecise actions
resulting from noisy sensor depth.

b) Significance of Object Points: While Point Policy
uses robot and object key points as input to the policy, MT-
π [18], the best-performing baseline in Table I, only uses robot
key points and obtains information about the rest of the scene
through an input image. We hypothesize that using object
points can improve policy learning performance, especially
when there is a morphology gap between data collection and
inference. Table V tests this hypothesis by providing object
points in addition to the robot points already passed as input
into MT-π. We observe that adding object points improves
the performance of MT-π on select tasks(comprehensive

results on all tasks included in Appendix E.5), suggesting
that including object points in the input offers a potential
advantage. Nevertheless, Point Policy outperforms both
methods by 68% across all tasks, emphasizing the efficacy of
predicting 3D key points rather than 2D key points in image
space.

VI. CONCLUSION AND LIMITATIONS

In this work, we presented Point Policy, a framework that
enables learning robot policies exclusively from human videos,
does not require real-world online interactions, and exhibits
generalization to spatial variations, new object instances, and
robustness to background clutter.

Limitations: We recognize a few limitations in this work:
(1) Point Policy’s reliance on existing vision models makes
it susceptible to their failures. For instance, failures in hand
pose detection or point tracking under occlusion have a
detrimental effect on performance. However, with continued
advances in computer vision, we believe that frameworks such
as Point Policy will become stronger over time. (2) Point-
based abstractions enhance generalization capabilities, but
sacrifice valuable scene context information, which is crucial
for navigating through cluttered or obstacle-rich environments.
Future research focusing on developing algorithms that
preserve sparse contextual cues in addition to the point
abstractions in Point Policy might help address this. (3) While
all our experiments are from a fixed third-person camera
view, a large portion of human task videos on the internet are
from an egocentric view [78, 79]. Extending Point Policy
to egocentric camera views can help us utilize these vast
repositories of human videos readily available on the internet.
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APPENDIX

A. Background
1) Semantic Correspondence: Finding corresponding points

across multiple images of the same scene is a well-established prob-
lem in computer vision [80, 81]. Correspondence is essential for solv-
ing a range of larger challenges, including 3D reconstruction [82, 83],
motion tracking [76, 84, 85, 86], image registration [81], and object
recognition [87]. In contrast, semantic correspondence focuses on
matching points between a source image and an image of a different
scene (e.g., identifying the left eye of a cat in relation to the left eye
of a dog). Traditional correspondence methods [81, 80] often struggle
with semantic correspondence due to the substantial differences in
features between the images. Recent advancements in semantic
correspondence utilize deep learning and dense correspondence
techniques to enhance robustness [88, 89, 90] across variations in
background, lighting, and camera perspectives. In this work, we
adopt a diffusion-based point correspondence model, DIFT [75],
to establish correspondences between a reference and an observed
image, which is illustrated in Figure 3.

2) Point Tracking: Point tracking across videos is a problem
in computer vision, where a set of reference points are given in
the first frame of the video, and the task is to track these points
across multiple frames of the video sequence. Point tracking has
proven crucial for many applications, including motion analysis [91],
object tracking [92], and visual odometry [93]. The goal is to
establish reliable correspondences between points in one frame and
their counterparts in subsequent frames, despite challenges such
as changes in illumination, occlusions, and camera motion. While
traditional point tracking methods rely on detecting local features in
images, more recent advancements leverage deep learning and dense
correspondence methods to improve robustness and accuracy [76,
84, 85]. In this work, we use Co-Tracker [76] to track a set of
reference points defined in the first frame of a robot’s trajectory.
These points tracked through the entire trajectory are then used to
train generalizable robot policies for the real world.

B. Algorithmic Details
1) Point Triangulation: Point triangulation is a fundamental

technique in computer vision used to reconstruct 3D points from
their 2D projections in multiple images. Given n cameras with
known projection matrices P1, P2, ..., Pn and corresponding 2D
image points x1, x2, ..., xn, the goal is to find the 3D point X that
best explains these observations.

The projection of X onto each image is given by:

xi ∼ PiX

where ∼ denotes equality up to scale.
One common approach is the Direct Linear Transform (DLT)

method:
1) For each view i, we can form two linear equations:

xi(p
3
i ·X)− (p1i ·X) = 0

yi(p
3
i ·X)− (p2i ·X) = 0

where pji is the j-th row of Pi.
2) Combining equations from all views, we get a system AX = 0.
3) The solution is the unit vector corresponding to the smallest

singular value of A, found via Singular Value Decomposition
(SVD).

For optimal triangulation, we aim to minimize the geometric
reprojection error.

C. Hyperparameters
The complete list of hyperparameters is provided in Table VI.

Details about the number of demonstrations for each task has been
included in Section V-B, and summarized in Table VII. All the
models have been trained using a single NVIDIA RTX A4000 GPU.

D. Implementation Details for MT-π
Since the official implementation of MT-π is not yet public

available, we adopt the Diffusion Transformer (DiT) based im-
plementation of a 2D point track prediction model proposed by
(author?) [16]. We modify the architecture such that given a single
image observation and robot motion tracks on the image, the model
predicts future tracks of the robot points. These robot tracks are
then converted to 3D using corresponding tracks for two camera
views. The robot action is then computed from the 3D robot tracks
using the same rigid-body geometry constraints as Point Policy
(described in Section IV-C). MT-π proposes the use of a key point
retargeting network in order to convert the human hand and robot
key points to the same space. Since we already convert the human
hand key points to the corresponding robot points for Point Policy,
we directly use these converted robot points instead of learning a
separate keypoint retargeting network.

To ensure the correctness of our implementation, we evaluate MT-
π in a setting identical to the one described in their paper. We conduct
this evaluation on the put bread on plate task. We use 30 robot
teleoperated demonstrations in addition to the human demonstrations,
resulting in a total of 60 demonstrations. We observed a performance
of 18/20, thus, confirming the correctness of the implementation.

E. Experiments
1) Considerations for policy learning: Point Policy and

P3PO use a point-based representation obtained from 640 × 480
images. For correspondence, we use DIFT [75] using the first layer
of the hundredth diffusion time step with an ensemble size of 8. Point
tracking is performed using a modified version of Co-Tracker [76]
that enables tracking one frame at a time, rather than chunks. Point
Policy, MT-π, and P3PO use a history of 10 point observations,
while the image-based baselines do not use history [29]. BC (RGB),
BC (RGB-D), and MT-π are trained on images of size 256× 256.
All methods predict an action chunk [69] of size 20 (∼ 3 seconds).

2) Can Point Policy be improved with robot demonstra-
tions?: Table VIII investigates whether Point Policy’s performance
can be enhanced through co-training with teleoperated robot data,
collected using a VR-based teleoperation framework [70]. We
conduct this study on four tasks - put bread on plate, fold
towel, sweep broom, and make bottle upright. For each task,
we collect an equal number of robot demonstrations as human
demonstrations, resulting in 30, 20, 20, and 30 demonstrations
respectively. Interestingly, our findings reveal that for tasks involving
complex motions, such as sweep broom and make bottle upright,
policies trained solely on robot data perform poorly with the same
amount of data as compared to those trained exclusively on human
data. This drop in performance stems from the complex motions
in these tasks making it harder to collect robot data using VR
teleoperation, resulting in noisy demos. These results highlight an
important consideration: humans and robots may execute the same
task in different ways. Consequently, co-training with both human
and robot data requires the development of algorithms capable of
dealing with these differences effectively.

3) Illustration of Spatial Generalization and Novel Object
Instances: Figure 7 and Figure 8 illustrate the variations in object
positions and novel object instances used for each task, respectively.

4) Illustration of Depth Discrepancy: Figure 9 provides an
illustration of the discrepancy in actions obtained from sensor depth
and triangulated depth for the task of putting a bottle on the rack.
We observe that the noise in sensor depth leads to noise in robot
points which is turn results in unreliable actions.

5) Significance of Object Points: Table IX and Table X study
the performance of MT-π with and without object points and Point
Policy across all of our tasks. We observe that MT-π with object
points outperforms MT-π on select tasks, suggesting that including
object points in the input offers a potential advantage.



TABLE VI: List of hyperparameters.

Parameter Value

Learning rate 1e−4

Image size 256× 256 (for BC, BC w/ Depth, MT-π)

Batch size 64

Optimizer Adam

Number of training steps 100000

Transformer architecture minGPT [94] (for BC, BC w/ Depth, P3PO, Point Policy)

Diffusion Transformer [16] (for MT-π)

Hidden dim 256

Observation history length 1 (for BC, BC w/ Depth)

10 (for MT-π, P3PO, Point Policy)

Action head MLP

Action chunk length 20

TABLE VII: Number of demonstrations.

Task Number of object instances Total number of demonstrations

Close drawer 1 20

Put bread on plate 1 30

Fold towel 1 20

Close oven 1 20

Sweep broom 1 20

Put bottle on rack 2 30

Put bowl in oven 1 20

Make bottle upright 2 30

Novel Object Instances Background Distractors

Human Robot execution Human Robot execution

Fold towel Put bread on plate

Make bottle upright

Sweep with broomPut bowl in oven

Put bottle on rack

Fig. 6: Real-world rollouts showing that Point Policy generalizes to novel object instances and is robust to background distractors.



Put bottle on rack

Fold Towel

Sweep with broom Put bowl in oven

Close oven

Make bottle upright

Put bread on plateClose Drawer

Fig. 7: Illustration of spatial variation used in our experiments.

Fold Towel Sweep with broom

Put bottle on rack Put bowl in oven

Put bread on plate

Make bottle upright

Fig. 8: Illustration of objects used in our experiments. For each task, on the left are in-domain objects while on the right are novel objects
used in our generalization experiments.
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Fig. 9: Illustration of discrepancy in actions obtained from sensor depth and triangulated depth for the task of putting a bottle on the rack.



TABLE VIII: Policy performance of Point Policy with teleoperated
robot data on in-domain object instaces.

Demonstrations Put bread
on plate

Fold
towel

Sweep
broom

Make bottle
upright

Human 19/20 9/10 9/10 16/20
Robot 18/20 9/10 4/10 12/20

Human + Robot 20/20 9/10 8/10 8/20



TABLE IX: In-domain policy performance

Method Close
drawer

Put bread
on plate

Fold
towel

Close
oven

Sweep
broom

Put bottle
on rack

Put bowl
in oven

Make bottle
upright

MT-π [18] 2/10 2/20 0/10 4/10 0/10 8/30 0/10 0/20
MT-π + object points 1/20 6/10 1/20 4/10 0/10 0/10 2/20 8/10
Point Policy (Ours) 10/10 19/20 9/10 9/10 9/10 26/30 8/10 16/20

TABLE X: Policy performance on novel object instances

Method Put bread
on plate

Fold
towel

Sweep
broom

Put bottle
on rack

Put bowl
in oven

Make bottle
upright

MT-π [18] 1/20 0/20 0/10 0/30 0/10 0/20
MT-π + object points 2/20 0/20 0/20 1/10 0/10 1/20
Point Policy (Ours) 18/20 15/20 4/10 27/30 9/10 9/20
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