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Abstract

Score-based generative models or diffusion models have proven successful across
many domains in generating texts and images. However, the consideration of
mixed-type tabular data with this model family has fallen short so far. Existing
research mainly combines continuous and categorical diffusion processes and does
not explicitly account for the feature heterogeneity inherent to tabular data. In this
paper, we combine score matching and score interpolation to ensure a common
type of continuous noise distribution that affects both continuous and categorical
features. Further, we investigate the impact of distinct noise schedules per feature or
per data type. We allow for adaptive, learnable noise schedules to ensure optimally
allocated model capacity and balanced generative capability. Results show that
our model outperforms the benchmark models consistently and that accounting for
heterogeneity within the noise schedule design boosts sample quality.

1 Introduction

Score-based generative models [1], also known as diffusion models [2, 3], have demonstrated
outstanding capabilities for the generation of images [4, 5], videos [6], text [7–9], molecules [10]
and many other highly complex data structures. Although their standard formulation only applies to
continuous data, the framework has since been adapted to categorical data in various ways, including
discrete diffusion processes [11, 12], diffusion in continuous embedding space [7, 8, 13, 14] or other
approaches [15–17]. However, adaptions to mixed-type tabular data, which includes both continuous
and categorical features simultaneously, are lagging behind.

A crucial component in score-based generative models is the noise schedule [9, 18–21]. Typical
noise schedule designs try to focus learning on the timesteps most important to obtaining high
quality samples. Others attempt to learn the optimal noise schedule [8, 18]. Existing approaches
combine distinct diffusion processes for continuous and discrete data to derive a joint model for
mixed-type data [22, 23] or treat one-hot encoded categorical features as continuous during training
[24]. However, the inherently different types of diffusion processes make it difficult to optimally
balance the noise schedules across features (and feature types) which in turn negatively affects the
model’s capacity allocation across timesteps. On the other hand, non-continuous noise processes do
not allow the application of accelerated sampling [25] or classifier-free guidance [26], state-of-the-art
techniques developed in the image domain. Most importantly, the domain, nature and marginal
distribution of features in mixed-type tabular data can vary drastically [27]. For instance, any two
continuous features may be subject to different levels of discretization or different bounds, even
after applying common pre-processing techniques. Any two categorical features may have different
categories associated with them or one is much more imbalanced than the other. Therefore, an
effective modeling of the joint distribution of mixed-type tabular data with a diffusion model warrants
potentially different noise schedules per feature or data type.

In this paper, we investigate possibilities for accounting for the high feature heterogeneity in tabular
data. First, we combine score matching [28] with the recently proposed score interpolation method
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[8] to derive a score-based model for mixed-type data that uses a Gaussian diffusion process for both
continuous and categorical features. This way, the noise processes become directly comparable and
easier to balance against each other. Second, instead of a single noise schedule across all features,
we investigate the use of feature-specific noise schedules, distinct noise schedules per feature type,
a single noise schedule for both types, and a single noise schedule for continuous features while
imposing feature-specific noise schedules on categorical features. Lastly, we make those noise
schedules adaptive such that the noise schedule can directly take feature or type heterogeneity into
account. This ensures a better allocation of model capacity across features and timesteps both during
training and generation and ensures high quality samples.

2 Model Preliminaries

First, we briefly explain the score-based frameworks for continuous and categorical data types. These
are afterwards combined in a single diffusion model to learn the joint distribution of the data.

2.1 Score-based Generative Model for Continuous Features

Let {xt}Tt=0 be a diffusion process that gradually adds noise in continuous time t ∈ [0, T ] to
x0 ≡ xcont ∈ RKcont , the vector of continuous features. The data sample distribution at time t, pt(x),
evolves from the real data distribution p0(x) to a terminal distribution pT (x). Our goal is to learn the
reverse process that allows us to go from noise xT ∼ pT (x) to a new data sample x∗

0 ∼ p0(x).

The forward-pass of such a continuous-time diffusion process is formulated as the solution to a
stochastic differential equation (SDE):

dx = f(x, t)dt+ g(t)dw, (1)

where f(·, t) : RKcont → RKcont is the drift coefficient, g(·) : R → R is the diffusion coefficient, and
w is the Brownian motion [1]. The reversion of this diffusion process yields the trajectory of x as t
goes backwards in time from T to 0. This reverse-time process can be formulated as a probability
flow ordinary differential equation (ODE):

dx =
[
f(x, t)− 1

2
g(t)2∇x log pt(x)

]
dt, (2)

[see also 1]. In Eq. (2), the only unknown is the score function ∇xt log p(xt). We approximate the
score function by training a time-dependent score-based model sθ(x, t), parameterized by θ, via
score matching [28]: The denoising score matching (DSM) objective is

min
θ

Et

[
λ(t)Ex0

Ext|x0

[
∥sθ(xt, t)−∇xt

log p0t(xt|x0)∥22
]]
, (3)

where λ : [0, T ] → R+ is a positive weighting function for timesteps t, t ∼ U[0,T ], and p0t(xt|x0) is
the noise-inducing conditional distribution that adds noise to the ground-truth data [29].

An affine function for f(·, t) implies p0t(xt|x0) = N (xt|x0, σ
2
t I), and with T being sufficiently

large the reverse process is started by sampling xT ∼ pT (x) = N (0, σ2
T I). We then guide data

samples towards high density regions in the data space, for each possible timestep in the reverse
process, with the trained score model as a replacement for the true and unknown score function. For
this iterative denoising process, blackbox ODE or predictor-corrector samplers can be used [1].

2.2 Score-based Generative Model for Categorical Features

Since the score function is undefined for categorical data, the score-based generative framework
cannot be directly applied to such data. Dieleman et al. [8] propose score interpolation to push the
diffusion of categorical data into Euclidean embedding space. This way, unlike other diffusion models
for mixed-type data, we can impose the same type of noise distribution on both categorical and
continuous features. The model is able to take feature-specific uncertainty at intermediate timesteps
fully into account, which improves the consistency of generated samples [8]. We show that score
interpolation also facilitates an efficient modeling of mixed-type data as more subtle dependencies
across types can be captured.
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Let x(j)
cat ∈ {1, . . . , Cj} be the jth categorical feature with Cj possible classes. We can associate

a distinct, trainable d-dimensional embedding vector ei ∈ Rd with each class i = 1, . . . , Cj

We denote the embedding vector corresponding to the ground truth class for a single feature as
x0 ∈ {e1, . . . , eCj} and its noisy variant at time t as xt ∼ N (x0, σ

2
t Id).

Given xt and t, the expectation Ep(x0|xt,t)[∇xt
log p0t(xt|x0)] is the minimizer of Eq. (3). Accord-

ingly, we have

Ep(x0|xt,t)∇xt
log p(xt|x0) = Ep(x0|xt,t)

x0 − xt

σ2
t

=
Ep(x0|xt,t)[x0]− xt

σ2
t

. (4)

Thus, we can train a model to estimate p(x0|xt, t) and obtain x̂0 = Ep(x0|xt,t)[x0] as the weighted
average over the Cj possible embedding vectors, to derive a score function estimate. Since
p(x0 = ei|xt, t) = p(x

(j)
cat = i|xt, t), an estimate of p(x0|xt, t) can be obtained via a classifier

that predicts Cj class probabilities for the jth feature and is trained via cross-entropy loss. The same
framework applies to all categorical features in the dataset.

We start the generative process for each categorical feature from an embedding vector xT ∼
N (0, σ2

T Id). We then use the learned classifier and score interpolation to gradually denoise the
embedding vectors. After the last timestep, we use the predicted feature-specific class probabilities to
directly infer the generated classes.

3 Continuous Diffusion for Mixed-Type Tabular Data

In order to learn the joint distribution of tabular data with continuous and categorical features,
we combine the score matching (see Eq. (3)) and score interpolation (see Eq. (4)) to retrieve the
score function estimates ŝ(i)cont and ŝ

(j)
cat , respectively. An overview of our Continuous Diffusion for

Mixed-Type Tabular Data (CDTD) framework is given in Figure 1. The Gaussian noise process
acts directly on the continuous features, but on the embeddings of categorical features. This ensures
a common continuous noise process for both data types, and also enables the application of, for
instance, classifier-free guidance [26], to both types of features. The noise processes are directly
influenced by potentially feature-specific transformed timesteps ti, tj , derived from timewarping.
We use a joint Transformer model to parameterize the score model and the classifier required for
score interpolation, and to allow for detailed across-type inter-dependencies. We adapt the Diffusion
Transformer [30] to tabular data by embedding continuous features using sinusoidal embeddings.
The implementation details are given in Appendix E.

Cat. Embedder

Transformer
Cross-entropy loss

logits

Score interpolation

TimewarpingCont. Embedder

Cont. Embedding

ODE solver

Score matching

Cat. Embedding

Mean squared error

concat

continuous features categorical features

for generation

Figure 1: Continuous Diffusion for Mixed-Type Tabular Data (CDTD). The left side relates to the
score model for continuous features, the right side describes the score interpolation for categorical
features. Timewarping allows for a potentially feature-specific, learnable timestep, to diffuse the
scalar values (for continuous features) or the embeddings (for categorical features). The approximated
score functions are concatenated and passed to a blackbox ODE solver during the sample generation.
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For continuous features, the Transformer output is used to predict the ground-truth scalar value; for
categorical features, it yields the probability of each class. The model inputs are the set of noisy scalar
values and noisy embeddings for continuous and categorical features, respectively. We also condition
the model on the potentially feature- or type-specific timesteps, tk, which affect the respective noise
schedules and are derived from the timewarping we discuss below.

We train the model on the joint loss function:

Ljoint(θ) =
1

αKcat + (1− α)Kcont

[
(1− α)

Kcont∑
i=1

ℓ
(i)
cont(θ) + α

Kcat∑
j=1

ℓ
(j)
cat (θ)

]
, (5)

where ℓ
(i)
cont(θ) is the score matching loss of the ith continuous feature, ℓ(j)cat (θ) is the cross-entropy

loss of the jth categorical feature, and α is the relative weight of the two loss types, which for
simplicity we set to 0.5 hereafter. For sampling, the concatenated score function estimates are input
to an ODE solver (Euler with 200 steps to minimize the discretization error).

3.1 Feature-specific and Adaptive Noise Schedules

Even though we embed all categorical features in the same Euclidean embedding space, it is unlikely
that a single noise schedule is optimal for all features. For a given embedding dimension, more noise
is needed to remove a given amount of signal from embeddings of features with fewer categories.
Also, continuous features have different domains and distributions, so that a single common noise
schedule may not be optimal for those features either.

As a solution, we investigate the use of feature-specific noise schedules, distinct noise schedules per
data type, a single noise schedule for both types, and lastly a mixture of a single noise schedule for
continuous features and feature-specific noise schedules for categorical ones. In the image domain
a similar idea was coined non-uniform diffusion [31], which involves diffusing different groups of
pixels at different speeds. For brevity, we introduce only the feature-specific noise schedules and
timewarping explicitly. The other types of noise schedules we investigate are easily derived from the
feature-specific variant by appropriately combining terms.

We let the ith continuous feature follow the diffusion process given by

dx(i)
cont

= fcont,i(x
(i)
cont
, t)dt+ gcont,i(t)dw

(i)
t , (6)

and describe the trajectory of the embedding of the jth categorical feature as

dx
(j)
cat = fcat,j(x

(j)
cat , t)dt+ gcat,j(t)dw

(j)
t , (7)

where x
(j)
cat represents the d-dimensional embedding of x(j)

cat in Euclidean space.

Further, we specify the feature-specific timesteps, tcont,i(t), tcat,j(t) as a function of the global time
t. Following Karras et al. [32], we set the drift coefficients fcont,i(x

(i)
cont, t) and fcat,j(x

(j)
cat , t) to zero

and the feature-specific diffusion coefficients to gcont,i(t) =
√

2tcont,i(t) and gcat,j(t) =
√

2tcat,j(t).
This specification implies the feature-specific noise distributions x(i)

cont,t ∼ N (x
(i)
cont,0, σ

2
cont,i,t) and

x
(j)
cat,t ∼ N (x

(j)
cat,0, σ

2
cat,j,tId), with the feature-specific standard deviations (aka noise levels) σcont,i,t =

tcont,i(t) and σcat,j,t = tcat,j(t). Thus, each feature is governed by a distinct noise schedule, while all
elements of an embedding representing a given categorical feature follow the same noise schedule.

Typically, the functions tcont,i(t) and tcat,j(t) are chosen to be identity functions. However, we
parameterize the functions with the active learning strategy called timewarping [8]. For each feature-
specific timestep tk(t) ∈ {tcat,1(t), . . . , tcat,Kcat(t), tcont,1(t), . . . , tcont,Kcont(t)}, we learn a non-linear
map such that the learned noise schedule is optimal for both training and generation. The goal is a
generative reverse process that improves the sample quality of each feature linearly in uniform time,
t. Hence, model capacity is optimally allocated and benefits all features simultaneously.

Without loss of generality, we let t ∈ [0, 1]. We aim to construct a feature-specific non-linear
transformation tk(t), for each feature k ∈ {1, 2, ...,K}, that maps the timestep, t, to a feature-
specific timestep, tk. Alongside our score model we learn K monotonic piece-wise linear functions
Fk : tk 7→ ℓk, by predicting the feature-specific denoising loss ℓk based on the feature-specific
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timesteps, tk. Let F̃i represent the normalized version of Fi such that F̃k : tk 7→ t, then F̃−1
k achieves

our transformation of interest and we let tk(t) = F̃−1
k (t). We apply this parameterization both during

training and generation. For more details on the setup and training of the piece-linear function see the
appendix in Dieleman et al. [8].

Since in the forward process of our model, we add noise directly to continuous features but to
the embedding of categorical features, we generally need much more noise to remove all signal
from the categorical data representations. Thus, in practice we define type-specific minimum and
maximum noise levels to be tcat,min = 0.1 and tcat,max = 200 and follow Karras et al. [32] by
setting tcont,min = 0.002 and tcont,max = 80. For continuous features, we use the preconditioning and
weighting proposed by Karras et al. [32].

4 Experiments

We benchmark our model against several popular generative models and across multiple datasets.

Baseline models We benchmark our model against a multitude of different generative models for
mixed-type tabular data. This includes SMOTE [33], TVAE [27], CTGAN [27], ARF [34], and
TabDDPM [22]. All models follow a different design and / or modeling philosophy. For more details
see Appendix A.

Datasets To systematically investigate our model, we consider 3 different datasets (adult, churn,
nmes). These vary in size (between 3 150 and 48 842 observations), prediction task (regression vs.
binary classification), number of features and their distributions. Details on the datasets are given
in Appendix D. Rows with missings in either the target or any continuous feature are removed,
missings in categorical features are encoded as a separate category. All datasets are split in 60% train,
20% validation, and 20% test partitions using stratification with respect to the outcome in case of a
classification task. For our own model, we use a quantile transformation on the continuous features,
for other models we adhere to the required respective pre-processing. For classification tasks, we
condition the model the binary outcome,

Tuning framework For hyperparameter tuning on a common objective, we first tune a catboost
model on the data-specific prediction task. The tuned model is then used to tune the generative
model by estimating the machine learning efficiency (see below) on a validation set using data
sampled by the generative model. See Appendix B for more details. For time reasons, we only tune
the hyperparameters of the CDTD model with a single noise schedule for continuous features and
feature-specific noise schedules for categorical features (single cont.) and use the tuned parameters
for all model variants. For all models, we round integer-valued continuous features.

4.1 Evaluation Metrics

We evaluate generative models using four criteria. All metrics are averaged over five random seeds
for the generative process.

Machine learning efficiency As many previous papers [22, 24, 27, 34–36], our main metric is the
machine learning efficiency. A group of models consisting of a (logistic) regression, a tree, a random
forest and a (tuned) catboost model are trained on the data-specific prediction task. The real test set
performance of the models is compared when trained on the real training set or a synthetic training
set of equal size. For regression tasks we report the MSE, for classification tasks the macro-averaged
F1 score. Results are averaged over ten different model seeds and five different sampling seeds.
Hyperparameters for the machine learning efficiency models are reported in Appendix C.

Statistical similarity To evaluate the statistical similarity between real and synthetic training data,
we use (1) the Jensen-Shannon divergence (JSD) [37] to quantify the difference in categorical distri-
butions, (2) the Wasserstein distance (WD) [38] to quantify the difference in continuous distributions,
and (3) the L2 norm of the pair-wise differences of the correlation matrices. For correlations between
two continuous features we use the Pearson correlation coefficient, for correlations between two
categorical features the Theil uncertainty coefficient and across types the correlation ratio [22, 39].

Detection score We report the accuracy of a catboost model [40] that is trained to distinguish between
real and generated (fake) samples [35, 36]. Train and evaluation sets contain equal proportions of
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Table 1: Evaluation of the generative models. Bold indicates the best performing model. The best
results among different variants of our CDTD model are underlined.

dataset adult churn nmes

ML efficiency
(↑ for adult and churn
(F1), ↓ for nmes (MSE))

Original train set 0.794±0.016 0.880±0.074 11.413±17.631

ARF 0.769±0.010 0.789±0.045 11.792±18.540

CTGAN 0.765±0.015 0.735±0.021 13.800±22.203

TVAE 0.769±0.014 0.792±0.021 13.171±18.083

SMOTE 0.781±0.011 0.866±0.065 12.231±18.149

TabDDPM 0.778±0.010 0.490±0.054 18.784±32.171

CDTD (single) 0.784±0.009 0, 811±0.040 12.080±18.446

CDTD (per type) 0.786±0.011 0.824±0.047 12.036±18.316

CDTD (single cont.) 0.787±0.012 0.816±0.043 12.000±18.373

CDTD (per feature) 0.780±0.012 0.821±0.045 12.021±18.408

L2 distance of
correlation matrices (↓)

ARF 0.585±0.006 0.602±0.031 0.669±0.030

CTGAN 0.499±0.012 2.678±0.047 1.390±0.023

TVAE 0.632±0.009 0.753±0.025 2.317±0.070

SMOTE 0.503±0.012 0.283±0.040 0.658±0.042

TabDDPM 0.227±0.029 4.942±0.042 3.305±0.053

CDTD (single) 0.104±0.010 0.475±0.072 0.588±0.027

CDTD (per type) 0.093±0.010 0.441±0.070 0.557±0.025

CDTD (single cont.) 0.098±0.016 0.498±0.078 0.544±0.038

CDTD (per feature) 0.125±0.009 0.514±0.075 0.543±0.038

Detection accuracy (the
closer to 0.5 the better)

ARF 0.918±0.003 0.847±0.006 0.986±0.003

CTGAN 0.988±0.001 0.977±0.006 0.992±0.003

TVAE 0.931±0.002 0.915±0.009 0.990±0.002

SMOTE 0.337±0.003 0.339±0.019 0.868±0.009

TabDDPM 0.600±0.002 0.998±0.002 0.998±0.001

CDTD (single) 0.561±0.002 0.850±0.006 0.647±0.013

CDTD (per type) 0.559±0.004 0.832±0.004 0.653±0.015

CDTD (single cont.) 0.557±0.003 0.847±0.009 0.649±0.016

CDTD (per feature) 0.583±0.002 0.849±0.009 0.652±0.011

real and fake samples. For each generative model, we tune a catboost model on a validation set and
report the accuracy of the best-fitting model on a test set. See Appendix B for more details.

Distance to closest record (DCR) To check whether the model does not copy training samples, we
check the DCR [35, 39]. First, we one-hot encode categorical features. All features are standardized
to have a zero mean and unit variance to ensure that each feature contributes equally to the distance.
The DCR of a given generated data point is then the minimum Euclidean distance of that data point
to all observations in the true training set. As a robust estimate, we report the average DCR.

4.2 Results

Table 1 shows the results of evaluating the generative models. For our own model (CDTD), to account
for feature heterogeneity we compare the effect of more vs. less feature-specific noise schedules.
We compare a single schedule, one schedule per type, one schedule per feature and having one
schedule for continuous features and feature-specific schedules for categorical features (single cont.).
Additional results on the statistical similarity measures and DCR are given in Appendix F.

Our model consistently outperforms the benchmark models in most metrics, often substantially so.
Also, explicitly accounting for heterogeneity in the specification of the noise schedules seems valuable.
Even though feature-specific noise schedules appear to be too extreme and often perform worse,
introducing type- or feature-specific schedules for the categorical features boosts the performance
considerably. The outstanding results in terms of the L2 distance of the correlation matrices show that
a common noise distribution type across data types and the possibility to capture subtle uncertainty in
the categorical features together with the transformer-backbone benefit sample quality.
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A Benchmark Models

We benchmark our model against a diverse set of generative models that were especially built for
modelling mixed-type tabular data.

• SMOTE [33] – a naive data augmentation technique based on the convex combination of training
samples. For regression problems data is split into two classes using the median target. We use
the SMOTE-NC version that is designed for mixed-type data.

• TVAE [27] – a Variational-Autoencoder-based model for tabular data.

• CTGAN [27] – one of the most popular Generative-Adversarial-Network-based models for
tabular data.

• ARF [34] – recent generative modelling approach based on using a random forest for density
estimation.

• TabDDPM [22] – first diffusion-based generative model for tabular data that combines diffusion
in continuous space and multinomial diffusion [12].

A.1 Hyperparameter Searchspaces

Table 2: TVAE [27] hyperparameter space; implementation available at https://github.com/
sdv-dev/CTGAN. We tune the model for 20 trials.

Parameter Distribution

embedding dim. Cat([128, 256, 512])
batch size Cat([1024, 4096])
epochs = 1000
loss factor Log Uniform [1, 5]
encoder dims = [256, 256]
decoder dims = [256, 256]
learning rate = 1e-3

Table 3: CTGAN [27] hyperparameter space; implementation available at https://github.com/
sdv-dev/CTGAN. We do an exhaustive search.

Parameter Distribution

embedding dim. Cat([128, 256, 512])
batch size = 4096
epochs Cat([1000, 2000, 5000])
generator dims = [256, 256]
discriminator dims = [256, 256]
learning rate generator = 2e-4
learning rate discriminator = 2e-4

Table 4: CDTD (ours) hyperparameter space. We tune the the model for 15 trials.
Parameter Distribution

embedding dim = 64
cat embedding σinit = 0.001
batch size = 4096
num. train steps = 15000
learning rate Log Uniform [0.00001, 0.002]
depth = 4
heads = 8
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Table 5: TabDDPM [22] hyperparameter space. We tune the model for 20 trials.
Parameter Distribution

epochs = 1000
num timesteps Cat([100, 1000])
batch size Cat([1024, 4096])
learning rate Log Uniform [0.00001, 0.003]
num hidden layers = 5
hidden size = 512

Table 6: ARF [34] hyperparameter space. We do an exhaustive search.
Parameter Distribution

δ = 0
min. node size = 5
max. iters = 50
num. trees Cat([30, 40, 50, 60, 70, 80])

Table 7: SMOTE [33] hyperparameter space. We do an exhaustive search.
Parameter Distribution

k neighbours Cat([5,6,7,8,9,10,11,12,13,14,15])

Table 8: Catboost [40] hyperparameter space. For estimating the machine learning efficiency, we
tune it for 100 trials. When used as a detection model, we tune it for 30 trials.

Parameter Distribution

iterations = 1000
learning rate Log Uniform [0.001, 1.0]
depth Cat([3,4,5,6,7,8])
L2 regularization Uniform [0.1, 10]
bagging temperature Uniform [0, 1]
leaf estimation iters Integer Uniform [1, 10]

B Tuning Setup

B.1 Tuning Generative Models

We follow Kotelnikov et al. [22] and tune the hyperparameters of generative models based on how
well the generated data captures the joint distribution of the real training data. This tuning procedure
ensures that all model types are tuned with a common objective.

First, for a given dataset we tune a catboost model [40] that predicts the dataset-specific target, which
can be continuous or binary, based on the real training set. For regression tasks we determine the
fit using Mean-Squared Error, for binary or multi-class classification we use the macro-averaged
F1-score. We estimate the goodness-of-fit statistics using 5 fold cross-validation based on the real
training set only. For tuning we use optuna [41] and 100 trials.

Once we have selected the best-fitting catboost model for a dataset, we use that model to do the
hyperparameter tuning of the generative models. For a given set of hyperparameters of a generative
model, we train the model and generate a sample of the same size as the real training set. We check
the machine learning efficiency of the generative model using the tuned catboost model, i.e., we use
the generated data as a drop-in replacement for the real train set and train the catboost model (using
the tuned dataset-specific hyperparameters) to predict the outcome in a separate, real validation set.
The tuning objective is derived by averaging the machine learning efficiency over five different seeds
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that affect the sampling process of the generative models. We again use optuna, but the number of
trials varies across the different generative models.

B.2 Tuning Detection Model

A detection model is used to test whether a statistical model can distinguish between real and
generated samples. We again use a catboost model for this purpose. To tune it we use optuna with
30 trials. For each of the real train, validation and test sets we generate the same number of fake
observations. Per set we then combine real and fake observations and name them Dtrain,detect,Dval,detect
and Dtest,detect, respectively. The catboost model is trained on Dtrain,detect with the task of predicting
whether an observation is real or fake. We evaluate the performance and tune the catboost model in
terms of accuracy on Dval,detect. After tuning, the performance of the tuned model on the held-out test
set, Dtest,detect represents the detection score.

C Machine Learning Efficiency Models

Table 9: Hyperparameters of models used to estimate machine learning efficiency. For all models
except catboost we use the implementation and default parameters (if not specified otherwise) of the
scikit-learn package. For catboost the same holds for the package of the same name.

Model Parameters

Tree max_depth = 12
Random Forest max_depth = 12, n_estimators = 100
Logistic or Ridge Regression max_iter = 1000
Catboost tuned using space defined in Table 8

D Datasets

Table 10: Overview of the experimental datasets. We count the outcome towards the respective
features.

Dataset Link Task Total obs. Num. cat. features Num. cont. features

adult link bin. class. 48842 9 6
churn link bin. class. 3150 5 9
nmes link regression 4406 9 10

E Implementation Details

In the Transformer, we embed the timesteps and add them to the respective feature embeddings.
Following Dieleman et al. [8], it is crucial to L2 normalize the embeddings each time we use them, to
prevent a degenerate embedding space, in which embeddings are pushed further and further apart.
In a conditional model, where we condition on the score model on the target feature in the dataset,
we use adaptive layer norms [30]. We also use self-conditioning [19] for both types of features. For
continuous features we simply condition on the predictions from the previous step, for categorical
features we condition on the interpolated embedding following Dieleman et al. [8]. We use an
exponential moving average on both the parameters of the score model as well as any timewarping
functions. The timewarping weights are initialized such that the initial draws are uniformly distributed
and we use 100 bins per piece-wise linear spline. To decrease the variance of the loss, we use the
low-discrepancy sampler to sample t ∼ U[0,1] [18].
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F Additional Results

Table 11: Additional experimental results. We use the Jensen-Shannon divergence (JSD) for differ-
ences in categorical distributions and the Wasserstein distance (WD) for differences in continuous
distributions. Bold indicates best performance. The distance to closest record (DCR) should neither
be too low nor too high but should be compared relatively to the DCR of the real test set. Bold
indicates the best performing model. The best results among different variants of our CDTD model
are underlined.

dataset adult churn nmes

Wasserstein Distance (↓)

ARF 0.011±0.001 0.013±0.001 0.012±0.001

CTGAN 0.012±0.001 0.041±0.001 0.027±0.001

TVAE 0.012±0.000 0.014±0.002 0.016±0.001

SMOTE 0.002±0.000 0.005±0.001 0.005±0.000

TabDDPM 0.003±0.000 0.385±0.002 0.412±0.002

CDTD (single) 0.002±0.016 0.012±0.001 0.006±0.000

CDTD (per type) 0.001±0.000 0.011±0.001 0.006±0.000

CDTD (single cont.) 0.002±0.000 0.011±0.001 0.006±0.000

CDTD (per feature) 0.004±0.000 0.011±0.001 0.006±0.000

Jensen-Shannon Divergence (↓)

ARF 0.007±0.000 0.010±0.002 0.008±0.002

CTGAN 0.101±0.001 0.094±0.001 0.098±0.001

TVAE 0.086±0.001 0.036±0.003 0.096±0.002

SMOTE 0.072±0.000 0.011±0.002 0.114±0.002

TabDDPM 0.020±0.000 0.112±0.001 0.080±0.003

CDTD (single) 0.010±0.000 0.013±0.003 0.010±0.002

CDTD (per type) 0.012±0.000 0.011±0.002 0.012±0.002

CDTD (single cont.) 0.011±0.001 0.014±0.002 0.013±0.002

CDTD (per feature) 0.013±0.000 0.014±0.002 0.012±0.002

Avg. Distance to Closest Record

Real test set 1.87 0.347 1.970
ARF 2.480±0.009 1.108±0.019 2.236±0.036

CTGAN 3.775±0.034 2.607±0.011 2.828±0.020

TVAE 2.308±0.018 1.140±0.019 1.977±0.020

SMOTE 1.427±0.007 0.224±0.018 1.945±0.017

TabDDPM 1.931±0.012 2.800±0.014 2.881±0.015

CDTD (single) 1.885±0.011 1.014±0.012 1.954±0.025

CDTD (per type) 1.893±0.011 0.946±0.018 1.943±0.012

CDTD (single cont.) 1.902±0.012 0.991±0.011 1.948±0.011

CDTD (per feature) 1.912±0.018 0.997±0.014 1.947±0.012
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