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Abstract
Scientific machine learning (SciML) aims to
model complex physical processes from data, but
a key challenge lies in capturing long-range spatio-
temporal dependencies while generalizing across
varying environmental conditions. This is espe-
cially critical in real-world applications such as
additive manufacturing, where machine param-
eters are controlled but environmental factors
fluctuate unpredictably. Traditional models of-
ten learn temporal dynamics but lack physical
interpretability and robustness to distributional
shifts. To address these limitations, we introduce
the Attention-based Spatio-Temporal Neural Op-
erator (ASNO), a novel architecture that decou-
ples temporal and spatial modeling using separa-
ble attention mechanisms. ASNO is inspired by
the implicit–explicit decomposition of the back-
ward differentiation formula (BDF): it employs
a Transformer encoder to forecast homogeneous
temporal dynamics and a nonlocal attention-based
neural operator (NAO) to integrate spatial inter-
actions and external forcing. This design en-
hances interpretability by isolating contributions
of historical states and external fields, while en-
abling zero-shot generalization to new physical
regimes. Experiments on standard SciML bench-
marks—including chaotic ODEs, PDEs, and ad-
ditive manufacturing—demonstrate that ASNO
consistently outperforms baseline models in ac-
curacy, stability, and generalizability, making it a
promising framework for interpretable and adap-
tive physics-informed learning.

1. Introduction
Foundation models (FMs) have rapidly advanced scien-
tific machine learning (SciML), enabling breakthroughs
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in modeling complex spatio-temporal phenomena across
fluid dynamics, climate science, and materials engineer-
ing (Zou et al., 2024). These models promise scalable,
general-purpose reasoning capabilities, but their deploy-
ment in high-stakes, physically grounded domains demands
more than raw accuracy (Ellington et al., 2024; Luo et al.,
2023). To be truly impactful and trustworthy, scientific FMs
must exhibit robustness to distributional shifts, interpretabil-
ity of internal mechanisms, and generalizability to evolving
or unseen physical regimes (Huang et al., 2025; Zhang
et al., 2024). As FMs begin to influence decision-making
pipelines in safety-critical settings—such as additive manu-
facturing or autonomous experimentation—there is growing
concern over their opaque behavior and limited adaptability,
echoing broader societal concerns around responsible AI
(Rudin et al., 2022; Molnar, 2020).

While neural operators like the Fourier Neural Operator
(FNO) (Li et al., 2020) and DeepONet (Lu et al., 2021) have
shown promise in learning solution maps between func-
tion spaces, they often fail to generalize in the presence
of variable environmental parameters, boundary conditions,
or non-stationary forcing terms. Similarly, spatio-temporal
transformers (Vaswani et al., 2017; Zhou et al., 2021) cap-
ture long-range dependencies but entangle physical structure
with data-driven correlations, making their outputs difficult
to interpret or trust. These challenges motivate a shift in
perspective: instead of optimizing only for predictive per-
formance, we need models that are interpretable by design,
modular in architecture, and reflective of physical princi-
ples—especially when deployed in real-world scientific sys-
tems with partially observable dynamics.

To this end, we propose the Attention-based Spatio-
Temporal Neural Operator (ASNO), a novel architecture
grounded in classical numerical methods—specifically, the
backward differentiation formula (BDF Fredebeul (1998)).
ASNO decouples temporal extrapolation and spatial correc-
tion via a Transformer encoder (Zhou et al., 2021) and a
Nonlocal Attention Operator (NAO) (Yu et al., 2024), re-
spectively. This decomposition mirrors the implicit-explicit
(IMEX) structure of traditional solvers, offering an inter-
pretable mechanism for separating historical dynamics from
external influences. By aligning with physical simulation
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structure and enabling zero-shot generalization to unseen
system states, ASNO directly addresses key issues of robust-
ness, diagnosis, and responsible generalization. Our results
on benchmark systems—including additive manufacturing,
PDEs, and chaotic ODEs—demonstrate that ASNO delivers
state-of-the-art performance while offering transparency and
adaptability, supporting its potential as a reliable foundation
model for scientific applications.

2. Background and Related Work
Predicting evolving physical systems across space and time
is a central challenge in scientific machine learning. A key
limitation of existing models is their inability to simultane-
ously capture long-range dependencies and adapt to unseen
environmental parameters. In this section, we provide an
overview of two major methodological pillars that influ-
ence our proposed approach: transformer-based temporal
modeling and operator-based methods for learning function-
to-function mappings.

2.1. Temporal Modeling with Attention Mechanisms

Transformers have shown promise in modeling long-range
temporal dependencies due to their self-attention mecha-
nism, which can dynamically focus on relevant parts of a
sequence (Zhou et al., 2023). Originally introduced for nat-
ural language processing, attention-based models like the
Transformer (Vaswani et al., 2017) have since been adapted
for time-series forecasting in various domains including
energy systems, finance, and weather prediction. Archi-
tectures such as Informer (Zhou et al., 2021), Reformer
(Kitaev et al., 2020), and Temporal Fusion Transformers
(TFT) (Lim et al., 2021) have addressed the computational
bottlenecks of vanilla transformers by introducing sparse
attention, memory mechanisms, and gating modules.

Despite these innovations, most of these models process
time as a univariate or multivariate sequence and fail to ac-
count for the spatial structure inherent in physical systems.
This becomes problematic in settings governed by partial
differential equations (PDEs), where temporal evolution de-
pends intricately on local and nonlocal spatial interactions.
Moreover, while attention improves model interpretability
by providing visibility into influential timesteps, it typi-
cally lacks a principled connection to physical laws, making
the insights learned from attention scores less physically
grounded.

2.2. Neural Operators for Learning Physical Dynamics

Neural operators have emerged as a promising framework
for learning mappings between function spaces, with appli-
cations in solving forward and inverse problems governed by
PDEs. The Fourier Neural Operator (FNO) (Li et al., 2020)

introduced the idea of learning a resolution-invariant oper-
ator in the Fourier domain, enabling fast predictions over
continuous spatial domains. DeepONet (Lu et al., 2021)
provided an alternative formulation by learning the operator
through a decomposition into branch and trunk networks.
These approaches have inspired a range of operator learn-
ing methods aimed at improving scalability, flexibility, and
generalization.

However, most neural operator models assume static sys-
tem dynamics during inference and struggle to generalize
across PDEs with varying coefficients, initial conditions, or
boundary inputs. Recent extensions such as GNOT (Hao
et al., 2023) and Transolver (Wu et al., 2024) have incor-
porated attention-based mechanisms and geometric priors
to improve performance on heterogeneous or unstructured
domains. Yet, they often treat spatial and temporal depen-
dencies jointly, without explicitly isolating their individual
effects. This fusion can obscure causal relationships in
the dynamics and hinder zero-shot generalization to new
physical regimes. Furthermore, many of these models are
optimized for forward prediction but are not designed to
uncover underlying physical structure or handle inverse in-
ference tasks in a unified framework.

In contrast, the proposed ASNO architecture draws on both
temporal and operator-based learning paradigms, but in-
troduces a critical separation between temporal extrapola-
tion and spatial correction. Inspired by the implicit-explicit
decomposition in backward differentiation formula (BDF)
schemes, ASNO utilizes a transformer encoder to extrapo-
late the system’s evolution based on prior temporal history,
while a nonlocal attention operator captures the spatial inter-
play of variables and external forcings. This design enables
interpretable and generalizable learning in dynamic systems,
as explored in the following sections.

3. Model Architecture
This section presents ASNO, a spatio-temporal neural oper-
ator integrating the Transformer Encoder for temporal de-
pendencies and the nonlocal attention mechanism for spatial
interactions. We outline the Transformer Encoder, followed
by the nonlocal attention operator model, and explain their
combined role in the form of a backward differentiation
formula (BDF) for complex spatio-temporal prediction.

3.1. Backward Differentiation Formula (BDF)

Backward differentiation formula (BDF) are a family of
popular numerical schemes for stiff differential equations,
thanks to its high-order accuracy and large region of abso-
lute stability (Fredebeul, 1998). For a initial-valued differ-
ential equation:
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Figure 1. ASNO architecture: a Transformer Encoder captures temporal extrapolation X̃m+1, while the NAO performs spatial correction
via a learned attention-based operator.

Ẋ(t) = F (t,X(t)), X(t0) = X0, (1)

The general n-step BDF scheme approximates the solution
at discrete timesteps tm = t0 +m∆t as:

n∑
k=0

αkXm−k = ∆t · βF (tm+1, Xm+1), (2)

where α0 = 1 and the coefficients αk, β depend on the
order. The left-hand side uses historical states, while the
right-hand side evaluates the dynamics at the future state
Xm+1, allowing stable integration of stiff systems.

This formulation can be decomposed into an implicit-
explicit (IMEX) scheme (Ascher et al., 1995):

X̃m+1 = −
n∑

k=1

αkXm−k+1, (3)

Xm+1 = X̃m+1 +∆t · βF (tm+1, Xm+1). (4)

The first step extrapolates the next state assuming zero forc-
ing (F ≡ 0), capturing temporal trends. The second step
corrects it using spatial dynamics and external effects, often
requiring nonlinear solution.

This motivates the ASNO architecture: a Transformer En-
coder models the temporal forecast X̃m+1, and a Nonlocal

Attention Operator (NAO) refines it to produce Xm+1, re-
flecting the IMEX decomposition.

We consider S dynamical systems indexed by η = 1, . . . , S,
each defined by:

Ẋ(η)(t) = F (S(η)(t), X(η)(t)), X(η)(t0) = X
(η)
0 , (5)

where S(η)(t) represents hidden environmental states. The
dataset for each system is:

D(η) = {X(η)(m∆t), F (η)(m∆t)}T/∆t
m=0 . (6)

ASNO is trained to: (1) learn a stable temporal extrapolation
rule from past states, (2) infer and adapt to hidden system
conditions via the spatial operator, and (3) generalize to
new systems in a zero-shot setting, using only initial state
and forcing observations. This structure enables ASNO to
model diverse physical systems with strong generalization
and interpretability.

3.2. Temporal Module: Transformer Encoder

The temporal module in ASNO models long-range temporal
dependencies using a Transformer Encoder, which corre-
sponds to the explicit step in the BDF formulation (Yang
et al., 2024; Vaswani et al., 2017). Given n past solution
fields {Xm−n+1, . . . , Xm}, each Xi ∈ RN×d is projected
into a latent embedding space via:
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Ei = XiWE + Pi, (7)

where WE ∈ Rd×dembed is a trainable embedding ma-
trix, and Pi ∈ Rdembed encodes temporal position to re-
tain ordering across timesteps. The embedded sequence
{Em−n+1, . . . , Em} is passed through L layers of a Trans-
former Encoder, each composed of multi-head self-attention
followed by a feed-forward network and residual connec-
tions. This allows the model to extract temporal interactions
over distant steps while preserving gradient flow.

In each attention layer, the query, key, and value matrices
are computed as:

Q = EWTq, K = EWTk, V = EWTv, (8)

with WTq,WTk,WTv ∈ Rdembed×dt being learnable parame-
ters for attention. Attention scores between time steps i and
j are computed via scaled dot-product attention:

αij =
exp

(
QiK

⊤
j /

√
dt
)∑

k exp
(
QiK⊤

k /
√
dt
) . (9)

These scores determine how much each previous timestep
contributes to the current representation. The latent forecast
vector Hm+1 is then computed as the attention-weighted
sum:

Hm+1 =

n∑
j=1

αm,jVj . (10)

This latent representation Hm+1 ∈ Rdembed captures a tem-
porally integrated forecast, aligning with the homogeneous
extrapolated state X̃m+1 in the BDF scheme. It is subse-
quently refined by the Nonlocal Attention Operator (NAO)
in the implicit step to yield the final prediction Xm+1. This
design allows ASNO to isolate the temporal component of
the dynamics while deferring external and spatial correc-
tions to the spatial module.

3.3. Spatial Module: Nonlocal Attention Operator
(NAO)

To complete the prediction of the next system state Xm+1,
we employ the Nonlocal Attention Operator (NAO) to pro-
cess the latent extrapolation Hm+1 (from the temporal en-
coder) and the external forcing field Fm+1 (Yu et al., 2024).
This step approximates the spatial operator governing phys-
ical interactions across the domain. Specifically, we model
the target prediction as:

Xm+1 = NAO(Hm+1, Fm+1). (11)

This formulation reflects a general solution operator for
implicit updates in dynamic PDE systems, approximating a
nonlocal integral operator of the form:

Xm+1(x) =

∫
Ω

K(x, x′)Fm+1(x
′) dx′, (12)

where K(x, x′) is a learned, data-dependent kernel mapping
spatial locations x and x′. We discretize the latent and
forcing fields across N spatial points, forming:

H1:d = (Hj(yk))1≤j≤d, 1≤k≤N ,

F1:d = (Fj(yk))1≤j≤d, 1≤k≤N ,
(13)

with d representing the feature dimension. The initial state
is given by:

J0 = (H1:d, F1:d) . (14)

This state is iteratively refined using attention layers with
residual connections for T steps:

Jt = Attn(Jt−1; θt) Jt−1 + Jt−1 := (Jt, Ft), 1 ≤ t ≤ T,
(15)

where the attention mechanism is defined as:

Attn(J ; θt) = σ

(
1√
dk

J WQt (WKt)
⊤ J⊤

)
, (16)

with trainable projection matrices WQt ,WKt ∈ R2d×dk ,
and σ denoting a linear or ReLU activation function.

After T steps, the NAO computes the final nonlocal kernel
via dual kernel maps based on the final hidden states:

K[H1:d, F1:d; θ] = WP,h σ

(
1√
dk

J⊤
T WQT+1(WKT+1)

⊤JT

)
+WP,f σ

(
1√
dk

F⊤
T WQT+1(WKT+1)

⊤JT

)
,

(17)

where WP,h,WP,f ∈ Rdk×d are output projections control-
ling the contribution of the latent and forcing channels.

The predicted next state is then computed by applying the
learned kernel to the forcing input:

Xm+1(y) =

∫
Ω

K[H1:d, F1:d](y, z)F1:d(z) dz. (18)

The NAO thus implements a data-driven spatial operator
capable of capturing long-range, nonlocal dependencies
across the spatial domain. Its ability to dynamically adapt its

4



Submission and Formatting Instructions for ICML 2025

kernel based on system state and external loadings enables
ASNO to generalize across PDEs with varying dynamics,
geometry, and boundary conditions—offering a robust and
interpretable component for reliable scientific prediction.

3.4. Overall Formulation

ASNO integrates temporal extrapolation and spatial correc-
tion by combining the Transformer Encoder and the Nonlo-
cal Attention Operator (NAO). Given the past n timesteps
{Xm−n+1, . . . , Xm}, the Transformer Encoder extracts a
latent representation:

Hm+1 = Transformer(Xm, Xm−1, . . . , Xm−n+1),
(19)

which encodes the system’s homogeneous temporal dynam-
ics, analogous to the BDF approximation X̃m+1. This latent
state is then corrected using the external forcing field Fm+1

via NAO:

Xm+1 = NAO(Hm+1, Fm+1). (20)

Together, this yields the full update rule:

Xm+1 = ASNO(Xm, . . . , Xm−n+1, Fm+1)

= NAO(Transformer({X}), Fm+1). (21)

This formulation mirrors the IMEX BDF scheme—first
performing temporal extrapolation, then spatial correc-
tion—and enables ASNO to capture rich spatio-temporal
dependencies. The Transformer compresses historical ob-
servations into a robust latent code, while NAO incorporates
system-specific corrections, allowing the model to gener-
alize across systems and time horizons. Both modules are
jointly trained end-to-end to minimize prediction error, en-
suring stable, interpretable, and adaptive learning.

4. Experiments
In this section, we evaluate ASNO’s performance on several
benchmark tasks that involve evolving physics governed
by partial differential equations (PDEs) and chaotic dynam-
ics. Our experiments are designed to demonstrate ASNO’s
ability to model complex spatio-temporal systems, general-
ize across different environments, and maintain long-term
predictive accuracy.

4.1. Darcy Flow Equation

We begin by evaluating ASNO on the time-dependent Darcy
flow equation, a classical second-order parabolic PDE that

models pressure-driven fluid movement through porous me-
dia. This equation describes the evolution of the pressure
field p(t,x) in response to a time-dependent source term
g(t,x) and a heterogeneous permeability field b(x), defined
over a unit square domain:

∂p(t,x)

∂t
−∇ · (b(x)∇p(t,x)) = g(t,x), x ∈ Ω = [0, 1]2,

p(t,x) = 0, x ∈ ∂Ω.
(22)

Our goal is to learn the spatio-temporal solution operator
of this PDE: to predict the next pressure field pt+1 from
previous field states and the current source field. The dataset
consists of 100 independently simulated trajectories, each
defined by a unique sample of the permeability field b(x)
and the source term g(t,x), resolved on a 21× 21 grid over
100 time steps.

Training samples are constructed using a sliding window of
five consecutive time steps, with a stride of one. For each tra-
jectory, this yields 96 sequential training pairs. To increase
data diversity and robustness, we apply 20 permutations per
trajectory, leading to a total of 153,600 training samples and
38,400 held-out test samples. Each model receives as input
the past five pressure fields {pt−4, . . . , pt} and the source
field gt to predict the future state pt+1.

ASNO outperforms baseline models such as FNO, U-
Net, DeepONet, Transolver, and GNOT across both in-
distribution and out-of-distribution (OOD) settings (Madras
& Zemel, 2021; Benitez et al., 2024; Montasser et al., 2024;
Thaker et al., 2024). In OOD tests, we perturb the input dis-
tributions by altering either the permeability field (OOD-b)
or the source term (OOD-f) (Hase et al., 2021). These shifts
simulate scenarios where the system departs from training-
time assumptions. Table 1 summarizes the test loss, OOD
loss, model size, and GPU memory usage. ASNO achieves
the lowest loss across all conditions, showcasing superior
robustness and generalization. Additional details on the
construction and distributional properties of the OOD-f and
OOD-b datasets are provided in Appendix B.

ASNO not only achieves strong predictive performance but
also aligns well with the underlying numerical structure
of the PDE. Its explicit module—built on a Transformer
Encoder—approximates the temporal behavior of a BDF5
scheme. The BDF5 coefficients used to extrapolate the
latent state are:

X̃m =
12

137
Xm−5 −

75

137
Xm−4 +

200

137
Xm−3

− 300

137
Xm−2 +

300

137
Xm−1. (23)
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Table 1. Performance on Darcy flow and OOD test sets.

Model Trainable
Params

GPU
(MB)

Best
Test
Loss

Best
OOD-f

Best
OOD-

b
ASNO 760,234 181 0.0368 0.0673 0.0982
FNO 900,224 214 0.0768 0.1129 0.1892
U-Net 820,994 123 0.1150 0.1523 0.2224

Transolver 810,573 422 0.0428 0.0721 0.1535
GNOT 760,349 208 0.0516 0.0811 0.1729

DeepONet 6,230,000 2146 0.0537 0.0826 0.1826
Transformer

Enc. 1,620,394 173 0.0559 0.0927 0.1736

Linear Enc. +
NAO 720,398 165 0.0547 0.1245 0.1394

The learned latent representation Hm closely matches X̃m,
showing that ASNO effectively captures high-order time-
stepping schemes. For the implicit correction step, we con-
sider the discrete approximation:

X̃m = Xm +
60

137
∆t

(
AXm + Fm

)
, (24)

Xm =
(
I + 60

137 ∆t A
)−1(

X̃m − 60
137 ∆t Fm

)
, (25)

which leads to a theoretical kernel:

Ktrue = − 60

137
∆t

(
I + 60

137 ∆t A
)−1

. (26)

Figure 2 (right) shows a comparison between this ground-
truth kernel and the one learned by NAO, demonstrating
close alignment. The left panel reports cumulative rollout
errors for all models, showing that ASNO maintains long-
term stability:

ET =

T∑
t=1

∥X true
t −Xpred

t ∥L2 . (27)

In summary, ASNO not only excels in predictive accuracy
and out-of-distribution robustness but also captures the un-
derlying mathematical structure of time-dependent PDEs.
Its decomposable and interpretable design provides both
practical reliability and theoretical alignment with physical
dynamics.

4.2. Lorenz System

We next evaluate ASNO on the Lorenz system, a prototypi-
cal chaotic dynamical system characterized by extreme sen-
sitivity to initial conditions and nonlinear feedback between

variables. The governing equations, modified to include
external forcing, are:

dx

dt
= σ(y − x) + g1(t), (28)

dy

dt
= x(ρ− z)− y + g2(t), (29)

dz

dt
= xy − βz + g3(t), (30)

where σ = 10, ρ = 28, β = 8
3 are canonical parameters

and g1, g2, g3 are time-varying forcing terms. The dataset
contains 2,000 trajectories generated using 100 distinct pa-
rameter combinations of (σ, ρ, β), and 20 different loading
profiles gi(t), each initialized from (x0, y0, z0) = (0, 1, 0).
Each trajectory includes 1,000 time steps. We use a sliding
window of five time steps with stride one to construct 995
input-output pairs per profile, yielding 1,592,000 training
samples (80%) and 398,000 test samples (20%).

To preserve temporal locality and improve generalization,
5-step windows are permuted within each trajectory, and
profile indices are randomized to ensure no overlap between
training and test sets. All models receive as input the past
five states {Xm−4, . . . , Xm} and the current forcing Fm.

We compare ASNO against multiple baselines, including
DeepONet, Transolver, GNOT, and Transformer Encoder.
Architectures like FNO, U-Net, and GNOT are excluded due
to mismatch with the low-dimensional structure of Lorenz:
U-Net and FNO assume spatial convolution or spectral fil-
ters over grids, which are not meaningful in 3D ODE set-
tings; GNOT’s geometric processing introduces unnecessary
complexity without corresponding gains.

Table 2. Comparison of ASNO and baselines on the Lorenz sys-
tem.

Model Type Trainable
Params

GPU (MB) Best Test
Loss

ASNO 258,808 76 0.000794
Transolver 395,907 95 0.000835
DeepONet 265,512 79 0.001750

Transformer
Encoder

257,647 71 0.001821

GNOT 401,155 106 0.002189
Linear Enc.

+ NAO
305,776 87 0.005298

ASNO achieves the lowest test loss and uses fewer parame-
ters and memory than several baselines. By explicitly mir-
roring the implicit-explicit decomposition of BDF schemes,
ASNO separates its architecture into a Transformer Encoder
for extrapolating homogeneous dynamics and a Nonlocal
Attention Operator (NAO) for handling nonlinear coupling
via forcing terms. The Transformer extracts dominant tem-
poral modes over prior states, while the NAO captures fast-
changing variable interactions like xy and xz, enabling the
model to remain stable over long rollouts.
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Figure 2. Left: Cumulative rollout error over time for various models on the Darcy flow benchmark. Right: Comparison between the
discretized theoretical kernel and the learned NAO kernel, showing strong agreement.

This two-stage process ensures that representational burden
is split: the Transformer handles regular recurrence, and
NAO focuses on residual dynamics. During rollout, ASNO
uses its prior output as the next input in an autoregressive
fashion, improving trajectory fidelity under chaotic evolu-
tion.

Figure 3 shows that ASNO remains aligned with the ground
truth much longer than other models. Its predictions track
the true Lorenz attractor, especially in the sensitive y and z
dimensions, where baselines diverge rapidly. The stability
and structure-awareness offered by ASNO make it well-
suited for complex forecasting tasks involving nonlinear,
chaotic systems such as weather models, turbulence, and
real-time control.

5. Uncertainty Quantification Verification
To further validate ASNO’s reliability in scientific model-
ing tasks, we assess its ability to quantify predictive un-
certainty (Zollo et al., 2024). Accurate uncertainty esti-
mates are critical in high-stakes domains like scientific com-
puting and engineering, where overconfident models can
lead to catastrophic failures. We evaluate ASNO using two
standard metrics: Prediction Interval Coverage Probability
(PICP) and Mean Prediction Interval Width (MPIW), fol-
lowing established practices in uncertainty quantification.
In our framework, uncertainty is quantified using a Lin-
ear Laplace Approximation (LA), which approximates the
model’s weight posterior as a Gaussian centered at the MAP
estimate (Wang et al., 2018). We use a diagonal Hessian
approximation to efficiently estimate epistemic uncertainty
from the ASNO model parameters without prohibitive com-
putational cost (Abdar et al., 2021; Ritter et al., 2018).
Further implementation details and derivations of the LLA
approach are provided in Appendix C.

These metrics are computed on the held-out Darcy flow test
set consisting of 100 spatio-temporal profiles, each with 95
rollout steps and resolved on a 21 × 21 grid (441 spatial
locations). The evaluation aggregates over all time steps and
samples, yielding robust summary statistics. The results,
shown in Table 3, yield a mean PICP of 0.94 ± 0.03 and a
mean MPIW of 0.32 ± 0.05.

The PICP metric quantifies the proportion of true values that
lie within the model’s 95% confidence intervals, measuring
calibration (Nikulchev & Chervyakov, 2023). A value close
to 0.95 indicates that the model’s uncertainty estimates are
neither underconfident (low coverage) nor overly conser-
vative (excessive interval width). The MPIW, on the other
hand, measures sharpness (Xue et al., 2024), or the average
width of the prediction intervals. Low MPIW is desirable,
provided coverage is maintained, as it implies confident,
precise predictions.

The intervals are computed using a diagonal Linear Laplace
approximation of the model’s parameter posterior. This ap-
proach provides an efficient method for estimating epistemic
uncertainty in large neural models. For N spatial locations,
these metrics are defined as:

PICP =
1

N

N∑
i=1

1 {yi ∈ [µi − 1.96σi, µi + 1.96σi]} ,

(31)

MPIW =
1

N

N∑
i=1

[(µi + 1.96σi)− (µi − 1.96σi)] ,

(32)

where yi denotes the ground-truth value at spatial location i,
and µi ± 1.96σi represents the predicted 95% confidence
interval derived from the model’s posterior variance.
The observed PICP of 94.0% is well-aligned with the
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Figure 3. Long-time prediction comparison of predicted vs. true (x, y, z) trajectories for the Lorenz system using different models. ASNO
shows better alignment and stability over extended timesteps.

Table 3. Uncertainty quantification metrics on Darcy flow test set
(averaged over 100 test samples × 95 timesteps).

Metric Value

PICP (Coverage Probability) 94.00 %
MPIW (Interval Width) 0.3046

nominal 95% target, indicating that ASNO produces well-
calibrated uncertainty intervals. Furthermore, the mean
MPIW of 0.3046 is relatively narrow considering the Darcy
pressure field typically ranges from 0 to 1. Together, these
findings demonstrate that ASNO offers reliable and informa-
tive uncertainty quantification—crucial for enabling robust
deployment in scientific modeling, digital twins, and au-
tonomous decision-making systems.

6. Melt Pool Temperature Field Prediction in
Additive Manufacturing

We now evaluate ASNO on a real-world engineering task:
predicting the spatio-temporal evolution of melt pool temper-
ature fields in Directed Energy Deposition (DED) processes.
Accurate full-field thermal prediction is vital for control-
ling process quality, minimizing defects, and improving part
integrity in metal additive manufacturing. These tempera-
ture fields serve as global descriptors from which critical
local features—such as melt pool width, depth, and solid-
ification rate—are inferred. Therefore, learning accurate
and interpretable spatio-temporal surrogates for melt pool
behavior is crucial for digital twin applications in advanced
manufacturing.

6.1. Full-Field Thermal Modeling and Prediction with
ASNO

We evaluate ASNO on high-fidelity transient thermal simu-
lations from GAMMA, a GPU-accelerated Finite Element
Analysis (FEA) code for additive manufacturing (Liao et al.,

2023). GAMMA solves the transient heat conduction equa-
tion on a structured grid:

ρCp(T )
∂T

∂t
+∇ · q = 0, (33)

where T is temperature (K), ρ is density (g/mm3), and
Cp(T ) is temperature-dependent specific heat capacity
(J/g/K). The heat flux q obeys Fourier’s law:

q = −k(T )∇T, (34)

with k(T ) denoting thermal conductivity (W/m·K). Bound-
ary conditions include Gaussian laser heating and convec-
tive/radiative losses:

q·n = −2ηPlaser

πr2laser
exp

(
− 2r2

r2laser

)
+σϵ(T 4−T 4

0 )+h(T−T0),

(35)

where η is absorption, Plaser laser power, rlaser beam radius,
σ Stefan–Boltzmann constant, ϵ emissivity, and h convec-
tion coefficient. The laser intensity profile follows:

Ilaser(r) =
2Plaser

πr2laser
exp

(
− 2r2

r2laser

)
. (36)

We generate 100 simulation trajectories, each with unique
time-varying laser power and scan speed profiles. Tem-
perature fields Tpool(m) ∈ R21×21 are recorded per time
step. Using a 5-step sliding window, we extract 726 training
samples per simulation, producing 1,161,600 total train-
ing samples. Materials include 316L stainless steel and
1018 carbon steel, with nonlinear thermal properties—for
example, k(T ) increases from 0.01396 to 0.03439 W/m·K
(300–1600 K), and Cp(T ) rises from 0.512 to 0.770 J/g·K
(400–1800 K), introducing strong field nonlinearity.
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Figure 4. Comparison of ASNO-predicted full-field temperature (left) and GAMMA ground truth (right) for a representative timestep.
Color indicates temperature (K).

ASNO receives five prior temperature maps Tpool(m −
4), . . . , Tpool(m), along with next-step process parameters:
laser power Plaser(m + 1), scan speed Vscan(m + 1), and
laser location Llaser(m + 1) ∈ R2. The Transformer En-
coder maps the temporal sequence to a latent forecast:

Hm+1 = TE (Tpool(m− 4 : m)) , (37)

which acts as the extrapolated BDF solution X̃m+1. The
NAO then refines the prediction using process parameters:

T̂pool(m+ 1) = NAO(Hm+1, {Plaser, Vscan, Llaser}m+1) .
(38)

This decomposition improves robustness across dynamic
regimes. A diagonal Laplace approximation estimates epis-
temic uncertainty, providing 95% confidence intervals at
each grid point:

µi ± 1.96σi, (39)

with µi and σi as the predicted mean and standard deviation
at location i. Figure 4 compares ASNO predictions with
ground truth from GAMMA, showing strong alignment in
melt pool shape, peak intensity, and thermal trailing zones.
ASNO achieves a mean absolute percentage error (MAPE)
of 2.50%, confirming high-fidelity predictive performance.
ASNO outperforms baseline models in both accuracy and
computational efficiency, achieving the lowest test loss
while maintaining fast inference. Its separation of temporal
and spatial modules improves adaptability under varying
physics, and its uncertainty quantification supports deploy-
ment in real-world AM systems. Training protocols, mesh
resolution, and further material-specific parameters are pro-
vided in Appendix A.

7. Conclusion
This work introduces ASNO, an attention-based spatio-
temporal neural operator designed to advance the reliabil-

Table 4. Comparison of models on the Additive Manufacturing
dataset.

Model Type Trainable
Params

Time per
Epoch (s)

Best Test
Loss

ASNO 2,825,444 6.17 0.0140
FNO 3,654,312 7.10 0.0357

DeepONet 3,385,605 5.25 0.0456
UNet 4,564,157 6.64 0.0652

GNOT 2,442,678 6.60 0.0332
Transolver 2,636,9158 8.71 0.0502

Linear + NAO 2,943,435 4.75 0.0397
Transformer

Encoder (TE) 2,784,920 3.95 0.0563

ity, generalizability, and interpretability of foundation mod-
els applied to evolving physical systems. By emulating
the implicit–explicit structure of the Backward Differenti-
ation Formula (BDF), ASNO separates temporal dynam-
ics—modeled via a Transformer Encoder—from spatial
interactions—captured using a Nonlocal Attention Oper-
ator (NAO). This modular decomposition improves trans-
parency by isolating historical system behavior from ex-
ternal forcing, while enhancing adaptability under chang-
ing conditions. Evaluated on diverse scientific bench-
marks—including chaotic systems, PDE-driven phenom-
ena, and additive manufacturing simulations—ASNO con-
sistently achieves strong prediction accuracy and long-term
stability, even under distribution shifts. Importantly, ASNO
offers quantifiable uncertainty via Laplace-based epistemic
estimation, addressing critical concerns around trust and
responsible deployment in high-stakes environments. By
combining physical structure with modern attention mecha-
nisms, ASNO contributes to the broader effort of building
reliable and responsible foundation models that are not only
accurate but interpretable, robust to dynamics, and deploy-
able in safety-critical domains.
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Lim, B., Arık, S. Ö., Loeff, N., and Pfister, T. Temporal
fusion transformers for interpretable multi-horizon time
series forecasting. International Journal of Forecasting,
37(4):1748–1764, 2021.

Lu, L., Jin, P., Pang, G., Zhang, Z., and Karniadakis, G. E.
Learning nonlinear operators via deeponet based on the
universal approximation theorem of operators. Nature
machine intelligence, 3(3):218–229, 2021.

Luo, S., Ni, J., Chen, S., Yu, R., Xie, Y., Liu, L., Jin, Z., Yao,
H., and Jia, X. Free: The foundational semantic recog-
nition for modeling environmental ecosystems. arXiv
preprint arXiv:2311.10255, 2023.

Madras, D. and Zemel, R. Identifying and benchmarking
natural out-of-context prediction problems. Advances
in Neural Information Processing Systems, 34:15344–
15358, 2021.

Molnar, C. Interpretable machine learning. Lulu. com,
2020.

Montasser, O., Shao, H., and Abbe, E. Transformation-
invariant learning and theoretical guarantees for ood gen-
eralization. arXiv preprint arXiv:2410.23461, 2024.

Nikulchev, E. and Chervyakov, A. Prediction intervals: A
geometric view. Symmetry, 15(4):781, 2023.

Ritter, H., Botev, A., and Barber, D. A scalable laplace ap-
proximation for neural networks. In 6th international
conference on learning representations, ICLR 2018-
conference track proceedings, volume 6. International
Conference on Representation Learning, 2018.

Rudin, C., Chen, C., Chen, Z., Huang, H., Semenova, L.,
and Zhong, C. Interpretable machine learning: Funda-
mental principles and 10 grand challenges. Statistic Sur-
veys, 16:1–85, 2022.

Thaker, P., Setlur, A., Wu, Z. S., and Smith, V. On the bene-
fits of public representations for private transfer learning
under distribution shift. Advances in Neural Information
Processing Systems, 37:27088–27120, 2024.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.

Wang, J., Wells III, W. M., Golland, P., and Zhang, M.
Efficient laplace approximation for bayesian registration
uncertainty quantification. In International Conference
on Medical Image Computing and Computer-Assisted
Intervention, pp. 880–888. Springer, 2018.

10



Submission and Formatting Instructions for ICML 2025

Wu, H., Luo, H., Wang, H., Wang, J., and Long, M. Tran-
solver: A fast transformer solver for pdes on general
geometries. arXiv preprint arXiv:2402.02366, 2024.

Xue, L., Zhou, K., and Zhang, X. Continuous optimiza-
tion for construction of neural network-based prediction
intervals. Knowledge-Based Systems, 293:111669, 2024.

Yang, X., Yao, H., and Wei, Y. One meta-tuned transformer
is what you need for few-shot learning. In Forty-first
International Conference on Machine Learning, 2024.

Yu, Y., Liu, N., Lu, F., Gao, T., Jafarzadeh, S., and Silling,
S. Nonlocal attention operator: Materializing hidden
knowledge towards interpretable physics discovery. arXiv
preprint arXiv:2408.07307, 2024.

Zhang, Y., Ma, Z., Li, J., Qiao, Y., Wang, Z., Chai, J.,
Wu, Q., Bansal, M., and Kordjamshidi, P. Vision-
and-language navigation today and tomorrow: A sur-
vey in the era of foundation models. arXiv preprint
arXiv:2407.07035, 2024.

Zhou, H., Zhang, S., Peng, J., Zhang, S., Li, J., Xiong, H.,
and Zhang, W. Informer: Beyond efficient transformer
for long sequence time-series forecasting. In Proceed-
ings of the AAAI Conference on Artificial Intelligence,
volume 35, pp. 11106–11115, 2021.

Zhou, X., Gupta, A., Upadhyay, S., Bansal, M., and Faruqui,
M. Can sequence-to-sequence transformers naturally
understand sequential instructions? In Proceedings of
the 12th Joint Conference on Lexical and Computational
Semantics (* SEM 2023), pp. 527–534, 2023.

Zollo, T. P., Deng, Z., Snell, J. C., Pitassi, T., and Zemel, R.
Improving predictor reliability with selective recalibra-
tion. arXiv preprint arXiv:2410.05407, 2024.

Zou, S., Tao, T., Mahbub, S., Ellington, C. N., Algayres,
R., Li, D., Zhuang, Y., Wang, H., Song, L., and Xing,
E. P. A large-scale foundation model for rna function and
structure prediction. bioRxiv, pp. 2024–11, 2024.

11



Submission and Formatting Instructions for ICML 2025

A. Melt Pool Temperature Field Prediction in Additive Manufacturing
This section presents a detailed evaluation of melt pool predictions produced by ASNO, alongside baseline comparisons. In
Directed Energy Deposition (DED), melt pool behavior is a key determinant of the resulting material properties. Accurately
modeling this behavior is crucial for capturing temperature evolution, phase transitions, and thermal cycling—factors that
directly influence microstructure and mechanical integrity. Moreover, insight into melt pool dynamics supports improved
process control, defect avoidance, and dimensional consistency. Through this analysis, we aim to illustrate ASNO’s ability
to accurately reflect these critical thermal features in a manufacturing context.

Figure 5. Comparison of ASNO model output and target temperature distributions for the melt pool in Directed Energy Deposition at
Timesteps 10, 25, and 36. Each row represents a different timestep, with the model output shown on the left and the target on the right.
The color scale indicates temperature in Kelvin, highlighting ASNO’s accuracy in capturing the thermal profile of the melt pool.

Simulations are conducted on a 21 × 21 spatial grid, capturing 2D temperature fields at multiple timesteps throughout
the deposition sequence. Each timestep represents the effect of the moving heat source on the substrate, with temperature
gradients shaped by material response and boundary heat loss.
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Figure 5 displays these comparisons at three representative timesteps (10, 25, and 36). For each timestep, ASNO’s output
(left column) is directly compared to the corresponding ground truth (right column). The temperature scale ranges from
2000 K to 5500 K, revealing heat concentration in the melt pool center and the cooling gradients that trail the scanning laser.
Across all shown timesteps, ASNO closely matches the true temperature fields.

These results highlight ASNO’s capacity to capture high-temperature regions and their spatial evolution with high fidelity.
The model maintains stability over longer prediction horizons and accurately follows the transient heat conduction patterns
characteristic of DED processes. The close alignment between predictions and targets supports the conclusion that ASNO is
a reliable and precise surrogate for melt pool simulation—making it valuable for thermal control, quality assurance, and
optimization in industrial-scale additive manufacturing workflows.

B. Additional Details of Generation of OOD-f and OOD-b Test Sets for Darcy Flow
To rigorously evaluate the robustness and generalization capabilities of ASNO under distributional shifts, as in section 4.1,
we constructed two distinct out-of-distribution (OOD) test sets for the time-dependent Darcy flow benchmark: OOD-f and
OOD-b. These datasets were designed to systematically alter key components of the PDE inputs—specifically, the source
field g(t,x) and the permeability field b(x)—while keeping the governing dynamics fixed. This setup enables assessment of
model reliability and adaptability in scenarios where real-world conditions deviate from those observed during training.

The OOD-f dataset targets variation in the time-varying source field g(t,x). In the training set, source fields are sampled
from a Gaussian random field (GRF) with fixed hyperparameters α = 2 and τ = 3, defining the smoothness and length
scale of the spatial correlation, respectively. To construct the OOD-f samples, we modulate the original GRF realizations
with a sinusoidal temporal component and scale their amplitudes to introduce more dynamic variability. Specifically, each
OOD-f source field evolves as g(t,x) = g̃(x) · sin(t), where g̃(x) is a spatial GRF sampled using the same base parameters
as in training, and t = q∆t is the timestep with ∆t = 5× 10−5. The amplitude of these signals is scaled by a factor of 200,
significantly enhancing the temporal variance and introducing a richer structure in both spatial and temporal dimensions.
This modification alters the distributional properties of the source field by injecting temporal oscillations that were absent
during training, effectively testing the model’s ability to extrapolate under novel temporal dynamics.

The OOD-b dataset focuses on spatial distribution shifts in the hidden permeability field b(x), which controls the diffusivity
of the medium and is critical to pressure evolution in Darcy flow. During training, the permeability field is represented
as a binary microstructure generated from a GRF with parameters αχ = 4 and τχ = 5. These parameters yield relatively
smooth, moderate-frequency spatial variations in the binary phase structure. In contrast, the OOD-b set is generated using a
GRF with increased smoothness and shorter correlation length: αχ = 7 and τχ = 6. This leads to finer, more fragmented
spatial patterns with sharper phase transitions and higher local heterogeneity. As a result, the spatial structure of the flow
environment becomes significantly more complex, challenging the ability of a learned operator to generalize to unseen
permeability regimes. These shifts in the spatial correlation structure directly influence the shape and propagation of pressure
waves, providing a meaningful test of model generalization across geometry-induced variability.

Across both OOD-f and OOD-b, we ensure that the data generation pipeline matches the resolution and format used in
training, with simulations performed on a 21× 21 spatial grid over 100 time steps. For each OOD set, new trajectories were
generated using the modified GRFs and their respective parameter configurations. The number of test samples (38,400)
and evaluation protocol remain consistent with those used for in-distribution testing. Table 1 reports the performance of
ASNO and competing baselines under these OOD conditions. The results show that ASNO achieves the lowest test losses
on both OOD-f and OOD-b, confirming its superior generalizability under both temporal and spatial distribution shifts.
These improvements are particularly noteworthy given ASNO’s comparable parameter count and GPU footprint relative
to the other models evaluated. Collectively, the OOD benchmarks validate ASNO’s robustness and its ability to maintain
predictive accuracy even when the data distribution deviates significantly from the training regime.

C. Additional Details of Uncertainty Quantification with Linear Laplace Approximation
This section provides implementation details for the uncertainty quantification results discussed in Section 5. In particular,
we describe how a Linear Laplace Approximation (LLA) is applied to the ASNO model to quantify epistemic uncertainty in
the Darcy flow benchmark.

Uncertainty quantification is essential in scientific computing and applications such as additive manufacturing, where variabil-
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ity in system conditions can significantly influence predictive outcomes. In this context, epistemic uncertainty—stemming
from limited training data or structural model limitations—must be captured to ensure robust decision-making, adaptive
sampling, and model-based control. LLA provides a principled way to estimate such uncertainty by approximating the
posterior distribution over model parameters.

The standard learning process in neural networks optimizes the regularized empirical risk using:

θMAP = argmin
θ

R(D, θ) = argmin
θ

(l(D, θ) + r(θ)) , (40)

where l(D, θ) is the data-fitting loss and r(θ) represents a regularization term, interpreted as the negative log-prior in a
Bayesian framework. The resulting optimizer θMAP serves as the maximum-a-posteriori estimate. The posterior is then
written as:

p(θ|D) ∝ exp
(
−R(D, θ)

)
. (41)

LLA proceeds by approximating this posterior with a Gaussian via a second-order Taylor expansion of the risk function
around θMAP:

R(D, θ) ≈ R(D, θMAP) +
1

2
(θ − θMAP)

⊤H (θ − θMAP), (42)

where H = ∇2
θθR(D, θ)

∣∣
θMAP

is the Hessian of the risk at the MAP estimate. Since the gradient vanishes at the optimum,
the approximate posterior becomes:

p(θ|D) ≈ p(θMAP|D) +
1

2
(θ − θMAP)

⊤
(
∇2

θθp(θ|D)
∣∣∣
θMAP

)
(θ − θMAP). (43)

This posterior is thus a multivariate Gaussian with:

θ ∼ N (θMAP,Σ), Σ =

(
∇2

θθp(θ|D)
∣∣∣
θMAP

)−1

. (44)

Due to the high dimensionality of modern neural networks, computing the full Hessian is impractical. We adopt a diagonal
approximation:

Σ ≈ diag
(

1
λ1
, 1

λ2
, . . . , 1

λn

)
, (45)

where λi are the diagonal entries of the Hessian. This reduces memory and computational costs while retaining useful
information about parameter uncertainty.

Using this Gaussian posterior, we compute the predictive variance by propagating uncertainty through the ASNO architecture.
Given the ASNO update rule:

Xout
m+1 = NAO

(
TE(Xm, . . . ,Xm−n+1), Fm+1

)
, (46)

the predictive covariance is:
Cov

[
Xout

m+1

]
≈ J

(m+1)
θ Σ (J

(m+1)
θ )⊤, (47)

where the Jacobian J
(m+1)
θ is given by:

J
(m+1)
θ =

∂Xout
m+1

∂ θ
=

∂

∂θ

[
NAO

(
TE(Xm, . . . ,Xm−n+1), Fm+1

)]
.

This allows us to obtain confidence intervals around each predicted field value, supporting the evaluation metrics introduced
in the main paper (see Equations 31 and 32 in Section 5). These intervals are derived from the posterior variance using
the Gaussian assumption, yielding prediction bounds of the form µi ± 1.96σi, where µi and σi are the mean and standard
deviation at spatial location i.

This framework enables ASNO to quantify uncertainty efficiently and reliably, providing well-calibrated intervals and
supporting applications in scientific modeling, where trustworthiness and interpretability are essential. LLA offers a scalable,
computationally tractable method for augmenting ASNO with epistemic uncertainty estimates, without significant changes
to the training procedure or model architecture.
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D. Nomenclature

Symbol Meaning

X, x State vector (general)
Xm State at timestep m

X̃m+1 Extrapolated (homogeneous) state
F External forcing / loading field
S Hidden system (environment) state
t Continuous time
m Time-index
n History length
∆t Time step size
αk, β BDF coefficients
D(η) Dataset for system η
F ASNO operator mapping
ŷt+1 Predicted output at time t+ 1
yt, ŷt True and predicted values at time t
ET Cumulative error over T steps
et Instantaneous error at timestep t
Q, K, V Query, Key, and Value matrices used in attention mechanisms; used generically, with context-specific

definitions below
WE Embedding matrix
WTq, WTk, WTv Time-series Transformer Encoder attention weight matrices for Query (Q), Key (K), and Value (V ) used in

the explicit extrapolation step
Pk Positional encoding at position k
dembed, dt, d Embedding dimension, key/query dimension, and feature dimension
Ht Penultimate-step latent features used in computing the NAO kernel weights for h and f
Jt Intermediate NAO state at attention step t composed of latent features and forcing fields (Ht, Ft), iteratively

updated across T layers
WP,h, WP,f , WQt , WKt Weight matrices in the Nonlocal Attention Operator (NAO) used for computing kernel projections; WQt

and WKt generate attention Query and Key vectors used in the implicit interaction modeling
K[·] Learned nonlocal kernel operator acting over latent space in NAO
H, F Input and output Banach function spaces
T Number of attention steps in NAO

E. Impact Statement
This paper contributes to advancing the field of Machine Learning by developing an innovative approach for modeling
spatio-temporal dynamics in scientific and engineering applications. Our work has broad potential societal implications,
including applications in manufacturing, autonomous systems, and physics-based modeling. While these implications are
significant, we do not identify any immediate ethical concerns that necessitate specific emphasis at this time.
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