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Abstract

Community-driven Text-to-SQL evaluation platforms play a pivotal role in tracking
the state of the art of Text-to-SQL performance. The reliability of the evaluation
process is critical for driving progress in the field. Current evaluation methods are
largely test-based, which involves comparing the execution results of a generated
SQL query and a human-labeled ground-truth on a static test database. Such an
evaluation is optimistic, as two queries can coincidentally produce the same output
on the test database while actually being different. In this work, we propose a new
alternative evaluation pipeline, called SPOTIT, where a formal bounded equivalence
verification engine actively searches for a database that differentiates the generated
and ground-truth SQL queries. We develop techniques to extend existing verifiers
to support a richer SQL subset relevant to Text-to-SQL. A performance evaluation
of ten Text-to-SQL methods on the high-profile BIRD dataset suggests that test-
based methods can often overlook differences between the generated query and the
ground-truth. Further analysis of the verification results reveals a more complex
picture of the current Text-to-SQL evaluation.

1 Introduction

Text-to-SQL is one of the fundamental building blocks for designing natural language (NL) interfaces
that enable users to access and analyze structured data sources. Translating human questions into
executable database queries bridges the gap between non-technical users and complex data systems.
Due to its practical relevance for commercial products [1, 4, 33], Text-to-SQL has recently attracted
significant attention, leading to the development of a wide range of solutions [31]. New Text-to-SQL
frameworks are announced regularly, and thanks to community-driven evaluation platforms such
as BIRD [21] and Spider [17], their performance can be benchmarked and compared in near real
time. Given the pivotal role these platforms play in tracking the state of the art, the reliability of their
evaluation processes is crucial for driving progress in the field.
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In this paper, we take a close look at the evaluation process for the accuracy of Text-to-SQL methods.
Currently, the process usually involves checking whether the SQL queries generated by a method
produce results equivalent to those of the gold SQLs (i.e., human-written ground-truth SQLs), under a
pre-defined notion of equivalence. Most state-of-the-art evaluation frameworks [17, 21] perform this
equivalence check through testing: executing both queries on a static test database and comparing
the results. If the results match, the generated SQL is labeled as correct. Although widely used in
practice, the testing-based approach has clear limitations. Because the check is performed on a single
database, two different SQL queries may appear equivalent by chance, purely due to the specific
data contained in that database. This raises an important question: when the test-based approach
marks a generated SQL as correct, how often does it truly produce the same results as the gold SQL
in general? The next broader question is: to what extent can the current evaluation process accurately
measure the performance of Text-to-SQL methods?

We investigate these questions by exploring an alternative correctness evaluation methodology.
Instead of relying on test databases to assess equivalence, we propose to actively search for databases
that can differentiate the generated SQL from the gold SQL. The search-based evaluation naturally
provides stronger correctness guarantees and enables a more rigorous measurement of accuracy.
Since providing complete equivalence guarantee is in general undecidable, we perform SMT-based
bounded verification [15], which searches for differentiating databases with specified sizes. We
develop a new Text-to-SQL evaluation workflow, SPOTIT, on top of those verification techniques.
We significantly extend these techniques to support a new set of SQL operators over strings and dates
which are commonly used for Text-to-SQL benchmarks.

Experiments on ten state-of-the-art Text-to-SQL methods on the popular BIRD dataset [21] suggest
that the reported accuracy of these methods drops by 11.3%–14.2% when switching from the official
test-based evaluation to SPOTIT. The varying levels of decrease in absolute precision also lead to
substantial changes in the order of ranking of the Text-to-SQL methods. Moreover, SPOTIT produces
minimal differentiating databases, which enables us to pinpoint the sources of inconsistencies between
the generated and gold SQLs. Analysis of these databases reveals a more complex picture of the
current Text-to-SQL evaluation. To summarize, our contributions include:
• SPOTIT, a new evaluation pipeline for Text-to-SQL powered by formal equivalence verification;
• novel SMT-encoding for a set of SQL operators over strings and dates, and proof of its correctness;
• practical strategies for the efficient deployment of SPOTIT;
• a large-scale evaluation of ten state-of-the-art Text-to-SQL methods on the BIRD dataset, which

reveals potential shortcomings of current Text-to-SQL evaluation.

We provide background on Text-to-SQL and formal equivalence checking in App. A and discuss
related work in App. B.

2 Motivating examples N1: "Which is the youngest patient with an abnormal
anti-ribonuclear protein level?
Please list his or her date of birth."

/*Gold SQL Q*/:
SELECT T1.birthday
FROM patient AS T1
INNER JOIN laboratory AS T2
ON T1.ID = T2.ID
WHERE T2.rnp != ’-’ OR ’+-’
ORDER BY T1.birthday DESC LIMIT 1
/* Generated SQL P */:
SELECT patient.birthday
FROM patient
INNER JOIN laboratory
ON patient.ID = laboratory.ID
WHERE NOT laboratory.rnp IN (’-’, ’+-’)
ORDER BY patient.birthday
DESC LIMIT 1

Figure 1: An example where the gener-
ated SQL produces the same output as
the gold SQL on the BIRD’s official test
database, but SPOTIT finds a database
that differentiates the the queries. In this
case, the gold SQL is incorrect.

Before we describe our new verification-based evaluation
pipeline, we first discuss main sources of mismatches
between the gold SQL and the generated SQL in Text-to-
SQL evaluation. There are three main such sources: (1)
NL query N is ambiguous, so both the gold and generated
SQL queries are justifiable interpretations; (2) N is unam-
biguous, but the gold SQL query is incorrect (gold SQLs
are created manually and thus prone to human errors); (3)
N is unambiguous, the gold SQL query is correct, but
the generated SQL query is incorrect. Our framework fo-
cuses on checking equivalence between the gold SQL and
the generated SQL, treating the latter as the best-effort,
semantically correct formalization of N . We show that
SPOTIT can successfully detect incorrect generated SQLs
that are overlooked by existing test-based evaluation. Per-
haps more surprisingly, SPOTIT also allows us to spot the
first and second sources of mismatch. Fig. 1 shows one
such example. App. C presents another example.
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Example 2.1. On the BIRD’s test database, both the gold and the generated SQL queries return
“1989-08-28” for query N1. However, SPOTIT found a database on which these two queries are not
equivalent (Appendix F.1). In fact, we observe that all ten frameworks that we tested generated SQLs
that are not equivalent to the gold query. Upon closer inspection, we find that the gold query is
incorrect: its WHERE clause is equivalent to T2.rnp != ’-’ OR FALSE, as a string literal like ’+-’
is interpreted as FALSE in a boolean context, which is not the intended behavior.

3 SPOTIT: a search-based Text-to-SQL evaluation pipeline

We introduce in App. D.1 new SMT-encoding for a number of SQL operators over string and date
types that were not supported by existing bounded equivalence verification methods but frequently
appear in Text-to-SQL benchmarks. Our currently supported SQL grammar is presented in Fig. 7. In
this section, we overview our verification-based evaluation pipeline SPOTIT and discuss practical
implementation strategies. Additional details are described in App. D.2

Fig. 2 presents a high-level workflow of our approach that consists of three conceptual phases.
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Figure 2: Three main phases of SPOTIT.

1 Input phase. Given a NL question N and its corresponding gold SQL query Q, a Text-to-SQL
framework takes as input N and generates a SQL query P . Both Q and P are passed to phase 2 .

2 Verification phase. The goal is to find a counterexample database instance on which the queries
Q and P produce different outputs. For a given bound k ≤ K, we perform bounded equivalence
checking between Q and P . If the queries are proved equivalent, then we increase k by one for
the next verification check. Furthermore, we cannot find any counterexample under all bounds and
conclude that they are verified up to the bound k. On the other hand, if the queries are proved to be
non-equivalent under some bound, we proceed to phase 3 for a further validation of Dcex.

3 Validation phase. Given the queries Q and P and a counterexample Dcex returned by verification
algorithm, we must verify that this counterexample is non-spurious. There are two main reasons
spurious counterexamples can arise in the verification engine. Either because some operators are
over-approximated in the SMT encoding or the SQL query admits non-deterministic behaviors that
cannot be modeled. Therefore, we execute the queries on the counterexample database (e.g., in
SQLITE) and check whether the results actually differ. Dcex is viewed valid if the results remain
different; otherwise, we report this spurious case to the developers.

4 Experimental evaluation

In this section, we investigate the effect of using SPOTIT as the evaluation methodology for Text-to-
SQL tasks. We are interested in the following questions:

• How much more SQL queries does our extension of VERIEQL support?
• Can SPOTIT provide more rigorous accuracy evaluation than test-based approaches?
• Can SPOTIT reveal shortcomings in existing Text-to-SQL evaluations?

Experimental Setup. We consider all 1,533 question-SQL pairs from the development set of
BIRD [22], a state-of-the-art dataset for evaluating Text-to-SQL methods. We reached out to the
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Table 1: The Text-to-SQL methods we evaluated
and their acronyms.

Entry Acronym

Alpha-SQL + Qwen2.5-Coder-32B [18] ALPHA
CSC-SQL + Qwen2.5-Coder-7B [28] CSC-7B

CSC-SQL + XiYanSQL [28] CSC-32B
GenaSQL-1 [12] GENA-1
GenaSQL-2 [12] GENA-2

RSL-SQL + GPT-4o [5] RSL
OmniSQL-32B[19] OMNI-MAJ

GSR (anonymous authors) GSR
CHESSIR+CG+UT [34] CHESS

SLM-SQL + Qwen2.5-Coder-1.5B [30] SLM

Table 2: Performance of Text-to-SQL methods
using EX-TEST, EX-SPOTIT, and EX-SPOTIT+.

EX-TEST EX-SPOTIT EX-SPOTIT+

Acc. (%) Rank Acc.(%) Rank Acc.(%) Rank
CSC-32B 71.32 1 58.80 3 57.82 4
GENA-2 70.53 2 59.84 1 59.13 1
ALPHA 69.36 3 55.87 6 55.02 6
GENA-1 69.23 4 59.45 2 59.00 2
CSC-7B 69.17 5 58.54 4 57.95 3
RSL 67.67 6 56.58 5 55.80 5
OMNI-MAJ 66.88 7 54.69 7 54.04 7
GSR 66.49 8 54.56 8 53.72 8
CHESS 63.62 9 52.87 9 52.35 9
SLM 63.43 10 51.37 10 50.98 10

developers of top-performing Text-to-SQL frameworks on the BIRD leaderboard and obtained the
generated SQL queries for 10 of them, which constitutes a representative subset of state-of-the-art
Text-to-SQL methods. The methods are listed in Tab. 1. We first evaluate the predictions of each
method using BIRD’s official test-based execution accuracy metric (EX-TEST), which, as described
in Eq. 1, compares the results of executing the generated and gold queries on a given test database.
For predictions that are deemed correct by EX-TEST, we apply SPOTIT to perform a more rigorous
analysis. We implemented SPOTIT on top of VERIEQL [15], which we extended using the methods
described in Sec. D.1. Additional experimental setup is described in App. E.1. Experiments to
measure the effect of our extension to the verification engine are presented and discussed in App. E.2.
We found that SPOTIT can support a large portion (up to 97%) of evaluated SQL queries.

Comparing test-based evaluation with SPOTIT. We now evaluate the accuracy of each Text-to-SQL
method based on EX-TEST, EX-SPOTIT, and EX-SPOTIT+. As shown in Tab. 2, the accuracy of
each method drops significantly when SPOTIT is used to check query equivalence. For example, the
accuracy of CSC-32B drops from 71.32% to 58.80% with SPOTIT, and further to 57.82% when cross-
checking is enabled. This means that there are 207 generated SQLs (1533 ∗ (71.32%− 57.82%)) that
passed the test on the official test databases, but were differentiated from the gold SQL by SPOTIT.
Overall, SPOTIT resulted in a decrease in accuracy ranging from 9.8% to 13.5%, and cross-checking
results in a small further decrease, by up to 1%. Interestingly, the ranking of the Text-to-SQL methods
also changes substantially when evaluated under the verification-based metrics, particularly in the
top half of the table. These results indicate that test-based methods can often overlook differences
between the generated SQL and the gold SQL, which might lead to misrepresentation of the actual
performance (both absolute and relative) of existing Text-to-SQL methods.

Figure 3: A breakdown of the pri-
mary reason for the difference be-
tween generated and gold SQLs.

Manual inspection of SPOTIT counterexamples. As SPOTIT
performs bounded verification, the differentiating databases it
finds are guaranteed to be minimal, which makes it easy to an-
alyze them and understand the source of difference between the
generated and gold SQLs. We manually examined the coun-
terexamples for a random sample of 50 queries generated by
CSC-32B. Fig. 3 shows a breakdown of the primary attributed
reasons for those sampled questions. Surprisingly, while incor-
rect predictions do constitute a significant portion (26%), more
often than not, the gold SQL itself is problematic. There are also
a small fraction of cases (10%) where the question itself can
be interpreted in multiple ways and therefore admits different
answers. We discussed examples of an incorrect gold SQL in
Sec. 2. Additional examples of each type of issues, along with
the differentiating databases found by SPOTIT, are provided and
discussed in App. F.

Summary of findings and implications. We summarize the findings of our evaluation of a state-of-
the-art Text-to-SQL evaluation dataset BIRD using SPOTIT and discuss their implications.

Finding 1: Existing test-based correctness metrics that involve executing the generated SQL and the
gold SQL on static test databases can overlook significant variations in output data returned by the
generated and gold SQLs. A search-based evaluation metric, such as SPOTIT, can serve as a practical
alternative that provides additional perspectives on the performance of Text-to-SQL methods.
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Finding 2: there is a significant number of problematic gold SQLs in existing Text-to-SQL benchmark
sets. As shown by examples in Tab. 6 and App. F, in many cases, the issue can be hard to detect, yet
can cause significantly different behaviors from the intended one. The presence of incorrect gold
SQLs makes it hard to determine the true optimal performance on a benchmark set, as even a perfect
Text-to-SQL method cannot achieve 100% accuracy.

Figure 4: A breakdown of ques-
tions that passed EX-TEST but
failed SPOTIT+.

Based on our result analysis for CSC-32B, we speculate that when
most Text-to-SQL methods disagree with the gold SQL, the gold
SQL is likely problematic. To validate this, we count the number
of times that a prediction for a question is deemed correct by
EX-TEST but incorrect by SPOTIT+ across all 10 Text-to-SQL
methods. As shown in Fig. 4, there are 36 questions on which all
methods generated queries that differ from the gold SQL. Manual
inspection suggests that 31 of those 36 cases have problematic
gold SQLs, 3 have ambiguous questions, and only 2 represent
genuine errors in the generated SQLs.

Figure 5: A breakdown of ques-
tions for which CSC-32B’s pre-
dictions failed EX-TEST.

While so far we have focused on incorrect gold SQLs overlooked
by EX-TEST, our investigation begs the question: when the gen-
erated query differs from the gold SQL, how often in general is
the gold SQL problematic? Fig. 5 shows the number of times the
prediction for a question is deemed incorrect by EX-TEST across
the 10 Text-to-SQL methods, for questions where CSC-32B’s pre-
dictions failed EX-TEST. There are 294 questions where at least
8 of the other 9 methods also failed EX-TEST. If shared disagree-
ment with gold SQL is also a good indicator for problematic gold
SQL in this case, then even a perfect Text-to-SQL method might
not be able to achieve an EX-TEST score much higher than 80%
on BIRD-dev. As the time of completing this manuscript, the best EX-TEST score for BIRD-dev
achieved by any method on the official leaderboard is 76.14%.

Large-scale benchmark sets inevitably contain problematic gold SQLs. Indeed, multiple sources have
found examples of problematic gold SQLs in the BIRD dataset [16, 39], and some of them have
already been addressed by the maintainers. SPOTIT is the first approach that can provide minimal,
easily analyzable databases to differentiate generated and gold SQLs, and can help to systematically
uncover problematic gold SQLs.

Finding 3: A substantial number of questions in the Text-to-SQL dataset can be interpreted in different
ways, thus admitting different SQL queries. While ambiguity is inherent in natural language, judging
the correctness of a generated SQL query based on a single gold SQL query when the natural language
question admits multiple interpretations might result in unfair penalization of Text-to-SQL methods.

Finding 4 (for the verification community): SMT-based equivalence checking techniques can already
support a large fraction of practical SQL queries. Our results demonstrate that verification can often
be completed within seconds. Due to the practical relevance of Text-to-SQL, we believe there is
motivation for the verification community to invest more resources to cover a larger fragment of SQL.

5 Conclusion

We presented SPOTIT, the first verification-based evaluation pipeline for Text-to-SQL. We introduced
techniques to support a richer SQL grammar, which enabled us to efficiently analyze a large fragment
of SQL queries commonly seen in Text-to-SQL tasks. Our initial motivation for developing SPOTIT
was to examine the extent to which the accuracy of a Text-to-SQL method is overestimated by
test-based evaluation, which is widely adopted as the default metric on high-profile Text-to-SQL
evaluation platforms. However, a closer inspection of the verification results revealed a far more
complex picture. While SPOTIT can indeed detect incorrect generated SQL queries that were
overlooked by test-based methods, a significant portion of the inconsistency between the gold and
generated SQLs can be explained by the benchmarks themselves–either due to problematic gold
SQLs or due to ambiguous natural language questions. We discussed the implications of and the
next steps from our findings, and hope that our work will motivate further work on evaluating and
improving Text-to-SQL evaluation frameworks.
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A Preliminaries

We provide background on Text-to-SQL and formal equivalence checking. Due to space limitation,
an overview of related work is present in App. B.

Text-to-SQL problem statement. Given a natural language query N and a database D with schema
S, the goal of Text-to-SQL is to map (N,D) to an SQL query Q, such that executing Q on D,
denoted Q(D), produces an output relation (table) that answers N .

Text-to-SQL evaluation. The main evaluation mechanism for a Text-to-SQL framework relies on a
gold SQL query produced by a human annotator. Hence, for each natural language query N over
a database, there exists a gold SQL query Q that represents the human-labelled ground truth of
translating N into SQL. Given a generated SQL P and the corresponding gold query Q, current
evaluation performs the following check:

EX-TEST(P,Q,Dtest) =

{
1, if ∀r. r ∈ P (Dtest) ↔ r ∈ Q(Dtest)

0, otherwise,
(1)

where Dtest is a test database provided by the benchmark set, and r denotes a row in the result table.
In words, EX-TEST compares whether the two tables, P (Dtest) and Q(Dtest), contain the same set
of rows. In order to more rigorously analyze the equivalence between P and Q, we use formal
verification to search for a differentiating database Dcex such that EX-TEST(P,Q,Dcex) = 0.

Bounded SQL equivalence checking. Given two SQL queries Q1 and Q2 over a schema S and
an upper bound K on the relation size, the problem of bounded equivalence checking is to decide
whether Q1 and Q2 are equivalent, denoted Q1 ≃S,K Q2, for all databases D conforming to S such
that each relation in D has at most K tuples. Formally,

Q1 ≃S,K Q2
def
= ∀D ∈ Instances(S). ∀R ∈ Relations(D). |R| ≤ K ⇒ Q1(D) = Q2(D),

where Instances(S) represents all database instances conforming to S, and Relations(D) represents
all relations in D. In general, the goal is either to prove the bounded equivalence holds, or to find a
counterexample database Dcex that disproves the equivalence. Compared with unbounded equivalence
checking, which is generally undecidable [25], bounded equivalence checking can handle a more
expressive SQL subset and is guaranteed to uncover small counterexamples (if they exist). These
features make bounded verification suitable for large-scale Text-to-SQL evaluation.

VERIEQL. VERIEQL [15] is a recently proposed bounded equivalence checker for SQL queries
and, to the best of our knowledge, supports the most expressive subset of SQL among existing tools.
It reduces the verification task to a satisfiability problem by encoding the symbolic execution of
the two SQL queries and the non-equivalence of the execution results as a satisfiability modulo
theories (SMT) formula [2], which can be solved by an off-the-shelf SMT solver [11]. The bounded
equivalence property holds if and only if the formula is unsatisfiable, which means it is not possible
to find a database that result in different execution results. Otherwise, a satisfying interpretation of
the formula can be decoded to a counterexample database. We significantly extend VERIEQL to
support our verification use cases.

B Related Work

A large number of Text-to-SQL frameworks have been proposed over the last few years by research
groups in academia and industry [6, 13, 14, 23, 24, 27, 29, 32, 35, 36, 40]. However, evaluation
frameworks have received much less attention. There are two main publicly available platforms:
BIRD-SQL [21] and Spider [17] that are commonly used to evaluate the performance of Text-to-SQL
methods. Their evaluation procedure is performed on predefined database instances, whereas SPOTIT
searches for a separation database instance. A number of evaluation metrics were proposed to
take into account partially correct generated queries [26] or the efficiency of query executions [41].
Recently, [3, 20] proposed an iterative evaluation framework in which the system can interact with
the user by asking additional questions (e.g., to resolve ambiguity). However, the final evaluation of
the correctness of the generated SQL query is still performed on a static database.

From a verification perspective, there remain two streamlines in equivalence checking for SQL
queries: full-fledged and bounded verification. The full-fledged methods [8, 10, 38, 42, 43] encode
queries into specific representations (e.g., algebraic expressions [8, 38]) and determine equivalence
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N2: "How many male patients who underwent testing between
1995 and 1997 and were subsequently diagnosed with
Behcet disease did not stay in the hospital for treatment?"

/*Gold SQL Q*/:
SELECT COUNT(T1.id) FROM patient AS T1
INNER JOIN examination AS T2 ON T1.id = T2.id
WHERE T2.diagnosis = ’Behcet ’ AND T1.sex = ’M’
AND STRFTIME(’%Y’, T2.examination_date)
BETWEEN ’1995’ AND ’1997’ AND T1.admission = ’-’;
/* Generated SQL P */:
SELECT COUNT(DISTINCT patient.id)
FROM patient INNER JOIN examination
ON patient.id = examination.id
WHERE patient.sex = ’M’ AND
examination.examination_date
BETWEEN ’1995 -01 -01’ AND ’1997 -12 -31’
AND examination.diagnosis = ’Behcet ’
AND patient.admission = ’-’;

Figure 6: An example of cases where the generated SQL produces the same output as the gold SQL
on the BIRD’s official test database, but SPOTIT finds a database that differentiates the the queries.
The parts that explain the mismatch are highlighted. For N2, both SQL queries can be right depending
on the interpretation of the NL question.

by proving the equivalence of these representations, thereby guaranteeing equivalence of queries for
any possible database. However, such methods typically support only a limited subset of SQL and
cannot generate counterexamples for non-equivalent queries. In contrast, the bounded verification
approaches [7, 9, 15, 37] check equivalence within a finite search space, making them capable of
handling larger subsets of SQL and identifying counterexamples. To the best of our knowledge,
VERIEQL supports the most expressive SQL fragments and rich integrity constraints, while also
offering extensibility for new features [15]. In this work, we significantly extend the VERIEQL
framework to support date and string types as well as a number of common operators for the
Text-to-SQL evaluation task.

C Motivating examples

Example C.1. Consider another query N2: "How many male patients who underwent testing between
1995 and 1997 and were subsequently diagnosed with Behcet disease did not stay in the hospital
for treatment?" together with the gold and generated SQL queries (Fig. 6). These two queries both
return “2” on the BIRD test database. However, the two queries are clearly not equivalent (id is
not a primary key of the examination table therefore duplicates are allowed): the generated query
counts all examinations per patient, whereas the gold query counts only distinct patients. SPOTIT
easily found a database that differentiate the two queries (Appendix F.2). Note that depending on the
interpretation of the question, both SQL queries can be correct: the gold SQL can be reasonable if
the goal is to understand the hosptial workload, while the generated SQL can be reasonable if the
goal is to understand the number of unique patients. Hence, we conclude that N2 is ambiguous.

D Methodology

D.1 Equivalence Checking for SQL Queries

To understand our extension, let us first walk through Example D.1 to understand how equivalence
checking can be encoded as an SMT formula in a verifier like VERIEQL [15].
Example D.1. Consider a schema S = {R 7→ {id : int, dob :date}} and the following two queries:

Q1=SELECT id FROM R WHERE id>1 Q2=SELECT id FROM R WHERE id>2

We describe how to encode equivalence checking for a bound (K) of 1 as an SMT formula. First,
variables are introduced to represent the database and the execution results. This includes a symbolic
database D = {R 7→ [t1]}, where t1 = [x1, x2] is a tuple in R, and x1, x2 are integer variables. In
addition, tuples t2 = [x3] and t3 = [x4], are introduced to encode query results: Q1(D) = [t2] and
Q2(D) = [t3], where x3, x4 are both integer variables. Note that the number of tuples in R is equal
to the bound K. Also note that a date (x2) is represented as an integer, which is sufficient here but
not in general. We later introduce precise encoding of date to support richer operations.
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Query Qr ::= Q | OrderBy(Q, E⃗, b)

Subquery Q ::= R |ΠL(Q) | σϕ(Q) | ρR(Q) |Q⊕Q | Distinct(Q) |Q⊗Q | GroupBy(Q, E⃗, L, ϕ) |With(Q⃗, R⃗, Q)
Attr List L ::= id(A) | ρa(A) | L,L

Attr A ::= Cast(ϕ) |E | G(E) |A ⋄ A
Pred ϕ ::= b | Null |A⊙ A | IsNull(E) | E⃗ ∈ v⃗ | E⃗ ∈ Q | ϕ ∧ ϕ | ϕ ∨ ϕ | ¬ϕ

| PrefixOf(s, E) | SuffixOf(s, E) | Like(s, E)

Expr E ::= a | v |E ⋄ E | ITE(ϕ,E,E) | Case(ϕ⃗, E⃗, E) | SubStr(E1, E2, E3)
| Strftime(κ,E) | JulianDay(E) | ToInt(E) | ToDate(E) | ToStr(E)

Join Op⊗ ::= × | ▷◁ϕ | ▷◁ϕ | ▷◁ ϕ | ▷◁ ϕ

Collection Op⊕ ::= ∪ | ∩ | \ | ⊎ | ⊎ | −
Arith Op ⋄ ::= + | − | × | / |%

Logic Op⊙ ::= ≤ | < | = | ̸= | > | ≥

R ∈ Relation Names a ∈ Attribute Names v ∈ {Null} ∪ Integers ∪ Dates ∪ Strings b ∈ Bools
s ∈ Strings G ∈ {Count, Min, Max, Sum, Avg} κ ∈ {“%Y”, “%M”, “%d”}

Figure 7: Extended syntax of SQL Queries. New features are in bold.

We now describe the constraints over the variables. The first set of constraints ensures that t2 and t3
correctly capture the semantics of Q1 and Q2. In this case, t2 tuple is constrained by ΦQ1

= (x1 >
1 → (x3 = x1 ∧¬Del(t2)))∧ (x1 ≤ 1 → Del(t2)), where Del is an uninterpreted function denoting
the non-existence of a symbolic tuple. The formula ΦQ1 ensures that only interpretations satisfying
x > 1 can populate a concrete tuple; otherwise, Q1’s result is empty. Similarly, t3 is constrained by
ΦQ2 = (x1 > 2 → (x4 = x1 ∧ ¬Del(t3))) ∧ (x1 ≤ 2 → Del(t3)).

The second set of constraints encodes that Q1(D) and Q2(D) returns different results. In this case,
it is simply t2 ̸= t3. The full encoding is a conjunction of all constraints: ΦQ1

∧ ΦQ2
∧ (t2 ̸= t3),

whose satisfiability can be checked by an SMT solver. A satisfying interpretation to this conjunction
corresponds to a database instance that differentiates Q1 and Q2. For example, the queries are not
equivalent under the interpretation I = {x1 7→ 2}.

Extension in SQL encoding. Existing bounded SQL equivalence checker still lacks support for
several important features, including precise encoding of dates and strings, which are highly relevant
in Text-to-SQL applications. Furthermore, SQL supports computations across many different data
types with implicit type casting (e.g., 1 + “a” and date(“2000-01-01”) + “1”), which poses significant
challenges to establish precise semantics and encodings. To address these limitations and challenges,
we introduce techniques to support dates and strings, along with their manipulations, in the SQL
equivalence checker VERIEQL. We also introduce type conversions across Null, integers, dates, and
strings for implicit type casting. For example, in the gold SQL for N2 (Fig. 6), the output of the
STRFTIME function is implicitly converted from a date to an integer.

Fig. 7 presents our supported SQL grammar. Specifically, the query language introduces type
conversions among various data types (e.g., ToInt(E), ToDate(E), and ToString(E)), which allows
us to precisely establish the semantics of dates and strings and enhances the expressiveness of
our SQL subset. We also incorporate additional expressions and predicates for data and string
manipulations, such as date formatting Strftime(κ,E), Julian day JulianDay(E), string pattern
matching PrefixOf(s, E), SuffixOf(s, E), Like(s, E), and string truncation SubStr(E1, E2, E3). The
symbolic encoding for these extended expressions and predicates is formally presented in Appendix H.

As an example, we describe how to precisely encode a date variable, which is very common in
Text-to-SQL. For instance, the date of birth and the time of a transaction are naturally modeled with
the date type. Previously, date was encoded as a single integer variable (see Example D.1). Although
this coarse representation still enables the encoding of certain date operations (e.g., comparison), it
does not necessarily support all date operations, such as date-formatting, which is used in the gold
SQL query for N2 in Fig. 6. As a date can be viewed as a triplet (year, month, day), we introduce
three integer variables y, m, and d, and constrain their values with the following formula Φ:

Φ = Φ1 ∧ Φ2 ∧ Φ3, where Φ1 = MIN_YEAR ≤ y ≤ MAX_YEAR, Φ2 = 1 ≤ m ≤ 12,
Φ3 = 1 ≤ d ∧ (∨c∈{1,3,5,7,8,10,12}m = c → d ≤ 31)
∧(m = 2 → d ≤ 28 + ite(leap(y), 1, 0)) ∧ (∨c∈{4,6,9,11}m = c → d ≤ 30)

The term leap(y) encodes the leap year condition: y%4 = 0 ∧ (y%100 ̸= 0 ∨ y%400 = 0).
Constraints Φ1, Φ2, and Φ3 restrict the possible values of the year, the month, and the day, respectively.
For example Φ1 specifies the valid range of the year, which is specific to the database engine. For
example, SQLITE only accepts dates between “0000-01-01” and “9999-12-31”; in which case
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Algorithm 1 Bounded equivalence checking
Require: Database schema S, gold SQL query Q, generated SQL

query P , time limit T , bound K
Ensure: A counterexample Dcex

1: function EQUIVCHECK(S, Q, P , T , K)
2: for k ∈ [1, K] do
3: res, Dcex ← CHECKBOUND(S, P,Q, k, T )
4: if res = EQUIVALENT then continue
5: ▷ Bounded equivalence under k
6: else if res = NON-EQUIVALENT then
7: ▷ Find a counterexample
8: ▷ Validate the counterexample on the backend DBMS
9: if ¬EX-TEST(P,Q,Dcex) then

10: return {Dcex}
11: else break ▷ Timeout, unsupported, undecidable queries
12: return ∅

Algorithm 2 SPOTIT +

Require: Database S, user query N , gold SQL query Q, Text-to-
SQL frameworksM, time limit T and bound K

Ensure: Counterexamples Dcexs
1: function SPOTIT+(S, N ,M, T , K)
2: Dcexs ← ∅
3: for m ∈ M do
4: P ← m(S, N) ▷ Generate SQL query P using m
5: Dcexs[m]← EQUIVCHECK(S, Q, P, T,K)

6: ▷ Performing cross-referencing counterexamples
7: D∗

cexs ← ∪m∈MDcexs[m]
8: for m ∈ M do
9: for D ∈ D∗

cexs \Dcexs[m] do
10: if ¬EX-TEST(P,Q,D) then
11: Dcexs[m]← Dcexs[m] ∪ {D}
12: return Dcexs

MIN_YEAR is 0 and MAX_YEAR is 9999. This refined representation allows us to precisely encode
a rich set of date operations and analyze more SQL queries compared to the previous encoding.

Equivalence under set semantics. SQL equivalence checkers typically support equivalence un-
der bag semantics and list semantics. However, some Text-to-SQL evaluation platforms, such as
BIRD [21], by default adopt equivalence under set semantics (see equation 1). This can be ex-
pressed as an SMT constraint. Given two query results with symbolic tables R1 = [t1, . . . , tn] and
R2 = [r1, . . . , rm], the condition that R1 and R2 are equivalent under set semantics is as follows:

n∧
i=1

(
¬Del(ti) → ∨m

j=1(¬Del(rj) ∧ ti = rj)
)
∧

m∧
j=1

(¬Del(rj) → ∨n
i=1(¬Del(ti) ∧ rj = ti)) (2)

On a high level, equivalence is defined by mutual set containment: R1 = R2 iff R1 ⊆ R2 and
R2 ⊆ R1. But since some tuples might be deleted due to WHERE clauses, we restrict set containment
to non-deleted tuples, i.e., those satisfying ¬Del(t).

Correctness of the encodings. We now state the correctness of our symbolic encoding for the
extended expressions and predicates, as well as the equivalence under set semantics. Proof of these
theorems is in Appendix I. As we encode the symbolic execution of queries, to prove the correctness
of our approach, we need to show that our symbolic execution coincides with the concrete execution.
This involves showing that given an expression E, the satisfying interpretation of E’s symbolic
execution result is identical to the concrete execution result of E. Thm. 1 states that formally.
Theorem 1 (Correctness of expression encoding). Let D be a database over schema S , xs be a tuple
list, and E be an expression. Consider a symbolic database Γ over S , a list of symbolic tuples T , and
E’s symbolic encoding JEKS,Γ,T . For any satisfying interpretation I with I(Γ) = D ∧ I(T ) = xs,
evaluating the expression E over the database D and the tuple list xs yields the interpretation of E’s
symbolic encoding I(JEKS,Γ,T ), i.e., I(Γ) = D ∧ I(T ) = xs ⇒ JEKD,xs = I(JEKS,Γ,T ).

Similarly, given a predicate ϕ, the satisfying interpretation of ϕ’s symbolic execution result is also
identical to the concrete execution result of ϕ. This is formally stated in Appendix I. Lastly, we state
the correctness of our encoding for equivalence under set semantics.
Theorem 2 (Equivalence under set semantics). Given two relations R1 = [t1, . . . , tn] and R2 =
[r1, . . . , rm], if formula (2) is valid, then R1 and R2 are equivalent under set semantics.

D.2 Additional details on SPOTIT

Alg.1 implements the second and third phases. For a given bound k ≤ K, it first checks bounded
equivalence between Q and P (line 3). If the queries are proven to be non-equivalent (line 6) under
some bound, we validate that the counterexample database is indeed a true counterexample (line 9)
and return it if this is the case. If the queries are proven to be equivalent in line 3, then we increase k
by one for the next verification step. If the verifier cannot find any counterexample under all bounds,
Alg.1 returns an empty set. Finally, if the verifier times out on a bound k, or the query is unsupported
or undecidable, it also returns an empty set.

Cross-checking counter-examples. One observation we make is that as we progress through the
frameworks, we collect a set of counterexamples that separate the gold query from the generated
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Figure 8: Percentage of generated-gold SQL pairs supported by SPOTIT - and SPOTIT, as well as the
average time (in seconds) of SPOTIT on pairs where a counter-example is found.

Method (# quest.) SPOTIT - (%) SPOTIT (%) Avg. Time

ALPHA (1064) 84.87 93.89 3.10
CHESS (976) 87.40 97.13 1.40
CSC-32B (1094) 84.83 94.88 3.24
CSC-7B (1061) 85.77 96.14 3.93
GENA-1 (1062) 84.56 94.92 1.01
GENA-2 (1082) 84.47 94.55 0.93
GSR (1020) 84.51 93.63 1.12
OMNI-MAJ (1026) 86.65 95.61 1.36
RSL (1038) 86.03 95.18 1.64
SLM (973) 85.92 94.24 1.36

queries. Hence, we realized that these counterexamples can be reused as checks across all frameworks,
as they might generalize across frameworks.

Alg.2 implements SPOTIT with cross-checking. First, it obtains counterexample databases, if they
exist, for all frameworks by calling Alg.1 (lines 3–5). Then, it iterates over all frameworks again and
tests equivalence between Q and P on these counterexample databases (lines 7–11). Empirically, this
improves the effectiveness of our approach.

E Experimental evaluation

E.1 Experimental setup.

The BIRD questions span 11 different databases from different professional domains, such as
education, healthcare, and sports. The official BIRD leaderboard 2 contains over 80 Text-to-SQL
methods and are updated frequently. Not all methods are open-source or have predictions publicly
available. Therefore, we reached out to the developers of top-performing Text-to-SQL frameworks
on the BIRD leaderboard and obtained the generated SQL queries for 10 of them, which constitutes a
representative subset of state-of-the-art Text-to-SQL methods.

We consider three variants of SPOTIT: (i) SPOTIT: Alg. 2 instantiated with the extended verification
engine but without cross-checking (lines 7–11); (ii) SPOTIT -: Alg. 2 instantiated with vanilla
VERIEQL and without cross-checking; (iii) SPOTIT+: Alg. 2 with cross-checking. We verify each
generated-gold SQL pair up to a bound (K) of 5. To generate practically relevant counterexamples,
we also extend the verification condition to exclude degenerate counterexamples that result in empty
for one SQL and NULL for the other SQL. Each verifier call is given one physical core, 8GB memory,
and a CPU timeout of 600 seconds. In practice, a counterexample can typically be found within
seconds, as reported below. Experiments were performed on a cluster equipped with Dell PowerEdge
R6525 CPU servers featuring 2.6-GHz AMD CPU cores.

E.2 Performance of Verification Engine.

We evaluate the effect of our extensions to the original VERIEQL engine [15] in terms of coverage,
defined as the fraction of generated-gold-SQL pairs that can be encoded into an SMT query. In
addition, we measure the average runtime of SPOTIT on questions where a valid differentiating
database is found. The results are shown in Tab. 8. Our extensions significantly increase the coverage
of the verification engine on relevant questions (i.e., ones deemed correct by EX-TEST) for each
method, allowing us to formally analyze a larger number of generated SQL queries. For example,
for CSC-32B, the coverage increases from 84.83% to 94.88%, which corresponds to 110 additional
supported questions ((94.88%− 84.83%) ∗ 1094).
The average time taken by SPOTIT to find a counterexample is under 4 seconds for all methods,
which, combined with the fact that the analysis for each question can be done in parallel, confirms
that SPOTIT is already a practical method for formally comparing generated SQLs with gold SQLs.

2https://bird-bench.github.io/
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F Examples of inconsistency between predicted and gold SQLs overlooked by
EX-TEST

F.1 Example 2.1 (extended)

Tables 3–4 show a counterexample database Dcex (these are two relevant tables). The generated SQL
P returns no records, since laboratory.rnp is equal to ‘+-’ in the single record that violated NOT
laboratory.rnp IN (’-’, ’+-’). In contrast, the gold SQL Q returns ’1000-01-01’, because
the condition T2.rnp != ’-’ OR ’+-’ is incorrect.

Table 3: patient
id sex birthday description first_date admission diagnosis
0 ’1’ ’1000-01-01’ ’1000-01-01’ ’1000-01-01’ ’1’ ’1’

Table 4: laboratory (skipped irrelevant columns)
id date got gpt ldh RNP . . .
0 ’1000-01-01’ 0 0 0 ’+-’ . . .

F.2 Example C.1 (extended)

Tables 5–6 show a counterexample database Dcex (these are two relevant tables).

The generated SQL P counts two records while the gold SQL Q counts only one record, because the
DISTINCT operator is applied before counting.

Table 5: examination (skipped irrelevant columns)
id examination_date acl_igg acl_igm ana ana_pattern acl_iga diagnosis kct rvvt lac . . .

1 ’1000-01-01’ 11 12 0 ’1’ 0 ’1’ ’1’ ’1’ ’1’ . . .

1 ’1000-01-01’ 14 15 0 ’1’ 0 ’1’ ’1’ ’1’ ’1’ . . .

Table 6: patient
id sex birthday description first_date admission diagnosis
0 ’1’ ’1000-01-01’ ’1000-01-01’ ’1000-01-01’ ’1’ ’1’
1 ’1’ ’1000-01-01’ ’1000-01-01’ ’1000-01-01’ ’1’ ’1’
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F.3 Additional examples

Example F.1. Consider the question N3 and the corresponding SQL queries (Figure 9). The
differentiating database found by SPOTIT is shown in Tables 7,8, 9. Note that there is a typo in the
evidence. According to external medical sources, the normal range of uric acid levels in females
should be defined as less than or equal to 6.50, not greater than. The annotator overlooked this typo,
and as a result, the gold SQL is clearly incorrect.

N3: "What is the anti Cardiolipin antibody concentration of the female patient
with the highest uric acid level in the normal range?"
Evidence: "Anti Cardiolipin antibody concentration refers to ‘aCL IgG‘, ‘aCL IgM‘, ‘aCL IgA‘;
female patient refers to Sex = F’; highest uric acid level in the normal range refers to MAX(UA > 6.50);"

/*Gold SQL Q*/:
SELECT T3.acl_igg , T3.acl_igm , T3.acl_iga
FROM patient AS T1
INNER JOIN laboratory AS T2 ON T1.id = T2.id
INNER JOIN examination AS T3 ON T3.id = T2.id

WHERE T1.sex = ’F’ AND T2.ua > 6.5
ORDER BY T2.ua DESC
LIMIT 1
/* Generated SQL P */:
SELECT examination.acl_igg , examination.acl_igm , examination.acl_iga
FROM patient
INNER JOIN laboratory ON patient.id = laboratory.id
INNER JOIN examination ON patient.id = examination.id

WHERE patient.sex = ’F’ AND laboratory.ua <= 6.5

ORDER BY laboratory.ua DESC
LIMIT 1

Figure 9: An example of a query with an incorrect gold SQL.

Table 7: patient (skipped irrelevant columns)
id sex . . .
0 ’F’ . . .

Table 8: laboratory (skipped irrelevant columns)
id ua . . .
0 6.5 . . .

Table 9: examination (skipped irrelevant columns)
id acl_igg acl_igm acl_iga . . .
0 1 1 1 . . .
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Example F.2. Consider the question N4 and the corresponding SQL queries (Figure 10). The
differentiating database found by SPOTIT is shown in Tables 10,11. The natural langue question
asks for transactions after January 1st, 2012, which requires excluding January 1st, 2012. However,
the gold SQL uses a greater-than-or-equal-to condition, which includes 2012/01/01, thus being
incorrect.

N4: "Among the transactions made in gas stations in the Czech Republic, how many took place after 2012/1/1?"
Evidence: "Country code for Czech Republic is ‘CZE’."

/*Gold SQL Q*/:
SELECT COUNT(T1.transactionid)
FROM transactions_1k AS T1
INNER JOIN gasstations AS T2 ON T1.gasstationid = T2.gasstationid

WHERE T2.country = ’CZE’ AND STRFTIME(’%Y’, T1.date) ≥ ’2012’ ;

/* Generated SQL P */:
SELECT COUNT (*)
FROM transactions_1k AS T
INNER JOIN gasstations AS G ON T.gasstationid = G.gasstationid

WHERE G.country = ’CZE’ AND T.date > ’2012-01-01’ ;

Figure 10: An example of a query with an incorrect gold SQL.

Table 10: transactions_1k (skipped irrelevant columns)
transaction_id gasstation_id date . . .
0 0 ’2012-01-01’ . . .

Table 11: gasstations (skipped irrelevant columns)
gasstation_id country . . .
0 ’CZE’ . . .
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Example F.3. Consider the question N5 and the corresponding SQL queries (Figure 11). The
differentiating database found by SPOTIT is shown in Tables 12,13. This example demonstrates an
incorrect gold SQL, which orders by the latest time (DESC) rather than the earlier time (ASC). This
directly contradicts the natural language question.

N5: "Which country’s gas station had the first paid customer in 2012/8/25?"
Evidence: "2012/8/25’ can be represented by ’2012-08-25’."

/*Gold SQL Q*/:
SELECT T2.country
FROM transactions_1k AS T1
INNER JOIN gasstations AS T2 ON T1.gasstationid = T2.gasstationid
WHERE T1.date = ’2012 -08 -25’

ORDER BY T1.time DESC
LIMIT 1;
/* Generated SQL P */:
SELECT G.country
FROM gasstations AS G
JOIN (

SELECT gasstationid
FROM transactions_1k
WHERE date = ’2012 -08 -25’

ORDER BY time ASC LIMIT 1
) AS T
ON G.gasstationid = T.gasstationid;

Figure 11: An example of a query with an incorrect gold SQL.

Table 12: transactions_1k (skipped irrelevant columns)
gasstation_id date time . . .
0 ’2012-08-25’ 1 . . .
0 ’2012-08-25’ 2 . . .

Table 13: gasstations (skipped irrelevant columns)
gasstation_id country . . .
0 ’1’ . . .
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Example F.4. Consider the question N6 and the corresponding SQL queries (Figure 12). The
differentiating database found by SPOTIT is shown in Tables 14, 15. The gold SQL incorrectly
encodes the exclusive inequality specified in the natural langue question by using the BETWEEN
operator, which leads to inclusive bounds. Thus, the gold SQL is incorrect as it includes values
outside of the specified range.

N6: "Please list a patient’s platelet level if it is within the normal range
and if he or she is daignosed with MCTD"
Evidence: "PLT > 100 and PLT < 400 means platelet level is within the normal range;
PLT < 100 and PLT > 400 means platelet level is not within the normal range;
diagnosed with MCTD refers to Diagnosis = ’MCTD’";

/*Gold SQL Q*/:
SELECT T2.plt
FROM patient AS T1
INNER JOIN laboratory AS T2 ON T1.id = T2.id

WHERE T1.diagnosis = ’MCTD’ AND T2.plt BETWEEN 100 AND 400

/* Generated SQL P */:
SELECT L.plt
FROM LABORATORY L
INNER JOIN PATIENT P ON L.id = P.id

WHERE P.diagnosis = ’MCTD’ AND L.plt > 100 AND L.plt < 400

Figure 12: An example of a query with an incorrect gold SQL.

Table 14: patient (skipped irrelevant columns)
id diagnosis . . .
0 ’MCTD’ . . .

Table 15: laboratory (skipped irrelevant columns)
id plt . . .
0 100 . . .
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Example F.5. Consider the question N7 and the corresponding SQL queries (Figure 13). The
differentiating database found by SPOTIT is shown in Tables 16, 17. In this example, the generated
SQL is incorrect as it is clearly missing the link_to_major constraint, filtering only by name.

N7: "Please indicate the college of the person whose first name is Katy
with the link to the major ’rec1N0upiVLy5esTO’ "

/*Gold SQL Q*/:
SELECT T2.college
FROM member AS T1
INNER JOIN major AS T2 ON T2.major_id = T1.link_to_major

WHERE T1.link_to_major = ’rec1N0upiVLy5esTO’ AND T1.first_name = ’Katy’

/* Generated SQL P */:
SELECT major.college
FROM member
INNER JOIN MAJOR ON member.link_to_major = major.major_id

WHERE member.first_name = ’Katy’

Figure 13: An example of a query with an incorrect generated SQL.

Table 16: member (skipped irrelevant columns)
link_to_major first_name . . .
’1’ ’Katy’ . . .

Table 17: major (skipped irrelevant columns)
major_id college . . .
1 ’0’ . . .
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Example F.6. Consider the question N8 and the corresponding SQL queries (Figure 14). The
differentiating database found by SPOTIT is shown in Tables 18, 19. In this example, the generated
SQL only checks whether the patient was diagnosed with SLE on January 1st, 1997. However, the
natural language question also asks for the patient’s original diagnose at their first hospital visit.
Since the generated SQL doesn’t include this condition, it’s incorrect as it could return a diagnoses
from a later visit rather than the patient’s first one.

N8: "For the patient who was diagnosed SLE on 1997/1/27, what was his/her original diagnose when he/she came to the hospital for the
first time?"
Evidence: "’SLE’ and original diagnose refers to Diagnosis; 1997/1/27 refers to ‘Examination Date‘ = ’1997-01-27’; first came to the
hospital refers to patient.’First Date’."

/*Gold SQL Q*/:
SELECT T1.diagnosis
FROM patient AS T1
INNER JOIN examination AS T2 ON T1.id = T2.id
WHERE T1.id = (

SELECT id
FROM examination
WHERE examination_date = ’1997 -01 -27’ AND diagnosis = ’SLE’

) AND T2.examination_date = T1.first_date;

/* Generated SQL P */:
SELECT T2.diagnosis
FROM examination AS T1
INNER JOIN patient AS T2 ON T1.id = T2.id

WHERE T1.diagnosis = ’SLE’ AND T1.examination_date = ’1997-01-27’;

Figure 14: An example of a query with an incorrect generated SQL.

Table 18: patient (skipped irrelevant columns)
id diagnosis first_date . . .
0 ’1’ ’1997-01-26’ . . .

Table 19: examination (skipped irrelevant columns)
id examination_date diagnosis . . .
0 ’1997-01-27’ ’SLE’ . . .
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Example F.7. Consider the question N9 and the corresponding SQL queries (Figure 15). The
differentiating database found by SPOTIT is shown in Tables 20,21. This is an example of an
ambiguous question. The term ’members’ can be interpreted in at least two ways: any student
who is a part of the club, or more specifically, students in the club with the recorded position of

’member’. While the gold SQL takes the second interpretation, filtering on T2.position = ’Member’,
it’s just as reasonable to assume that all students in the club are members, and leave out a secondary
filter. Coupled with the lack of evidence, the resulting difference in queries is most likely due to the
ambiguity of the natural language question. Hence, it’s been marked as an ambiguous question.

N9: "List the last name of members with a major in environmental engineering
and include its department and college name.
Evidence: "Environmental Engineering’ is the major name"

/*Gold SQL Q*/:
SELECT T2.last_name , T1.department , T1.college
FROM major AS T1
INNER JOIN member AS T2 ON T1.major_id = T2.link_to_major

WHERE T2.position = ’Member’ AND T1.major_name = ’Enviormental Engineering’

/* Generated SQL P */:
SELECT T1.last_name , T2.department , T2.college
FROM member AS T1
INNER JOIN major AS T2 ON T1.link_to_major = T2.major_id

WHERE T2.major_name = ’Enviormental Engineering’

Figure 15: An example of an ambiguous question.

Table 20: major (skipped irrelevant columns)
major_id major_name department college . . .
0 ’Environmental Engineering’ ’1’ ’1’ . . .

Table 21: member (skipped irrelevant columns)
last_name link_to_major position . . .
’1’ 0 ’1’ . . .
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Example F.8. Consider the question N10 and the corresponding SQL queries (Figure 16). The
differentiating database found by SPOTIT is shown in Tables 22, 23. This example is marked as
ambiguous because the natural language question is underspecified. If the intent is to return the
legal status of every valid artifact card, which is a reasonable interpretation, than the generated
SQL would be correct. However, if the intent is to return the set of unique legal statuses across valid
artifact cards, than the gold SQL is correct.

N10: "For artifact type of cards that do not have multiple faces on the same card, state its legalities status for vintage play format."
Evidence: "Artifact type of cards refers to types = ’Artifact’; card does not have multiple faces on the same card refers to side is NULL’;
vintage play format refers to format = ’vintage’;"

/*Gold SQL Q*/:

SELECT DISTINCT T2.status
FROM cards AS T1
INNER JOIN legalities AS T2 ON T1.uuid = T2.uuid
WHERE T1.type = ’Artifact ’ AND T2.format = ’vintage ’ AND T1.side IS NULL;

/* Generated SQL P */:

SELECT T2.status
FROM cards AS T1
JOIN legalities AS T2 ON T1.uuid = T2.uuid
WHERE T1.type = ’Artifact ’ AND T1.side IS NULL AND T2.format = ’vintage ’;

Figure 16: An example of an ambiguous question.

Table 22: cards (skipped irrelevant columns)
uuid type side . . .
’0’ ’Artifact’ NULL . . .

Table 23: legalities (skipped irrelevant columns)
uuid format status . . .
’0’ ’vintage’ ’1’ . . .
’0’ ’vintage’ ’1’ . . .
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Example F.9. Consider the question N11 and the corresponding SQL queries (Figure 17). The
differentiating database found by SPOTIT is shown in Tables 24, 25. This example is considered
ambiguous because the natural language question and evidence do not specify a tie-breaking rule. In
the case that there are two comments on valid posts with a tied high score, a query with LIMIT 1 may
return either comment. This is why the generated and gold SQL return different results. Since the
difference arises solely from a lack of specificity, this example is marked as ambiguous.

N11: "Among the posts with views ranging from 100 to 150, what is the comment with the highest score?"
Evidence: "Views ranging from 100 to 150 refers to ViewCount BETWEEN 100 and 150; comment with the highest score refers to Text
where MAX(Score);"

/*Gold SQL Q*/:
SELECT text
FROM comments
WHERE postId IN (

SELECT id
FROM posts
WHERE viewCount BETWEEN 100 AND 150

) ORDER BY score DESC

LIMIT 1

/* Generated SQL P */:
SELECT T2.text
FROM posts AS T1
INNER JOIN comments AS T2 ON T1.id = T2.postId
WHERE T1.viewCount BETWEEN 100 AND 150
ORDER BY T2.score DESC

LIMIT 1

Figure 17: An example of an ambiguous question.

Table 24: comments (skipped irrelevant columns)
postId score text . . .
0 1 ’1’ . . .
1 1 ’2’ . . .

Table 25: posts (skipped irrelevant columns)
id viewCount . . .
0 100 . . .
1 100 . . .
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G Semantics

JEK :: Database D → Relation → Value

JToInt(E)KD,xs = let v = JEKD,xs in
ite(v = Null ∨ IsInt(v), v,

ite(IsStr(v), JStrToInt(v)KD,xs, JDateToInt(v)KD,xs))
JToDate(E)KD,xs = let v = JEKD,xs in

ite(v = Null ∨ IsDate(v), v,
ite(IsInt(v), JIntToDate(v)KD,xs, JStrToDate(v)KD,xs))

JToStr(E)KD,xs = let v = JEKD,xs in
ite(v = Null ∨ IsStr(v), v,

ite(IsInt(v), JIntToStr(v)KD,xs, JDateToStr(v)KD,xs))
JDateToInt(vs)KD,xs = ite(vs = Null,Null, vs[0] ∗ 104 + vs[1] ∗ 102 + vs[2])
JStrToInt(s)KD,xs = let

v = ite(IsDigits(s), StrToInt(s),
ite(s[0] = “-” ∧ IsDigits(s[1 :]),−StrToInt(s), 0))

in ite(s = Null,Null, v)
JIntToStr(v)KD,xs = ite(v = Null,Null, IntToStr(v))
JDateToStr(vs)KD,xs = let

y = IntToStr(vs[0]),
m = ite(vs[1] ≤ 9, “0” + IntToStr(vs[1]),

IntToStr(vs[1])),
d = ite(vs[2] ≤ 9, “0” + IntToStr(vs[2]),

IntToStr(vs[2]))
in ite(vs = Null,Null, y + “-” +m+ “-” + d)

JIntToDate(v)KD,xs = let v1 = ⌊v/104⌋, v2 = ⌊(v%104)/102⌋, v3 = v%102 in
ite(v = Null ∨ IsValidDate(v),Null, [v1, v2, v3])

JStrToDate(s)KD,xs = let v = JStrToInt(s)KD,xs in
ite(s = Null,Null, JIntToDate(v)KD,xs)

JE1 ⋄ E2KD,xs = let
v1 = JToInt(E1)KD,xs and v2 = JToInt(E2)KD,xs,

in ite(v1 = Null ∨ v2 = Null,Null, v1 ⋄ v2)
JSubStr(E1, E2, E3)KD,xs = let

ei = JEiKD,xs, e
′
1 = JToStr(e1)KD,xs, l = len(e′1),

e′2 = JToInt(e2)KD,xs, e
′
3 = JToInt(e3)KD,xs,

v = ite(−l ≤ e′2 < 0, e2 + l, ite(0 < e′2 ≤ l, e′2 − 1, l + 1)),
s = ite(v = 0 ∨ v < −l ∨ v > l ∨ e′3 ≤ 0, ε,

ite(e′3 ≥ l − v, e′1[v : l], e
′
1[v :2v + e′3]))

in ite(e1 = Null ∨ IsStr(e2) ∨ IsStr(e3),Null, s)
JStrftime(κ,E)KD,xs = let v = JToDate(E)KD,xs in

ite(κ = “%Y”, v[0], ite(κ = “%M”, v[1], v[2]))
JJulianDay(E)KD,xs = let v = JEKD,xs in ToJulianDay(v), if IsDate(v)

JϕK :: Database D → Relation → Bool ∪ Null

JPrefixOf(s, E)KD,xs = let v = JToStr(E)KD,xs in ite(v = Null,Null, PrefixOf(s, v))
JSuffixOf(s, E)KD,xs = let v = JToStr(E)KD,xs in ite(v = Null,Null, SuffixOf(s, v))
JLike(s, E)KD,xs = let v = JToStr(E)KD,xs in ite(v = Null,Null,RegexMatch(s, v))
JE1 ⊙ E2KD,xs = let v1 = JE1KD,xs and v2 = JE2KD,xs in

ite(v1 = Null ∨ v2 = Null,⊥, v1 ⊙ v2), if Type(v1) = Type(v2)
Figure 18: Formal semantics for extended expressions and predicates. The IsValidDate function
checks whether a string represent a date within the supported date range of a database engine. The
ToJulianDay function converts a date to a Julian day. The definition of these two functions are shown
in Appendix I.
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H Encoding

JToInt(E)KS,Γ,T = let v = JEKS,Γ,T in
ite(v = Null ∨ IsInt(v), v,

ite(IsStr(v), JStrToInt(v)KS,Γ,T , JDateToInt(v)KS,Γ,T ))
JToDate(E)KS,Γ,T = let v = JEKS,Γ,T in

ite(v = Null ∨ IsDate(v), v,
ite(IsInt(v), JIntToDate(v)KS,Γ,T , JStrToDate(v)KS,Γ,T ))

JToStr(E)KS,Γ,T = let v = JEKS,Γ,T in
ite(v = Null ∨ IsStr(v), v,

ite(IsInt(v), JIntToStr(v)KS,Γ,T , JDateToStr(v)KS,Γ,T ))
JDateToInt(vs)KS,Γ,T = ite(vs = Null,Null, vs[0] ∗ 104 + vs[1] ∗ 102 + vs[2])
JStrToInt(s)KS,Γ,T = let

s1 = s[1 :z3.Length(s)], v1 = z3.StrToInt(s1),
v = ite(s[0] = “-”,−v1, z3.StrToInt(s)),
Φ = ite(v < 0, z3.IntToStr(−v) = v1, z3.IntToStr(v) = s),

in ite(s = Null,Null, ite(Φ, v, 0))
JIntToStr(v)KS,Γ,T = ite(v = Null,Null, z3.IntToStr(v))
JDateToStr(vs)KS,Γ,T = let y = z3.IntToStr(vs[0]),

m = ite(vs[1] ≤ 9, “0” + z3.IntToStr(vs[1]),
z3.IntToStr(vs[1])),

d = ite(vs[2] ≤ 9, “0” + z3.IntToStr(vs[2]),
z3.IntToStr(vs[2]))

in ite(vs = Null,Null, y + “-” +m+ “-” + d)
JIntToDate(v)KS,Γ,T = let y = fdiv(v, 104),m = fdiv(v%104, 102), d = v%102,

Φ0 = y%4 = 0 ∧ (y%100 ̸= 0 ∨ y%400 = 0)
Φ1 = MIN_YEAR ≤ y ≤ MAX_YEAR,
Φ2 = 1 ≤ m ≤ 12,
Φ3 = 1 ≤ d ∧ (∨c∈{1,3,5,7,8,10,12}m = c → d ≤ 31)

∧(m = 2 → d ≤ 28 + ite(Φ0, 1, 0))
∧(∨c∈{4,6,9,11}m = c → d ≤ 30)

in ite(v = Null ∨ ¬(Φ1 ∧ Φ2 ∧ Φ3),Null, [y,m, d])
JStrToDate(s)KS,Γ,T = let v = JStrToInt(s)KS,Γ,T in

ite(s = Null,Null, JIntToDate(v)KS,Γ,T )
JE1 ⋄ E2KS,Γ,T = let v1 = JToInt(E1)KS,Γ,T and v2 = JToInt(E2)KS,Γ,T ,

in ite(v1 = Null ∨ v2 = Null,Null, v1 ⋄ v2)
JSubStr(E1, E2, E3)KS,Γ,T = let

ei = JEiKS,Γ,T , e′1 = JToStr(e1)KS,Γ,T , l = z3.Length(e′1),
e′2 = JToInt(e2)KS,Γ,T , e′3 = JToInt(e3)KS,Γ,T ,
v = ite(−l ≤ e′2 < 0, e2 + l, ite(0 < e′2 ≤ l, e′2 − 1, l + 1)),
s = ite(v = 0 ∨ v < −l ∨ v > l ∨ e′3 ≤ 0, ε,

ite(e′3 ≥ l − v, e′1[v : l], e
′
1[v :2v + e′3]))

in ite(e1 = Null ∨ IsStr(e2) ∨ IsStr(e3),Null, s)
JStrftime(κ,E)KS,Γ,T = let v = JToDate(E)KS,Γ,T in

ite(v = Null,Null,
ite(κ = “%Y”, v[0], ite(κ = “%M”, v[1], v[2])))

JJulianDay(E)KS,Γ,T = let v = JEKS,Γ,T , y = ite(v[1] ≤ 2, v[0]− 1, v[0]),
m = ite(v[1] ≤ 2, v[1] + 12, v[1]), d = v[2],
c = 2− fdiv(y, 100) + fdiv(y, 400),
a1 = fdiv(36525 ∗ (y + 4716), 102),
a2 = fdiv(306001 ∗ (m+ 1), 104),

in a1 + a2 + d+ c− 1524.5, if IsDate(v)

Figure 19: Symbolic encoding for extended expressions. The floor division function is defined as
fdiv(x, y) = ite(x%y = 0, x/y, (x − x%y)/y). For clarity, we overload IsInt, IsStr and IsDate to
check whether formulas represent integers, strings and dates, respectively. Type conversions and
string manipulations are handled using the built-in functions of Z3.
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JPrefixOf(s, E)KS,Γ,T = let v = JToStr(E)KS,Γ,T in ite(v = Null,Null, z3.PrefixOf(s, v))
JSuffixOf(s, E)KS,Γ,T = let v = JToStr(E)KS,Γ,T in ite(v = Null,Null, z3.SuffixOf(s, v))
JLike(s, E)KS,Γ,T = let v = JToStr(E)KS,Γ,T in

ite(v = Null,Null, z3.RegexMatch(s, v))
JE1 ⊙ E2KS,Γ,T = let v1 = JE1KS,Γ,T and v2 = JE2KS,Γ,T in

ite(v1 = Null ∨ v2 = Null,⊥, v1 ⊙ v2), if Type(v1) = Type(v2)

Figure 20: Symbolic encoding for extended predicates.

I Proof

In this section, we provide the proof of theorems in the main paper.

Theorem 1 (Correctness of expression encoding). Let D be a database over schema S , xs be a tuple
list, and E be an expression. Consider a symbolic database Γ over S , a list of symbolic tuples T , and
E’s symbolic encoding JEKS,Γ,T . For any satisfying interpretation I with I(Γ) = D ∧ I(T ) = xs,
evaluating the expression E over the database D and the tuple list xs yields the interpretation of E’s
symbolic encoding I(JEKS,Γ,T ), i.e., I(Γ) = D ∧ I(T ) = xs ⇒ JEKD,xs = I(JEKS,Γ,T ).

Lemma 1. Suppose JEKD,xs = v, then I(Γ) = D ∧ I(T ) = xs ⇒ JEKI(Γ),I(T ) = I(JEKS,Γ,T )
is true iff JEKI(Γ),I(T ) = v and I(JEKS,Γ,T ) = v.

Proof. Theorem 1 is proved by proving Lemma 1. By structural induction on E.

1. Base cases and some inductive cases are proved in [15].

2. Inductive case: E = ToInt(E)

JToInt(E)KS,Γ,T = ite(v = Null ∨ IsInt(v), v, ite(IsStr(v), JStrToInt(v)KS,Γ,T ,
JDateToInt(v)KS,Γ,T )) where v = JEKS,Γ,T by Fig-
ure 19. JToInt(E)KI(Γ),I(T ) = ite(v′ = Null ∨
IsInt(v′), v′, ite(IsStr(v′), JStrToInt(v′)KI(Γ),I(T ), JDateToInt(v′)KI(Γ),I(T )))
where v′ = JEKI(Γ),I(T ) by Figure 18. By inductive hypothesis, we have
I(v) = I(JEKS,Γ,T ) = JEKI(Γ),I(T ) = v′. Therefore,

I(JToInt(E)KS,Γ,T ) = I(ite(v = Null ∨ IsInt(v), v, ite(IsStr(v), JStrToInt(v)KS,Γ,T ,
JDateToInt(v)KS,Γ,T )))

= ite(I(v) = Null ∨ I(IsInt(v)), I(v), ite(I(IsStr(v)),
I(JStrToInt(v)KS,Γ,T ), I(JDateToInt(v)KS,Γ,T )))

= ite(I(v) = Null ∨ IsInt(I(v)), I(v), ite(IsStr(I(v)),
JStrToInt(I(v))KI(Γ),I(T ), JDateToInt(I(v))KI(Γ),I(T )))

= ite(v′ = Null ∨ IsInt(v′), v′, ite(IsStr(v′),
JStrToInt(v′)KI(Γ),I(T ), JDateToInt(v′)KI(Γ),I(T )))

= JToInt(E)KI(Γ),I(T )

3. Inductive case: E = ToDate(E)

JToDate(E)KS,Γ,T = ite(v = Null ∨ IsDate(v), v, ite(IsInt(v), JIntToDate(v)KS,Γ,T ,
JStrToDate(v)KS,Γ,T )) where v = JEKS,Γ,T by Fig-
ure 19. JToDate(E)KI(Γ),I(T ) = ite(v′ = Null ∨
IsDate(v′), v′, ite(IsInt(v′), JIntToDate(v′)KI(Γ),I(T ), JStrToDate(v′)KI(Γ),I(T )))
where v′ = JEKI(Γ),I(T ) by Figure 18. By inductive hypothesis, we have
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I(v) = I(JEKS,Γ,T ) = JEKI(Γ),I(T ) = v′. Therefore,

I(JToDate(E)KS,Γ,T ) = I(ite(v = Null ∨ IsDate(v), v, ite(IsInt(v),
JIntToDate(v)KS,Γ,T , JStrToDate(v)KS,Γ,T )))

= ite(I(v) = Null ∨ I(IsDate(v)), I(v), ite(I(IsInt(v)),
I(JIntToDate(v)KS,Γ,T ), I(JStrToDate(v)KS,Γ,T )))

= ite(I(v) = Null ∨ IsDate(I(v)), I(v), ite(IsInt(I(v)),
I(JIntToDate(v)KS,Γ,T ), I(JStrToDate(v)KS,Γ,T )))

= ite(v′ = Null ∨ IsDate(v′), v′, ite(IsInt(v′),
JIntToDate(v′)KI(Γ),I(T ), JStrToDate(v′)KI(Γ),I(T )))

= JToDate(E)KI(Γ),I(T )

4. Inductive case: E = ToStr(E)

JToStr(E)KS,Γ,T = ite(v = Null ∨ IsStr(v), v, ite(IsInt(v), JIntToStr(v)KS,Γ,T ,
JDateToStr(v)KS,Γ,T )) where v = JEKS,Γ,T by Fig-
ure 19. JToStr(E)KI(Γ),I(T ) = ite(v′ = Null ∨
IsStr(v′), v′, ite(IsInt(v′), JIntToStr(v′)KI(Γ),I(T ), JDateToStr(v′)KI(Γ),I(T )))
where v′ = JEKI(Γ),I(T ) by Figure 18. By inductive hypothesis, we have
I(v) = I(JEKS,Γ,T ) = JEKI(Γ),I(T ) = v′. Therefore,

I(JToStr(E)KS,Γ,T ) = I(ite(v = Null ∨ IsStr(v), v, ite(IsInt(v),
JIntToStr(v)KS,Γ,T , JDateToStr(v)KS,Γ,T )))

= ite(I(v) = Null ∨ I(IsStr(v)), I(v), ite(I(IsInt(v)),
I(JIntToStr(v)KS,Γ,T ), I(JDateToStr(v)KS,Γ,T )))

= ite(I(v) = Null ∨ IsStr(I(v)), I(v), ite(IsInt(I(v)),
I(JIntToStr(v)KS,Γ,T ), I(JDateToStr(v)KS,Γ,T )))

= ite(v′ = Null ∨ IsStr(v′), v′, ite(IsInt(v′),
JIntToStr(v′)KI(Γ),I(T ), JDateToStr(v′)KI(Γ),I(T )))

= JToStr(E)KI(Γ),I(T )

5. Inductive case: E = DateToInt(vs)

JDateToInt(vs)KS,Γ,T = ite(vs = Null,Null, vs[0]∗104+vs[1]∗102+vs[2]) by Figure 19.
JDateToInt(vs)KI(Γ),I(T ) = ite(vs = Null,Null, vs[0] ∗ 104 + vs[1] ∗ 102 + vs[2]) by
Figure 18. Therefore, I(JDateToInt(vs)KS,Γ,T ) = ite(vs = Null,Null, vs[0] ∗ 104 +
vs[1] ∗ 102 + vs[2]) = JDateToInt(vs)KI(Γ),I(T ).

6. Inductive case: E = StrToInt(s)

JStrToInt(s)KS,Γ,T = ite(s = Null,Null, ite(Φ, v, 0)) where s1 = s[1 : z3.Length(s)],
v1 = z3.StrToInt(s1), v = ite(s[0] = “-”,−v1, z3.StrToInt(s)), and Φ = ite(v <
0, z3.IntToStr(−v) = v1, z3.IntToStr(v) = s) by Figure 19. JStrToInt(s)KI(Γ),I(T ) =
ite(v′ = Null,Null, v′) where v′ = ite(IsDigits(s),StrToInt(s), ite(s[0] = “-” ∧
IsDigits(s[1 :]),−StrToInt(s), 0)) by Figure 18.

On the one hand, the Z3 builtin function z3.StrToInt(s) = StrToInt(s) if StrToInt(s) ≥ 0;
otherwise, z3.StrToInt(s) = −1. To show our encoding precisely capture semantics of
SQL’s type conversion from strings to integers, let us discuss it in three cases:

(a) If StrToInt(s) ≥ 0, then v = z3.StrToInt(s) = StrToInt(s) and Φ holds. Thus,
ite(Φ, v, 0) = v.

(b) If StrToInt(s) < 0, then v = −v1 and Φ = ⊤ where v1 = StrToInt(s[1 :]).
ite(Φ, v, 0) = v = −v1.

(c) If s contains more than digits (e.g., “abc” and “-abc”), MYSQL evaluates non-
numerical strings to 0 by default. By the semantics of z3.StrToInt, Φ never holds
which leads ite(Φ, v, 0) = 0.

By 6a, 6c and 6c, we known ite(Φ, s, 0) precisely captures the semantics of SQL’s type
conversion from strings to integers.

On the other hand, let us discuss the rule in three cases:
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(a) If StrToInt(s) ≥ 0, then v′ = StrToInt(s).
(b) If StrToInt(s) < 0, then v′ = −StrToInt(s[1 :]).
(c) If s contains more than digits (e.g., “abc” and “-abc”), MYSQL evaluates non-

numerical strings to 0 by default. By the semantics of this rule, v′ = 0.

By 6a, 6c and 6c, we known v′ precisely captures the semantics of SQL’s type conversion
from strings to integers.

Therefore, I(ite(Φ, s, 0)) = v′ and

I(JStrToInt(s)KS,Γ,T ) = I(ite(s = Null,Null, ite(Φ, v, 0)))
= ite(s = Null,Null, I(ite(Φ, v, 0)))
= ite(s = Null,Null, v′)
= JStrToInt(s)KI(Γ),I(T )

7. Inductive case: E = IntToStr(v)

JIntToStr(v)KS,Γ,T = ite(v = Null,Null, z3.IntToStr(v)) by Figure 19.
JIntToStr(v)KI(Γ),I(T ) = ite(v = Null,Null, IntToStr(v)) by Figure 18. Note that
since the Z3 builtin function z3.IntToStr precisely capture the semantics of IntToStr,
I(z3.IntToStr(v)) = IntToStr(v). Therefore,

I(JIntToStr(v)KS,Γ,T ) = I(ite(v = Null,Null, z3.IntToStr(v)))
= ite(v = Null,Null, I(z3.IntToStr(v)))
= ite(v = Null,Null, IntToStr(v))
= JIntToStr(v)KI(Γ),I(T )

8. Inductive case: E = DateToStr(vs)

JDateToStr(vs)KS,Γ,T = ite(vs = Null,Null, y + “-” + m + “-” + d) where y =
z3.IntToStr(vs[0]), m = ite(vs[1] ≤ 9, “0” + z3.IntToStr(vs[1]), z3.IntToStr(vs[1])),
and d = ite(vs[2] ≤ 9, “0” + z3.IntToStr(vs[2]), z3.IntToStr(vs[2])) by Figure 19.
JDateToStr(vs)KI(Γ),I(T ) = ite(vs = Null,Null, y′ + “-” + m′ + “-” + d′) where
y′ = IntToStr(vs[0]), m′ = ite(vs[1] ≤ 9, “0” + IntToStr(vs[1]), IntToStr(vs[1])), and
d′ = ite(vs[2] ≤ 9, “0” + IntToStr(vs[2]), IntToStr(vs[2])) by Figure 18. Note that since
the Z3 builtin function z3.IntToStr precisely capture the semantics of IntToStr, I(y) = y′,
I(m) = m′, and I(d) = d′. Therefore,

I(JDateToStr(vs)KS,Γ,T ) = I(ite(vs = Null,Null, y + “-” +m+ “-” + d))
= ite(vs = Null,Null, I(y) + “-” + I(m) + “-” + I(d))
= ite(vs = Null,Null, y′ + “-” +m′ + “-” + d′)
= JDateToStr(v)KI(Γ),I(T )

9. Inductive case: E = IntToDate(v)

JIntToDate(v)KS,Γ,T = ite(v = Null∨¬(Φ1∧Φ2∧Φ3),Null, [y,m, d]) where fdiv(x, y) =
ite(x%y = 0, x/y, (x − x%y)/y), y = fdiv(v, 104), m = fdiv(v%104, 102), d = v%102,
Φ0 = y%4 = 0 ∧ (y%100 ̸= 0 ∨ y%400 = 0), Φ1 = MIN_YEAR ≤ y ≤ MAX_YEAR,
Φ2 = 1 ≤ m ≤ 12, Φ3 = 1 ≤ d ∧ (∨c∈{1,3,5,7,8,10,12}m = c → d ≤ 31) ∧ (m =
2 → d ≤ 28 + ite(Φ0, 1, 0)) ∧ (∨c∈{4,6,9,11}m = c → d ≤ 30) by Figure 19.
JIntToDate(v)KI(Γ),I(T ) = ite(v′ = Null ∨ IsValidDate(v),Null, [v′1, v

′
2, v
′
3]) where

v′1 = ⌊v/104⌋, v′2 = ⌊(v%104)/102⌋, v′3 = v%102 by Figure 18. By semantics of fdiv, we
know y = v′1, m = v′2 and d = v′3. Note that the function IsValidDate precisely capture the
semantics of ¬(Φ1 ∧ Φ2 ∧ Φ3), checking whether a date is valid in MYSQL. Therefore,
I(¬(Φ1 ∧ Φ2 ∧ Φ3)) = IsValidDate(v′) and

I(JIntToDate(v)KS,Γ,T ) = I(ite(v = Null ∨ ¬(Φ1 ∧ Φ2 ∧ Φ3),Null, [y,m, d]))
= ite(v = Null ∨ I(¬(Φ1 ∧ Φ2 ∧ Φ3)),Null, I([y,m, d]))
= ite(v = Null ∨ IsValidDate(v′),Null, [v′1, v

′
2, v
′
3])

= JIntToDate(v)KI(Γ),I(T )

10. Inductive case: E = StrToDate(s)
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JStrToDate(s)KS,Γ,T = ite(s = Null,Null, JIntToDate(v)KS,Γ,T ) where
v = JStrToInt(s)KS,Γ,T by Figure 19. JStrToDate(s)KI(Γ),I(T ) = ite(s =
Null,Null, JIntToDate(v′)KI(Γ),I(T )) where v′ = JStrToInt(s)KS,Γ,T by Figure 18. By
inductive hypothesis, we have I(JIntToDate(v)KS,Γ,T ) = JI(IntToDate(v))KI(Γ),I(T ) =
JIntToDate(I(v))KI(Γ),I(T ) = JIntToDate(v′)KI(Γ),I(T ). Therefore,

I(JStrToDate(s)KS,Γ,T ) = I(ite(s = Null,Null, JIntToDate(v)KS,Γ,T ))
= ite(s = Null,Null, I(JIntToDate(v)KS,Γ,T ))
= ite(s = Null,Null, JIntToDate(v′)KI(Γ),I(T ))
= JStrToDate(s)KI(Γ),I(T )

11. Inductive case: E = E1 ⋄ E2.

Since our extended grammar considers Null, integers, dates and strings, as shown in
Figure 7, the proof for this inductive case is overloaded.

JE1 ⋄E2KS,Γ,T = ite(v1 = Null∨ v2 = Null,Null, v1 ⋄ v2) where v1 = JToInt(E1)KS,Γ,T
and v2 = JToInt(E2)KS,Γ,T by Figure 19. JE1 ⋄ E2KI(Γ),I(T ) = ite(v′1 = Null ∨ v′2 =
Null,Null, v′1 ⋄ v′2) where v′1 = JToInt(E1)KI(Γ),I(T ) and v′2 = JToInt(E2)KI(Γ),I(T )

by Figure 18. By inductive hypothesis, we have I(v1) = I(JToInt(E1)KS,Γ,T ) =
JToInt(E1)KI(Γ),I(T ) = v′1 and I(v2) = I(JToInt(E2)KS,Γ,T ) = JToInt(E2)KI(Γ),I(T ) =
v′2. Therefore,

I(JE1 ⋄ E2KS,Γ,T ) = I(ite(v1 = Null ∨ v2 = Null,Null, v1 ⋄ v2))
= ite(I((v1) = Null ∨ I((v2) = Null,Null, I((v1) ⋄ I((v2))
= ite(v′1 = Null ∨ v′2 = Null,Null, v′1 ⋄ v′2)
= JE1 ⋄ E2KI(Γ),I(T )

12. Inductive case: E = SubStr(E1, E2, E3).

JSubStr(E1, E2, E3)KS,Γ,T = ite(e1 = Null ∨ IsStr(e2) ∨ IsStr(e3),Null, s) where
ei = JEiKS,Γ,T for 1 ≤ i ≤ 3, e′1 = JToStr(e1)KS,Γ,T , l = z3.Length(e′1), e′2 =
JToInt(e2)KS,Γ,T , e′3 = JToInt(e3)KS,Γ,T , v = ite(−l ≤ e2 < 0, ite(0 < e′2 ≤ l, e′2 − 1, l+
1)), s = ite(v = 0 ∨ v < −l ∨ v > l ∨ e′3 ≤ 0, ε, ite(e′3 ≥ l− v, e′1[v : l], e′1[v : 2v + e′3]))
by Figure 19.
JSubStr(E1, E2, E3)KI(Γ),I(T ) = ite(e4 = Null ∨ IsStr(e5) ∨ IsStr(e6),Null, s) where
ei+3 = JEiKI(Γ),I(T ) for 1 ≤ i ≤ 3, e′4 = JToStr(e4)KI(Γ),I(T ), l′ = z3.Length(e′4),
e′5 = JToInt(e5)KI(Γ),I(T ), e′6 = JToInt(e6)KI(Γ),I(T ), v′ = ite(−l ≤ e5 < 0, ite(0 <
e′5 ≤ l, e′5 − 1, l + 1)), s′ = ite(v = 0 ∨ v < −l ∨ v > l ∨ e′6 ≤ 0, ε, ite(e′6 ≥ l − v, e′4[v :
l], e′1[v : 2v + e′6])) by Figure 18.
By inductive hypothesis, we have I(ei) = I(JEiKI(Γ),I(T )) = JEiKS,Γ,T = ei+3 for
1 ≤ i ≤ 3. Then, I(e′1) = I(JToStr(e1)KS,Γ,T ) = JToStr(e4)KI(Γ),I(T ) = e′4, I(e′2) =
I(JToInt(e2)KS,Γ,T ) = JToInt(e5)KI(Γ),I(T ) = e′5, and I(e′3) = I(JToInt(e3)KS,Γ,T ) =
JToInt(e6)KI(Γ),I(T ) = e′6, I(v) = v′, and I(s) = s′. Furthermore, since the Z3
builtin function z3.Length precisely captures the semantics of len, we have I(l) =
I(z3.Length(e′1)) = len(e′4) = l′. Therefore,

I(JSubStr(E1, E2, E3)KS,Γ,T ) = I(ite(e1 = Null ∨ IsStr(e2) ∨ IsStr(e3),Null, s))
= ite(I(e1) = Null ∨ I(IsStr(e2)) ∨ I(IsStr(e3)),

Null, I(s))
= ite(e4 = Null ∨ IsStr(e5) ∨ IsStr(e6)), s′)
= JSubStr(E1, E2, E3)KI(Γ),I(T )

13. Inductive case: E = Strftime(κ,E).

JStrftime(κ,E)KS,Γ,T = ite(v = Null,Null, ite(κ = “%Y”, v[0], ite(κ =
“%M”, v[1], v[2]))) where v = JEKS,Γ,T by Figure 19. JStrftime(κ,E)KI(Γ),I(T ) =
ite(v = Null,Null, ite(κ = “%Y”, v[0], ite(κ = “%M”, v[1], v[2]))) where v =
JEKI(Γ),I(T ) by Figure 18. By inductive hypothesis, we have I(v) = I(JEKS,Γ,T ) =
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JEKI(Γ),I(T ) = v′. Therefore,

I(JStrftime(κ,E)KS,Γ,T ) = I(ite(v = Null,Null, ite(κ = “%Y”, v[0],
ite(κ = “%M”, v[1], v[2]))))

= ite(I(v) = Null,Null, ite(κ = “%Y”, I(v)[0],
ite(κ = “%M”, I(v)[1], I(v)[2])))

= ite(v′ = Null,Null, ite(κ = “%Y”, v′[0],
ite(κ = “%M”, v′[1], v′[2])))

= JStrftime(κ,E)KI(Γ),I(T )

14. Inductive case: E = JulianDay(E).

JJulianDay(E)KS,Γ,T = ToJulianDay(v) where v = JEKS,Γ,T if v is evaluated to be a
date by Figure 19. Also, ToJulianDay(v) = ⌊365.25 ∗ (y + 4716)⌋ + ⌊30.6001 ∗ (m +
4716)⌋ + d + c − 1524.5 where y = v[1] ≤ 2?v[0] − 1 : v[0], m = v[1] ≤ 2?v[1] + 12 :
v[1], d = v[2], and c = 2 − ⌊y/100⌋ + ⌊y/400⌋. JJulianDay(E)KI(Γ),I(T ) = a1 +
a2 + d′ + c′ − 1524.5 where v′ = JEKI(Γ),I(T ), y′ = ite(v′[1] ≤ 2, v′[0] − 1, v′[0]),
m′ = ite(v′[1] ≤ 2, v′[1] + 12, v′[1]), d′ = v′[2], c′ = 2 − fdiv(y′, 100) + fdiv(y′, 400),
a1 = fdiv(36525∗(y′+4716), 102), and a2 = fdiv(306001∗(m′+1), 104) if v1 is evaluated
to be a date by Figure 18. By inductive hypothesis, we have I(v) = I(JEKS,Γ,T ) =
JEKI(Γ),I(T ) = v′. Furthermore, by the semantics of fdiv, I(⌊365.25 ∗ (y + 4716)⌋) = a1
and I(⌊30.6001 ∗ (m+ 4716)⌋) = a2. Therefore,

I(JJulianDay(E)KS,Γ,T ) = I(ToJulianDay(v))
= I(⌊365.25 ∗ (y + 4716)⌋+ ⌊30.6001 ∗ (m+ 4716)⌋

+d+ c− 1524.5)
= a1 + a2 + d′ + c′ − 1524.5
= JJulianDay(E)KI(Γ),I(T )

Theorem 3 (Correctness of predicate encoding). Let D be a database over schema S , xs be a tuple
list, and ϕ be a predicate. Consider a symbolic database Γ over S, a list of symbolic tuples T , and
ϕ’s symbolic encoding JϕKS,Γ,T . For any satisfying interpretation I with I(Γ) = D ∧ I(T ) = xs,
evaluating ϕ over the database D and the tuple list xs yields the interpretation of ϕ’s symbolic
encoding I(JϕKS,Γ,T ), i.e.,

I(Γ) = D ∧ I(T ) = xs ⇒ JϕKD,xs = I(JϕKS,Γ,T )

Lemma 2. Suppose JϕKD,xs is valid, then I(Γ) = D ∧ I(T ) = xs ⇒ JϕKI(Γ),I(T ) = I(JϕKS,Γ,T )
holds.

Proof. Theorem 3 is proved by proving Lemma 2. By structural induction on ϕ.

1. Base cases and some inductive cases are proved in [15].

2. Inductive case: ϕ = PrefixOf(s, E).

JPrefixOf(s, E)KS,Γ,T = ite(v = Null,Null, z3.PrefixOf(s, v)) where
v = JToStr(E)KS,Γ,T by Figure 20. JPrefixOf(s, E)KI(Γ),I(T ) = ite(v′ =
Null,Null,PrefixOf(s, v′)) where v′ = JToStr(E)KI(Γ),I(T ) by Figure 18. By in-
ductive hypothesis, we have I(v) = I(JToStr(E)KI(Γ),I(T )) = JToStr(E)KS,Γ,T = v′.
Furthermore, since the Z3 builtin function z3.PrefixOf precisely captures the semantics
of PrefixOf, we have I(z3.PrefixOf(s, v)) = I(z3.PrefixOf(s, JToStr(E)KS,Γ,T )) =
PrefixOf(s, I(JToStr(E)KS,Γ,T )) = PrefixOf(s, JToStr(E)KI(Γ),I(T )) = PrefixOf(s, v′) .
Therefore,

I(JPrefixOf(s,E)KS,Γ,T ) = I(ite(v = Null,Null, z3.PrefixOf(s, v)))
= ite(I(v) = Null,Null, I(z3.PrefixOf(s, v)))
= ite(v′ = Null,Null, PrefixOf(s, v′))
= JPrefixOf(s, E)KI(Γ),I(T )
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3. Inductive case: ϕ = SuffixOf(s, E).

JSuffixOf(s, E)KS,Γ,T = ite(v = Null,Null, z3.SuffixOf(s, v)) where
v = JToStr(E)KS,Γ,T by Figure 20. JSuffixOf(s, E)KI(Γ),I(T ) = ite(v′ =
Null,Null,SuffixOf(s, v′)) where v′ = JToStr(E)KI(Γ),I(T ) by Figure 18. By in-
ductive hypothesis, we have I(v) = I(JToStr(E)KI(Γ),I(T )) = JToStr(E)KS,Γ,T = v′.
Furthermore, since the Z3 builtin function z3.SuffixOf precisely captures the semantics
of SuffixOf, we have I(z3.SuffixOf(s, v)) = I(z3.SuffixOf(s, JToStr(E)KS,Γ,T )) =
SuffixOf(s, I(JToStr(E)KS,Γ,T )) = SuffixOf(s, JToStr(E)KI(Γ),I(T )) = SuffixOf(s, v′) .
Therefore,

I(JSuffixOf(s,E)KS,Γ,T ) = I(ite(v = Null,Null, z3.SuffixOf(s, v)))
= ite(I(v) = Null,Null, I(z3.SuffixOf(s, v)))
= ite(v′ = Null,Null, SuffixOf(s, v′))
= JSuffixOf(s, E)KI(Γ),I(T )

4. Inductive case: ϕ = Like(s, E).

JLike(s, E)KS,Γ,T = ite(v = Null,⊥, z3.RegexMatch(s)) where v = JToStr(E)KS,Γ,T
by Figure 20. JLike(s, E)KI(Γ),I(T ) = ite(v′ = Null,Null,RegexMatch(s, v′))
where v′ = JToStr(E)KI(Γ),I(T ) by Figure 18. By inductive hypothesis, we
have I(v) = I(JToStr(E)KS,Γ,T ) = JToStr(E)KI(Γ),I(T ) = v′. Furthermore,
since Z3 precisely support regular expressions, we have I(z3.RegexMatch(s, v)) =
I(z3.RegexMatch(s, JToStr(E)KS,Γ,T )) = RegexMatch(s, I(JToStr(E)KS,Γ,T )) =
RegexMatch(s, JToStr(E)KI(Γ),I(T )) = RegexMatch(s, v′). Therefore,

I(JLike(s,E)KS,Γ,T ) = I(ite(v = Null,⊥, z3.RegexMatch(s, v)))
= ite(I(v) = Null,⊥, I(z3.RegexMatch(s, v)))
= ite(v′ = Null,⊥,RegexMatch(s, v′))
= JLike(s, E)KI(Γ),I(T )

5. Inductive case: ϕ = E1 ⊙ E2.

JE1 ⊙ E2KS,Γ,T = ite(v1 = Null ∨ v2 = Null,⊥, v1 ⊙ v2) where v1 = JE1KS,Γ,T and
v2 = JE2KS,Γ,T if v1 and v2 share the same type, i.e., Type(v1) = Type(v2) by Figure 20.
JE1 ⊙ E2KI(Γ),I(T ) = ite(v′1 = Null ∨ v′2 = Null,⊥, v′1 ⊙ v′2) where v1 = JE1KI(Γ),I(T )

and v′2 = JE2KI(Γ),I(T ) if v′1 and v′2 share the same type, i.e., Type(v′1) = Type(v′2) by
Figure 18. Note that this operation only works for E1 and E2 sharing the same type which
is consistent with MYSQL. By inductive hypothesis, we have I(v1) = I(JE1KI(Γ),I(T )) =
JE1KS,Γ,T = v′1 and I(v2) = I(JE2KI(Γ),I(T )) = JE2KS,Γ,T = v′2. Therefore, when E1

and E2 have the same type, we have

I(JE1 ⊙ E2KS,Γ,T ) = I(ite(v1 = Null ∨ v2 = Null,⊥, v1 ⊙ v2))
= ite(I(v1) = Null ∨ I(v2) = Null,⊥, I(v1)⊙ I(v2))
= ite(v′1 = Null ∨ v′2 = Null,⊥, v′1 ⊙ v′2)
= JE1 ⊙ E2KI(Γ),I(T )

Theorem 2 (Equivalence under set semantics). Given two relations R1 = [t1, . . . , tn] and R2 =
[r1, . . . , rm], if formula (2) is valid, then R1 and R2 are equivalent under set semantics.

Proof. Let F1 be the first conjunct of formula (2), i.e.,
∧n

i=1(¬Del(ti) → ∨m
j=1(¬Del(rj)∧ ti = rj),

and let F2 be the second conjunct of formula (2), i.e.,
∧m

j=1(¬Del(rj) → ∨n
i=1(¬Del(ti) ∧ rj = ti).

Since formula (2) is valid, both F1 and F2 are valid. Now consider F1. It specifies for any tuple
ti ∈ R1, if ti is not deleted, then there exists a tuple rj that is not deleted and ti = rj . By the
definition of ⊆, R1 ⊆ R2. Similarly, F2 specifies R2 ⊆ R1. Therefore, R1 = R2.
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