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Abstract

Effective robotic autonomy in unknown environments demands proactive explo-
ration and precise understanding of both geometry and semantics. In this paper, we
propose ActiveSGM, an active semantic mapping framework designed to predict
the informativeness of potential observations before execution. Built upon a 3D
Gaussian Splatting (3DGS) mapping backbone, our approach employs semantic
and geometric uncertainty quantification, coupled with a sparse semantic repre-
sentation, to guide exploration. By enabling robots to strategically select the most
beneficial viewpoints, ActiveSGM efficiently enhances mapping completeness,
accuracy, and robustness to noisy semantic data, ultimately supporting more adap-
tive scene exploration. Our experiments on the Replica and Matterport3D datasets
highlight the effectiveness of ActiveSGM in active semantic mapping tasks.

1 Introduction

Mobile robots are expected to play a significant role in human-centered environments, such as
warehouses, factories, hospitals, and homes, as well as in dangerous settings, such as mines and
nuclear facilities. Rich and accurate geometric and semantic representations are necessary in these
scenarios so that robots can understand, interpret, and interact meaningfully with their surroundings.
For instance, in automated warehouses, robots are required to recognize various items and place them
in the correct sorting zones accordingly. Scene understanding is enabled by a semantic map that is
linked to the geometric map [1], which represents the spatial layout of an environment, and enriches it
with high-level information such as object categories, surface labels, and functional affordances [2H3]].
Such maps are critical for a range of tasks including navigation, inspection, object manipulation,
human-robot interaction, and long-term autonomy.

Despite substantial advances in semantic mapping, most current approaches are unable to determine
the most informative path for the robot. Instead, they passively rely on externally determined
trajectories or predefined exploration strategies [6H9]], leading to incomplete or suboptimal scene
understanding. In this paper, we present an approach of active semantic mapping that seeks to close
the loop between perception and action. This allows agents to plan their next moves and observations
to improve the quality, completeness, and efficiency of the semantic map. Our approach, named
ActiveSGM (Active Semantic Gaussian Mapping), is the first active semantic mapping system based
on radiance fields, enabling rapid exploration, efficient environment understanding, and high-fidelity
real-time rendering, ultimately leading to more intelligent and efficient robotic behaviors. ActiveSGM
aims to infer the semantic labels of all visible surfaces, without favoring any particular label.

To select the most informative views for the robot, we seek to quantify both geometric and semantic
uncertainty. At the geometric level, uncertainty is typically measured by the expected error in the
estimated 3D coordinates [10H12]]. At the semantic level, uncertainty estimation primarily captures
ambiguity among semantic classes. Recent surveys on semantic uncertainty quantification [[13H15]]
found that it is inherently dependent upon the choice of semantic representation.
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The choice of semantic representation plays a critical role in semantic mapping systems, which
commonly adopt two forms: probability distributions or embeddings. For distribution-based repre-
sentations, existing methods (e.g., [L6H18]]) employ either hard or soft assignment strategies. Hard
assignments, such as one-hot encoding, strictly assign a single label to each pixel. In contrast, soft
assignments allocate a complete categorical probability distribution to each 3D primitive, naturally
capturing uncertainty but also incurring higher memory requirements as the number of categories
grows. Alternatively, embedding-based representations can also be viewed as a form of soft as-
signment. Methods like [9}|19] utilize features, such as those from DINO [20] or CLIP [21], to
encode semantic embeddings. However, these embeddings are high-dimensional, posing challenges
for storage and real-time rendering in large scenes. Consequently, some approaches compress the
features into lower-dimensional spaces, such as the three-dimensional RGB color space. The dimen-
sion of the embedding feature space directly determines the effectiveness of class discrimination.
High-dimensional embeddings, like those from DINO or CLIP, provide a sufficiently expressive
feature space to effectively distinguish categories. However, as embeddings become compressed,
for instance into RGB space, color blending during multi-view reconstruction inevitably occurs,
producing blended colors that may correspond to unrelated categories instead of the original ones.

In this paper, we address semantic representation under the closed-vocabulary assumption, adopting a
probability distribution approach that we argue offers better categorical discrimination. In Section
we discuss how to store high-dimensional probability distributions within our proposed sparse
semantic representation.

To summarize, we propose the first dense active semantic mapping system built upon a 3D Gaussian
Splatting (3DGS) backbone, which integrates semantic-aware mapping and planning for active
reconstruction. This enables the robot to construct a more accurate geometric map and a richer
semantic map with fewer observations. Our method addresses several key challenges:

* Semantics-aware exploration: We design a novel semantic exploration criterion that enhances
semantic coverage and facilitates disambiguation across observations during exploration.

* High-dimensional semantic representations and memory footprint: We adopt a closed-
vocabulary setting and introduce a sparse semantic representation that retains the top-k£ most
probable categories, reducing memory overhead without sacrificing semantic richness.

* Robustness to noisy semantic observations: Unlike prior works that rely on ground-truth labels,
real-world deployment requires handling noisy semantic predictions. We use a pre-trained segmen-
tation model to generate these inputs and design our pipeline to tolerate and progressively refine
them, achieving high segmentation quality.

2 Related Work

In this section, we review prior work, starting from dense SLAM, active mapping, semantic mapping,
and concluding with active semantic mapping. We focus on methods utilizing either Neural Radiance
Fields (NeRF) [22H24] or Gaussian Splatting (GS) [25H27]] as the representation.

Dense SLAM. Autonomous robotics relies on foundational capabilities such as localization, map-
ping, planning, and motion control [28]]. The need to realize these capabilities has spurred advance-
ments in various areas, including visual odometry [29,|30]], structure-from-motion (SfM) [31], and
Simultaneous Localization and Mapping (SLAM) [32H34] 10, [35]. For surveys of the impact of
radiance fields in SLAM and robotics in general, we refer readers to [36H38[27]]. Progress in radiance
fields has given rise to a multitude of dense SLAM methods, that estimate depth for almost every
pixel of the input images, using NeRF (or other implicit representations, such as TSDF) [39-48]
or GS [49-54] to represent scene geometry and appearance. We use SplaTAM [51] as the SLAM
backbone of our algorithm.

Active Mapping. The goal of SLAM is to estimate the camera/vehicle trajectory from sensor data.
Active mapping, or exploration, is a related problem in the domain of active perception [55,156], where
the goal is guiding the sensor to acquire images beneficial to a downstream task. The most common
objectives are to reduce uncertainty, equivalently to increase information gain, [S7] or to detect and
visit frontiers [58]]. Prior approaches such as [58H60] adopt a long-term planning paradigm, in which
the information gain is estimated along multiple candidate trajectories before execution. Subsequent



studies [61H63]], on the other hand, reformulate the problem within a next-best-view framework,
where the exploration process is guided by sequential decisions that progressively construct the
overall trajectory. Early work demonstrated the effectiveness of active mapping [64H68], while
overviews of the state of the art can be found in [[10H12].

Active Mapping using Radiance Fields. Recently, NeRF-based approaches have been applied to
path planning [[69]] and next-best-view selection [[70-72]], though they are often limited by their high
computational cost [73]]. To overcome these limitations, hybrid models such as ActiveRMAP [74]
integrate implicit and explicit representations. NARUTO [61]] introduces an active neural mapping
system with 6DoF movement in unrestricted spaces, while Kuang et al. [73] integrate Voronoi
planning to scale exploration to larger environments. 3DGS offers a faster alternative, making
real-time mapping and exploration more feasible. Recent works like ActiveSplat [75]] utilize a hybrid
map with topological abstractions for efficient planning, ActiveGS [76] also uses a hybrid map and
associates a confidence with each Gaussian to guide exploration, and AG-SLAM [77] incorporates
3DGS with Fisher Information to balance exploration and localization in complex environments.
ActiveGAMER [63] introduces a rendering-based information gain criterion that selects the next-best
view for enhancing geometric and photometric reconstruction accuracy in complex environments.
RT-GulDE [78] uses a simple uncertainty measure to achieve real-time planning and exploration on a
robot. Recently, NextBestPath [79] considers longer horizons than just the single next view. Like all
the methods in this paragraph, however, it does not consider semantics.

Semantic Mapping. The goal of semantic mapping is to infer scene descriptions that go beyond
geometry [1]]. In general, methods in this category endow their 3D representation with semantic
labels, which are inferred via semantic segmentation of the input RGB or RGB-D images. Early work
includes approaches such SemanticFusion [80]], Fusion++ [4], PanopticFusion [81] and Kimera [6],
which have adopted different representations exploring tradeoffs between precision and efficiency.
Radiance field-based methods are surveyed by Nguyen et al. [82]. Among them, GSNeRF [83]
introduces the Semantic Geo-Reasoning and Depth-Guided Visual modules to train a NeRF that
encodes semantics along with appearance. Wilson et al. [15] use the variance of the semantic
representation at each Gaussian as a proxy for semantic uncertainty. HUGS [84] jointly optimizes
geometry, appearance, semantics, and motion using a combination of static and dynamic 3D Gaussians.
Logits for all classes are stored with the Gaussians, but the number of classes is small. All of these
approaches operate on all frames in batch mode, however.

Semantic SLAM. Gaussian splats are well suited for semantic mapping because they can encode
additional attributes and are amenable to continual learning, unlike NeRF [85]. All methods below
operate on RGB-D video inputs. We point out the important representation choices made by their
authors. SGS-SLAM [7] augments a GS-based SLAM system with additional test-time supervision
via 2D semantic maps. The authors argue that any off-the-self semantic segmentation algorithm
can be integrated in SGS-SLAM and use ground truth labels to supervise the splats for simplicity.
High-dimensional semantic labels are converted to "semantic colors" to save space. NIDS-SLAM [86]
uses a 2D transformer [87] to estimate keyframe semantics, also converting the semantic labels into
"semantic colors". NEDS-SLAM [8]] reduces the memory footprint of the high-dimensional semantic
features obtained by DINO [20]] to three values per splat via a lightweight encoder. OpenGS-SLAM
[9]] infers consistent labels via the consensus of 2D foundational models across multiple views. It can
handle an open vocabulary, but stores only one label per splat.

To overcome the limited dimensionality of colormaps, researchers have endowed the splats with
embeddings of the high-dimensional vectors of logits. SNI-SLAM [88]] model the correlations among
appearance, geometry and semantic features through a cross-attention mechanism and use feature
planes [41] to save memory. DNS-SLAM [89] relies on a multi-resolution hash-based feature grid.
Optimization is performed in latent space, while ground truth 2D semantic maps are used as inputs.
SemGauss-SLAM [90] augments the splats with a 16-channel semantic embedding and presents
semantic-informed bundle adjustment. The paper includes results using ground truth 2D labels for
supervision, as well as labels inferred by a classifier operating on DINOv2 [91] features. Hier-SLAM
[S] addresses the increased storage requirements via a hierarchical tree representation, generated by
a large language model. It can handle over 500 semantic classes, but it is also provided the ground
truth semantic maps of the images during optimization.
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Figure 1: Overview of the ActiveSGM System. Our framework integrates observation, mapping,
and planning into a unified active semantic mapping system. At each time step, posed RGB-D
frames along with semantic predictions from OneFormer [[17] are stored in a keyframe database.
Selected frames are used to update a Semantic Gaussian Map that encodes geometric, photometric,
and semantic properties and is optimized through differentiable rendering. An occupancy-based
Exploration Map is updated using the current view and used to sample candidate viewpoints in free
space. Next-best views are selected by jointly evaluating geometric and semantic exploration criteria
(E.C.), and a path planner navigates toward the selected pose. This closed-loop system enables
efficient, semantics-aware reconstruction and exploration in complex 3D environments.

Active Semantic Mapping. The above semantic mapping and SLAM approaches are "passive" in
the sense that the camera is not actively controlled but follows a predetermined trajectory. In contrast,
methods such as [60,(92] actively plan trajectories that maximize the mutual info rmation between past
and future semantic observations. Other relevant works have focused on object search using semantic
contextual priors—e.g., leveraging knowledge that cups are typically found in kitchens—without
explicitly predicting semantic labels for every point in the map [93H95]]. Among these approaches,
more relevant to ours is the work of Zhang et al. [96] that relies on semantic mutual information
and properties of the SLAM pose graph for metric-semantic active mapping. An octree is used to
maintain the map, but the current implementation is limited to 2D motion and 8 classes, while ground
truth labels are used as semantic observations. Marza et al. [97]] added a semantic head to Nerfacto
[98] and used it for active mapping of appearance, geometry and semantics. They compared using
ground truth semantic labels and Mask-R-CNN [99] to detect 15 object categories, and observed
large differences in the metrics. Exploration policies are trained using reinforcement learning and
consider the 15 object categories. Unlike our approach, the trajectory is restricted to the ground plane.
It is not clear how this approach would have to be modified if all semantic classes in the scene would
have to be considered.

3 Method

In this section, we present Active Semantic Gaussian Mapping (ActiveSGM), a 3D Semantic Gaussian
Splatting framework for active reconstruction that tightly integrates semantic-aware mapping and
planning. Section [3.I]introduces Semantic Gaussian Mapping, an efficient representation that enables
high-fidelity geometric, photometric, and semantic reconstruction. To reduce the computational and
memory overhead of semantic mapping, we propose a sparse semantic representation that supports
efficient storage and fast rendering. Building on this, Section [3.2]describes our exploration strategy
for next-best-view selection, which jointly leverages geometric and semantic cues to guide the
reconstruction of high-quality semantic maps. We outline the ActiveSGM framework in Figure [T}



3.1 Semantic Gaussian Mapping

Gaussian Mapping. Gaussian Mapping leverages 3DGS to represent scenes as collections of 3D
Gaussians, encoding both appearance and geometry for real-time rendering of high-fidelity color
and depth images. Building upon the work of Kerbl et al. [25]], we adopt the streamlined approach
proposed in SplaTAM [51]]. This method employs isotropic Gaussians with view-independent color,
optimizing parameters such as color (¢), center position (), radius (), and opacity (0).

A notable advantage of 3DGS is its capability for real-time rendering, enabling the synthesis of
high-fidelity color and depth images from arbitrary camera poses. This is achieved by transforming
3D Gaussians into camera space, sorting them front-to-back, projecting them onto the 2D image
plane, and employing alpha-blending for compositing. The color, depth, and silhouette at pixel p
are rendered from the Gaussian map, where the silhouette indicates whether p receives a significant
projection from any Gaussian. The general rendering process is formulated as
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where z; € {¢;,d;,1} and R(p) € {C(p),D(p),S(p)} depending on whether color, depth, or
silhouette is being rendered. f;(p) is derived from the Gaussian’s position and size in 2D pixel
space. The differentiable nature of this rendering process allows for end-to-end optimization, where
gradients are computed based on discrepancies between rendered images and RGB-D inputs, and the
optimization objective is formulated as:

L=>_ (S(p)>0.99) (Li(D(p)) + 0.5L1(C(p))). @)

where only pixels inside the silhouette are considered.

Semantic Prediction. We incorporate semantics into the 3DGS map by using OneFormer [[17], a
state-of-the-art model for unified segmentation, to perform semantic segmentation. Its predictions
serve as our primary source of semantic observations.

Sparse Semantic Representation. Given the semantic predictions from OneFormer, represented
as a probability distribution P = (p1,p2, ..., par) over M semantic categories, a straightforward
approach to constructing a Semantic Gaussian Map is to incorporate P as an additional attribute in
each 3D Gaussian. However, storing and optimizing such high-dimensional semantic properties can
lead to significant memory overhead.

To mitigate this issue, we introduce a sparse semantic representation, where only the top-k categories
with the highest probabilities from the initial observation are retained per Gaussian. Specifically, for
each Gaussian G;, we define the sparse semantic vector as P; = (pi,, Piys --» Dij, ). This compact
form preserves most of the semantic information while significantly reducing storage and computation
costs. As new observations arrive, the probabilities are updated while keeping the original top-k
indices fixed, allowing semantic refinement over time without restoring the full distribution.

Semantic Rendering. Similar to color and depth, semantic rendering projects 3D Gaussians into
2D and composites their semantic properties at each pixel. To preserve efficiency, we render only
using Gaussians within the current view and aggregate their sparse top-k semantic distributions into
a full semantic probability map. Given each Gaussian’s sparse vector P;, we compute the class-m
probability at pixel p as:
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where p; ., is the probability of class m for Gaussian G, and f;(p) denotes its projected influence at
pixel p. This approach enables smooth, class-wise semantic rendering while avoiding the overhead
of fully dense representations, striking a balance between accuracy and memory efficiency.



Semantic Loss. To optimize the semantic 3DGS, we employ a combination of the Hellinger
distance and cosine similarity losses. Predictions from OneFormer serve as the pseudo-ground truth
Pgr, while the rendered semantic outputs are treated as predictions Ppreq. To filter out uncertain
supervision, we apply an entropy-based mask My = I(H(p) < 7) on Pgr, where I(-) is the
indicator function and 7 is the entropy of a uniform distribution over k categories, i.e. 7 = log(k).
The entropy at each pixel is computed as:

M
H(p) == Pm(p) - 1og P (p). @

The Hellinger distance encourages the predicted semantic distribution to closely match the pseudo
ground truth while providing smooth and bounded gradients. To further regularize the optimization,
we incorporate the cosine similarity loss, which promotes angular alignment between the predicted and
target distributions. This combination ensures both probabilistic accuracy and structural consistency,
leading to more stable and robust training for semantic 3DGS. The final semantic loss is defined as:

Leman = My - ()\HDDHD(PGT || Ppred) + Acos (1 - COS(PGTa Ppred))) ) 5)

where Dyp (- || -) denotes the Hellinger distance and cos(-, -) is the cosine similarity. We set Agp = 0.8
and A\.,s = 0.2 to balance their contributions.

To prevent noisy semantic predictions from affecting the entire 3DGS representation, we restrict
backpropagation of this loss to only the semantic attributes of each Gaussian, leaving geometric and
photometric components untouched.

Keyframe Selection Strategy. Following SplaTAM [51]], our Gaussian Mapping backbone opti-
mizes the map using a subset of keyframes instead of all input frames. Every fifth frame is considered
a keyframe candidate, and the map is updated using local keyframes with the highest 3D overlap,
computed by backprojecting depth maps and evaluating visibility within keyframe frustums. This
provides efficient multiview supervision but may overfit occluded regions, reducing opacity for valid
Gaussians behind surfaces.

To address this, we introduce a global-local keyframe strategy. In addition to local keyframes, we
select global keyframes based on: (1) low rendering quality, and (2) low semantic entropy and fewer
unknown labels to ensure confident supervision. These global keyframes help cover under-observed
and ambiguous regions. In practice, we maintain a 50-50 mix of local and global keyframes to
balance local detail with global coverage.

3.2 Exploration Planning

To enable efficient semantic reconstruction, we design an exploration planning module that actively
selects informative viewpoints. Each candidate pose is evaluated using two criteria: geometric
coverage, measured by silhouette completeness, and semantic uncertainty, quantified by entropy.
These criteria approximate information gain [[10, [12], which measures the expected reduction in
uncertainty from new observations. While computing true information gain is intractable in high-
dimensional semantic maps [[LO0]], our entropy- and coverage-based approximations allow efficient
real-time scoring of candidate viewpoints. To keep computation efficient, we maintain a dynamic
candidate pool and adopt a coarse-to-fine sampling strategy that first explores broadly, then refines
with denser sampling. We now detail the geometric and semantic exploration criteria, the overall
scoring formulation, and the implementation of candidate management.

Geometric Exploration Criterion. We adopt ActiveGAMER’s [63] exploration criterion formu-
lation to evaluate the geometric coverage of candidate viewpoints. Given a candidate viewpoint v,
we compute its exploration criterion Z7, based on the rendered silhouette S” with respect to the
up-to-date Semantic Gaussian Map. The number of missing pixels in the rendered silhouette, denoted

as Ngv, quantifies the exploration criterion for the candidate viewpoint, which is formulated as:
Zjeo = 0(log(Ns.)), Nsv =3 1(5"(p) =0) ©)

where o(-) is the softmax function, which normalizes the scores across all candidate viewpoints, and
I(+) is the indicator function, counting pixels with zero values in the silhouette.
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Figure 2: Qualitative Results for Replica. Our method generates denser and more accurate semantic
maps than SGS-SLAM, with fewer exploration steps. Yellow boxes highlight improved boundaries
and semantic consistency. Black regions denote unknown labels.

Semantic Exploration Criterion. In addition to geometric coverage, we assess semantic uncer-
tainty by rendering the semantic probability map of each candidate viewpoint from the current
Semantic Gaussian Map. To ensure numerical stability, we clip the probabilities to [0.001, 1] and
normalize them to form valid probability distributions. Given a candidate pose v, the semantic
exploration score is defined as:

T = (32 H'(P)). )

where HY(p) is the entropy at pixel p, computed as in Eqn. El This encourages selecting views that
reduce semantic uncertainty and improve coverage in ambiguous regions.

Overall Exploration Criterion. To guide efficient scene coverage and reduce redundant motion,
we define the overall exploration criterion by combining geometric and semantic objectives with a
motion cost that penalizes distant candidate viewpoints. This encourages the system to prioritize
informative poses that are also close to the current camera location.

Given a candidate camera pose v, we first compute the exploration criteria Z,., and Z2, ., as described
above. To encourage travel efficiency, we define a motion cost based on the Lo distance between the
candidate pose location 7TV and the current camera location 7%, denoted as [V = || — T%|2. We
apply a softmax function to the motion cost to normalize the cost across all candidates. The final

distance-aware exploration criterion is defined as:
1" = (1 - J(lv)) : (Igeo 'Isqijsman) . (8)

This formulation balances information gain and travel efficiency, favoring views that improve map
quality while minimizing unnecessary motion.

Exploration Strategy. To efficiently evaluate candidate viewpoints, we maintain an Exploration
Map, a voxel-based occupancy grid that tracks free space. Newly observed voxels are identified by
comparing the updated grid to its previous state, and candidate viewpoints are sampled from these
new voxels. Candidate positions are spaced every v; units of length, with vy viewing directions
uniformly distributed using the Fibonacci lattice. Each pose T" is scored using the overall exploration
criterion (Eqn. , and low-value candidates (Ng, < 0.5% of image pixels) are pruned from the pool.

To balance speed and coverage, we use a coarse-to-fine strategy: the coarse stage samples on a single
height plane with larger steps (v; = 1) and fewer directions (ve = 5); the fine stage increases density
with smaller steps (v; = 0.5), multiple heights, and more directions (vo = 15), removing redundant
views to maintain exploration efficiency and completeness.

4 Experiments and Results

4.1 Experimental Setup

In this paper, we focus on evaluating the semantic segmentation accuracy of the proposed pipeline,
particularly under noisy observation settings, which better reflect real-world conditions. Deploying



and evaluating on physical robots is challenging due to the lack of well-annotated data—especially
ground-truth semantic labels- for reliable evaluation. Consequently, prior methods are typically
evaluated in simulation, making photorealistic environments the most practical and fair testbed for
benchmarking. Following the common evaluation protocol, all of the following experiments are
conducted in a simulated environment.

Simulator and Datasets. We use Habitat [101]] to generate RGB-D frames and OneFormer [[17]]
for semantic segmentation. Frames are captured at 680 x 1200 resolution with 60° vertical and 90°
horizontal FOV. The Exploration Map uses a voxel size of 5 cm.

We evaluate on three photorealistic datasets: Replica [102]], ReplicaSLAM, and MP3D [103].
Replica includes high-fidelity meshes and 101 semantic classes; we use 8 scenes from [44]]. Repli-
caSLAM provides predefined camera trajectories for the same 8 scenes. MP3D includes 40 semantic
classes; we use 5 scenes for evaluation. Each experiment runs for 2,000 steps on Replica and 5,000
on MP3D, with early termination if the exploration candidate pool is exhausted.

Semantic Model Fine-tuning. To improve semantic prediction accuracy, we collect 500 RGB-
Semantic frames from each scene and fine-tune OneFormer separately on Replica and MP3D. The
fine-tuned models are used to generate per-pixel semantic class probability maps, which are then
converted into sparse semantic representations for each 3D Gaussian.

Semantic Evaluation Metrics. We follow SGS-SLAM’s [7] evaluation protocol and compute the
Average Mean Intersection over Union (mloU) by mapping the rendered semantic predictions to
ground-truth categories within each test view. In addition, we evaluate per-pixel semantic classification
using Top-1 and Top-3 Accuracy, and assess the complete category distribution (not limited to the
categories present in a given image) using Mean Average Precision (mAP) and F1-score. Owing to
space constraints, we report only a subset of the results in Table [T} please refer to Section[S.2]of the
supplementary material for the full results.

Geometric and Photometric Metrics. We evaluate geometric reconstruction using three metrics:
Accuracy (cm), Completeness (cm), and Completeness ratio (%) with a 5 cm threshold. These are
computed by uniformly sampling 3D points from both the ground-truth mesh and the reconstructed
Gaussian Map. For measuring rendering quality, we use PSNR, SSIM, LPIPS and Depth L1 (D-LI).

Baselines. To the best of our knowledge, this is the first work to tackle dense active semantic mapping
with 3D Gaussian Splatting (3DGS); direct, one-to-one baselines are therefore difficult to establish.
We evaluate our system against three categories of baselines: (1) semantic SLAM methods based on
NeRF or 3DGS, which primarily target segmentation and rendering quality; (2) a passive semantic
mapping pipeline reconfigured from the strongest representative in (1), to highlight the benefits of
our semantic representation and active exploration policy; and (3) geometry-based active mapping
methods, which focus on maximizing 3D reconstruction accuracy.

All experiments were conducted on two NVIDIA RTX A6000 GPUs. Additional implementation
details and extended results are provided in the supplementary material.

4.2 Semantic Segmentation Evaluation

Comparison with NeRF/GS-based Semantic SLAM on ReplicaSLAM. Most existing
NeRF/3DGS-based semantic mapping approaches—such as NIDS-SLAM[86]], DNS-SLAM][89],
SNI-SLAM[88]], and SGS-SLAM[/[]—are formulated as semantic SLAM systems, i.e., they jointly
solve for localization and semantic mapping. We report results from SGS-SLAM [7] only for refer-
ence and completeness since we assume perfect localization. We follow the SGS-SLAM evaluation
protocol, which measures the agreement between rendered semantic masks and ground-truth labels
visible in each view (Table|l| yellow ). Our setup differs from prior baselines in three key aspects: (1)

we use pseudo labels generated by OneFormer [[17] instead of ground truth; (2) we evaluate on views
not seen during training; and (3) we train with only one-third of the available images. Despite these
constraints, our method achieves performance comparable to fully supervised baselines by effectively
fusing noisy predictions across views into a coherent semantic map.



Table 1: Semantic Segmentation Results. We evaluate ActiveSGM on Replica and MP3D without
access to ground-truth semantic labels, requiring fewer mapping steps, and testing on novel views not
seen during training. We report average mloU on Replica and average IoU on MP3D. "GT" means
ground-truth labels. while "Pred." means predicted labels from OneFormer.

Method Dataset Labels Evaluation View \ Steps |  Avg. [m]loU (%) 1T F-1(%) 1
NIDS-SLAM ReplicaSLAM GT Train 2000 82.37 -
DNS-SLAM ReplicaSLAM ~ GT Train 2000 84.77 -
SNI-SLAM [88] ReplicaSLAM GT Train 2000 87.41 -
SGS-SLAM [7] ReplicaSLAM GT Train 2000 92.72 -
OneFormer [17] ReplicaSLAM GT Novel 3000 65.41 -
Ours ReplicaSLAM  Pred. Novel 713 85.13 —
SGS-SLAM [7] Replica Pred. Novel 2000 80.42 18.70
Ours (Passive) Replica Pred. Novel 2000 80.14 67.81
Ours Replica Pred. Novel 777 84.89 77.56
SSMI MP3D GT Train - 36.14 -
TARE MP3D GT Train - 31.70 -
Zhang et al. MP3D GT Train - 42.92 -
Ours MP3D Pred. Novel - 65.58 -

GT - Semantic SGS-SLAM SGS-SLAM SGS-SLAM
(rasterized) (local label conversion) (global label conversion)

Figure 3: Color-Coding Ambiguities. SGS-SLAM blend colors leading to label confusion,
especially under global conversion, and the introduction of irrelevant categories.

Comparison with Passive Semantic Mapping on Replica (Novel Views). To enable a fairer
comparison with semantic SLAM methods, we select SGS-SLAM as the strongest representative
baseline and reconfigure it to function as a semantic mapping-only system: (1) We disable its
tracking module and use ground truth poses. (2) Replace ground truth semantics with semantic
predictions. This allows us to directly evaluate the semantic representation quality, which is a
key contribution of our method. We then disable our own active exploration module to ensure a
passive, mapping-only setting, enabling a fair apples-to-apples comparison. The results in Table[T]
blue show that our full pipeline with active exploration achieves better segmentation with fewer
observations/steps, demonstrating the effectiveness of our exploration strategy guided by semantic
and geometric uncertainty.

Color-Coding Limitations. As shown in Figure[3] SGS-SLAM and similar methods use color
encoding to represent semantic labels, which often blend during multi-view fusion and introduce
arbitrary labels, leading to misclassification and ambiguity (yellow boxes). To recover labels, they
apply nearest-color matching using either local label conversion, which maps to the nearest color
among ground-truth classes in the current view, or global label conversion, which considers all
ground-truth classes in the scene. However, assuming access to view-specific ground-truth labels is
unrealistic. Inconsistencies between local and global conversion are shown in cyan boxes.

Comparison with Active Semantic Mapping on MP3D. We also include comparisons to recent
active semantic mapping baselines, which are more aligned with our task definition. These further
validate the advantage of our sparse semantic representation and active policy. We evaluate on 5 large
indoor scenes from MP3D (Table red ). Tableshows active semantic mapping baselines [92]
from [96]. We do not know which scenes were used by the baselines, but we evaluate on a common set

RGB ’ Semantic Entropy

Figure 4: Qualitative Results for MP3D. Top-down visualizations of reconstructed scene, semantic
labels and semantic entropy heatmap (low, high). Notably, our results show no high-entropy regions,
and produce coherent and dense semantic reconstructions even in large scale MP3D scenes.
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Table 2: Ablation of Semantic Components. Experiments on office0 and room0 from Replica to
evaluate the impact of the number of retained categories (Top-k) and the use of Hellinger distance
(H.D.), KL-Divergence (KL.) and cosine similarity (Cos.) in the semantic loss.

Top-k H.D. KL. Cos. \ Avg. mloU (%) T Top-1Acc (%)1T Top-3Acc(%)T mAP (%) F-1(%)7T

Top-5 v v 83.06 95.66 99.68 94.79 74.24
Top-8 v v 83.34 95.70 99.66 95.05 74.23
Top-16 v v 84.08 95.68 99.73 94.92 74.73
Top-16 v 82.26 95.57 99.61 94.21 74.10
Top-16 v 82.70 95.62 99.73 94.40 72.43
Top-16 v v 82.22 95.63 99.70 94.66 73.93
Top-16 v v 84.08 95.68 99.73 94.92 74.73

of labels, and report Average IoU. All baselines use ground truth labels during optimization. Despite
relying on predicted labels and novel views, our method significantly outperforms all baselines.
Figure ] shows that our system produces clean and consistent semantic maps across complex indoor
scenes.

Comparison on 3D Reconstruction and Novel View Synthesis. We evaluate ActiveSGM 3D
reconstruction and novel view synthesis on MP3D and Replica. On MP3D, our method achieves 1.56
cm accuracy and 97.35% completeness, surpassing ActiveGAMER [63] (1.66 cm, 95.32%). In novel
view synthesis on Replica, ActiveSGM achieves an SSIM of 0.96, closely matching ActiveGAMER’s
0.97 despite not using a photometric refinement stage. This highlights ActiveSGM’s ability to main-
tain a balance between photometric quality and geometric fidelity. Full quantitative and qualitative
results are provided in the supplement.

4.3 Ablation Studies

We perform ablation studies on two key components of our proposed method that influence semantic
mapping performance: (1) the number of categories used in the sparse semantic representation, and
(2) the effect of individual loss terms in optimizing semantic features. Experiments are conducted
on the office0 and room0 scenes from the Replica dataset. As shown in Table[2} (1) Using more
categories improves accuracy, we retain the top-16 categories for the best overall performance. (2)
Removing either the Hellinger distance or cosine similarity reduces the Average mloU. Using both
terms together, accuracy reaches 84.08%, confirming their effectiveness. (3) We also compare KL
divergence and Hellinger distance, finding that the Hellinger distance is a more effective choice.
Notably, KL divergence can lead to gradient vanishing due to the instability of the logarithmic
function, necessitating gradient norm clipping during training.

5 Limitations and Conclusion

Despite the strong performance of ActiveSGM we show above, several limitations remain: Perfect
Localization: We assume known robot poses throughout the process; in real deployments, a separate
localization or tracking module would be required. Perfect Execution: The robot is assumed
to precisely follow planned trajectories; navigation errors should be considered for deployment.
Semantic Segmentation Model: Our system relies on an external segmentation model (OneFormer)
for semantic predictions, which may introduce domain-specific errors. Stronger or fine-tuned models
can improve results, while weaker ones may degrade semantic quality. Limited Joint Optimization:
To stabilize training, we block gradients from the semantic loss to geometric properties, decoupling
the optimization of geometry and semantic features.

In conclusion, We presented ActiveSGM, the first dense active semantic mapping system built on a
3D Gaussian Splatting backbone. By unifying geometry, appearance, and semantics, ActiveSGM
enables efficient exploration and high-quality mapping with fewer observations. It improves semantic
coverage through uncertainty-guided exploration, reduces memory via top-k sparse representations,
and handles noisy predictions without ground-truth labels. We hope ActiveSGM will inspire future
research in active mapping, semantic understanding, and autonomous robotic exploration. Our code
is avaiable athttps://github.com/11y00412/ActiveSGM.git,

Acknowledgement. This research has been supported in part by the National Science Foundation
under award 2024653.
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Supplement

In this supplement, we provide a detailed outline structured as follows: Section [S.T] offers additional
implementation details of ActiveSGM. Section [S.2]includes extended quantitative and qualitative
results, along with a runtime analysis. Section [S.3|provides justifications for the checklist items.

S.1 Implementation Details

Hardware and Software. We conducted the experiments on a server with 2 NVIDIA RTX A6000
GPUs and an Intel i9-10900X CPU with 20 cores. Our ActiveSGM is implemented with python
3.8 and CUDA 11.7. Please refer to Section [S.3.4] for more information about baselines and other
packages we used. Our code can be found at https://github.com/11y00412/ActiveSGM.git.

OneFormer Finetuning Details. Following the approach of ActiveGAMER [63]], we implemented
the geometry-based exploration criterion to construct our fine-tuning dataset. Beginning from a
random position, the agent performs 500 exploration steps, collecting 500 RGB-Semantic frame pairs
per scene. We then fine-tuned OneFormer [17] separately on the collected data from Replica and
MP3D, training for 3,000 steps per scene. The Replica dataset has 101 classes, while MP3D has 40.
The fine-tuning process follows the official OneFormer tutorial provided by Hugging Face (https:
//huggingface.co/docs/transformers/main/en/model_doc/oneformer). The novel trajec-
tories described in Table 1 of the main paper are used as the test set. These trajectories are distinct
from those used for fine-tuning. The train/test Top-1 accuracy is reported in Table

Sparse Rendering. We illustrate the semantic rendering process using our proposed sparse semantic
representation (with fewer classes) in Fig.[S.I] The overall rendering process proceeds as follows:

For each tile:
For each pixel in the tile:
For each batch of Gaussians in the frustum:
Load batch to shared memory # fewer classes decreases loading time
For each Gaussian in the batch:
If pixel is affected:
Compute contribution (semantic, alpha)
Composite with alpha blending # sparse mode needs fewer iters.
Early exit if opacity is sufficient
Write final semantic

If our sparse representation is not used, each Gaussian stores a full probability distribution over all
classes, and alpha blending of semantic probabilities is performed by iterating over all classes:

For each Gaussian G_i in the batch:
for idx in range(num_classes+1):
P[idx] += prob[idx] * alphalidx] * transmittance[idx]

where P is the rendered probability distribution of each pixel. This becomes increasingly inefficient
when the number of classes is large and many probabilities are near zero. For instance, in the Replica
dataset with 101 classes plus one unknown class, this results in 102 iterations per Gaussian.

In contrast, our sparse rendering strategy stores only the Top-k most probable classes per Gaussian (k
« number of classes). During rasterization, alpha blending is performed only over these sparse indices:

For each Gaussian G_i in the batch:
indices = topk_indices in G_i
for idx in indices:

Table S.1: OneFormer Fintuneing Accuracy

Dataset Splits | Avg. 0f0 0f1 0f2 0£f3 0f4 RO R1 R2
Replica [T02] Train | 9731 | 9875 98.67 99.17 97.35 96.45 98.13 98.83 91.15
P Test | 89.12 | 89.07 71.84 9276 93.18 91.54 8737 9225 94.96

GdvgF gZ6f7 HxpKQ pLedw YmJkq
Train | 93.87 | 9437 9499  93.84 95.22 90.94
Test | 89.77 | 93.68 92.58 91.21 89.52 81.86

MP3D [103]
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Table S.2: Semantic Segmentation on ReplicaSLAM. Rendered semantics are evaluated on 4
scenes using the SGS-SLAM [[7] protocol, which compares predictions to ground-truth categories
visible per view. Our method uses semantic predictions from OneFormer and is evaluated on novel
views.

Methods | Semantic  View | Avg. Steps | Avg.mloU (%) T RO(%) R1(%) R2(%) 0f0 (%)
NIDS-SLAM [86] GT Train 2000 82.37 82.45 84.08 76.99 85.94
DNS-SLAM [89] GT Train 2000 84.77 88.32 84.90 81.20 84.66
SNI-SLAM [88] GT Train 2000 87.41 88.42 87.43 86.16 87.63
SGS-SLAM [7] GT Train 2000 92.72 92.95 9291 92.10 92.90
OneFormer [[17] GT Novel 3000 65.41 69.06 65.71 67.01 59.85
Ours Pred. Novel 713 85.13 84.54 85.98 85.40 84.60

P[idx] += prob[idx] * alphal[idx] * transmittance[idx]

This reduces the number of memory accesses and blending operations without sacrificing semantic
fidelity. By reducing the number of stored logits and accessed channels, our sparse representation
speeds up both the memory workload, as more Gaussians can be loaded into shared memory, and the
Gaussian processing loop, leading to faster semantic rendering. Please refer to Section[S.2.2]for a
quantitative runtime comparison.

[idx [ prob] |dx prob idx | prob [idx [prob
1 3 2
2 6 4
3 2 6
4
5
6 —1

.\Q'

Figure S.1: Visualization of Rendering Semantic Map with Sparse Semantic Vector. Each
Gaussian only stores indexes and probabilities of the top-k most probable categories, the semantic
distribution of the given pixel is rendered following Eqn. (3) in the main paper.

Local Path Planner. We employed the Efficient Rapid-exploration Random Tree (RRT) proposed
by NARUTO [61] for local path planing. Once the goal location is determined, we use an efficient
RRT-based planner to find a path from the current state s; to the goal s,, using the Exploration Map
to measure collision and reachability. (Specifically, the agent should only move within the free voxels
defined by the Exploration Map. Additionally, we enforce a collision buffer of 20 cm, ensuring the
agent avoids regions that are too close to surrounding surfaces.) To speed up planning in large-scale
3D environments, we enhance standard RRT by also attempting direct connections between samples
and the goal. This greatly improves efficiency.

S.2 Additional Results

S.2.1 Quantitative Results

Semantic Segmentation on ReplicaSLAM We evaluate on 4 scenes following the SGS-SLAM
protocol [7], which compares rendered semantic masks to ground-truth labels visible in each view.

The full results are shown in the Table and have been summarized in Table 1 yellow .
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Table S.3: Semantic Segmentation on Replica (Novel Views). We present four settings: (1) Fine-
tuning results of Oneformer as reference; (2) SGS-SLAM retrained using OneFormer predictions,
instead of ground-truth labels as used in Table 1 of the main paper—Ieads to a noticeable drop in
performance; (3) Our method without active exploration, which demonstrates the advantage of the
sparse semantic representation alone; (4) Our full pipeline with active exploration, which achieves
better segmentation performance with fewer steps.

Methods Metrics Avg.  0f0 0f1 0f2 0£3 0f4 RO R1 R2
Steps J - - - - - - - - -
mloU (%) 1 66.05 62.73 55.67 6638 70.03 69.81 62.16 74.19 6743
mAP (%) 1 84.59 83.29 7247 8739 8836 8583 81.56 90.68 87.12

OneFormer [17] &y g 4 5796 5778 4045 5951 6633 4789 5920 6970 62.81

Top-1 Acc (%)t 89.12 89.07 71.84 9276 93.18 91.54 87.37 9225 94.96
Top-3 Acc (%) T 96.18 96.76 89.10 96.53 97.70 9729 9640 96.92 98.76

Steps | 2000 2000 2000 2000 2000 2000 2000 2000 2000
mloU (%)t 80.42 77.60 75.68 78770 78.10 89.96 8323 8397 76.12
SGS-SLAM [7] mAP (%) T 89.94 86.37 84.67 88.63 9098 96.22 92.10 93.80 86.73
F-1 (%)t 18.70 18.35 15.06 19.03 17.68 18.02 2528 1847 17.69

Top-1 Acc (%) T 9442 92.68 90.06 93.52 9342 9814 97.16 96.71 93:64
Top-3 Acc (%) T 95.53 9339 9090 9454 96.64 9870 98.00 97.35 94.68

Steps | 2000 2000 2000 2000 2000 2000 2000 2000 2000

mloU(%) 80.14 74.15 7488 7697 79.60 88.29 84.50 8450 78.23

Ours (Passive) mAP (%) 1 90.09 8891 84.86 8627 89.12 9486 93.78 93.78 89.13
ST F-1 (%)1 67.81 6454 5349 7242 6426 6648 70.18 80.09 71.03

Top-1 Acc (%) T 94.05 89.80 89.69 9499 93.83 97.60 9565 95.65 95.16
Top-3 Acc (%) T 96.82 95.00 91.71 96.58 98.71 99.45 98.14 98.14 96.85

Steps | 777 664 501 749 1175 941 1082 514 591
mloU (%)1 84.890 8258 8399 83.57 8340 89.36 84.08 85.28 86.83
Ours (Active) mAP (%)1 9439 94.66 9193 92.86 93.65 9635 95.19 9493 9555
F-1 (%)t 7756 73.81 7253 79.57 7595 76.80 75.65 83.85 82.33
Top-1 Acc (%) 1 96.62 94.55 96.07 9839 9482 97.75 96.80 96.18 98.40
Top-3 Acc (%) T 99.52  99.76 99.01 99.77 99.51 99.58 99.69 99.05 99.81
Table S.4: Semantic Segmentation on MP3D.
Methods | Semantic  View | Avg. T ceilling appliances sink  plant counter table [ mpcat40
SSMI [92] GT Train | 36.14 46.02 41.01 25.13 3930 36.12  29.25 -
TARE [104] GT Train | 31.70 42.01 36.86 23.86 3251 31.70 2327 -
Zhang et al. [96] GT Train | 42.92 50.73 45.26 4391 4042 3918 37.99 -
Ours Pred. Novel | 65.58 70.31 76.95 69.36 73.60 14.03  69.89 55.77

Semantic Segmentation on Replica (Novel Views) To assess generalization, we generate new
trajectories near the SLAM trajectories, following the instructions of SplaTAM [51]]. We present the

complete results in Table as a supplement to Table 1 blue in the main paper.

Semantic Segmentation on MP3D We also evaluate the average IoU on five large indoor scenes

from MP3D (see Table 1 red in the main paper). Tablereports the IoU scores for six common
categories, as well as the mean IoU across all 40 categories of our method (denoted as *'mpcat40’).
The semantic ground-truth meshes provided by MP3D are noisier than the texture meshes, often
containing floaters and missing regions. To ensure a fair comparison, we computed the L1 distance
from each point in the semantic mesh to its nearest neighbor in the texture mesh, and filtered out all
points with distances greater than 5 cm. Points in the texture meshes inherit the semantic label of the
nearest neighboring point in the semantic mesh, if it is within 5 cm, otherwise their labels are set
to unknown, and then they are used as ground truth in the evaluation. We show an example of the
filtered mesh in Figure[S.2]

3D Reconstruction and Novel View Synthesis. We evaluate the 3D reconstruction and novel view
synthesis (NVS) performance of ActiveSGM on MP3D and Replica. The 3D reconstruction results
are reported in Table[S.5] while the NVS results are presented in Table[S.6] Please refer to Section 4.2
for details on how the novel trajectories are generated. Overall, ActiveSGM achieves the best 3D
reconstruction and NVS performance on MP3D and performs on par with the state-of-the-art method
ActiveGAMER on Replica.
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Original Filtered

Figure S.2: Filtered Semantic Mesh for MP3D. We present both the original and the filtered
semantic mesh from an MP3D scene. After filtering, most of the floaters—such as those highlighted
in the yellow box—are successfully removed. The cleaned meshes are then used for semantic
segmentation evaluation on MP3D.

Table S.5: 3D Reconstruction Results on Replica and MP3D. Overall, our method achieves the
best performance on MP3D and ranks second on Replica, delivering higher reconstruction accuracy
and improved scene completeness compared to prior approaches. Notably, ours is the only method
that incorporates semantic information into the exploration criterion, whereas all other baselines rely
on geometry-based strategies.

Methods Dataset Acc. (cm)] Comp. (cm) | Comp. Ratio (%) 1
NARUTO Replica 1.61 1.66 97.20
ActiveGAMER [63] Replica 1.16 1.56 96.50
Ours Replica 1.19 1.59 96.68
FBE MP3D / 9.78 71.18
UPEN MP3D / 10.60 69.06
OccAnt MP3D / 9.40 71.72
ANM MP3D 7.80 9.11 73.15
NARUTO MP3D 6.31 3.00 90.18
ActiveGAMER MP3D 1.66 2.30 95.32
Ours MP3D 1.56 1.77 97.35

S.2.2 Runtime Analysis

We conduct a runtime analysis using the room0O scene from the Replica dataset to highlight the
efficiency of our sparse semantic representation and rendering strategy. The scene, measuring
8m x 4.8 m X 3 m, is explored and mapped by ActiveSGM in 1082 steps over 48 minutes. During the
rendering of a semantic map with resolution (340 x 600 x 102), approximately 204k Gaussians are
involved in the rasterization process. Using a dense semantic representation—where each Gaussian
carries a full 102-class probability distribution—the rendering takes 61 ms. In contrast, our sparse
semantic representation significantly reduces computation, requiring only 3.1 ms to render the same
map. This improvement stems from the reduced number of active channels during rendering and more

Table S.6: Novel View Rendering Performance on Replica and MP3D. We report the average ren-
dering metrics across scenes for each method. Our approach delivers consistently strong performance
in terms of PSNR, SSIM, LPIPS, and L1 depth error, achieving comparable or better results than
baselines, ranking as the second-best on Replica and the best on MP3D. Notably, our method is the
only one that also addresses semantic segmentation.

Method Dataset PSNR1 SSIM?T LPIPS| L1-D]
SplaTAM Replica  29.08 0.95 0.14 1.38
SGS-SLAM [7] Replica  27.14 0.94 0.16 7.09
NARUTO Replica  26.01 0.89 0.41 9.54
ActiveGAMER [63] Replica 32.02 0.97 0.11 1.12
Ours Replica 30.61 0.96 0.14 1.36
NARUTO MP3D 20.52 0.72 0.58 7.95
ActiveGAMER MP3D 24.76 0.90 0.25 4.83
Ours MP3D 26.15 0.92 0.26 3.76
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Figure S.3: RGB and Semantic Reconstruction for Replica.

importantly from the reduced amount of data transfers on the GPU, showcasing the effectiveness of
our sparse approach for real-time semantic mapping.

S.2.3 Qualitative Results

We also preset the top-down view visualization of the 8 scenes from Replica in Figure [S.3]and 5
scenes from MP3D in Figure[S.4] please zoom in to see more details.

S.3 Assets Used and Reproducibility

S.3.1 Experimental result reproducibility

We provide sufficient implementation details in Section [S.1] in the supplement to make results
reproducible. We build upon open source software, and our code can be found at https://github,
com/11y00412/ActiveSGM. gitl

S.3.2 Experimental setting/details

Please refer to Section 4.1 in the main paper.

S.3.3 Experiments compute resources

Please see the Hardware paragraph in Section[S.I]in the supplement, and also refer to Sec for
runtime analysis.

S.3.4 Licenses for existing assets

Datasets. In this paper, we conduct experiments on the following publicly available datasets. We list
the URLs, license information, and citation for each dataset below.

1. Replica Dataset [102]

* URL: https://github.com/facebookresearch/Replica-Dataset

* License: Research or Education only. (https://github.com/facebookresearch/
Replica-Dataset/blob/main/LICENSE)

20


https://github.com/lly00412/ActiveSGM.git
https://github.com/lly00412/ActiveSGM.git
https://github.com/facebookresearch/Replica-Dataset
https://github.com/facebookresearch/Replica-Dataset/blob/main/LICENSE
https://github.com/facebookresearch/Replica-Dataset/blob/main/LICENSE

Figure S.4: RGB and Semantic Reconstruction for MP3D.

2. Matterport3D Dataset [103]

* URL: https://niessner.github.io/Matterport/

* License: Non-commercial (https://kaldir.vc.in.tum.de/matterport/MP_
TOS. pdf)

Software. We use Habitat-Sim as our simulation environment and develop a custom sparse raster-
ization CUDA toolkit based on 3D Gaussian Splatting. For mapping, we adopt SplaTAM as the
backbone and fine-tune OneFormer to serve as our semantic camera. During evaluation, we also
implement SGS-SLAM for comparative analysis. The source code for these components is available
at:

1. Habitat-Sim [101]]

e URL: https://github.com/facebookresearch/habitat-sim.git
* License: MIT

2. 3D Gaussian Splatting (3DGS) [23]
* URL: https://github.com/graphdeco-inria/gaussian-splatting.git

* License: Custom (https://github.com/graphdeco-inria/
gaussian-splatting?tab=License-1-ov-file#readme)
3. SplaTAM [51]

* URL: https://github.com/spla-tam/SplaTAM.git
* License: BSD-3-Clause

4. SGS-SLAM [7]

* URL: https://github.com/ShuhongLL/SGS-SLAM.git
* License: BSD-3-Clause

21


https://niessner.github.io/Matterport/
https://kaldir.vc.in.tum.de/matterport/MP_TOS.pdf
https://kaldir.vc.in.tum.de/matterport/MP_TOS.pdf
https://github.com/facebookresearch/habitat-sim.git
https://github.com/graphdeco-inria/gaussian-splatting.git
https://github.com/graphdeco-inria/gaussian-splatting?tab=License-1-ov-file#readme
https://github.com/graphdeco-inria/gaussian-splatting?tab=License-1-ov-file#readme
https://github.com/spla-tam/SplaTAM.git
https://github.com/ShuhongLL/SGS-SLAM.git

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims presented in the abstract and introduction are consistent with the
content of the paper.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Please see Section[3l
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: This is not a theoretical paper; however, it clearly states all relevant assumptions
regarding the inputs, outputs, and model.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide sufficient implementation details in the supplement to make our
results reproducible. We build upon open source software, and our code can be found on
GitHub.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: The code can be found at a public repository. All experiments use publicly
available data.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The sectiond]in the main paper and supplementary material provide sufficient
details for readers familiar with the field to understand and reproduce the results.

Guidelines:

» The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:
Justification: Error bars are not reported because it would be too computationally expensive.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Section 4] and the supplement describe the computer resources used in our
experiments.

Guidelines:

¢ The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: The datasets we use do not depict people and do not contain any personal,
private or health information.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper presents fundamental research. While the methods could potentially
be applied in robotic perception systems that might be misused, such risks are common to
many forms of basic scientific research.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

12.

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We did not create new datasets and our code does not generate synthetic data.
The potential for misuse without major modifications is low.

Guidelines:

The answer NA means that the paper poses no such risks.

Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The supplement contains a list of all assets used with relevant information.

Guidelines:

The answer NA means that the paper does not use existing assets.
The authors should cite the original paper that produced the code package or dataset.

The authors should state which version of the asset is used and, if possible, include a
URL.

The name of the license (e.g., CC-BY 4.0) should be included for each asset.

For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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13.

14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: NA
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: NA
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: NA
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: NA
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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