
Under review for RLC 2025, to be published in RLJ
∣∣ Cover Page

HANQ: Hypergradients, Asymmetry, and
Normalization for Fast and Stable Deep Q-Learning

Anonymous authors
Paper under double-blind review

Keywords: off-policy reinforcement learning (RL), offline RL, temporal difference learning,
bootstrapping, instability, return degradation, value estimation

Summary
In reinforcement learning, deep Q-learning algorithms are often more sample- and compute-

efficient than alternatives like the Monte Carlo policy gradient, but tend to suffer from instability
that limits their use in practice. Some of this instability can be mitigated through a delayed target
network, yet this usually slows down convergence. In this work, we explore the possibility of
stabilization without sacrificing the speed of convergence. Inspired by self-supervised learning
(SSL) and adaptive optimization, we empirically arrive at three modifications to the standard
deep Q-network (DQN) — no two of which work well alone in our experiments. These
modifications are, in the order of our experiments: 1) an Asymmetric predictor in the neural
network, 2) a particular combination of Normalization layers, and 3) Hypergradient descent on
the learning rate. Aligning with prior work in SSL, HANQ (pronounced "hank") avoids DQN’s
target network, uses the same number of hyperparameters as DQN, and yet matches or exceeds
DQN’s performance in our experiments on three out of four environments.

Contribution(s)
1. We propose to replace the target network in deep Q-network (DQN) with an asymmetric

predictor and normalization layers to stabilize training. Empirical results suggest the promise
of our approach given appropriate learning rate tuning.
Context: Asymmetric architectures have been explored in self-supervised learning (Grill
et al., 2020; Chen & He, 2021) and reinforcement learning (RL) (Pitis et al., 2020; Guo
et al., 2022; Liu et al., 2022; Tang et al., 2023; Wang, 2024; Eysenbach et al., 2024; Amortila
et al., 2024; Myers et al., 2025). However, to our knowledge, all prior RL works study
auxiliary losses or goal-based RL, and typically keep the target network and increase the total
hyperparameters. We study pure end-to-end reward maximization without a target network,
without increasing the total hyperparameters.

2. Noting that promise of our first contribution, we use hypergradient descent for that tuning,
which achieves stable convergence without compromising the convergence rate. In our ex-
periments, our algorithm (HANQ) matches or outscores DQN in three of four environments.
Context: Prior works investigate hypergradients for temporal difference learning (Sutton,
2022), but in our experiments using hypergradient descent alone (or asymmetry alone) scores
poorly.

3. Our extensive ablations suggest each component of HANQ is important for its high scores.
Context: None.

HANQ: Hypergradients, Asymmetry, and Normalization for Fast and Stable Deep Q-Learning

HANQ: Hypergradients, Asymmetry, and Normaliza-
tion for Fast and Stable Deep Q-Learning

Anonymous authors
Paper under double-blind review

Abstract

In reinforcement learning, deep Q-learning algorithms are often more sample- and1
compute-efficient than alternatives like the Monte Carlo policy gradient, but tend to2
suffer from instability that limits their use in practice. Some of this instability can be3
mitigated through a delayed target network, yet this usually slows down convergence.4
In this work, we explore the possibility of stabilization without sacrificing the speed of5
convergence. Inspired by self-supervised learning (SSL) and adaptive optimization, we6
empirically arrive at three modifications to the standard deep Q-network (DQN) — no7
two of which work well alone in our experiments. These modifications are, in the order8
of our experiments: 1) an Asymmetric predictor in the neural network, 2) a particular9
combination of Normalization layers, and 3) Hypergradient descent on the learning rate.10
Aligning with prior work in SSL, HANQ (pronounced "hank") avoids DQN’s target11
network, uses the same number of hyperparameters as DQN, and yet matches or exceeds12
DQN’s performance in our experiments on three out of four environments.13

1 Introduction14

Temporal difference (TD) algorithms such as Q-learning often improve sample- and compute-15
efficiency compared to Monte Carlo algorithms. Unfortunately, TD algorithms are more unstable,16
frequently learning worse policies when trained for longer (Agarwal et al., 2019; Brandfonbrener17
et al., 2021; Kumar et al., 2021). The most common stabilization approach requires delaying the18
update of the target, the values they bootstrap from. For example, the standard deep Q-learning19
algorithm, DQN (Mnih et al., 2015), uses a target network (a lagging copy of its main network20
weights) to slow down target updates. Yet, the target update rates typically used in practice are often21
not slow enough to fix instability, even though they already slow convergence (Agarwal et al., 2019;22
Brandfonbrener et al., 2021; Kumar et al., 2021).23

Recent works (Gallici et al., 2024; Elsayed et al., 2024; Bjorck et al., 2021) suggest that normalizations24
can stabilize Q-learning, and TD learning broadly, without delayed targets. However, it is not yet25
clear if any approach is so fast and stable as to make delayed targets obsolete. In parallel, other recent26
works (Guo et al., 2020; Kumar et al., 2021) note similarity between TD learning and self-supervised27
learning (SSL), a field that aims to learn representations of data that make downstream tasks more28
efficient. Some SSL works have found architectural asymmetries and normalizations necessary for29
good results (Chen & He, 2021; Zhang et al., 2022). Asymmetries have also been found useful in RL30
(Liu et al., 2022; Wang et al., 2023; Tang et al., 2023; Eysenbach et al., 2024; Khetarpal et al., 2024).31
However, perhaps due to tuning requirements or the need for additional empirical evidence, none32
have fully replaced the standard architectures in RL.33

In this work, we focus on offline RL, as it is easier to test on real-world data and can amplify the34
instability we study. Compared to online RL, offline RL is particularly valuable when new data is35
costly. Examples include autonomous vehicle data, medical data, and human expert data. Here,36
letting suboptimal policies collect training data can cost too much time, money, or even lives. This37

1

Under review for RLC 2025, to be published in RLJ 2025

also means we cannot afford to frequently measure the returns of the policies during training. As a38
result, algorithms that only temporarily reach high return during training may output a poor policy.39

Via asymmetries and normalizations similar to SSL algorithms, we aim for fast, stable, and high return40
in RL without more hyperparameters than DQN. In preliminary experiments, we find that a particular41
asymmetry greatly improves DQN’s stability when not using a target network. Those experiments42
also suggest that, when using asymmetry, an adaptive learning rate might yield more returns. We43
show hypergradient optimization achieves this. Similar to SSL, adding normalizations and more44
asymmetric elements further increases return. We ablate all three components (hypergradients,45
asymmetry, and normalization), finding that all three are important for high return.46

2 Background47

We consider the Markov decision process (MDP) formulation for RL. Let S be a state space, A a48
finite action space, R : S ×A → R a reward function, and P : S ×A → ∆(S) a transition function.49
We assume an offline dataset D = {(si, ai, ri, s′i)}Ni=1 has already been collected. In the dataset,50
each tuple (si, ai, ri, s

′
i) is a state si ∈ S, an action ai ∈ A taken in that state, the resulting reward51

ri ∈ R drawn with E[ri | si, ai] = R(si, ai), and next state s′i ∈ S drawn from s′i ∼ P (· | si, ai).52
We aim to learn a policy π : S → A to maximize the expected, discounted return (cumulative53
rewards), E

[∑∞
t=0 γ

tR(st, at)
]
, from any starting state s0, where γ ∈ [0, 1) is the discount factor.54

The Q-function for a policy π is Qπ(s, a) := Eπ[
∑∞

t=0 γ
tR(st, at) | s0 = s, a0 = a], where Eπ[·]55

is the expectation over trajectories from π. The optimal Q-function is Q⋆(s, a) := maxπ Q
π(s, a).56

Q-learning and Its Instability. A standard algorithm to approximate the optimal value function57
Q⋆ is Q-learning (Watkins, 1989). For the finite-state, finite-action case, Q-learning is guaranteed to58
converge to Q⋆ if the dataset D is sufficiently exploratory (Watkins & Dayan, 1992). With function59
approximation, convergence is no longer guaranteed. Let Qθ : S × A → R be a parameterized60
function. Given a (s, a, r, s′) tuple from D1, consider the following update based on the mean square61
Bellman error (MSBE):62

θ
−← α∇θ

(
Qθ(s, a)− r − γsg

[
max
a′∈A

Qθ(s
′, a′)

])2

(1)

where f
−← g means f ← f − g, α is the learning rate, and sg[·] is the stop-gradient operator.63

The stop-gradient means any function of θ in [·] will be treated as constant under the gradient64
operation. Eq. (1) is unstable in general — it can diverge even under the linear function approximation65
Qθ(s, a) = ϕ(s, a)⊤θ for some known feature ϕ(s, a) ∈ Rd. Some counterexamples provably66
diverge for any α (Baird, 1995; Tsitsiklis & Van Roy, 1996; Sutton & Barto, 2018). Nonlinear67
function approximators can introduce further instability (Tsitsiklis & Van Roy, 1997; Ollivier, 2018;68
Brandfonbrener & Bruna, 2019; Gallici et al., 2024).69

To address instability, TD algorithms often use a target network (Mnih, 2013; Mnih et al., 2015;70
Lillicrap et al., 2015). They maintain two copies of parameters θ, θ̄, in each iteration updating71

θ
−← α∇θ

(
Qθ(s, a)− r − γmax

a′∈A
Qθ̄(s

′, a′)

)2

, θ̄ ← (1− β)θ̄ + βθ, (2)

where Qθ̄ is the target network and β is the rate at which it is updated. Eq. (2) stabilizes training by72
slowing the movement of the target r + γmaxa′ Qθ̄(s

′, a′) due to the movement of θ. Notice that73
Eq. (1) is equivalent to Eq. (2) with β = 1. Although the target network helps stabilize learning, it74
also often slows down the overall algorithm. For example, on some environments, replacing the target75
network with alternative stabilization methods can give algorithms that reach equally high scores in76
fewer iterations (Gallici et al., 2024).77

1In fact, a mini-batch of (s, a, r, s′) tuples is sampled. We present the version with only one sample (i.e., mini-batch
size = 1) for ease of exposition. Similar for the rest of the paper.

2

HANQ: Hypergradients, Asymmetry, and Normalization for Fast and Stable Deep Q-Learning

In fact, even a small β is not always enough to fully stabilize training: on many RL problems, the78
policy’s quality, i.e. the return it can achieve, often drops at some point in training and does not79
recover. Usually, when this return degradation occurs, the training loss also diverges. A common80
countermeasure is to modify the training loss so that the learned policy stays close to the behavior81
policy used to collect data. However, even when this pessimism approach succeeds at stabilization, it82
often reduces the return compared to the peak return temporarily reached in the unstabilized training.83
A temporary high peak return is impractical in offline RL because, in real-world problems, constantly84
measuring the returns during training is costly.85

Can we achieve stability without slowing down Q-learning? The mentioned counterexamples rely on86
linear function approximation for divergence. The possibility of improvement with feature learning,87
where ϕ(s, a) may change during training, remains open. We propose a particular combination of88
methods that, in our experiments, mitigates the downsides of removing the target network.89

predictor hω

input image x

zθ

pω,θ

minimize normalized distanceℓ2

encoder fθ̄

z′ ̄θ

x x′

"#

z′ ̄θ

encoder fθ

random
augmentation

random
augmentation

Figure 1: Asymmetrically added
neural net weights, collectively
called a predictor , are often
key in SSL. A more symmet-
ric approach would use only
the green components, but is
unstable. We find preliminary
evidence that such asymmetry
might be similarly key for RL.

SSL with Asymmetry and Normalization. As our work aims to90
leverage the power of feature learning to stabilize Q-learning, we91
draw inspiration from feature learning schemes outside RL. A class92
of relevant approaches are Bootstrap Your Own Latent (BYOL)93
(Grill et al., 2020) and simple Siamese networks (SimSiam) (Chen94
& He, 2021) for self-supervised learning (SSL), whose original95
goal is to learn representations for images. Fig. 1 illustrates a96
simplification of BYOL’s architecture. In both methods, an input97
image is randomly augmented into two views x, x′, which are98
then individually encoded by the encoders fθ and fθ̄, respectively,99
yielding zθ = fθ(x) and z′

θ̄
= fθ̄(x

′). Then, an asymmetric100
predictor hω transforms the first output into pω,θ = hω(zθ) and101
tries to match it to the other output z′

θ̄
by minimizing their ℓ2 dis-102

tance under ℓ2-normalization: ℓ(pω,θ, z
′
θ̄
) =

∥∥∥ pω,θ

∥pω,θ∥2
− z′

θ̄

∥z′
θ̄
∥2

∥∥∥2.103

BYOL’s update is104

(ω, θ)
−← α∇ω,θℓ(pω,θ, z

′
θ̄), θ̄ ← (1− β)θ̄ + βθ. (3)

SimSiam removes the delayed update of θ̄. That is, it shares the105
parameters in the two branches in Fig. 1 and updates106

(ω, θ)
−← α∇ω,θℓ(pω,θ, sg[z

′
θ]). (4)

SimSiam is BYOL with β = 1. Eq. (3) and Eq. (4) are similar to Eq. (2) and Eq. (1), respectively,107
with pω,θ corresponding to Qθ(s, a) and z′θ corresponding to r + γmaxa′ Qθ(s

′, a′).108

As reported by Grill et al. (2020) and Chen & He (2021), BYOL and SimSiam can learn meaningful109
representation, even though a collapsing solution that encodes everything into the same vector is a110
clear minimizer of ℓ(pω,θ, z

′
θ̄
). To our knowledge, there still lacks a satisfying explanation for why111

BYOL or SimSiam avoids collapses. In previous attempts (Chen & He, 2021; Zhang et al., 2022;112
Wen & Li, 2022; Richemond et al., 2023; Tang et al., 2023), the theory either remains to be high-level113
or makes extra assumptions that are not required by the algorithm.114

However, one intriguing observation is that while Eq. (1) generally fails in RL, the similar update115
Eq. (4) of SimSiam succeeds in SSL. This leads to the question: Can we make Eq. (1) more similar116
to SimSiam to facilitate its convergence in RL? As argued in Chen & He (2021); Zhang et al. (2022);117
Wen & Li (2022), the predictor hω that asymmetrizes the two branches is key for preventing collapse.118
Incorporating this idea into Eq. (1) yields the update119

(ω, θ)
−← α∇ω,θ

(
hω(Qθ(s, a))− r − γsg

[
max
a′∈A

Qθ(s
′, a′)

])2

3

Under review for RLC 2025, to be published in RLJ 2025

where hω is the predictor an extra layer for Qθ. This is the starting point of our algorithm design.120

Besides asymmetry from the predictor, another critical element in SimSiam and BYOL is normalized121
ℓ2 loss, as shown in Fig. 1. Normalizing in the loss is not applicable to Q-learning (Eq. (1) or Eq. (2))122
since Q-learning values are scalars, but this suggests that normalization elsewhere could be important.123

3 HANQ: Three Components124

main net Qθ

state s

Qθ (s, ⋅)

Qω(s, a)

Qθ (s′ , ⋅)

(approximate) TD update

Qθ (s, a)

action a

Qθ (s′ , a′)

reward r

main net Qθ

max a′ ∈ $

Qω(s, a) :=
ωscale Qθ (s, a)

next state s′

Q-learning / TD / DQN QS-DQN

%&

predictor

scales

ω
Q

× predictor

ωscale

Figure 2: SSAQ modifies DQN by adding
a predictor , and by using the main weights
θ for Q(s′, a′) instead of using delayed target
net parameters θ̄. SSAQ’s predictor is a single,
learned weight, ωscale. (A one-unit layer.)

Now we introduce the three components of HANQ,125
a modified Q-learning algorithm that aims to126
achieve both stability and fast convergence. We127
discuss each component individually in the follow-128
ing subsections, deferring ablations to Section 4.129

We compare policies by score — the empirical130
return when deployed, normalized for readability.131
Roughly the least return on an environment setup is132
0, and 100 roughly the most (details: Section 11).133

3.1 Component 1: Asymmetry134

Motivated by the success of SimSiam and BYOL,135
we start by adding a simple predictor to the standard136
DQN. Specifically, we only add a single, learned137
scaling parameter ω to the output of the main Q-138
network, Qθ. We also reuse the main Q-network139
for both terms in the loss, rather than using a target140
network Qθ̄ for the target term. This results in the following update (cf. Eq. (2)):141

(ω, θ)
−← α∇ω,θ

(
ωQθ(s, a)− r − γsg

[
max
a′∈A

Qθ(s
′, a′)

])2

. (SSAQ)

We call this algorithm SSAQ (Single-Scaler Asymmetric-Q), show its architecture in Fig. 2, and142
its pseudocode in Section 7. We compare DQN and SSAQ on an offline RL benchmark where143
DQN is known to have return degradation. The benchmark is a discrete-action version of the classic144
control problem Pendulum (Brockman et al., 2016; Xiao et al., 2022; Snyder et al., 2023). Following145
prior work (Xiao et al., 2022; Snyder et al., 2023), we collect an offline dataset of 1000 samples of146
state-action pairs, using a uniformly sampled initial state, taking uniformly random actions.147

learning rate: 10−1 10−1.5 10−2 10−2.5 10−3 10−3.5

Figure 3a: Every figure uses 30 seeds. Scores
(episodic return normalized for readability) on Pendu-
lum. Left: DQN’s score degrades over gradient steps.
Right: SSAQ with a target net. SSAQ stabilizes scores
at smaller learning rates, yet slows convergence.

learning rate: 10−2 10−2.5 10−3 10−3.5 10−4 10−4.5 10−5 10−5.5 10−6

Figure 3b: The same as Fig. 3a, but without target
nets. (From here on, we test our new algorithms only
without target nets.) Left: DQN scores poorly. Right:
SSAQ can score highly sometimes, but remains sensi-
tive to the learning rate.

Fig. 3a shows the scores of DQN and SSAQ when keeping the target network. For both algorithms,148
we use an intermediate target update rate of β = 10−3 here, because we find it gives DQN the149
highest gradient-step-averaged score (which we discuss later). Empirically, compared to DQN, SSAQ150

4

HANQ: Hypergradients, Asymmetry, and Normalization for Fast and Stable Deep Q-Learning

changes the effect of tuning the learning rate. With SSAQ, a large learning rate like 10−1 converges151
quickly, but also diverges quickly. A smaller learning rate like 10−2 converges slowly compared to152
10−1, but gains stability. In contrast, DQN remains unstable over all learning rates. This makes us153
conjecture that the asymmetric element ω takes a role similar to delaying the target update. This view154
has been shared by SimSiam (Chen & He, 2020). In preliminary experiments (not shown), placing155
the predictor on the Q(s′, a′) loss path scored no better than on the Q(s, a) loss path. This may align156
with Zhang et al. (2022). As a result, we test only the latter placement.157

Could a predictor avoid the need for a target network? Fig. 3b gives some evidence. When158
neither algorithm uses a target network, SSAQ’s peak score is over double DQN’s. Removing a target159
network in general would not only avoid the need to tune the delay hyperparameter, but might also160
avoid delay to the overall optimization. SimSiam’s success in SSL, without a target network, provides161
additional evidence that this might be possible in RL as well.162

Relation to adaptive discount factors. Scaling Q(s, a) relates to modifying the discount factor163
(see Section 8), and using a smaller discount factor is a regularization (Jiang et al., 2015). Thus, SSAQ164
relates to adaptive regularization. Later, we make ω state-dependent, which relates to state-dependent165
discount factors (Rathnam et al., 2024). Given these connections between asymmetric architectures166
and discount factors, we test discount tuning in Section 9.3.167

3.2 Component 2: Normalization168

Next, given the importance of normalizations in SSL, we try feature normalizations: ℓ2-normalization169
and Layer Normalization (LayerNorm). Unfortunately, neither help SSAQ in our experiments170
(Fig. 4a). See Section 10 for details, including some of the many supporting prior works in SSL and171
RL.172

learning rate: 10−2 10−2.5 10−3 10−3.5 10−4 10−4.5 10−5 10−5.5 10−6

Figure 4a: SSAQ (duplicated for reference) vs. SSAQ
with LayerNorm (which we call SSANQ). LayerNorm
has barely any noticeable effects here.

Figure 4b: SSAQ score (duplicated for reference) and
MSBE, for only the two best learning rates, 10−2.5

and 10−3 . MSBE anticorrelates with score, across
learning rates and across gradient steps.

3.3 Component 3: Hypergradients173

Compared to plain DQN, SSAQ enables either faster or stabler convergence on Pendulum (Fig. 3a,174
Fig. 3b). That tradeoff of speed vs stability for SSAQ is greatly controlled by the learning rate,175
whereas DQN’s learning rate does not appear to control that tradeoff much. Further, the MSBE176
(i.e., the value of (Qθ(s, a) − r − γmaxa′ Qθ(s

′, a′))2 on training data) anticorrelates with the177
score across learning rates and across gradient steps (Fig. 4b). It is tempting to try to automatically178
adjust SSAQ’s learning rate during training, to get both speed and stability. We attempt this with179
hypergradient optimization, which optimizes hyperparameters using gradient descent.180

The hypergradient tunes the learning rate as181

αi+1 ← αi − κ
∂L̃(θi)
∂αi

,

where αi is the learning rate used in iteration i, κ is the hyperlearning rate, θi is the neural net weights182
in iteration i (for simplicity, here we use θi for all weights in the network, i.e., both the θ and ω183

5

Under review for RLC 2025, to be published in RLJ 2025

described in previous sections), and L̃ is the hyperoptimization loss function, which is not necessarily184
the same as the main loss function. In Section 12, we consider two forms of L̃, deriving two ways to185
tune the learning rates. They are186

(i) αi+1 ← αi − κ (SGi · −SGi−1) and (ii) αi+1 ← αi − κ (RGi · −SGi−1) ,

where RGi =
∂LRG(θi)

∂θi
and SGi =

∂LSG(θi)
∂θi

, with LRG(θ) ≜ (Qθ(s, a)− r − γmaxa′ Qθ(s
′, a′))2187

and LSG(θ) ≜ (Qθ(s, a)− r − γsg[maxa′ Qθ(s
′, a′)])2.188

Due to high scores in preliminary experiments (Section 9.2), we use (ii). We test only deterministic189
environments for simplicity, avoiding double sampling bias (Baird, 1995). After we add hyperopti-190
mization to SSAQ, we call it HSSAQ. HSSAQ takes one hypergradient step (to update the learning191
rate) after every standard gradient step (to update the Q-network weights, including the metapredictor192
and predictor).193

Figure 5: HSSAQ with its best initial learning rate, 10−2.5 (and hyper-
learning rate κ = 10−4). HSSAQ’s hypergradient can stabilize the score
and MSBE greatly, but HSSAQ does not quite reach DQN’s peak score
(~100, Fig. 3a). For consistency with earlier plots, we omit error bars.

Might hypergradient op-194
timization give SSAQ195
both fast and stable196
scores? HSSAQ indeed197
automatically decreases198
the learning rate, adding199
some stability without200
sacrificing the early re-201
turns of larger learning202
rates (Fig. 5). However,203
HSSAQ tends not to reach scores quite as high or as quickly as DQN can (before DQN diverges).204

3.4 Revisiting Component 1: Additional Asymmetric Elements205

Inspired by the benefits of larger predictors in SSL (Zhang et al., 2022), we test the same for RL. To206
avoid adding hyperparameters, we avoid auxiliary losses such as self-predicting latent representations207
(Gelada et al., 2019). The simplest effective approach we found for adding more parameters is to add208
a metapredictor. The metapredictor outputs the ωscale parameter of the predictor, which is then used209
as before in the TD update (like SSAQ), with end-to-end training as usual.210

state s

!"#$%
&'%(")*+",*'-

ℓ2
-'%(")*+",*'-

metapredictor layer,

and $./

ωscale and ωbias

Qθ (s, ⋅)

Qω(s, a)

next state ’s

Qθ (s′ , ⋅)

(approximate) TD update (w/ hypergradient update)

Qθ (s, a)

action a

max a′ ∈ 3

Qθ (s′ , a′)

reward r

ANQ

Q-learning / TD
shared weights

primary layer,

and 4$!5

67

Qω(s, a) := ωbias

+ ω+
scale Qθ (s, a)

base layer,

and 4$!5

!"#$%
&'%(")*+",*'-

primary layer,

and 4$!5

base layer,

and 4$!5

{ ωscale , ωbias }

ω+
scale

 and ωbias

Figure 6a: HANQ modifies DQN by: adding a
metapredictor, which outputs the predictor; adding nor-
malizations; and adapting the learning rate for the TD
update, using hypergradients.

learning rate: 10−1 10−1.5 10−2 10−2.5 10−3 10−3.5

Figure 6b: Top: Like Fig. 3a, but DQN vs. HANQ
instead of DQN vs. SSAQ. HANQ’s scores are
more stable than DQN over gradient steps. Bottom:
Zoomed in to the first 20k gradient steps, showing
HANQ also learns more quickly than DQN. Overall:
Note that HANQ has the same number of hyperpa-
rameters as DQN.

6

HANQ: Hypergradients, Asymmetry, and Normalization for Fast and Stable Deep Q-Learning

We combine Hypergradient optimization with this metapredictor Asymmetry, along with the211
Normalization layers discussed above, and call the combined Q-learning algorithm HANQ. HANQ212
reaches high scores both faster and more stably than DQN on our Pendulum problem. Fig. 6a shows213
HANQ’s architecture, and Fig. 6b compares the scores of DQN and HANQ.214

4 Further Experiments215

Unless marked otherwise, we use 30 seeds, tune baselines extensively (Section 11), and show only216
the best score per algorithm–configuration–environment combination. That is, each table cell gives217
only the best score of e.g. the 7 learning rates we usually tune over, combined with tuning over e.g.218
DQN’s β, unless stated otherwise. Recall, scores are the return normalized for readability. We define219
score in Section 11. Unlike our graphs, scores in all tables are averaged over all gradient steps within220
each training run. This measures both training speed and stability.221

Table 1: Confidence intervals (CIs) overlapping the CI of the top mean are highlighted (Patterson
et al., 2023). Scores averaged over gradient steps. Recall, β is the target update rate (DQN only), and
κ is the hyperlearning rate (HANQ only). “DQN-LN” and “DQN-ℓ2N” are DQN with LayerNorm
or ℓ2-normalization.

Best β ∈ {100, 10−1, . . . , 10−4} β = 100 κ = 10−1

DQN DQN-LN DQN-ℓ2N DQN DQN-LN DQN-ℓ2N HANQ

Pendulum 72.4 83.0 86.1 30.0 40.1 31.9 100.1
(95% CI) (61.0, 82.5) (77.6, 87.9) (80.9, 91.0) (22.1, 37.0) (27.0, 53.6) (20.1, 43.0) (98.0, 102.2)

Acrobot 91.9 90.6 89.6 67.9 90.0 80.0 90.1
(95% CI) (90.3, 93.5) (89.0, 92.0) (87.3, 91.7) (61.7, 73.2) (87.9, 92.0) (77.1, 82.4) (88.0, 92.0)

CartPole 55.6 49.5 50.9 41.1 47.7 36.5 24.0
(95% CI) (51.3, 60.1) (47.8, 51.2) (43.7, 58.7) (39.1, 43.6) (45.3, 49.9) (33.0, 40.3) (19.1, 30.2)

HANQ vs Standard Algorithms: Classic Control. In our experiments, on two of the three total222
classic control environments we test, HANQ matches or outscores DQN (Table 1). On the third223
environment, CartPole, HANQ and all other asymmetries score poorly in our experiments. They224
often learn large predictor parameters (not shown). Their ωscale values reach, e.g., 1.5, which may225
relate to discount factors (Section 8) that are too small. Due to those consistently low scores, we226
exclude CartPole from the remaining ablations, leaving the issue for future work.227

PQN. Gallici et al. (2024) propose parallel Q-network, which avoids target networks by LayerNorm228
and ℓ2-regularization. The best configuration we test (Section 11) scores 43.3 (CI 30.2, 57.2), far229
below HANQ’s 100.1 (CI 98.0, 102.2) and comparable to using no regularization (DQN-LN with230
β = 100 in Table 1).231

Table 2: Ablating HANQ’s predictor does not improve scores.

Pendulum (95% CI) Acrobot (95% CI)

HANQ 100.1 (98.0, 102.2) 90.1 (88.0, 92.0)

w/o ω+
scale 84.3 (78.2, 90.3) 65.7 (50.7, 79.2)

w/o ωbias 94.8 (88.4, 99.5) 90.5 (88.7, 91.9)

w/o metapred. 93.6 (88.9, 97.7) 90.7 (88.0, 93.1)

w/o any pred. 43.5 (28.6, 56.7) 91.7 (90.2, 93.2)

symmetrized 39.2 (25.1, 54.0) 93.6 (92.2, 94.7)

HANQ’s Predictor. Our exper-232
iments suggest two changes to233
SSAQ’s predictor, both of which we234
use in HANQ (as shown in Fig. 6a).235
First, HANQ forces the predictor’s236
scaler parameter to be positive by237
optimizing ωscale ∈ R, and using238
ω+

scale := exp(ωscale) in the predictor.239
Second, HANQ also learns a bias240
parameter ωbias for the predictor. Ta-241
ble 2 shows the scores of HANQ242
again, compared with excluding either of those two changes (“w/o ωscale” and “w/o ωbias”), learning243

7

Under review for RLC 2025, to be published in RLJ 2025

those predictor parameters directly instead of a metapredictor (“w/o metapred.”), excluding all244
asymmetry (“w/o any pred.”), or using the metapredictor for both Q(s, a) and Q(s′, a′).245

Table 3: Removing normalizations lowers scores.

Pendulum (95% CI) Acrobot (95% CI)

HANQ 100.1 (98.0, 102.2) 90.1 (88.0, 92.0)

w/o ℓ2N 40.8 (27.7, 52.9) 87.9 (81.3, 92.5)

w/o LN 34.9 (32.1, 37.7) 25.0 (15.4, 34.4)

Ablating Normalizations. Table 3 sug-246
gests that HANQ’s particular normaliza-247
tions are important for its high scores.248
Removing either the metapredictor’s ℓ2-249
normalization (“w/o ℓ2N”) or the main250
network’s LayerNorm (“w/o LN”) scores251
less than half as high.252

Table 4 similarly suggests that changing253
the types of either of those normalizations might give worse algorithms. Here, we avoid hyper-254
gradient tuning for simplicity. We observed similar results in further experiments comparing these255
configurations (for example, when using hypergradient tuning; not shown).256

Table 4: Ablating more normalizations, without hypergradient tuning. In the column names, the first
item is the normalization type in the metapredictor, and the second item the type in the main network.
For example, the first column (“ℓ2N LN”) is HANQ. “__” indicates no normalization.

ℓ2N LN LN ℓ2N ℓ2N ℓ2N LN LN __ ℓ2N __ LN ℓ2N __ LN __ __ __

Pendulum 79.2 18.9 8.2 14.0 45.9 28.4 24.5 11.6 9.2
(95% CI) (73.5, 84.1) (15.4, 22.4) (4.9, 11.2) (11.2, 16.9) (40.5, 51.1) (24.3, 32.3) (21.7, 27.5) (9.1, 14.1) (4.7, 14.6)

4.1 Atari Seaquest257
Table 5: Preliminary, in that this uses
only 10 seeds. “w/o metapred.” is
HANQ without a metapredictor — i.e.,
HANQ with a standard predictor like
SSAQ has. No hypergradient learning.

Seaquest (95% CI)

DQN-LN 76.1 (74.7, 77.8)

HANQ 91.7 (83.0, 100.8)

w/o metapred. 87.4 (80.8, 93.3)

DQN 90.4 (86.2, 93.9)

To test a more complex, higher-dimensional problem, we258
use Atari (Bellemare et al., 2013) Seaquest. For each ran-259
dom seed, we collect an offline dataset of 100k state-action260
pairs using a uniformly random-action policy, then train261
for 1M gradient steps. For computational simplicity, we262
test only one target update rate for DQN, and only one hy-263
perlearning rate for HANQ. Preliminary experiments (not264
shown) suggested β = 10−5 (for DQN) and κ = 0 (for265
HANQ). We also compare against DQN-LN without a tar-266
get net, as in PQN (Gallici et al., 2024). Since we are not267
using hyperlearning, the only difference between DQN-LN268
and HANQ here is HANQ’s metapredictor and predictor.269
For DQN-LN, we test the normalization before or after the ReLU, and show only the best here270
(after the ReLU). Table 5 suggests that, compared to DQN-LN, asymmetry may be beneficial even271
for complex environments. Those scores also provide additional preliminary evidence for HANQ272
matching or exceeding DQN.273

5 Conclusions274

Our results add to the evidence that more asymmetry might be key for faster and stabler optimization275
for deep Q-learning. One future direction is to more closely compare such asymmetries with adaptive276
discount factors. Another direction may be: instead of treating ωscale as a parameter, treat it as a277
hyperparameter tuned via hyperoptimization. Treating it as a parameter risks modifying the original278
MSBE loss too much, effectively changing the discount factor. Rather, by hyperoptimizing ωscale for279
the original MSBE loss, we can preserve alignment with the original MSBE loss. Granted, to our280
knowledge, it is not yet clear when precisely either optimization approach would be theoretically281
sound, especially for the state-dependent ωscale case (like our metapredictor).282

8

HANQ: Hypergradients, Asymmetry, and Normalization for Fast and Stable Deep Q-Learning

References283

Rishabh Agarwal, Dale Schuurmans, and Mohammad Norouzi. An Optimistic Perspective on Offline284
Reinforcement Learning. arXiv, July 2019. DOI: 10.48550/arXiv.1907.04543.285

Philip Amortila, Dylan J. Foster, Nan Jiang, Akshay Krishnamurthy, and Zakaria Mhammedi.286
Reinforcement Learning under Latent Dynamics: Toward Statistical and Algorithmic Modularity.287
arXiv, October 2024. DOI: 10.48550/arXiv.2410.17904.288

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer Normalization. arXiv, July 2016.289
DOI: 10.48550/arXiv.1607.06450.290

Leemon C. Baird. Residual algorithms: Reinforcement learning with function approximation. In Inter-291
national Conference on Machine Learning, 1995. URL https://api.semanticscholar.292
org/CorpusID:621595.293

Philip J. Ball, Laura Smith, Ilya Kostrikov, and Sergey Levine. Efficient Online Reinforcement294
Learning with Offline Data. arXiv, February 2023. DOI: 10.48550/arXiv.2302.02948.295

M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The Arcade Learning Environment: An296
Evaluation Platform for General Agents. Journal of Artificial Intelligence Research, 47:253–279,297
jun 2013.298

Johan Bjorck, Carla P. Gomes, and Kilian Q. Weinberger. Is High Variance Unavoidable in RL? A299
Case Study in Continuous Control. arXiv, October 2021. DOI: 10.48550/arXiv.2110.11222.300

David Brandfonbrener and Joan Bruna. Geometric Insights into the Convergence of Nonlinear TD301
Learning. arXiv, May 2019. DOI: 10.48550/arXiv.1905.12185.302

David Brandfonbrener, William F. Whitney, Rajesh Ranganath, and Joan Bruna. Offline RL Without303
Off-Policy Evaluation. arXiv, June 2021. DOI: 10.48550/arXiv.2106.08909.304

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and305
Wojciech Zaremba. OpenAI Gym. arXiv, June 2016. DOI: 10.48550/arXiv.1606.01540.306

Kartik Chandra, Audrey Xie, Jonathan Ragan-Kelley, and Erik Meijer. Gradient Descent: The307
Ultimate Optimizer. arXiv, September 2019. DOI: 10.48550/arXiv.1909.13371.308

Xinlei Chen and Kaiming He. Exploring Simple Siamese Representation Learning. arXiv, November309
2020. DOI: 10.48550/arXiv.2011.10566.310

Xinlei Chen and Kaiming He. Exploring simple siamese representation learning. In Proceedings of311
the IEEE/CVF conference on computer vision and pattern recognition, pp. 15750–15758, 2021.312

Mohamed Elsayed, Gautham Vasan, and A. Rupam Mahmood. Streaming Deep Reinforcement313
Learning Finally Works. arXiv, October 2024. DOI: 10.48550/arXiv.2410.14606.314

Benjamin Eysenbach, Vivek Myers, Ruslan Salakhutdinov, and Sergey Levine. Inference via315
Interpolation: Contrastive Representations Provably Enable Planning and Inference. arXiv, March316
2024. DOI: 10.48550/arXiv.2403.04082.317

Vincent François-Lavet, Raphael Fonteneau, and Damien Ernst. How to Discount Deep Re-318
inforcement Learning: Towards New Dynamic Strategies. arXiv, December 2015. DOI:319
10.48550/arXiv.1512.02011.320

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4RL: Datasets for Deep321
Data-Driven Reinforcement Learning. arXiv preprint arXiv:2004.07219, 2020.322

Matteo Gallici, Mattie Fellows, Benjamin Ellis, Bartomeu Pou, Ivan Masmitja, Jakob Nicolaus323
Foerster, and Mario Martin. Simplifying Deep Temporal Difference Learning. arXiv, July 2024.324
DOI: 10.48550/arXiv.2407.04811.325

9

https://api.semanticscholar.org/CorpusID:621595
https://api.semanticscholar.org/CorpusID:621595
https://api.semanticscholar.org/CorpusID:621595

Under review for RLC 2025, to be published in RLJ 2025

Carles Gelada, Saurabh Kumar, Jacob Buckman, Ofir Nachum, and Marc G. Bellemare. DeepMDP:326
Learning Continuous Latent Space Models for Representation Learning. arXiv, June 2019. DOI:327
10.48550/arXiv.1906.02736.328

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena329
Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar,330
et al. Bootstrap your own latent-a new approach to self-supervised learning. Advances in neural331
information processing systems, 33:21271–21284, 2020.332

Daniel Guo, Bernardo Avila Pires, Bilal Piot, Jean-bastien Grill, Florent Altché, Rémi Munos,333
and Mohammad Gheshlaghi Azar. Bootstrap Latent-Predictive Representations for Multitask334
Reinforcement Learning. arXiv, April 2020. DOI: 10.48550/arXiv.2004.14646.335

Zhaohan Daniel Guo, Shantanu Thakoor, Miruna Pîslar, Bernardo Avila Pires, Florent Altché,336
Corentin Tallec, Alaa Saade, Daniele Calandriello, Jean-Bastien Grill, Yunhao Tang, Michal Valko,337
Rémi Munos, Mohammad Gheshlaghi Azar, and Bilal Piot. BYOL-Explore: Exploration by338
Bootstrapped Prediction. arXiv, June 2022. DOI: 10.48550/arXiv.2206.08332.339

Takuya Hiraoka, Takahisa Imagawa, Taisei Hashimoto, Takashi Onishi, and Yoshimasa Tsuruoka.340
Dropout Q-Functions for Doubly Efficient Reinforcement Learning. arXiv, October 2021. DOI:341
10.48550/arXiv.2110.02034.342

Shengyi Huang, Rousslan Fernand JulienDossa Dossa, Chang Ye, Jeff Braga, Dipam Chakraborty,343
Kinal Mehta, and João GM Araújo. Cleanrl: High-quality single-file implementations of deep344
reinforcement learning algorithms. The Journal of Machine Learning Research, 23(1):12585–345
12602, 2022.346

Marcel Hussing, Claas Voelcker, Igor Gilitschenski, Amir-massoud Farahmand, and Eric Eaton.347
Dissecting Deep RL with High Update Ratios: Combatting Value Divergence. arXiv, March 2024.348
DOI: 10.48550/arXiv.2403.05996.349

Nan Jiang, Alex Kulesza, Satinder Singh, and Richard Lewis. The dependence of effective planning350
horizon on model accuracy. In Proceedings of the 2015 international conference on autonomous351
agents and multiagent systems, pp. 1181–1189, 2015.352

Khimya Khetarpal, Zhaohan Daniel Guo, Bernardo Avila Pires, Yunhao Tang, Clare Lyle, Mark353
Rowland, Nicolas Heess, Diana Borsa, Arthur Guez, and Will Dabney. A Unifying Framework for354
Action-Conditional Self-Predictive Reinforcement Learning. arXiv, June 2024. DOI: 10.48550/355
arXiv.2406.02035.356

Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. arXiv, December357
2014. DOI: 10.48550/arXiv.1412.6980.358

Aviral Kumar, Rishabh Agarwal, Tengyu Ma, Aaron Courville, George Tucker, and Sergey Levine.359
DR3: Value-Based Deep Reinforcement Learning Requires Explicit Regularization. arXiv, De-360
cember 2021. DOI: 10.48550/arXiv.2112.04716.361

Aviral Kumar, Rishabh Agarwal, Xinyang Geng, George Tucker, and Sergey Levine. Offline Q-362
Learning on Diverse Multi-Task Data Both Scales And Generalizes. arXiv, November 2022. DOI:363
10.48550/arXiv.2211.15144.364

Hojoon Lee, Hanseul Cho, Hyunseung Kim, Daehoon Gwak, Joonkee Kim, Jaegul Choo, Se-Young365
Yun, and Chulhee Yun. PLASTIC: Improving Input and Label Plasticity for Sample Efficient366
Reinforcement Learning. arXiv, June 2023. DOI: 10.48550/arXiv.2306.10711.367

Hojoon Lee, Dongyoon Hwang, Donghu Kim, Hyunseung Kim, Jun Jet Tai, Kaushik Subramanian,368
Peter R. Wurman, Jaegul Choo, Peter Stone, and Takuma Seno. SimBa: Simplicity Bias for Scaling369
Up Parameters in Deep Reinforcement Learning. arXiv, October 2024. DOI: 10.48550/arXiv.2410.370
09754.371

10

HANQ: Hypergradients, Asymmetry, and Normalization for Fast and Stable Deep Q-Learning

Qiyang Li, Aviral Kumar, Ilya Kostrikov, and Sergey Levine. Efficient Deep Reinforcement Learning372
Requires Regulating Overfitting. arXiv, April 2023. DOI: 10.48550/arXiv.2304.10466.373

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,374
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv,375
Sep 2015. DOI: 10.48550/arXiv.1509.02971.376

Bo Liu, Yihao Feng, Qiang Liu, and Peter Stone. Metric Residual Networks for Sample Efficient Goal-377
Conditioned Reinforcement Learning. arXiv, August 2022. DOI: 10.48550/arXiv.2208.08133.378

Clare Lyle, Zeyu Zheng, Evgenii Nikishin, Bernardo Avila Pires, Razvan Pascanu, and Will Dabney.379
Understanding plasticity in neural networks. arXiv, March 2023. DOI: 10.48550/arXiv.2303.01486.380

Clare Lyle, Zeyu Zheng, Khimya Khetarpal, James Martens, Hado van Hasselt, Razvan Pascanu, and381
Will Dabney. Normalization and effective learning rates in reinforcement learning. arXiv, July382
2024a. DOI: 10.48550/arXiv.2407.01800.383

Clare Lyle, Zeyu Zheng, Khimya Khetarpal, Hado van Hasselt, Razvan Pascanu, James Martens, and384
Will Dabney. Disentangling the Causes of Plasticity Loss in Neural Networks. arXiv, February385
2024b. DOI: 10.48550/arXiv.2402.18762.386

Volodymyr Mnih. Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602,387
2013.388

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,389
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level Control390
through Deep Reinforcement Learning. nature, 518(7540):529–533, 2015.391

Vivek Myers, Catherine Ji, and Benjamin Eysenbach. Horizon Generalization in Reinforcement392
Learning. arXiv, January 2025. DOI: 10.48550/arXiv.2501.02709.393

Michal Nauman, Michał Bortkiewicz, Piotr Miłoś, Tomasz Trzciński, Mateusz Ostaszewski, and394
Marek Cygan. Overestimation, Overfitting, and Plasticity in Actor-Critic: the Bitter Lesson of395
Reinforcement Learning. arXiv, March 2024. DOI: 10.48550/arXiv.2403.00514.396

Yann Ollivier. Approximate Temporal Difference Learning is a Gradient Descent for Reversible397
Policies. arXiv, May 2018. DOI: 10.48550/arXiv.1805.00869.398

Andrew Patterson, Samuel Neumann, Martha White, and Adam White. Empirical Design in Rein-399
forcement Learning. arXiv, April 2023. DOI: 10.48550/arXiv.2304.01315.400

Silviu Pitis, Harris Chan, Kiarash Jamali, and Jimmy Ba. An Inductive Bias for Distances: Neural401
Nets that Respect the Triangle Inequality. arXiv, February 2020. DOI: 10.48550/arXiv.2002.05825.402

Sarah Rathnam, Sonali Parbhoo, Siddharth Swaroop, Weiwei Pan, Susan A Murphy, and Finale403
Doshi-Velez. Rethinking discount regularization: New interpretations, unintended consequences,404
and solutions for regularization in reinforcement learning. Journal of Machine Learning Research,405
25(255):1–48, 2024.406

Pierre Harvey Richemond, Allison Tam, Yunhao Tang, Florian Strub, Bilal Piot, and Felix Hill. The407
edge of orthogonality: A simple view of what makes byol tick. In International Conference on408
Machine Learning, pp. 29063–29081. PMLR, 2023.409

Laura Smith, Ilya Kostrikov, and Sergey Levine. A Walk in the Park: Learning to Walk in 20 Minutes410
With Model-Free Reinforcement Learning. arXiv, August 2022. DOI: 10.48550/arXiv.2208.07860.411

Braham Snyder, Amy Zhang, and Yuke Zhu. Target Rate Optimization: Avoiding Iterative Error412
Exploitation. NeurIPS Foundation Models for Decision Making Workshop, 2023. URL https:413
//openreview.net/forum?id=yD9JAKItJE.414

11

https://openreview.net/forum?id=yD9JAKItJE
https://openreview.net/forum?id=yD9JAKItJE
https://openreview.net/forum?id=yD9JAKItJE

Under review for RLC 2025, to be published in RLJ 2025

Richard S. Sutton. A History of Meta-gradient: Gradient Methods for Meta-learning. arXiv, February415
2022. DOI: 10.48550/arXiv.2202.09701.416

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.417

Yunhao Tang, Zhaohan Daniel Guo, Pierre Harvey Richemond, Bernardo Avila Pires, Yash Chandak,418
Rémi Munos, Mark Rowland, Mohammad Gheshlaghi Azar, Charline Le Lan, Clare Lyle, et al.419
Understanding self-predictive learning for reinforcement learning. In International Conference on420
Machine Learning, pp. 33632–33656. PMLR, 2023.421

John N Tsitsiklis and Benjamin Van Roy. Feature-based methods for large scale dynamic program-422
ming. Machine Learning, 22(1):59–94, 1996.423

John N Tsitsiklis and Benjamin Van Roy. An analysis of temporal-difference learning with function424
approximation. IEEE Transactions on Automatic Control, 42(5), 1997.425

Gautham Vasan, Mohamed Elsayed, Alireza Azimi, Jiamin He, Fahim Shariar, Colin Bellinger,426
Martha White, and A. Rupam Mahmood. Deep Policy Gradient Methods Without Batch Updates,427
Target Networks, or Replay Buffers. arXiv, November 2024. DOI: 10.48550/arXiv.2411.15370.428

Che Wang, Yanqiu Wu, Quan Vuong, and Keith Ross. Striving for Simplicity and Performance in429
Off-Policy DRL: Output Normalization and Non-Uniform Sampling. arXiv, October 2019. DOI:430
10.48550/arXiv.1910.02208.431

Tongzhou Wang. Intelligent Agents via Representation Learning. PhD thesis, Massachusetts Insti-432
tute of Technology, Department of Electrical Engineering and Computer Science, September433
2024. URL https://www.tongzhouwang.info/phd_thesis_Wang_Tongzhou_434
MIT.pdf. Submitted on August 9, 2024.435

Tongzhou Wang, Antonio Torralba, Phillip Isola, and Amy Zhang. Optimal Goal-Reaching Reinforce-436
ment Learning via Quasimetric Learning. arXiv, April 2023. DOI: 10.48550/arXiv.2304.01203.437

Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8:279–292, 1992.438

Christopher John Cornish Hellaby Watkins. Learning from Delayed Rewards. PhD thesis, King’s Col-439
lege, Cambridge, UK, May 1989. URL http://www.cs.rhul.ac.uk/~chrisw/new_440
thesis.pdf.441

Zixin Wen and Yuanzhi Li. The mechanism of prediction head in non-contrastive self-supervised442
learning. Advances in Neural Information Processing Systems, 35:24794–24809, 2022.443

Chenjun Xiao, Bo Dai, Jincheng Mei, Oscar A. Ramirez, Ramki Gummadi, Chris Harris, and Dale444
Schuurmans. Understanding and Leveraging Overparameterization in Recursive Value Estimation.445
OpenReview, March 2022. URL https://openreview.net/forum?id=shbAgEsk3qM.446

Zhongwen Xu, Hado van Hasselt, and David Silver. Meta-Gradient Reinforcement Learning. arXiv,447
May 2018. DOI: 10.48550/arXiv.1805.09801.448

Chaoning Zhang, Kang Zhang, Chang-Dong Yoo, and In-So Kweon. How does simsiam avoid449
collapse without negative samples? towards a unified understanding of progress in ssl. In The450
International Conference on Learning Representations, ICLR 2022. The International Conference451
on Learning Representations (ICLR), 2022.452

Chongyi Zheng, Benjamin Eysenbach, Homer Walke, Patrick Yin, Kuan Fang, Ruslan Salakhutdinov,453
and Sergey Levine. Stabilizing Contrastive RL: Techniques for Robotic Goal Reaching from454
Offline Data. arXiv, June 2023. DOI: 10.48550/arXiv.2306.03346.455

12

https://www.tongzhouwang.info/phd_thesis_Wang_Tongzhou_MIT.pdf
https://www.tongzhouwang.info/phd_thesis_Wang_Tongzhou_MIT.pdf
https://www.tongzhouwang.info/phd_thesis_Wang_Tongzhou_MIT.pdf
http://www.cs.rhul.ac.uk/~chrisw/new_thesis.pdf
http://www.cs.rhul.ac.uk/~chrisw/new_thesis.pdf
http://www.cs.rhul.ac.uk/~chrisw/new_thesis.pdf
https://openreview.net/forum?id=shbAgEsk3qM

HANQ: Hypergradients, Asymmetry, and Normalization for Fast and Stable Deep Q-Learning

Supplementary Materials456

The following content was not necessarily subject to peer review.457

458

6 Plotting the Predictor Parameter459

Recall that HSSAQ is SSAQ (Single-Scaler Asymmetric-Q) with hypergradient learning (details in460
Section 3.3). Fig. 7 shows how HSSAQ’s learned predictor parameter, ωscale, changes over the course461
of training. At initialization, ωscale = 1 (which is hard to see due to plotting artifacts). It immediately462
rises high, past 1.3, then slowly drops back down again, close to 1.2. Interpreting ωscale as loosely463
similar to the inverse of the discount factor γ (Section 8), HSSAQ’s learning here resembles the464
finding that increasing the discount factor from a smaller value to a larger value over the course of465
training can improve scores (François-Lavet et al., 2015). In this analogy, HSSAQ automatically466
dropped to the smaller discount factor on its own, then automatically increased the discount factor467
again over the course of further training.468

Figure 7: The same as Fig. 5, but with a plot of the predictor parameter value ωscale (leftmost plot) as
well. The predictor parameter immediately increases at the start of training, then slowly returns to a
smaller value. Original caption, from Fig. 5: HSSAQ with its best initial learning rate, 10−2.5 (and
hyperlearning rate κ = 10−4)..

7 Algorithm Pseudocode469

Algorithm 1 SSAQ. (Changes from DQN (Mnih et al., 2015) with a soft target update (Lillicrap
et al., 2015) are in cyan blue.)

Parameters: target update rate τ , learning rate α.
Input: Offline dataset D of tuples {(s, a, r, s′)}.
Randomly initialize θ for the main network Qθ. ▷ Default SSAQ uses no target net
Initialize ωscale = 1.
for each algorithm step do

Sample a batch B = {(s, a, r, s′)} from D.
Compute the main Q-values and scale the result Qω,θ(s, a) := ωscaleQθ(s, a).
Compute the targets y := r + γmaxa′∈A Qθ(s

′, a′). ▷ Default SSAQ uses no target net
Take a gradient descent step

θ ← θ − α∇ω,θ

 1

|B|
∑

(s,a,r,s′)∈B

(Qω,θ(s, a)− sg[y])2


where sg[y] is a stop-gradient.

end for

13

Under review for RLC 2025, to be published in RLJ 2025

Algorithm 2 HANQ. (Changes from DQN (Mnih et al., 2015) with a soft target update (Lillicrap
et al., 2015) are in cyan blue.)

Parameters: target update rate τ , learning rate α, hyperlearning rate κ.
Input: Offline dataset D of tuples {(s, a, r, s′)}.
Randomly initialize θ for the main network Qθ and the metapredictor ωθ. ▷ Branching (Fig. 6a)
for each algorithm step do

Sample a batch B = {(s, a, r, s′)} from D.
Compute the main Q-values Qθ(s, a) and predictor parameters ωθ(s, a) = {ωscale, ωbias}.
Compute the forced positive scaler ω+

scale := exp(ωscale))
Scale and bias to get Qω,θ(s, a) := ω+

scaleQθ(s, a) + ωbias.
Compute the targets y := r + γmaxa′∈A Qθ(s

′, a′). ▷ Discard or do not compute ωθ(s
′, a′)

Take a gradient descent step

θ ← θ − α∇ω,θ

 1

|B|
∑

(s,a,r,s′)∈B

(Qω,θ(s, a)− sg[y])2


where sg[y] is a stop-gradient.
Compute the residual hypergradient and update the learning rate

α← α− κ
∂

∂α

 1

|B|
∑

(s,a,r,s′)∈B

(
Qω,θ(s, a)− (r + γmax

a′∈A
Qθ(s

′, a′))

)2


end for

8 Connection Between Scaling and Discount Factor470

We argue that the adding the scaling factor in SSAQ is effectively changing the discount factor.471
To see this, note that with the scaling factor ω, the loss minimization procedure essentially tries472
to find a fixed-point solution for ωQ(s, a) = R(s, a) + γEs′∼P (·|s,a)[maxa′ Q(s′, a′)], which can473
be found to be Q(s, a) = E

[
ω−1R(s, a) + ω−2γR(s1, a1) + · · ·

]
= ω−1E[

∑∞
t=0(γ/ω)

tR(st, at)]474
provided its existence, where (s0 = s, a0 = a, s1, a1, · · ·) is a trajectory that follows the policy475
π(s) = argmaxa Q(s, a). Clearly, the effective discount factor is γ/ω.476

This perhaps suggests additional connections with meta-gradient RL algorithms that learn discount477
factors (Xu et al., 2018).478

9 Supplementary Experiments479

9.1 Number of Parameters480

Even three-layer neural nets for DQN with normalization do not let it outscore HANQ in our481
experiments on Pendulum (Table 6). This provides further evidence, even beyond the “symmetrized”482
results in Table 2, that HANQ’s high score is not due to the small number of additional parameters in483
HANQ’s metapredictor. However, ideally we would test additional, symmetric DQN architectures484
with more parameters, especially wider architectures. In any case, note that three-layer DQN-LN in485
this setting has over 10 times as many parameters as two-layer HANQ, because the input and output486
dimensions for Pendulum are small.487

9.2 Hypergradients488

14

HANQ: Hypergradients, Asymmetry, and Normalization for Fast and Stable Deep Q-Learning

Table 6: Even with a three-layer network (10× as many parameters as HANQ) and normalization,
DQN does not exceed HANQ’s score of 100.1 on Pendulum (Table 1; though their CIs do overlap).

No target net (β = 100) Best β ∈ {100, 10−1, . . . , 10−4}

DQN-ℓ2N DQN-LN DQN DQN-ℓ2N DQN-LN DQN

Pendulum 57.3 59.2 17.3 96.6 97.7 84.7
(95% CI) (45.4, 68.5) (48.1, 70.3) (5.4, 29.8) (93.5, 99.1) (95.3, 99.8) (77.4, 90.5)

Semi-Gradient vs Full-Gradient. Section 3.3 describes two possible objectives for hypergradient489
optimization of TD learning algorithms: the semi-gradient LSG and the full-gradient LRG. See490
Section 12 for the derivation. Table 7 compares their scores.491

Table 7: The residual gradient LRG (HANQ’s default) and
semi-gradient LSG hyperobjectives work equally well on
these two problems.

Pendulum (95% CI) Acrobot (95% CI)

LRG 100.1 (98.0, 102.2) 90.1 (88.0, 92.0)

LSG 98.7 (95.9, 101.2) 87.8 (85.8, 89.6)

Hypergradient DQN. Table 8 sug-492
gests that adding hypergradient learn-493
ing (optimizing the learning rate dur-494
ing training, as we do with HANQ)495
does not enable DQN to match496
HANQ’s scores on Pendulum. This497
aligns with, e.g., Fig. 3a, Fig. 3b, and498
Fig. 5 to suggest that architectural499
asymmetry as in SSAQ and HANQ500
can enable hypergradient learning to be more helpful in some cases.501

Table 8: Hypergradient learning might not enable DQN to match HANQ’s scores on Pendulum. We
use LRG here, like HANQ’s default. Recall, κ is the hypergradient learning rate. This table tunes
β ∈ {100, 10−1, . . . , 10−3}.

κ = 10−1 κ = 10−2 κ = 10−3 κ = 10−4 κ = 10−5 κ = 0

Pendulum 53.3 63.1 65.5 69.7 70.9 72.4
(95% CI) (39.8, 66.6) (49.6, 75.9) (51.2, 80.7) (54.8, 83.2) (56.1, 84.4) (61.0, 82.5)

9.3 Controlling For a Tuned Discount Factor502

Given the connection between a predictor and the discount factor (Section 8), we test manually503
tuning DQN’s discount factor, with and without normalizations, and with and without a target net504
(in combination with 7 learning rates for every configuration, as usual). Despite tuning over 5 new505
discount factors for DQN, for a total of three tuned hyperparameters compared to HANQ’s two tuned506
hyperparameters, no mean score reaches HANQ’s CIs. However, some configurations give CIs that507
overlap with HANQ’s CI on this problem. We show all these scores and CIs in Table 9.508

10 Details on Normalizations509

ℓ2-normalization is empirically important in many SSL algorithms (Grill et al., 2020; Chen & He,510
2021) and RL algorithms (Wang et al., 2019; Bjorck et al., 2021; Kumar et al., 2022; Hussing et al.,511
2024; Vasan et al., 2024). ℓ2-normalization operates independently on each data point x, over the512
feature axis, projecting the features to the unit hypersphere (of the same dimension as the input):513
f(x) := x/||x||2. Similar to ℓ2-normalization, LayerNorm (Ba et al., 2016) has extensive support514
in RL (Hiraoka et al., 2021; Smith et al., 2022; Ball et al., 2023; Lee et al., 2023; Lyle et al., 2023;515
Lee et al., 2024; Lyle et al., 2024a; Nauman et al., 2024; Vasan et al., 2024; Elsayed et al., 2024;516
Zheng et al., 2023; Li et al., 2023; Lyle et al., 2024b; Gallici et al., 2024). Also like ℓ2-normalization,517
LayerNorm operates independently on each data point x over the feature axis, without changing the518

15

Under review for RLC 2025, to be published in RLJ 2025

Table 9: Manually tuning the discount factor does not enable DQN to beat HANQ’s scores on
Pendulum. Recall, γ is the discount factor (which for HANQ we always leave at its upstream default
of 0.99), and κ is the hyperlearning rate (HANQ only). “DQN-LN” and “DQN-ℓ2N” are again DQN
with LayerNorm or ℓ2-normalization. For convenience, we include HANQ’s scores from Table 1 here
as well. We highlight every cell in this table whose CI overlaps the CI of the top mean score on this
problem (Pendulum).

β = 100 β = 10−3

DQN DQN-LN DQN-ℓ2N DQN DQN-LN DQN-ℓ2N

γ = 0.95 70.0 76.2 65.9 84.4 92.0 95.8
(95% CI) (55.8, 83.7) (63.8, 87.3) (52.4, 77.4) (72.3, 94.2) (85.7, 96.4) (91.0, 99.7)

γ = 0.9 91.6 89.6 87.4 92.3 93.6 96.1
(95% CI) (82.2, 99.5) (78.9, 98.3) (75.3, 96.4) (84.2, 98.4) (84.6, 99.7) (89.8, 100.5)

γ = 0.85 95.3 90.2 91.9 96.5 95.1 95.2
(95% CI) (90.4, 99.0) (80.1, 98.2) (86.3, 96.7) (94.6, 97.9) (89.9, 98.5) (92.1, 97.8)

γ = 0.8 83.4 88.0 87.7 81.5 85.1 87.0
(95% CI) (79.7, 86.5) (84.5, 91.5) (84.4, 90.6) (78.9, 83.8) (80.7, 88.7) (83.2, 90.1)

γ = 0.75 54.8 59.5 57.8 47.7 53.2 58.8
(95% CI) (46.6, 61.1) (55.3, 62.8) (53.3, 62.3) (45.2, 50.1) (51.2, 55.0) (55.6, 62.4)

dimensionality. In particular, for each data point x, LayerNorm maps it to f(x) := x−x̄√
s2+ϵ
⊙γLN+βLN,519

where x̄ and s2 are the mean and variance across the features, respectively, ϵ avoids division by520
zero, and γLN and βLN are per-feature learnable parameters. Similar to those prior works, we add the521
normalizations before the final weights of both the Qθ(s, a) and Qθ(s

′, a′) paths.522

11 Experiment Details523

For classic control, every algorithm is tuned over learning rates in {10−1, 10−1.5, . . . , 10−4}, ex-524
tended in either direction if the algorithm’s best learning rate is found to be the minimum or maximum525
of that set. Algorithms that use a target net (DQN and QS-DQN) are combinatorially tuned over526
target update rates in {100, 10−1, . . . , 10−5} unless stated otherwise. HANQ’s hypergradient step527
size is tuned in that latter set as well. For PQN, we test with LayerNorm both before or after the528
ReLU (rectified linear unit), and ℓ2-regularizations in {10−1, 10−2, . . . , 10−5, 10−6, 10−8, 10−10}.529

Every hyperparameter combination was compared using 30 random seeds unless otherwise stated,530
and we show only the best combination per algorithm–problem combination.531

For Atari, we use 10 random seeds for every hyperparameter combination, and tune learning rates532
in {10−2.5, 10−3, 10−3.5, . . . , 10−8}. For computational simplicity, we use only a target update rate533
β = 10−5 (for DQN) and a hyperlearning rate of κ = 0 (for HANQ), which were suggested by534
preliminary experiments (not shown).535

We use Adam (Kingma & Ba, 2014) for all algorithms. When using hyperoptimization, we hyperopti-536
mize Adam via Adam (Chandra et al., 2019).537

For classic control, we use two-layer neural networks (two sets of weights, one hidden layer) unless538
otherwise stated. (HANQ and SSAQ use additional parameters for one term of the loss function, i.e.539
for Q(s, a). However, to reiterate, our results in e.g. Section 9.1 and Section 4 suggest that adding540
more parameters in more standard ways does not increase speed and stability as much.) We also541
use, unless otherwise stated: a hidden width of 128; a batch size of 128; 200k gradient steps for542
training, unless otherwise stated; and a discount factor of γ = 0.99 (we ignore the theoretical issues543
in combining discount factors with function approximation (Sutton & Barto, 2018)).544

16

HANQ: Hypergradients, Asymmetry, and Normalization for Fast and Stable Deep Q-Learning

For Atari, we use: the architecture from Huang et al. (2022), based on Mnih et al. (2015) (DQN-545
LN uses LayerNorm before the final weights, as in e.g. PQN (Gallici et al., 2024), and HANQ’s546
metapredictor again takes as input the features before they enter that LayerNorm, as in the classic547
control version of HANQ); a batch size of 128; 1M gradient steps for training; and a discount factor548
of γ = 0.99 unless otherwise stated.549

Normalizations placement. In preliminary experiments (not shown), placing normalizations before550
vs. after the ReLU typically made little difference, so unless otherwise noted we use only the latter551
(after the ReLU) for all algorithms.552

Environments. The environments we use are: CartPole-v1 and Acrobot-v1 from clas-553
sic control (Brockman et al., 2016); a discrete-action version of Pendulum-v1 (Brock-554
man et al., 2016; Xiao et al., 2022; Snyder et al., 2023) with action space {−2, 0,−2};555
SeaquestNoFrameskip-v4 with the manual 4-frame stacking, resizing, and grayscale transfor-556
mations of Huang et al. (2022), and with repeat_action_probability=0.0 for determin-557
ism.558

Offline dataset construction. We construct our offline datasets like prior work (Xiao et al., 2022;559
Snyder et al., 2023). For Pendulum, we collect an offline dataset of 1000 samples of state-action560
pairs, using uniformly sampled initial states, taking uniformly random actions. For CartPole and561
Acrobot, we instead use the standard initial states, and collect 10000 samples. For Atari, we again562
use the standard initial states, and collect 100k samples.563

11.1 Scores to Returns Conversion564

For readability, we give normalized “scores” throughout our paper instead of episodic return. Similar565
to Fu et al. (2020), we define566

score := 100

(
return− low_return

high_return− low_return

)
where low_return is unrigorously defined as the typical episodic return of a policy that takes567
random actions, and high_return is unrigorously defined as the typical episodic return of an568
expert policy. For Seaquest, we picked 300 as the high_return, which was roughly the peak569
return of our earliest experiments (note that our training dataset is 100k random actions, so this return570
is far lower than, e.g., human expert scores). Table 10 shows those return values.571

Table 10: Episodic returns for our definition of “score.”

Pendulum Acrobot CartPole Seaquest

low_return -1500 -500 0 0

high_return -200 -100 500 300

12 Derivation of Hypergradients572

We follow the derivation in Chandra et al. (2019). At the beginning of step i, let θi be the weights573
of the neural network (for simplicity, here we use θi to represent all parameters in the network,574
which include the θ and ω described in previous sections), αi be the main learning rate, L(θi) be the575
main loss function, and L̃(θi) be the hyperoptimization loss function (which could be the same as or576
different from the main loss function). Let κ be the hypergradient learning rate (hyperlearning rate).577
To hyperoptimize SGD, hypergradient descent updates the main learning rate and the weights in the578

17

Under review for RLC 2025, to be published in RLJ 2025

following manner:579

αi+1 = αi − κ
∂L̃(θi)
∂αi

, (5)

θi+1 = θi − αi+1
∂L(θi)
∂θi

. (6)

The hypergradient in Eq. (5) can be calculated as the following:580

∂L̃(θi)
∂αi

=
∂L̃(θi)
∂θi

· ∂θi
∂αi

=
∂L̃(θi)
∂θi

·
(
−∂L(θi−1)

∂θi−1

)
(7)

where the second equality is due to Eq. (6).581

When L̃ = L, the hypergradient is the negative dot product of the two most recent gradients.582
Intuitively, if the two most recent gradients have a large dot product, it is sensible to increase the583
learning rate.584

For the main loss L, we use the semi-gradient loss as in standard DQN: LSG(θ) ≜ (Qθ(s, a)− r −585
γsg[maxa′ Qθ(s

′, a′)])2. For hyperoptimization loss L̃, we tested two options: (i) the semi-gradient586
loss LSG same as the main optimizer, and (ii) the full-gradient loss LRG used in residual gradient587
(Baird, 1995), defined as LRG(θ) ≜ (Qθ(s, a)− r − γmaxa′ Qθ(s

′, a′))2.588

Denote SGi =
∂LSG(θi)

∂θi
and RGi =

∂LRG(θi)
∂θi

. By Eq. (7), option (i) L = LSG, L̃ = LSG leads to589
the hypergradient590

∂L̃(θi)
∂αi

= SGi · −SGi−1, (8)

and option (ii) L = LSG, L̃ = LRG leads to591

∂L̃(θi)
∂αi

= RGi · −SGi−1. (9)

18

