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Figure 1: OSDCap is an optimal-state dynamics estimation (cyan) based on two streams of input
motion, a kinematics-based pose estimation from videos (top-left), and a physics-based simulation by
a meta-PD controller (bottom-left). The predicted motion is physically-plausible, contains reduced
high-frequency noise, while retaining highly accurate global position.

Abstract

Human motion capture from monocular videos has made significant progress in
recent years. However, modern approaches often produce temporal artifacts, e.g.
in form of jittery motion and struggle to achieve smooth and physically plausible
motions. Explicitly integrating physics, in form of internal forces and exterior
torques, helps alleviating these artifacts. Current state-of-the-art approaches make
use of an automatic PD controller to predict torques and reaction forces in order to
re-simulate the input kinematics, i.e. the joint angles of a predefined skeleton. How-
ever, due to imperfect physical models, these methods often require simplifying
assumptions and extensive preprocessing of the input kinematics to achieve good
performance. To this end, we propose a novel method to selectively incorporate
the physics models with the kinematics observations in an online setting, inspired
by a neural Kalman-filtering approach. We develop a control loop as a meta-PD
controller to predict internal joint torques and external reaction forces, followed
by a physics-based motion simulation. A recurrent neural network is introduced
to realize a Kalman filter that attentively balances the kinematics input and sim-
ulated motion, resulting in an optimal-state dynamics prediction. We show that
this filtering step is crucial to provide an online supervision that helps balancing
the shortcoming of the respective input motions, thus being important for not
only capturing accurate global motion trajectories but also producing physically
plausible human poses. The proposed approach excels in the physics-based human
pose estimation task and demonstrates the physical plausibility of the predictive
dynamics, compared to state of the art. The code is available on §.
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1 Introduction
Three-dimensional human motion estimation is a long-standing and challenging research goal in
computer vision, particularly in monocular scenarios due to inherent depth ambiguities. Previous
approaches have incorporated kinematic priors, e.g. by enforcing smoothness, maintaining bone
length constancy, or imposing symmetry constraints. However, due to inconsistencies of frame-wise
predictions, these solutions do not necessarily lead to physically plausible motions. This has led
to the emergence of a new research direction that combines traditional 3D motion estimation with
physical models of the human skeleton. Instead of directly predicting a human pose, these approaches
estimate the internal joint torques and exterior forces that drive the motion. Consequently, physics
simulators are employed to obtain the resulting motion [37, 38, 8, 50, 21].

However, since simulators are never perfect representations of the real world, they introduce inevitable
errors, where the complex human body was never fully modelled, only approximation by rigid body
dynamics [3]. Moreover, measurements, including “ground truth” recordings, are inherently noisy. To
tackle these problems, we propose OSDCap, a state-aware architecture that combines a differentiable
physical simulation with our novel neural Kalman filtering approach. Fig. 1 shows our reconstructed
poses predicted from noisy kinematics estimates as well as the estimated dynamics from a video.

OSDCap is an online filtering and dynamics estimation that can be trained in an end-to-end manner.
In detail, our approach consists of two steps, starting from a noisy kinematics reconstruction obtained
by an off-the-shelf video-based 3D human pose estimator: 1) a simulation branch that estimates joint
torques using a PD controller and computes the resulting motion, 2) an adaptive filtering stage that
combines the output of the simulation stage and the video-based kinematics input to produce a refined
motion. We follow prior work that utilizes the meta-PD algorithm for torque calculation [38, 21]
to simulate plausible motion. However, the effectiveness of the PD algorithm heavily relies on the
choice of the P and D gains [38] and on an accurate model of the human kinematic chain, which is
generally unknown. Moreover, the measurements from the monocular 3D kinematics pose estimator
contain a large amount of noise, which ultimately leads to inaccurate predictions. Shimada et al. [38]
mitigate these problem by introducing an additional offset term into the PD controller. While this
approach still produces reasonable output motion it is neither physically explainable nor consistent
with PD controllers in control theory. We aim to solve this problem at the root by taking inspiration
from control theory and propose a solution for processing the imperfect PD calculation by a learnable
Kalman filtering method [36]. The proposed Kalman filter takes the simulated motions and the
noisy 3D pose estimation as inputs, combines them, and produces an optimal state prediction as the
output. The Kalman filter effectively refines the PD controller-based simulated motions into more
plausible and realistic motions. While the Kalman filter fixes inaccurate kinematic measurements
from the 3D pose estimator it does not take different weight distributions in the human body parts into
account. We calculate an initial weight distribution – the inertia matrix – for an average human body
shape. However, as for the skeletal structure, these are only approximations that lead to inaccurate
simulations. We mitigate this issue by predicting an inertia bias matrix in each time step which is
added to the initial inertia matrix.

We demonstrated the 3D reconstruction performance of our method on the popular Human3.6M [15]
dataset, and the newer Fit3D [7] and SportsPose [14] datasets, comparing them with recent state-of-
the-art physics-based methods.

In summary, OSDCap introduces a new physics-based human motion and dynamics estimation
method leveraging a learnable Kalman filter and a learnable inertia prediction, that produces plausible
motion as well as valuable estimates of exterior forces and internal torques. By offering improved
accuracy and interpretability in human motion estimation, OSDCap presents a promising step towards
bridging the gap between computer vision and the complex physics-based human motion modeling.

2 Related Work
2.1 Kinematics 3D Human Motion Capture

Monocular 3D human motion capture is a well-studied line of research, with common approaches
that can be roughly divided into two groups, 1) end-to-end approaches that directly predict human
poses from images [39, 29], and 2) lifting from 2D [1, 26, 28, 12, 4, 30, 42, 2, 10, 44, 22, 47, 43, 31].
Recent work addresses the problem by fitting volumetric models to 2D/3D evidence, aiming to
achieve realistic human motion [27, 17, 25, 19, 20, 48, 45, 18, 23, 53, 40]. Despite the significant

2



progress, vision-based human 3D pose estimation is still an ill-posed problem, due to the loss of
depth information from the monocular setup. Therefore, captured 3D motions often contain different
types of implausibility, ranging from unnatural poses, jittering, or unrealistic body artifacts [46, 8].

2.2 Physics-based 3D Human Motion Capture

Recent studies [37, 50, 46, 8, 21] enforce physics as constraints for motion reconstruction, eliminating
implausible artifacts created by the monocular estimation, i.e. jittering, ground penetration, and
unnatural human poses.

Motion imitation using reinforcement learning (RL) is a popular approach for simulating physically
plausible results [32, 49, 50, 33, 51]. RL-based methods enforce physics constraints in the reward
functions, either from manually-designed formulas, or from physics engines. The bottleneck of
RL-based approaches is the low transferability of the learned policies to unseen motions.

Motion optimization is another common approach for physics-based human motion capture. However,
optimization problems often require a differentiable framework, thus, instead of relying on non-
differentiable physics engines, prior studies [34, 37, 46] adapt simplified motion equations [5] as
a dynamics constraint for simulated motions. More recent approaches [13, 9] manage to optimize
through non-differentiable simulation using evolutionary optimization methods [11]. Gärtner et al.
[8] implement a differentiable version of PyBullet [3], resulting in an optimizable framework with
complex physics engines. However, most optimized motion solutions, similar to RL-based solutions,
have limited adaptability to different data distributions, requiring re-optimizing on new sets of action.

Utilizing the generalizability of neural network models in an end-to-end manner is still an open line
of research, due to the difficulty of finding physical plausibility patterns from data. Rempe et al.
[35] utilizes a variational autoencoder architecture for predicting plausible motions, approximating
the dynamics simulation by a decoder network. This assumption might result in unrealistic force
prediction with respect to biomechanics literature. Li et al. [21] utilize the meta-PD controller with
learnable parameters for torque prediction, but with an additional compensation term based on root
residual forces. Zhang et al. [52] realize a transformer-based autoencoder to refine kinematics input
sequences, while integrating physics constrain inside the latent embedding. However, both Li et al.
[21] and Zhang et al. [52] make predictions based on the encoding of the full motion sample, i.e. they
require knowledge of past and future motions, therefore, limiting the applicability of the method to
offline setups, where future information is available. Shimada et al. [38] also use a meta-PD controller
for calculating the optimal joint torques, which in turn generates a simulated motion matching visual
kinematics estimation. Despite the plausibility of the estimated pose, the global precision of the
motion in world coordinate is limited and not fully addressed.

We aim to leverage physics-based approach (with meta-PD controller) on motion data captured by
monocular camera systems, in a recursive online setup, and expand the prediction to more complex
practical movements such as sports.

3 Method
This section presents our proposed approach OSDCap in detail. We start by creating an average
proxy character B based on the uniform human configuration from the Human3.6M dataset [15].
The character approximates a human body by circles and cylinders. Additionally, we leverage the
pretrained neural network TRACE [40] to obtain an initial 3D pose estimation. Without any additional
priors, OSDCap aims to predict the joint torques and external forces that drive the proxy character to
match the kinematics evidence given by TRACE. Following prior work, we employ a neural network
that predicts the parameters of a meta-PD controller which consecutively predicts the joint torques.
While related approaches [38, 21] stop here, we note that the quality of the motion given by the PD
controllers’ prediction highly depends on the realism of the videos-based kinematic estimation and
the proxy character. Since a model can always only be an approximation of the real world, this leads
to inaccurate predictions which prior work compensates for by adding an additional offset term to
the PD controller. Unfortunately, this not only introduces a non-physical assumption but through
experimentation we found that this term attributes the major part to the prediction of the PD controller.
We aim to maintain the physical plausibility of our approach by introducing a novel filtering approach
inspired by a neural Kalman filter [36] to refine and update the motion states. Additionally, at each
time step, the foot contact states and ground reaction forces are estimated directly from the motion
leading to a full description of the system dynamics. Fig. 2 shows an overview of our method.
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Figure 2: The main pipeline of OSDCap. Our approach consists of one neural network model, OSDNet
(orange), and three processing components. OSDNet takes the current system state, estimates a
Kalman gain matrix, PD gains, external force and an inertia-bias matrix. The optimal pose estimation
performs contains a Kalman filter for the current system state and the input kinematics. Yellow refers
to the algorithm’s state vectors and cyan denotes processing operations. The physics priors block
(gray) computes the inertia matrix and non-linear forces using the Composite rigid-body algorithm
and Inverse dynamics [5]. Using the PD algorithm and forward dynamics (Eq. 1), the physics
simulation block (green) updates the velocity based on the computed optimal pose and physics priors.

3.1 Preliminaries - Rigid Body Dynamics

Similar to previous studies [34, 37, 38, 46], we enforce physics constraints based on Rigid Body
Dynamics [5], inline with the Newtonian equation of motion. For a total of N keypoints, the full
human pose is represented as a vector q ∈ R6+3N , encoding the global translation and rotation in
the first 6 entries, and internal joint angle states in the remaining 3N entries. q̇ ∈ R6+3N is the
corresponding velocity vector. The motion dynamics of the captured human poses should satisfy the
Newtonian equation of motion, expressed as

M(q)q̈ = τ + λ− h(q, q̇), (1)

where M(q) ∈ R(6+3N)×(6+3N) is the inertia matrix, computed from the proxy character, q̈ ∈
R6+3N is the acceleration, τ ∈ R6+3N are the internal joint torques, λ ∈ R6+3N are the external
forces, and h(q, q̇) ∈ R6+3N is the non-linear term including gravitational, Coriolis, and centrifugal
forces, computed using inverse dynamics with zero acceleration on the proxy character [6]. Our goal
is to estimate the two vectors τ and λ that produce plausible motion dynamics.

3.2 Optimal-state Dynamics Capture

The proposed OSDCap consists of three main processing stages: an optimal pose estimation, a
physics priors calculation, and a velocity update based on physics simulation. The optimal pose
estimation phase is a filtering approach inspired by KalmanNet [36] that estimates an optimal output
pose based on the current system state and video-based 3D kinematics inputs. The physics priors
calculation computes the current inertia matrix and non-linear forces based on the proxy character
from the current system state. The physics simulation phase computes the next velocity state using
the PD algorithm and forward dynamics (Eq. 1) from the estimated optimal pose.

The required inputs for the optimal pose estimation and physics simulation are estimated by our
neural network OSDNet. OSDNet consists of two modules, one predicts Kalman gains for the Kalman
filtering, and the other predicts PD gains, external forces and inertia-bias for the physics simulation.

Optimal Pose Estimation. As shown in Fig. 2, the Kalman filtering block takes the current system
state and the videos-based kinematics pose as inputs. Following traditional Kalman filters the next
predict state is computed from the previous state. We define the state transitioning phase as

qt+1|t = qt|t + q̇t|t∆t. (2)
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The predicted positional state qt+1|t is the physics-constrained body pose. The observation matrix H
(Fig. 2) maps the predicted states qt+1|t to an observed simulated positional state. C is an adaptation
matrix to reduce the gap between observed states from videos, and observed states from physics
simulation. H and C are optimized along with OSDNet while training, but stay constant during
inference. From the current system states, a Kalman state update process is performed as

qt+1|t+1 = qt+1|t +Kt(Cq̂t −Hqt+1|t), (3)
where Kt contains the estimated Kalman gains at step t based on the current states and observations.
Inspired by [36], the Kalman gains estimation module is implemented as Gated Recurrent Units,
which have the ability to propagate the latent motion dynamics throughout the simulated motion via
the hidden states of the GRU. The prediction of Kalman gains requires information about the the
system’s state dynamics [36], thus four additional dynamics features need to be feed into OSDNet’s
GRU input, namely: observation, innovation, forward evolution and forward update. They are
calculated as

∆evolution = qt|t − qt−1|t−1

∆update = qt|t − qt|t−1

∆innovation = Cq̂t+1 −Hqt+1|t

∆observation = Cq̂t+1 − qt.

(4)

We modify the original design from [36] due to the practical reasons of our system. In self-occluded
scenarios, the noisy input q̂t often contains artifacts such as body deformation and they often last
for a period of time (approx. 10 frames). The intermediate difference between q̂t and q̂t−1 in the
original design [36] is not strong enough to model those artifacts, because they could both contain the
same incorrect kinematic estimation. We change the calculation of ∆observation as in Eq. 4 better
deal with mis-detection cases that would cause large responses in ∆observation. The pose qt|t is the
optimal state at step t and inherits the global translation estimation from kinematics observations
while retaining the physical plausibility of the human pose from the physics simulation.

Physics Simulation. The purpose of the physics simulation stage in Fig. 2 is to update the velocity
q̇t|t that best describes the dynamics of the filtering process. Therefore, the estimated pose qt+1|t+1

can be used as the target signal for the PD algorithm, calculating the joint torque τ t that maps the
predict pose qt+1|t to the optimal pose qt+1|t+1. The joint torque is predicted by the PD algorithm

τ t = κP (qt+1|t+1 − qt+1|t) + κDq̇t|t, (5)
where κP , κD are proportional and derivative gains respectively. Inspired by [38], the meta-PD
controller was applied at this stage, where κP , κD are learnable and estimated from OSDNet. By
using the filtered optimal pose as the target, no unrealistic temporal filtering or optimization is needed
to refine the noisy kinematics inputs.

Additionally, the external forces are also estimated by OSDNet, assuming the source of external
forces comes only from contact points and is computed as

λt =
2∑
c

Jc
tρ

c
tf

c
t , (6)

where Jc
t is Jacobian matrix that maps linear velocity at contact point c to rotational velocity of every

other joints, ρc
t and f ct are the contact probability and the linear force vector at contact c. The three

vectors are separately estimated by OSDNet.

Inertia Estimation. Since we do not have access to the real bone length and mass distribution of
the human, there exists a knowledge gap between simulated human character and the real human
subject, the inertia tensor computed by the composite rigid-body algorithm is sub-optimal. OSDNet
is designed to also estimate an inertia bias term Mb

t that reduces this knowledge gap. The required
acceleration to drive the current simulated pose to the next states is calculated as in Eq. 7.

q̈t = (M(qt)
−1 +Mb

t)(τ t + λt − h(qt, q̇t)), (7)

To update the system state, finite interpolation is applied, using the newly calculated acceleration q̈t.
The update process is given by

q̇t+1|t+1 = q̇t|t + q̈t∆t, (8)
where q̇t+1|t+1 is the updated system state that represents the current system dynamics, under physics
constraints from gravity and contact forces. The system now proceeds back to the transitioning phase
in Eq. 2, creating a closed loop process that works recursively.
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3.3 Objective Losses

To reconstruct the optimal state, we define the overall objective loss L as a weighted sum of multiple
loss functions as

L =
1

T

T∑
t

(
ω1L

pt+1|t+1

t + ω2L
qt+1|t+1

t + ω3L
pt+1|t
t + ω4L

qt+1|t
t + ω5L

c
t + Lreg

t

)
, (9)

where ω1 = 0.5, ω2 = 0.1, ω3 = 0.7, ω4 = 0.2, ω5 = 0.4 are weighting factors. The optimal
reconstruction losses L

qt+1|t+1

t and L
pt+1|t+1

t measure the L1 distance between the estimated optimal
pose qt+1|t+1 and its corresponding 3D keypoints (obtained from forward kinematics) with the
ground-truth poses qGT

t+1 and ground-truth 3D keypoints pGT
t+1. The supervision for predict pose

qt+1|t is carried out similarly, ensuring the correct behaviour of the physics simulation. Lc
t is the

contact loss, using Binary Cross Entropy measurement between the predicted contact probabilities ρct
of two feet with pseudo-ground-truth contact binary labels ρ̂ct . We generate the ground truth contact
labels for training based on the foot-ground distances of ground-truth 3D keypoints. The individual
losses are computed as

L
pt+1|t+1

t =
N∑

∥pGT
t+1 − pt+1|t+1∥, L

qt+1|t+1

t =

6+3N∑
∥qGT

t+1 − qt+1|t+1∥,

L
pt+1|t
t =

N∑
∥pGT

t+1 − pt+1|t∥, L
qt+1|t
t =

6+3N∑
∥qGT

t+1 − qt+1|t∥,

Lc
t = −

2∑
c=1

ρ̂ct log(ρ
c
t) + (1− ρ̂ct) log(1− ρct).

(10)

By re-introducing a part of the noisy kinematics measurements into the prediction, an additional
regularization loss Lreg

t is beneficial to ensure smoothness and plausibility of the output motions. The
regularization consists of three objectives: 1) Lacc

t is the acceleration loss, computed as the absolute
difference between q̈t and q̈t−1, 2) Lvel

t is the velocity loss, measuring the distance between the
first-order difference of ground-truth motion qGT

t+1 and of estimated optimal qt+1, and 3) The friction
loss Lfric

t encourages the feet to stay in the same position during ground contact. With the regulator
weighting of ω6 = 0.14, ω7 = 0.03, ω8 = 0.28, Lreg

t is expressed as

Lreg
t = ω6L

acc
t + ω7L

vel
t + ω8L

fric
t

= ω6

6+3N∑
∥q̈t − q̈t−1∥+ ω7

6+3N∑
∥qGT

t+1 − qGT
t ∥ − ∥(qt+1 − qt)∥+ ω8

2∑
c=1

ρct∥(pc
t+1 − pc

t)∥.

(11)
4 Experiments

4.1 Datasets

We evaluate our approach on two human motion benchmark datasets. The first and main dataset
is the popular Human3.6M dataset [15]. The dataset contains indoor 3D human motion capture
data, including 2D and 3D keypoints, skeleton joint angles, and videos. Seven actors perform 15
different actions. Following previous work [38, 21], the first five subjects (S1, S5, S6, S7, S8) are
used for training, and the last two (S9, S11) for evaluation. According to [37], only actions that
have foot-ground contacts were considered. Details about the selected sequences are found in the
supplemental document C.

The second database is Fit3D [7]. Fit3D contains indoor motion capture data for a variety of exercises.
We split the data by taking samples from the 6 actors (s03, s04, s05, s07, s08, s10) for training, and 2
actors (s09, s11) for evaluation, inspired by the setup from [37] on Human3.6M.

Since the scene setting from Human3.6M and Fit3D are very similar, we perform an additional evalu-
ation on the new dataset SportsPose [14], which consists of video-based sport action sequences with
corresponding ground truth 3D keypoints. We use this dataset to show out-of-domain performance,
since the 3D kinematics estimator TRACE [40] has not been trained on it.
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4.2 Implementation Setups
The initial motion observation is generated by TRACE [40]. As suggested by [38, 8], all extracted
motions are down-sampled from 100Hz to 50Hz. The samples are aligned to the world origin in the
first frame, then split into 100-frame sub-sequences to utilize batch training and evaluation. The proxy
character is created with respect to the provided skeleton metadata in Human3.6M [15], including
the mean bone lengths and joint angles configuration. The inertia matrix and bias force (including
gravitational, Coriolis, and centrifugal forces) are calculated online using RBDL [6], based on the
state of the proxy character.

We train OSDNet in an end-to-end procedure. OSDNet consists of three fully-connected layers,
followed by six different heads for PD gains (κP , κD), inertia bias (Mb), contact probability (ρc),
linear external force from the ground (λ), and Jacobian matrix (J). These six entries are responsible
for the motion simulation phase, following Eq. 1 and 6. The GRU units in the proposed optimal-state
prediction module (cf. Fig. 2) take current system states, additional dynamics features (Eq. 4), and its
hidden state hgru as inputs. The output is the Kalman gain-matrix for the Kalman update process. For
a details descriptions of the OSDNet’s architecture, please refer to the supplementary document A.

OSDNet is trained for 15 epochs with a base learning rate of 5e−4 and a batch size of 64. The
learning rates from all training processes are scheduled to reduce by a factor of 10 at epochs 10 and
13. LeakyReLU and Layernorm are used as the activation function and normalization for each linear
layer of every module. We also apply a training warm-up strategy on the first 5 epochs by increasing
the learning rate by factor of 2 to the base learning rate at epoch 5. This helps reducing the impact of
unstable physics simulation at the beginning of training, mitigating gradient explosion.

4.3 Metrics
There are two standard protocols for the evaluation on Human3.6M [15]. Both of these protocols
assess the Mean Per Joint Position Error (MPJPE). This metric represents the average Euclidean
distance between the reconstructed joint coordinates and the provided ground truth 3D keypoints.
While the first protocol directly calculates the MPJPE for root-aligned poses, the second protocol
initially employs a rigid alignment between the poses which is called MPJPE-PA (MPJPE Procrustes
Aligned). Since our approach estimates poses in a global coordinate system, we additionally calculate
the MPJPE-G in global coordinates which is the MPJPE without frame-wise root alignment. In
addition to the different variations of the MPJPE, the Percentage of Correct Keypoints (PCK) measures
the percentage of predicted joints that are within a distance of 150mm or less from their corresponding
ground truth joint. Unlike the PCK, the CPS measurement [43] determines a pose as correct only if
all its joints are estimated correctly according to a threshold value, similar to the PCK. To ensure
independence from a specific threshold value, the CPS computes the area under the curve within
the 1mm to 300mm threshold range. To evaluate the global translation error, not accounting for
the differences between poses, we report the global root position (GRP) error, which calculates the
Euclidean distance between only the root joints. We also use the acceleration (Accel) metric from
[19] to measure the jitter of the output motions. Accel is computed as the second-order difference
between 3D keypoints across all sequence frames.

4.4 Comparison with State of the Art
We report the quantitative results of OSDCap and other related work on different metrics in Tab. 1.
Due to the novelty of dynamics-based motion capture the evaluation protocols differ significantly
across different approaches. Here, we make an effort of consistently structuring approaches with
similar evaluation protocols to achieve a fair comparison. To be as comparable as possible we follow
the most used protocol introduced by Shimada et al. [37]. We outperform all online approaches
in MPJPE, PCK and CPS. For the global error MPJPE-G, we improve upon state of the art by a
large margin. Notably, DnD [21] achieves a lower MPJPE-PA. However, DnD’s estimation depends
on encoding the full action sequence, extracted from temporal convolutions, assuming significantly
more knowledge which is not suitable for an online setting. Moreover, AMASS [25] is used as
an additional training data source, thereby, not following the standard protocols for Human3.6M.
SimPoE [50] achieves best smoothness performance on the Accel metric, due to being constrained by
a high-frequency physics engine. However, as the discussion in Sec. 1, only relying on modeling the
physics can lead to sub-optimal human pose quality. IPMAN-R [41] also shows good performance
in terms of MPJPE-PA. However, it is a single-image approach that contains physically inspired
constraints such as ground penetration, but no dynamics. The MPJPE-PA, i.e. the MPJPE after

7



Methods Phys. Onl. MPJPE ↓ MPJPE-G ↓ MPJPE-PA ↓ PCK ↑ CPS ↑ GRP ↓ Accel ↓
[mm] [mm] [mm] [%] [mm] [mm] [mm/s2]

Vnect [27] ✖ ✔ 89.6 - 62.7 85.1 - 185.1 -
HMMR [17] ✖ ✔ 79.4 - 55.0 88.4 - 231.1 -
HMR [16] ✖ ✔ 78.9 - 54.3 88.2 - 204.2 -
TRACE [40] ✖ ✔ 78.1 152.7 62.5 88.3 169.1 125.9 19.2
VIBE [19] ✖ ✔ 68.6 207.7 43.6 - - - 23.4

Gärtner et al. [9] ✔ ✖ 84.0 143.0 56.0 - - - -
DiffPhy [8] ✔ ✖ 81.7 139.1 55.6 - - - -
PhysPT [52] ✔ ✖ 52.7 - 36.7 - - - -
*DnD [21] ✔ ✖ 52.5 - 35.5 - - - -

PhysCap [37] ✔ ✔ 97.4 - 65.1 82.3 - 182.6 -
NeurPhys [38] ✔ ✔ 76.5 - 58.2 89.5 - - -
Xie et al. [46] ✔ ✔ 68.1 - - - - 85.1 -
IPMAN-R [41] ✔ ✔ 60.7 - 41.1 - - - -
SimPoE [50] ✔ ✔ 56.7 - 41.6 - - - 6.7

OSDCap ✔ ✔ 54.8±0.1 132.8±1.6 39.8±0.1 95.5±0.1 197.7±0.1 119.1±1.8 8.4±0.2

Table 1: Quantitative comparison on the Human3.6M dataset [15]. Related methods are separated into
two main categories: kinematics (top) and physics-based (bottom). In addition only [37, 38, 46, 50]
retains the online prediction ability of the video-based kinematics estimations. Bold numbers denote
the best evaluation score on each metric. Our approach achieves state-of-the-art in MPJPE and PCK
among online approaches, and competitive results on GRP and Accel. Note that *DnD [21] does not
follow standard evaluation protocols by using additional training data.

Dataset Methods MPJPE ↓ MPJPE-G ↓ MPJPE-PA ↓ PCK ↑ CPS ↑ GRP ↓ Accel ↓
[mm] [mm] [mm] [%] [mm] [mm] [mm/s2]

Fit3D [7] TRACE [40] 85.4 131.2 65.2 85.5 166.6 178.1 20.2
OSDCap 58.7 73.8 42.6 96.7 209.4 47.2 8.2

SportsPose [14] TRACE [40] 97.3 361.9 71.1 60.1 168.1 333.0 15.8
OSDCap 71.7 113.6 52.4 68.8 190.0 90.2 10.9

Table 2: Evaluation results on Fit3D [7] and SportsPose [14]. OSDCap improves the kinematics
baseline TRACE by a large margin across all metrics. We fine-tune OSDCap (pretrained on Hu-
man3.6M) on SportsPose’s ground truth keypoints for additional 15 epochs. Even with very noisy
inputs from SportsPose, OSDCap still manage to retain the robust estimation thanks to the Kalman
filtering process, especially on global translation metrics (MPJPE-G and GRP).

pose-wise rigid alignment, is reported for completeness. While being a reasonable metric for single-
image pose estimation, we argue that for physics-based pose estimation, rigid alignments distort the
interpretation of the results since they remove all information about global rotation.

We additionally evaluate OSDCap on the more challenging motions in the Fit3D dataset [7]. Tab. 2
shows the results. Since Fit3D is recorded in the same setting as Human3.6M, we additionally evaluate
on the newer SportsPose [14] dataset to show the generalizability to other motion domains. We
improve on the kinematics baseline TRACE by a large margin, especially for global metrics as shown
by the MPJPE-G and GRP. Fig. 3 illustrates the benefits of OSDCap. OSDCap significantly reduces
the impact of noisy and inaccurate kinematics input when encountering high depth-uncertainty from
monocular views, while retaining the correct estimation with respect to the ground truth. The bars on
the left represent the predicted Kalman gains, where the y-direction is the direction of the optical
axis which indicates a predicted low trust in the kinematics prediction and leads the Kalman filter to
prefer the physics simulation. Fig. 3b shows an example (side view) of OSDCap adjusting unnatural
leaning into a physically plausible pose by our physics simulation.

4.5 Ablation study

4.5.1 Optimal-State Estimation

We conduct an ablation study to verify the impact of the optimal-state estimation process on simulated
motions. We sample a subset of data consisting of only the first action class of all subjects in the
camera view 60457274 from Human3.6M [15]. S9 and S11 are for evaluation, and the rest for
training. This setup creates a suitable challenge to test the proposed method, limiting the types of
motion that are seen during training. Tab. 3 shows the original simulated result from straight-foward
smoothing methods, PD controller and the improvement by OSDCap.
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Methods #params. MPJPE ↓ MPJPE-G ↓ MPJPE-PA ↓ PCK ↑ GRP ↓ Accel ↓
[mm] [mm] [mm] [%] [mm] [mm/s2]

TRACE [40] - 78.4 153.9 62.7 88.1 128.2 19.7
TRACE (median) - 78.2 153.1 62.6 88.2 127.4 13.6
TRACE (Gaussian) - 77.8 162.4 62.4 88.5 126.7 6.5
PD (only) 8.4M 87.7 145.0 67.7 82.7 105.9 6.4
PD (Gaussian) 8.4M 77.7 136.0 61.0 86.5 103.2 5.2

OSDCap (no bias) 6.6M 55.0 111.9 40.0 95.7 94.9 9.5
OSDCap 7.2M 54.0 111.0 40.0 95.9 94.8 8.7

Table 3: Ablation study on the impact of OSDNet on a subset of Human 3.6M [15]. Naive methods
such as median or Gaussian smoothing cannot help with the plausibility of the pose. Without our
Kalman filtering process, the PD controller cannot train and estimate the correct dynamics. We also
study the effects of the inertia-bias M b and some performance gains has been recorded.

(a) Incorrect global translation. (b) Unnatural leaning artifacts.

Figure 3: Qualitative results of OSDCap (cyan) compared to the kinematics input [40] (purple), with
corresponding ground truth pose (red). Left: Filtering results of OSDCap on a sample from SportsPose
[14], where the kinematics estimation is very inaccurate along the camera’s depth dimension. The
Kalman gain at the y-axis (optical axis) is greatly decreased due to the incorrect translation of the
kinematics input. Therefore, the simulated state is preferred. Right: Example from Fit3D [7], with an
unnaturally leaning pose caused by depth ambiguities. Unlike Fig. 3a, the three poses are manually
separated apart for better visualization. OSDCap recovers the physically plausible upright pose.

Naive approaches for smoothing the noisy input estimation apply temporal filters such as median or
Gaussian filter. However, simply filtering the signal does not help the motion to become physically
plausible, unnatural poses still prevail. As shown in Tab. 3, naive filtering reduces the jitter of the
input motions (reduction in Accel measurements), but does not help with any other metrics.

To ensure the plausible physics constraints of the forward dynamics process (unlike [37, 38]), we
employ external forces into the calculation, which leads to a much more challenging scenario for the
PD controller. This can be observed in Tab. 3 where the PD controller struggles to reconstruct the
motions, even with temporal filtering on the input signals and increase the number of parameters. By
using our optimal-state estimation module, the PD controller has a significantly better performance,
leading to the optimal results for online human motion reconstruction.

4.5.2 Comparison to classical Kalman Filter

The biggest challenge of using classical Kalman filter for OSDCap is the tuning of unknown noise
covariances of both the kinematic input TRACE [40] and the simulated result from PD controller. Our
choice of a learnable Kalman filter [36] relieves us from trial-and-error process of finding the correct
noise covariance matrices and achieves the best results. We conducted an additional experiment
where we replace our learnable filter by a traditional one, the results are shown in Tab. 4.

Assuming noise covariances that are constant over time and equal in all directions, the ratio between
the noise covariance of the simulated PD controller (process noise) and the noise covariance of the
kinematic input TRACE (measurement noise) governs the quality of the Kalman filter estimates.
The evaluation results can be seen in Tab. 4, where we use constant noise covariances with ratios
100/1, 10/1, 1/1, 1/10, 1/100 between process noise and measurement noise. While a classical
Kalman filter approach increases the result marginally, optimal results are difficult to find.
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Method MPJPE ↓ MPJPE-G ↓ MPJPE-PA ↓ PCK ↑ GRP ↓ Accel ↓
[mm] [mm] [mm] [%] [mm] [mm/s2]

TRACE 78.4 153.9 62.7 88.1 128.2 19.7
cKF_kin_only 78.3 153.0 63.0 87.9 127.4 7.8
cKF_100/1 60.9 120.7 43.4 94.3 102.0 7.7
cKF_10/1 61.5 122.6 43.7 94.4 103.0 9.1
cKF_1/1 59.9 117.6 43.2 94.8 100.1 6.5
cKF_1/10 63.6 124.0 44.3 93.8 102.7 11.5
cKF_1/100 65.3 132.3 44.0 93.5 110.2 9.7

OSDCap 54.0 111.0 40.0 95.9 94.8 8.7

Table 4: Ablation study on the performance of the classical Kalman filtering (cKF) on the ablation set
from the Human 3.6m dataset. Due to unknown noise covariance matrices, we tested with constant
noise covariances with ratios 100/1, 10/1, 1/1, 1/10, 1/100. The performance of applying Kalman
filtering on only the kinematics input TRACE [40] (cKF_kin_only) is also conducted.

Method GP ↓ GD ↓ Friction ↓ Velocity ↓ Foot-skating ↓
[mm] [mm] [mm] [mm/s] [%]

TRACE 2.6 12.5 31.5 22.4 37.0
OSDCap 5.3 8.2 14.6 12.8 15.2

Table 5: Additional physics-based measurements for kinematics input TRACE and OSDCap. Because
the ground penetration (GP) metric does not correctly reflect the foot-ground contact quality, i.e.
floating above the ground is ignored and produces no error, we propose using an additional ground-
distance (GD) metric. For foot-skating, we followed DiffPhy to compute the percentage of frames
that contain skating artifacts over the whole sequence.

4.5.3 Additional physics-based metrics

We provide additional metrics for physic-based measurements introduced in Sec. 3.3. The results can
be seen in Tab. 5. OSDCap helps refining the input kinematics on most of the physics-based metrics.
Note that TRACE[40] outperforms our approach in the ground penetration metric. The reason is that
in most cases the TRACE predictions float above the ground, which gives a low penetration error but
can be seen as equally bad. Thus, we additionally provide a ground distance metric (GD) to reflect
the correct foot-ground quality during contact. The value is computed as the mean absolute vertical
differences between foot contact points and ground plane during contact duration, expressed as

1

6

6∑
c=1

ρc|pOSD
c − pGT

c |, (12)

where ρc is the predicted binary label of contact, pOSD
c and pGT

c are the 3D vertical positions of
contact. There are a total of six contact points considered, three contacts in each foot accounting
for heel, foot and toe. The joint configuration follow Human 3.6M skeleton [15], with bone length
between joints optimized during training and fixed during inference.

5 Conclusion
This paper presents OSDCap, a new physics-based approach to reconstruct kinematics-based human
motion captured from monocular videos. We found that previous approaches relying only on a
physical simulation produce non-optimal motions due to unavoidable imperfections in the physical
model and noisy measurements. This led us to introduce a learnable Kalman filtering for refining
implausible motions simulated by a PD controller with noisy kinematic evidence as the target. In
comparison with related research on physics-based motion capture, the proposed approach achieves
state-of-the-art results on the Human3.6M, Fit3D, and SportPose datasets, especially on the global
estimation of pose trajectories.

Limitations and future work. While taking a step into highly accurate predictions of the full body
dynamics, our physical external forces are still not comparable to directly measuring with mechanical
force plates. However, our approach only requires a single camera, e.g. from a smartphone, instead
of a motion capture studio or other expensive hardware, such as force plates, to estimate meaningful
forces. In the future, detailed modeling for the hands, feet, and body shape, will be investigated,
targeting more realistic motion reconstruction.
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Supplementary Materials
A Network details

Fig. 4 shows the architecture of the proposed OSDNet. The network consists of multiple branches
for Kalman gains, PD controller gains, inertia-bias, and external force estimations. The Kalman esti-
mation module takes the combined inputs from the GRU’s and current states embedding, outputting
the Kalman gains matrix. The diagonal of Kalman gain matrix is initialized to be approximately 0.5
by modifying the bias of the last linear layer. This is due to the instability of the PD branch at the
beginning of training, which may cause gradient explosion if the Kalman gains are too low (zero
trust in the kinematics stream). The hidden states hGRU of the GRU unit are updated throughout the
simulated sequence and used as one of the inputs for the next prediction.

Similar to [38], we scale κP and κD differently for global translation, global rotation, and joint
angles. The initial scaling are [30.0, 14.0, 1.9] for κP and [1.5, 0.1, 0.05] for κD. Notice that our
initial gains are much lower than [38], because we want to explain the global motion by external
reaction forces, avoiding the need for "unrealistic" residual force. These scalings are further optimized
along with the training of OSDNet.

OSDNet estimates the inertia-bias matrix Mb
t . To ensure the symmetric positive definite (SPD) of the

inertia matrix, we estimate an intermediate Mbase
b
t and compute Mb

t = Mbase
b
t + (Mbase

b
t)

⊺.

The Jacobian branch of OSDNet takes the current state embedding as input and outputs the Jacobian
matrix that maps end-effector linear velocity to rotational velocity of each joints. The contact and
external force branch takes the current feet positions and velocity as additional inputs to the state
embedding. The contact branch outputs are mapped by a sigmoid function to create the contact
probability ρc

t . The external force branch outputs the linear reaction force for two feet, with the
vertical-axis initialized with the weight (9.81 ∗ mass) of the proxy character.

The adaptation matrix C and observation matrix H are initialized as identity matrices. We optimize
them during the training process, and they are kept constant during inference.

Figure 4: Architecture of the proposed OSDNet. The network consists of 3 hidden layer of size 512 to
generate system state’s embedding. Based on the state embedding, the inertia-bias matrix Mbase

b
t , PD

gains κP ,κD, Jacobian matrix Jt, contact probability ρc
t and external force λt are estimated. The

proposed GRU unit with size 128 takes the dynamics features (mentioned in Sec. 3.2) as input, the
Kalman gain matrix Kt is estimated from the concatenation of GRU and the state embedding. The
hidden state hgru is continuously updated at each time step. For a better estimation of foot-ground
contacts and reaction forces, we also feed the feet position and linear velocity as additional inputs.
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B Human body proxy model

The simulated proxy character is created based on the body configuration of the SMPL model [24].
Bone lengths and weight distribution are the same as in the Human 3.6M metadata of the ’common’
human body [15]. Fig. 5 is a visualization of the proxy character, composed of spheres and cylinders.
The bone lengths are treated as extra learnable parameters and optimized along with the model during
the training process. During testing, the bone lengths are fixed to the ones learned during training, i.e.
no ground truth bone lengths are used when testing.

Figure 5: The simulated proxy character used in the paper. The RBDL library [6] is used to extract
the inertia matrix M t and bias forces h(q, q̇).

C Dataset details

As mention in Sec. 4.1, we evaluate our proposed method on Human3.6M [15], Fit3D [7], and
SportsPose [14]. For Human3.6M, we follow prior works [37, 38, 21] to consider actions that only
involve foot-ground contact (S1, S5, S6, S7, S8) for training and (S9, S11) for testing. For [7], we
apply the same protocol with only foot-ground available actions are used: (s03, s04, s05, s07, s08,
s10) for training and (s09, s11) for testing. For SportsPose, we only consider sequences that contain
human at time step 0: (S02, S03, S05, S06, S07, S08, S09) for fine-tuning and (S12, S13, S14) for
evaluation.

TRACE [40] is used to extract the kinematics input from the data. All extracted motions are aligned
at the origin in the first time step, eliminating the effect of wrongly calibration process. Each action is
then equally split into 100-frame sub-sequences, utilizing batch processing for training the OSDNet.

D Contact labels

Since there are ground truth contact labels are provided in all three datasets [15, 7, 14], we generate
our own annotations based on the ground truth keypoints. To create contact labels, ground truth feet
3D positions are considered. If a foot position is within 10 cm (already compensated for shoes and
inconsistent MoCap sensor placement) above the ground plane and also not moved more than 2cm
from the previous frame, it is labeled as a valid contact point. Similar protocol is applied for both left
and right foot. The foot-ground contacts are modelled directly by the OSDNet and automatic data
annotation, using the ground truth 3D poses from the training data set.

E Global rotation

To mitigate the Gimbal lock problem in the original Euler representation of Human3.6M [15], we
convert all root rotation (d.o.f 3rd to 6th of the state vector qt|t) into quaternions quatt|t = (x, y, z, w),
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(a) Tennis (b) Baseball

(c) Football (d) Volleyball

Figure 6: Example results on SportsPose [14] test data. Here we show four out of five action classes
of SportsPose [14] that have foot-ground contacts. Qualitatively OSDCap matches the provided
ground truth much better than the kinematics input TRACE.

with the real part at the end. Since quaternions are not a linear representation, the computation of
quaternion differences is given as

∆quatt|t = quatt+1|t+1 ∗ quat−1
t|t . (13)

∆quatt|t is the input error term for the PD controller for computing the corresponding root torque
by Eq. 5 and Eq. 1. The procedure for finite integration (during the state transitioning stage) from
state vector qquat

t|t to the predict state qquat
t+1|t given the system state vector q̇quat

t in quaternions is
expressed as

qquat
t+1|t = qquat

t|t + 0.5(q̇quat
t ∗ qquat

t|t )∆t. (14)

F Computing resources

The proposed pipeline of OSDCap was trained and evaluated on the NVIDIA-A100 GPU with 40Gb
of memory. In average, OSDCap requires an additional 0.02 second on top of the processing time of
the kinematics estimation [40] on each frame. Each ablation study in 4.5 takes 45 minutes to train and
evaluate. The full training and testing on Human3.6M consumes approximately 2 hours, on Fit3D 1
hour, and on SportsPose 15 minutes.

Besides, we also train and evaluate OSDCap on multiple random seed values to demonstrate the
reproducibility of results. Table 1 presents the means and standard deviations of the evaluation results
across multiple random seeds from 0 to 4. We did not report error bars for every other experiment
since it would be too computationally expensive.
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Figure 7: Qualitative results when projecting the SMPL body model from the OSDCap poses back to
the input 2D images. The overlayed SMPL models are shown in sparse blue point cloud to maximize
the visibility of the input human pose.

G Additional results

One can refer to our additional supplementary material for a better visualization of the OSDCap recon-
structions against the kinematics input and ground truth. Some example footage on the challenging
SportsPose dataset can be seen in Fig. 6.

Additional visualization of estimated pose overlayed on 2D input images can be found in Fig. 7.
There is always a trade-off between the reprojection error and the model-based assumptions. In our
case the physics simulation uses stronger assumptions than a purely kinematics-based model. On the
other hand, it produces more plausible motion as shown in Tab. 1 of the main paper and Tab. 5.

Despite not being a training objective during training, the re-projected poses match well with the
input humans in the input image as shown in Fig. 7. The slight offset is due to the mis-match bone
length between the proxy character and the actual testing human subjects. An adaptive human shape
estimation would be investigated in the future.
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction accurately reflect the paper’s contributions and
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• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
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2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
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• The answer NA means that the paper has no limitation while the answer No means that
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violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: There is no theoretical result in the paper.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The detailed experiment setting can be found in the experiments section 4. The
detailed architecture of the model can be found in the Appendix A.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: The paper will provide open access to the data and code, with sufficient
instructions to faithfully reproduce the main experimental results in the final version.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The details can be found in the Experiment section 4.2.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We report the mean and standard deviation for the main experiment 4 on
Human3.6M, with five different random seeds. However, we did not do the same for other
experiments because it would be too computationally expensive.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The computer resources we used are specified in Appendix F.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: There are no obvious negative societal impacts of the work performed.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The work does not have a high risk for misuse such that safeguards are needed.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The creators or original owners of assets (e.g., code, data, models), used in the
paper are properly credited.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: No new assets is introduced in the paper.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Not applicable.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Not applicable.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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