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Abstract

We prove rich algebraic structures of the solution space for 2-layer neural net-1

works with quadratic activation and L2 loss, trained on reasoning tasks in Abelian2

group (e.g., modular addition). Such a rich structure enables analytical construc-3

tion of global optimal solutions from partial solutions that only satisfy part of the4

loss, despite its high nonlinearity. We coin the framework as CoGO (Composing5

Global Optimizers). Specifically, we show that the weight space over different6

numbers of hidden nodes of the 2-layer network is equipped with a semi-ring7

algebraic structure, and the loss function to be optimized consists of monomial8

potentials, which are ring homomorphism, allowing partial solutions to be com-9

posed into global ones by ring addition and multiplication. Our experiments show10

that around 95% of the solutions obtained by gradient descent match exactly our11

theoretical constructions. Although the global optimizers constructed only re-12

quired a small number of hidden nodes, our analysis on gradient dynamics shows13

that overparameterization asymptotically decouples training dynamics and is ben-14

eficial. We further show that training dynamics favors simpler solutions under15

weight decay, and thus high-order global optimizers such as perfect memorization16

are unfavorable.17

1 Introduction18

Large Language Models (LLMs) have shown impressive results in various disciplines (OpenAI,19

2024; Anthropic; Team, 2024b,a; Dubey et al., 2024; Jiang et al., 2023), while they also make sur-20

prising mistakes in basic reasoning tasks (Nezhurina et al., 2024; Berglund et al., 2023). Therefore,21

it remains an open problem whether it can truly do reasoning tasks. On one hand, existing works22

demonstrate that the models can learn efficient algorithms (e.g., dynamic programming (Ye et al.,23

2024) for language structure modeling, etc) and good representations (Jin & Rinard, 2024; Wijmans24

et al., 2023). Some reports emergent behaviors (Wei et al., 2022) when scaling up with data and25

model size. On the other hand, many works also show that LLMs cannot self-correct (Huang et al.,26

2023), and cannot generalize very well beyond the training set for simple tasks (Dziri et al., 2023;27

Yehudai et al., 2024; Ouellette et al., 2023), let alone complicated planning tasks (Kambhampati28

et al., 2024; Xie et al., 2024).29

To understand how the model performs reasoning and further improve its reasoning power, people30

have been studying simple arithmetic reasoning problems in depth. Modular addition (Nanda et al.,31

2023; Zhong et al., 2024), i.e., predicting a + b mod d given a and b, is a popular one due to its32

simple and intuitive structure yet surprising behaviors in learning dynamics (e.g., grokking (Power33

et al., 2022)) and learned representations (e.g., Fourier bases (Zhou et al., 2024)). Most works34

focus on various metrics to measure the behaviors and extracting interpretable circuits from trained35

models (Nanda et al., 2023; Varma et al., 2023; Huang et al., 2024). Analytic solutions can be36
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3 DECOUPLING L2 LOSS FOR REASONING TASKS OF ABELIAN GROUP

constructed and/or reverse-engineered (Gromov, 2023; Zhong et al., 2024; Nanda et al., 2023) but it37

is not clear how to construct a systematic framework to explain and generalize the results.38

In this work, we systematically analyze 2-layer neural networks with quadratic activation and L239

loss on predicting the outcome of group multiplication in Abelian group G, which is an extension40

of modular addition. We find that global optimizers can be constructed algebraically from small41

partial solutions that are optimal only for parts of the loss. We achieve this by showing that (1) for42

the 2-layer network, there exists a semi-ring structure over the weights space across different order43

(i.e., number of hidden nodes or network width), with specifically defined addition and multipli-44

cation (Sec. 4.1), and (2) the L2 loss is a function of monomial potentials (MPs), which are ring45

homomorphisms (Theorem 1) that allow compositions of partial solutions into global ones using46

ring addition and multiplication.47

As a result, our theoretical framework, named CoGO (i.e., Composing Global Optimizers), success-48

fully constructs two distinct types of Fourier-based global optimizers of per-frequency order 4 (or49

“2×2”) and order 6 (or “2×3”), and a global optimizer of order d2 that correspond to perfect mem-50

orization. Empirically, we demonstrate that around 95% of the solutions obtained from gradient51

descent (with weight decay) have the predicted structure and match exactly with our theoretical con-52

struction of order-4 and order-6 solutions. In addition, we also analyze the training dynamics, and53

show that the dynamics favors low-order global optimizers, since global optimizers algebraically54

connected by ring multiplication can be proven to also be topologically connected. Therefore, high-55

order solution like perfect memorization is unfavorable in the dynamics. When the network width56

goes to infinite, the dynamics of monomial potentials becomes decoupled, demystifying why over-57

parameterization improves the performance.58

To our best knowledge, we are the first to discover such algebraic structures inside network training,59

apply it to analyze solutions to reasoning tasks such as modular additions, and show our theoretical60

constructions occur in actual gradient descent solutions.61

2 Related Works62

Algebraic structures for maching learning. Many works leverage symmetry and group structure63

in deep learning. For example, in geometric deep learning, different forms of symmetry are incor-64

porated into network architectures (Bronstein et al., 2021). However, they do not open the black65

box and explore the algebraic structures of the network itself during training.66

Expressibility. Existing works on expressibility (Li et al., 2024; Liu et al., 2022) gives explicit67

weight construction of neural networks weights (e.g., Transformers) for reasoning tasks like au-68

tomata, which includes modular addition. However, their works do not discover algebraic structures69

in the weight space and loss, nor learning dynamics analysis, and it is not clear whether the con-70

structed weights coincide with the actual solutions found by gradient descent, even in synthetic data.71

Fourier Bases in Arithmetic Tasks. Existing works discovered that pre-trained models use Fourier72

bases for arithmetic operations (Zhou et al., 2024). This is true even for a simple Transformer, or73

even a network with one hidden layer (Morwani et al., 2023). Previous works also construct ana-74

lytic Fourier solutions (Gromov, 2023) for modular addition, but with the additional assumption of75

infinite width, unaware of the algebraic structures we discover. Existing theoretical work (Morwani76

et al., 2023) also shows group-theoretical results on algebraic tasks related to finite groups, also for77

networks with one-hidden layers and quadratic activations. Compared to ours, they use the max-78

margin framework with a special regularization (L2,3 norm) rather than L2 loss, do not characterize79

and leverage algebraic structures in the weight space, and do not analyze the training dynamics.80

3 Decoupling L2 Loss for reasoning tasks of Abelian group81

Basic group theory. A set G forms a group, which means that (1) there exists an operation · (i.e.,82

“multiplication”): G×G 7→ G and it satisfies association: (g1 ·g2)·g3 = g1 ·(g2 ·g3). Often we write83

g1g2 instead of g1 · g2 for brevity. (2) there exists an identity element e ∈ G so that eg = ge = g,84

(3) for every group element g ∈ G, there is a unique inverse g−1 so that gg−1 = g−1g = e. In some85

groups, the multiplication operation is commutative, i.e., gh = hg for any g, h ∈ G. Such groups86

are called Abelian group. Modular addition forms a Abelian (more specifically, cyclic) group by87

noticing that there exists a mapping a 7→ e2πai/d and a+b mod d is e2πai/d ·e2πbi/d = e2π(a+b)i/d.88
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Figure 1: Overview of proposed theoretical framework CoGO. (1) The family of 2-layer neural networks, Z ,
form a semi-ring algebraic structure (Theorem 2) with ring addition and multiplication (Def. 5). Z =

⋃
q≥0 Zq

where Zq is a collection of all weights with order-q (i.e., q hidden nodes). (2) For outcome prediction of Abelian
group multiplication, the MSE loss ℓ(z) is a function of monomial potentials (MPs) rk1k2k(z) and rpk1k2k(z)
(Theorem 1), which are ring homomorphism (Theorem 3). (3) Thanks to the property of ring homomorphism,
global optimizers to MSE loss ℓ(z) with quadratic activation can be constructed algebraically from partial
solutions that only satisfy a subset of constraints (Sec. 5.1) using ring addition and multiplication, instead of
running gradient descent. Examples include Fourier solution zF6 (Corollary 2) and zF4/6 (Corollary 4) and
perfect memorization solution zM (Corollary 3). In Sec. 6, we analyze the role played of MPs in gradient
dynamics, showing that the dynamics favors low-order global optimizers (Theorem 6) under weight decay
regularization, and the dynamics of MPs become decoupled with infinite width (Theorem 7). In Sec. 7 we
show that the gradient descent solutions match exactly with our theoretical construction.

Basic Ring theory. A set Z forms a ring, if there exists two operations, addition + and multipli-89

cation ∗, so that (1) ⟨Z,+⟩ forms an Abelian group, (2) ⟨Z, ∗⟩ is a monoid (i.e., a group without90

inverse), and (3) multiplication distributes with addition (i.e., a ∗ (b + c) = a ∗ b + a ∗ c and91

(b+ c) ∗ a = b ∗ a+ c ∗ a). Z is called semi-ring if ⟨Z,+⟩ is a monoid.92

Notation. Let R be the real field and C be the complex field. For a complex vector z, z⊤ is its93

transpose, z̄ is its complex conjugate and z∗ its conjugate transpose. For a tensor zijk, z·jk is a94

vector along its first dimension, zi·k along its second dimension, and zij· along its last dimension.95

Problem Setup. We consider the following 2-layer networks with q hidden nodes, trained with96

(projected) ℓ2 loss on prediction of group multiplication in Abelian group G with |G| = d:97

ℓ =
∑
i

∥∥∥P⊥
1

(
1

2d
o[i]− l[i]

)∥∥∥2, o[i] = V σ(W⊤f [i]) =
∑
j

vjσ(w
⊤
j f [i]) (1)

where σ(x) = x2 is the quadratic activation function (Du & Lee, 2018; Allen-Zhu & Li, 2023),98

P⊥
1 = I − 1

d11
⊤ is the zero-mean projection matrix, W = [w1, . . . ,wq] ∈ Rd×q , V =99

[v1, . . . ,vq]
⊤ ∈ Rd×q are learnable parameters. f [i] ∈ Rd are input embeddings. i is the sam-100

ple index. Note that variants of quadratic activation have been used empirically, e.g. squared ReLU101

and gated activations (So et al., 2021; Shazeer, 2020; Zhang et al., 2024).102

Input and Output. The input contains the two group elements g1[i] and g2[i], encoded as f [i] =103

UG1eg1[i]+UG2eg2[i], where UG1 and UG2 are column orthogonal embedding matrices. The output104

is the result g1[i]g2[i] ∈ G, encoded as the label l[i] = g1[i]g2[i] to be predicted. We can extend our105

framework to group action prediction, in which g2 may not be a group element but any object (e.g.,106

a discrete state in reinforcement learning). See Appendix E for more details.107

Let ϕk = [ϕk(g)]g∈G ∈ Cd be the scaled Fourier bases (or more formally, character function of the108

finite Abelian group G, see Appendix A). Then weight vector wj and vj can be written as:109

wj = UG1

∑
k ̸=0

zakjϕk + UG2

∑
k ̸=0

zbkjϕk, vj =
∑
k ̸=0

zckjϕ̄k (2)

where z := {zpkj} are the complex coefficients, p ∈ {a, b, c}, 0 ≤ k < d and j runs through q110

hidden nodes. We exclude ϕ0 ≡ 1 because the constant bias term has been filtered out by the top-111
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down gradient from the loss function. Since wj and vj are all real, the Hermitian constraints holds,112

i.e., zckj = ϕ∗
kvj = ϕ∗

−kvj = zc,−k,j (and similar for zakj and zbkj). Leveraging the property of113

quadratic activation functions, we can write down the loss function analytically (see Appendix A):114

Theorem 1 (Analytic form of L2 loss with quadratic activation). The objective of 2-layer MLP115

network with quadratic activation can be written as ℓ = d−1
∑

k ̸=0 ℓk + (d− 1)/d, where116

ℓk = −2rkkk+
∑
k1k2

|rk1k2k|2+
1

4

∣∣∣ ∑
p∈{a,b}

∑
k′

rp,k′,−k′,k

∣∣∣2+1

4

∑
m ̸=0

∑
p∈{a,b}

∣∣∣∑
k′

rp,k′,m−k′,k

∣∣∣2(3)

Here rk1k2k :=
∑

j zak1jzbk2jzckj and rpk1k2k :=
∑

j zpk1jzpk2jzckj .117

Note that for cyclic group G, the frequency k is a mod-d integer. For general Abelian group which118

can be decomposed into direct sum of cyclic groups according to Fundamental Theorem of Finite119

Abelian Groups (Diaconis, 1988), k is a multidimensional frequency index. For convenience, we120

define ϕ−k := ϕk as the conjugate representation of ϕk. Since weights wj and vj are all real, the121

Hermitian constraints holds, i.e., zckj = ϕ∗
kvj = ϕ∗

−kvj = zc,−k,j (and similar for zakj and zbkj).122

Therefore, zp,−k,j = z̄pkj , r−k,−k,−k = r̄kkk and ℓ is real and can be minimized.123

Eqn. 3 contains different r terms, which play an important role in determining global optimizers.124

Definition 1 (0/1-set). Let R := {r} be a collection of r terms. The weight z is said to have 0-set125

R0 and 1-set R1 (or 0/1-sets (R0, R1)), if r(z) = 0 for all r ∈ R0 and r(z) = 1 for all r ∈ R1.126

With 0/1-sets, we can characterize rough structures of the global optimizers to the loss:127

Lemma 1 (A Sufficient Conditions of Global optimizers of Eqn. 3). If the weight z to Eqn. 3 has128

0-sets Rc ∪Rn ∪R∗ and 1-set Rg, i.e.129

rkkk(z) = I(k ̸= 0), rk1k2k(z) = 0, rpk1k2k(z) = 0 (4)

then it is a global optimizer with zero loss ℓ(z) = 0. Here Rg := {rkkk, k ̸= 0}, Rc :=130

{rk1k2k, k1, k2, k not all equal}, Rn := {rp,k′,−k′,k} and R∗ := {rp,k′,m−k′,k,m ̸= 0}.131

Lemma 1 provides sufficient conditions since there may exist solutions that achieve global optimum132

(e.g.,
∑

k′ rp,k′,m−k′,k(z) = 0 but rp,k′,m−k′,k(z) ̸= 0). However, as we will see, it already leads133

to rich algebraic structure, and serves as a good starting point. Directly finding the global optimizers134

using Eqn. 4 can be a bit complicated and highly non-intuitive, due to highly nonlinear structure of135

Eqn. 3. However, there are nice structures we can leverage, as we will demonstrate below.136

4 Beyond Fixed Parameter Space: The Semi-ring structure137

4.1 The semi-ring structure of the solution space138

We define the weight space Zq = {z} to include all the weight matrices with q hidden nodes139

(Z0 means an empty network), and Z =
⋃

q≥0 Zq be the solution space of all different number140

of hidden nodes. Interestingly, Z naturally is equipped with a semi-ring structure, and each term141

of the loss function can effective interact with such a semi-ring structure, yielding provable global142

optimizers, including both the Fourier solutions empirically reported in previous works (Zhou et al.,143

2024; Gromov, 2023), and the perfect memorization solution (Morwani et al., 2023).144

To make our argument formal, we start with a few definitions.145

Definition 2 (Order of z). The order ord(z) of z ∈ Z is its number of hidden nodes.146

Definition 3 (Scalar multiplication). αz ∈ Z is element-wise multiplication [αzpkj ] of z ∈ Z .147

Definition 4 (Identification of Z). In Z , two solutions of the same order that differ only by a per-148

mutation along hidden dimension j are considered identical.149

For any two solutions z1 := {z(1)pkj} and z2 := {z(2)pkj}, we can define their operations:150

Definition 5 (Addition and Multiplication in Z). Define z = z1 + z2 in which zpk· :=151

concat(z
(1)
pk·, z

(2)
pk·) and z = z1 ∗ z2, in which zpk· := z

(1)
pk· ⊗ z

(2)
pk·. The addition and multiplication152

respect Hermitian constraints and the identity element 1 is the 1-order solutions with {zpk0 = 1}.153
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4.2 The Monomial Potentials and its connection to semi-ring Z5 COMPOSING GLOBAL OPTIMIZERS

Note that the multiplication definition is one special case of Khatri–Rao product (Khatri & Rao,154

1968). Although the Kronecker product and concatenation are not commutative, thanks to the iden-155

tification (Def. 4), it is clear that z1 + z2 = z2 + z1 and z1 ∗ z2 = z2 ∗ z1 and thus both operations156

are commutative. Then we can show:157

Theorem 2 (Algebraic Structure of Z). ⟨Z,+, ∗⟩ is a commutative semi-ring.158

As we will see, the semi-ring structure of Z paves the way to construct explicitly global optimizers.159

4.2 The Monomial Potentials and its connection to semi-ring Z160

Now let us study the structure of the loss function Eqn. 3 and how they are related to the semi-ring161

structure of Z . For this, we first define the concept of monomial potentials:162

Definition 6 (Monomial potential (MP)). r(z) :=
∑

j

∏
p,k∈idx(r) zpkj is called monomial poten-163

tial (MP), where idx(r) specifies the indices involved in the monomial terms.164

Following this definition, terms in the loss function (Theorem 1) are examples of MPs.165

Observation 1 (Specific MPs). rk1k2k(z) and rpk1k2k(z) defined in Theorem 1 are MPs.166

So what is the relationship between MPs, which are functions that map a weight z to a complex167

scalar, and the semi-ring structure of Z? The following theorem tells that MPs are ring homomor-168

phism, that is, these mappings respect addition and multiplication:169

Theorem 3. For any monomial potential r : Z 7→ C, r(1) = 1, r(z1 + z2) = r(z1) + r(z2) and170

r(z1 ∗ z2) = r(z1)r(z2) and thus r is a ring homomorphism.171

Observation 2. The order function ord : Z 7→ N is also a ring homomorphism.172

Since the loss function ℓ(z) depends on the weight z entirely through rk1k2k(z) and rpk1k2k(z),173

which are MPs, due to the property of ring homomorphism, it is possible to construct a global174

optimizer from partial solutions that satisfy only some of the constraints1:175

Lemma 2 (Composing Partial Solutions). If z1 has 0/1-sets (R−
1 , R

+
1 ) and z2 has 0/1-sets176

(R−
2 , R

+
2 ), then (1) z1 ∗ z2 has 0/1-sets (R−

1 ∪ R−
2 , R

+
1 ∩ R+

2 ). (2) z1 + z2 have 0/1-sets177

(R−
1 ∩R−

2 , R
+
1 ∪R+

2 ).178

Once we reach 0/1-sets (Rc ∪Rn ∪R∗, Rg), we find a global optimizer. In addition, we also imme-179

diately know that there exists infinitely many global optimizers, via ring multiplication (Def. 5):180

Definition 7 (Unit). z is called a unit if rkkk(z) = 1 for all k ̸= 0.181

Corollary 1. If z is a global optimizer and y is a unit, then z ∗ y is also a global optimizer.182

5 Composing Global Optimizers183

5.1 Constructing Partial Solutions with Polynomials184

While intuitively one can get global optimizers by manually crafting some partial solutions and185

combining, in this section, we provide a more systematic approach to compose global optimizers as186

follows. Since Z enjoys a semi-ring structure, we consider a polynomial in Z in the following form:187

z = uL + c1 ∗ uL−1 + c2 ∗ uL−2 + . . .+ cL (5)

where the generator u and coefficients cl are order-1 and the power operation ul is defined by ring188

multiplication. The following construction of a polynomial leads to a partial solution.189

Theorem 4 (Construction of partial solutions). Suppose u has 1-set R1, ΩR(u) := {r(u)|r ∈190

R} ⊆ C is a set of evaluations on R (multiple values counted once), then if 1 /∈ ΩR, then the191

polynomial solution ρR(u) :=
∏

s∈ΩR(u)(u + ŝ) has 0/1-set (R,R1) up to a scale. Here ŝ is any192

order-1 weight that satisfies r(ŝ) = −s for any r ∈ R ∪R+. For example, ŝ = −s1/31.193

1Mathematically, the kernel Ker(r) := {z : r(z) = 0} of a ring homomorphism r is an ideal of the ring,
and the intersection of ideals are still ideals. For brevity, we omit the formal definitions.
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5.2 Composing Global Solutions 5 COMPOSING GLOBAL OPTIMIZERS

Evaluation on MPs
Rc Rn R∗ Maximal

Symbol [a, b, c] ābc ab̄c abc̄ āac b̄bc aac bbc āāc b̄b̄c polynomial ρ(u) order q
1k [1, 1, 1] 1 1 1 1 1 1 1 1 1 – –
1̃k [−1,−1, 1] 1 1 1 1 1 1 1 1 1 – –
uone [1,−1,−1] 1 1 1 −1 −1 −1 −1 −1 −1 u+ 1 2
usyn [ω3, ω3, ω3] ω3 ω3 ω3 ω3 ω3 1 1 ω̄3 ω̄3 u2 + u+ 1 3
u3c [ω3, ω̄3, 1] ω3 ω̄3 1 1 1 ω̄3 ω3 ω3 ω̄3 u2 + u+ 1 3
u3a [1, ω3, ω̄3] 1 ω3 ω̄3 ω̄3 ω̄3 ω̄3 ω3 ω̄3 1 u2 + u+ 1 3
u4c [i,−i, 1] −1 −1 1 1 1 −1 −1 −1 −1 u+ 1 2
u4a [1, i,−i] 1 −1 −1 −i −i −i i −i i u3 + u2 + u+ 1 4
uν [ν,−ν,−ν̄2] ν2 ν2 ν4 −ν̄2 −ν̄2 −1 −1 −ν4 −ν4 9-th degree 10

Table 1: Exemplar order-1 single frequency generator u(k) with rkkk(u
(k)) = 1. In the single-frequency case,

for each MP r we use “ābc” to represent r−k,k,k and “āāc” to represent ra,−k,−k,k, etc. We omit superscript
“(k)” for clarity and omit conjugate columns (i.e., āb̄c which is conjugate to abc̄). Here, ω3 := e2πi/3 and
ω4 := i are the 3rd and 4th roots of unity. The constructed solutions are partial, i.e., the evaluation of some
MPs yields 1 (red cell) and cannot be the root of the polynomial according to Theorem 4. Note that uν is a
general case with uν=1 = uone and uν=i = u4c.

For convenience, we use ρ(u) to represent the maximal polynomial, i.e., when R =194

argmax1/∈ΩR(u) |ΩR(u)| is the largest subset of MPs with 1 /∈ ΩR(u). Our goal is to find low-order195

(partial) solutions, since gradient descent prefers low order solutions (see Theorem 6). Although196

there exist high-degree but low-order polynomials, e.g., u9+1, in general, degree L and order q are197

correlated, and we can find low-degree ones instead. To achieve that, u should be properly selected198

(e.g., symmetric weights) to create as many duplicate values (but not 1) in R as possible.199

5.2 Composing Global Solutions200

We first consider the case that the generator u is only nonzero at frequency k (and thus −k by201

Hermitian constraints), but zero in other frequencies, i.e., upk′0 = 0 for k′ ̸= ±k. Such solutions202

correspond to Fourier bases in the original domain. Also, u has 1-set R1 = {rkkk}. This means that203

u can be characterized by three numbers uak0 = a, ubk0 = b, and uck0 = c with abc = 1. In this204

case, only a subset of monomial potentials (MPs) whose indices only involve a single frequency k205

are non-zero (e.g., rk,−k,k ∈ Rc and rb,−k,k,k ∈ Rn), which makes our construction much easier.206

Following Theorem 4, we can construct different partial solutions. Some examples are shown in207

Table 1, which do not reach the complete set Rc ∪ Rn ∪ R∗ and therefore are not global. Note that208

it is possible to create a generator so that all MPs are not 1 (e.g., u3c ∗ u4a), but then |ΩR(u)| will209

be too large, producing high-degree polynomials (e.g., u3c ∗ u4a gives a 10-th-degree polynomial).210

However, utilizing these partial solutions, with Lemma 2 we can construct global optimizers:211

Corollary 2 (Order-6 global optimizers). The following “3× 2” Fourier solutions satisfy the suffi-212

cient condition (Lemma 1) and thus are global optimizers (assuming d is odd):213

zF6 =
1
3
√
6

(d−1)/2∑
k=1

z(k)
syn ∗ z(k)

ν ∗ yk (6)

Here z
(k)
syn := ρ(u

(k)
syn) and z

(k)
ν := u

(k)
ν + 1k (i.e., not maximal polynomial), where usyn and uν214

are defined in Table 1. y is an order-1 unit. As a result, ord(zF6) = 3 · 2 · 1 · (d− 1)/2 = 3(d− 1)215

and each frequency are affiliated with 6 hidden nodes (order-6).216

Other solutions. We may replace usyn and uν with any other pairs that collectively cover all MPs.217

For example, usyn can be combined with any of {u3c,u3a,u4a}, and uν=±i can be coupled with218

u3a or u4a, etc. Here we pick one with a small order. Compared to construction from Gromov219

(2023), ours is much more concise and does not use infinite-width approximation.220

Even d. For even d, simply replace (d− 1)/2 with ⌊(d− 1)/2⌋ and add an additional order-2 term221

ρ(uone) = uone+1 (Tbl. 1) for the frequency d/2. Note that the frequency k = d/2 only has rkkk,222

rakkk and rbkkk, and all other conjugate combinations are absent. Thus u(k)
one + 1k covers them all.223

Fig. 2 shows a case with d = 7. In this case, each frequency, out of (d − 1)/2 = 3 total number of224

frequencies, is associated with 6 hidden nodes. If we remove the last term in the loss that corresponds225

to R∗, then an order-3 solution suffices (i.e. zsyn = ρ(usyn)).226
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Figure 2: Solutions obtained by the Adam optimizers on ℓ2 loss for modular addition task with |G| = d = 7
and q = 20 hidden nodes. Top: For each frequency ±k, there are exactly 6 hidden nodes represent-
ing such a frequency, consistent with Corollary 1. Bottom: Optimizing Eqn. 3 without the last term∑

m ̸=0

∑
p∈{a,b}

∣∣∣∑k′ rp,k′,m−k′,k

∣∣∣2 (equivalently removing the constraint R∗). Now each frequency has

exactly 3 hidden nodes, which corresponds to the solution zsyn = ρ(usyn) in Tbl. 1.

Using polynomials, we can also construct perfect-memorization solutions. For this, we first define227

two generators ua with u
(α)
·k0 = [ωk

d , 1, ω̄
k
d ]I(k ̸= 0), and ub with u

(β)
·k0 = [1, ωk

d , ω̄
k
d ]I(k ̸= 0). Here228

ωd := e2πi/d is the d-th root of unity.229

Corollary 3 (Perfect Memorization). We construct two d-order weights za and zb:230

za =

d−1∑
j=0

uj
a, zb =

d−1∑
j=0

uj
b (7)

Here za ∈ Rc(k1 ̸= k)∩Rn∩R∗(p = b orm ̸= k), zb ∈ Rc(k2 ̸= k)∩Rn∩R∗(p = a orm ̸= k).231

Then zM = d−2/3za∗zb satisfies the sufficient condition (Lemma 1) and is the perfect memorization232

solution with ord(zM ) = d2:233

z
(M)
akj1j2

= ωkj1/
3
√
d2, z

(M)
bkj1j2

= ωkj2/
3
√
d2, z

(M)
ckj1j2

= ω−k(j1+j2)/
3
√
d2 (8)

where each hidden node is indexed by j = (j1, j2), 0 ≤ j1, j2 < d, k ̸= 0.234

To see why this corresponds to perfect memorization, simply apply an inverse Fourier transform for235

each hidden node (j1, j2), and the original weights are (zero-mean) delta function located at j1, j2236

and j1 + j2 accordingly.237

Interestingly, there also exists a lower-order solution, 2× 2, that meets Rc and R∗ but not Rn:238

Corollary 4 (Order-4 single frequency solution). Define single frequency order-2 solution zξ:239

zak· = [1, ξ], zbk· = [1,−iξ̄], zck· = [1, i] (9)

where |ξ| = 1. Then the order-4 solution z
(k)
F4 := ρ(u

(k)
ν=i)∗z

(k)
ξ has 0-sets Rc and R∗ (but not Rn).240

While z
(k)
F4 itself does not satisfy the sufficient condition (Eqn. 4), it is part of a global optimizer241

when mixing with zF6:242

Corollary 5 (Mixed order-4/6 global optimizers). With z
(k)
F4 , there is a global optimizer to Eqn. 3243

that does not meet the sufficient condition, i.e.,
∑

k′ rp,k′,−k′,m = 0 but rp,k′,−k′,m ̸= 0:244

zF4/6 =
1
3
√
6
ẑ
(k0)
F6 +

1
3
√
4

(d−1)/2∑
k=1,k ̸=k0

z
(k)
F4 (10)

where ẑ(k0)
F6 is a perturbation of z(k0)

F6 := z
(k0)
syn ∗z(k0)

ν=1 by adding constant biases to its (c, k) entries245

for k ̸= k0. The order is lower than zF6: ord(zF4/6) = 6 + 4 · ((d− 1)/2− 1) = 2d < ord(zF6).246

Remarks. To construct ẑF6, in addition to zsyn ∗zν=1, we could use other pairs of single frequency247

solutions to achieve the same effects. For example, using zsyn,αβ ∗ zν=i, where zsyn,αβ is:248

zak· = [1, ω3α, ω̄3β], zbk· = [1, ω3ᾱ, ω̄3β̄], zck· = [1, ω3, ω̄3] (11)
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6 GRADIENT DYNAMICS

0 50 100 150 200
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
SE

 L
os

s
0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Training/test loss/accuracy for d = 23

test_loss
train_loss
test_acc
train_acc

0 2 4 6 8 10
Solution order at all frequencies

0

1

2

3

4

5

6

Co
un

t

Distribution of Solution order at 10k epochs

0 100 200 300 400 500 600
Epoch

0

5

10

15

20

Su
m

m
ed

 r k
1k

2k

Dynamics of diag/off-diag rk1k2k

Diag rkkk

Off-diag rk1k2k

0 2000 4000 6000 8000 10000
Epoch

0.0

0.2

0.4

0.6

r a
,k

,
k,

k

ra, k, k, k increases in order-4 solution

k=1
k=3
k=8
k=9
k=11

0 2000 4000 6000 8000 10000
Epoch

0.00

0.05

0.10

0.15

0.20

0.25

0.30

r a
,k

,
k,

k

ra, k, k, k vanishes in order-6 solution
k=2
k=4
k=5
k=6
k=7
k=10

0 500 1000 1500 2000
Epoch

0.000

0.025

0.050

0.075

0.100

0.125

0.150

r a
,k

,1
k,

k

ra, k, 1 k, k vanishes in both order-4 and order-6

Figure 3: Dynamics of monomial potentials (MPs) over the training process for modular addition with d = 23
and q = 1024 hidden nodes. Top Row. Left: Training/test accuracy reaches 100% and loss close to 0. Test
accuracy jumps after training reaches 100% (grokking). Mid: After 10k epochs, the distribution of solution
orders are concentrated at 4 and 6 (Corollary 2 and 4). Right: Dynamics of rk1k2k. Summation of diagonal
rkkk converges towards d − 1 (dotted line) with ripple effects, while off-diagonal rk1k2k converges towards
0. Bottom Row. Dynamics of different MPs. Order-4 and order-6 behave differently on rp,k,−k,k, because
order-4 does not satisfy the sufficient condition (Lemma 1) but a mixture of order-4 and order-6 (i.e., zF4/6) is
still the global optimizer to the L2 loss (Corollary 5).
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Figure 4: Solution distribution over different weight decay regularization for q = 512, trained with 10k epochs
with Adams with learning rate 0.01 on modular addition (i.e., predicting a+b mod d) with d ∈ {23, 71, 127}.
The two red dashed lines correspond to order-4/6 solutions. The histogram is accumulated over 5 random seeds.

where |α| = |β| = 1. zsyn = ρ(usyn) is a special case of zsyn,αβ when α = β = 1.249

Note that multiple per frequency order-6 solutions can be inserted in this construction. Compared250

to all order-6 solutions zF6, this zF4/6 mixture solution has a lower order and is perceived in the251

experiments (See Fig. 6), in particular when d is large (Tbl. 2), showing a strong preference of252

gradient descent towards lower order solutions.253

6 Gradient dynamics254

Now we have characterized the structures of global optimizers. One natural question arises: why255

does the optimization procedure not converge to the perfect memorization solution zM , but to the256

Fourier solutions zF6 and zF4/6? The answer is given by gradient dynamics.257

Let r = [rk1k2k, rpk1k2k] ∈ C4d3

be a vector of all MPs, and J := ∂r
∂z

∂z
∂W be the Jacobian matrix258

of the mapping r = r(z(W)) in which W is the collection of original weights. Note that when we259

take derivatives with respect to r and apply chain rules, we treat r and its complex conjugate (e.g.,260

rkkk and r−k,−k,−k = r̄kkk) as independent variables. Since we run the gradient descent on W , will261

such (indirect) optimization leads to a descent of r towards the desired targets (Lemma 1)? This is262

confirmed by the following theorem:263

Theorem 5 (Dynamics of MPs). The dynamics of MPs satisfies ṙ = −JJ∗∇rℓ, which has positive264

inner product with the negative gradient direction −∇rℓ.265
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7 EXPERIMENTS

d
%not %non-factorable error (×10−2) solution distribution (%) in factorable ones

order-4/6 order-4 order-6 order-4 order-6 z
(k)
ν=i ∗ z

(k)
ξ z

(k)
ν=i ∗ z

(k)
syn,αβ z

(k)
ν ∗ z(k)

syn others
23 0.0±0.0 0.00±0.00 5.71±5.71 0.05±0.01 4.80±0.96 47.07±1.88 11.31±1.76 39.80±2.11 1.82±1.82

71 0.0±0.0 0.00±0.00 0.00±0.00 0.03±0.00 5.02±0.25 72.57±0.70 4.00±1.14 21.14±2.14 2.29±1.07

127 0.0±0.0 1.50±0.92 0.00±0.00 0.26±0.14 0.93±0.18 82.96±0.39 2.25±0.64 14.13±0.87 0.66±0.66

Table 2: Matches between order-4/6 solutions from gradient descent and those constructed by CoGO. Number
of hidden nodes q = 512 and weight decay is 5× 10−5. Around 95% gradient descent solutions are factorable
with very small factorization error (∼ 0.04 compared to solution norm on the order of 1). Furthermore, CoGO
successfully predicts ∼ 98% of the structure of the empirical solutions, while the remaining 2% are mostly due
to insufficient training (i.e., near miss against known theoretical construction). Here zξ is defined in Corollary 4,
zν := uν + 1 is defined in Tbl. 1, and zsyn,αβ is defined in Eqn. 11. The means and their standard deviations
are computed over 5 seeds.

Corollary 1 shows that by ring multiplication, we could create infinitely many global optima from a266

base one. The following theorem answers which solution gradient dynamics picks.267

Theorem 6 (The Occam’s Razer: Preference of low-order solutions). If z = y ∗ z′ and both z (of268

order q) and z′ are global optimal solutions, then there exists a path of zero loss connecting z and z′269

in the space of Zq . As a result, lower-order solutions are preferred if trained with L2 regularization.270

This shows that gradient dynamics with weight decay will pick a lower-order (i.e., simpler) solution,271

suggests that perfect memorization may not be not favorable in dynamics. The following theorem272

shows that the dynamics also enjoys asymptotic freedom:273

Theorem 7 (Infinite Width Limits at Initialization). Considering the modified loss of Eqn. 3 with274

only the first two terms: ℓ̃k := −2rkkk +
∑

k1k2
|rk1k2k|2, if the weights are i.i.d Gaussian and275

network width q → +∞, then JJ∗ converge to diagonal and the dynamics of MPs is decoupled.276

Intuitively, this means that a large enough network width (q → +∞) makes the dynamics much277

easier to analyze. On the other hand, the final solution may not require that large q. As analyzed in278

Corollary 2, for each frequency, to achieve global optimality, 6 hidden nodes suffice.279

7 Experiments280

Setup. We train the 2-layer MLP on the modular addition task, which is a special case of outcome281

prediction of Abelian group multiplication. We use Adam optimizer with learning rate 0.01, MSE282

loss, and train for 10000 epochs with weight decays. We tested on |G| = d ∈ {23, 71, 127}. All283

data are generated synthetically and training/test split is 90%/10%.284

Solution Distributions. As shown in Fig. 3, we see order-4 and order-6 solutions in each frequency285

emerging from well-trained networks on d = 23. The mixed solution zF4/6 can be clearly observed286

in a small-scale example (Fig. 6). This is also true for larger d (Fig. 4). Although the model is287

trained with heavily over-parameterized networks, the final solution order remains constant, which288

is consistent with Corollary 1. Large weight decay shifts the distribution to the left (i.e., low-order289

solutions) until model collapses (i.e., all weights become zero), consistent with our Theorem 6 that290

demonstrates that gradient descent with weight decay favors low-order solutions. Similar conclu-291

sions follow for fewer and more overparameterization (Appendix H).292

Exact match between theoretical construction and empirical solutions. A follow-up question293

arises: do the empirical solutions match exactly with our constructions? After all, distribution294

of solution order is a rough metric. For this, we identify all solutions obtained by gradient de-295

scent at each frequency, factorize them and compare with theoretical construction up to conjuga-296

tion/normalization. To find such a factorization, we use exhaustive search (Appendix H).297

The answer is yes. Tbl. 2 shows that around 95% of order-4 and order-6 solutions from gradient298

descent can be factorized into 2×2 and 2×3 and each component matches our theoretical construc-299

tion in Corollary 2 and 4, with minor variations. Furthermore, when d is large, most of the solutions300

become order-4, which is consistent with our analysis for mixed solution zF4/6 (Corollary 5) that301

one order-6 solution in the form of zν=i ∗ zsyn,αβ suffices to achieve a global optimizer, with all302

other frequencies taking order-4s. In fact, for d = 127, the number of order-6 solution taking the303

form of zν=i ∗ zsyn,αβ is (d− 1)/2 · 2.25% ≈ 1.26, coinciding with the theoretical results.304
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Figure 5: Distribution of free parameters (ξ, ν, α and β, all with magnitude 1) in three kinds of gradient
descent solutions identified by CoGO. While any value of these parameters makes a global optimizer, gradient
descent dynamics has a particular preference in picking them during optimization.
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Figure 6: The convergence path of zc·· when training modular addition using Adam optimizer (learning rate
0.05, weight decay 0.005). The final solution contains 2 order-6 (z(k)

F6 ) and 1 order-4 (z(k)
F4 ) solutions. Note

that for zc··, unlike Fig. 2, each order-6 solution contains a constant bias term to cancel out the artifacts of
order-4 solution (Corollary 5). For each hidden node j, once a dominant frequency emerges, others fade away.

Implicit Bias of gradient descent. Our construction gives other possible solutions (e.g., z3c ∗zsyn)305

which are never observed in the gradient solutions. Even for the observed solutions, e.g. zν ∗ zsyn,306

the distribution of free parameters is highly non-uniform (Fig. 5), showing a strong preference of307

certain choices. These suggest strong implicit bias in optimization, which we leave for future work.308

8 Conclusion and future work309

In this work, we propose CoGO (Composing Global Optimizers), a theoretical framework that mod-310

els the algebraic structure of global optimizers when training a 2-layer network on reasoning tasks311

of Abelian group with L2 loss. We find that the global optimizers can be algebraically composed by312

partial solutions that only fit parts of the loss, using ring operations defined in the weight space of the313

2-layer neural networks across different network widths. Under CoGO, we also analyze the training314

dynamics, show the benefit of over-parameterization, and the inductive bias towards simpler solu-315

tions due to topological connectivity between algebraically linked high-order (i.e., involving more316

hidden nodes) and low-order global optimizers. Finally, we show that the gradient descent solutions317

exactly match what constructed solutions (e.g. zF4/6 and zF6, see Corollary 5 and Corollary 2).318

Develop novel training algorithms. Instead of applying (stochastic) gradient descent to overpa-319

rameterized networks, CoGO suggests a completely different path: decompose the loss, find the320

MPs, construct low-order solutions and combine them to achieve the final solutions on the fly using321

algebraic operations. Such an approach may be more efficient and scalable than gradient descent,322

due to its factorable nature. Also, our framework works for losses depending on monomial potentials323

(L2 loss is just one example), which opens a new dimension for loss design.324

Putting different widths into the same framework. Many existing theoretical works study prop-325

erties of networks with fixed width. However, CoGO demonstrates that nice mathematical structures326

emerge when putting networks of different widths together, an interesting direction to consider.327

Grokking. When learning modular addition, there exists a phase transition from memorization to328

generalization during training, known as grokking (Varma et al., 2023; Power et al., 2022), long after329

the training performance becomes (almost) perfect. Our work may be expanded to a nonuniformly330

distributed training set to study the dynamics of representation learning on grokking.331

Extending to other activations. For other activation than quadratic (e.g., SiLU) with σ(0) = 0,332

with a Taylor expansion, the same framework may still apply (with higher rank MPs).333
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A DECOUPLING L2 LOSS (PROOF)

A Decoupling L2 Loss (Proof)431

We use the character function ϕ : G → C, which maps a group element g into a complex number.432

Lemma 3. For finite Abelian group, the character function ϕ has the following properties Fulton &433

Harris (2013); Steinberg (2009):434

• It is a 1-dimensional (irreducible) representation of the group G, i.e., |ϕ(g)| = 1 for g ∈ G435

and for any g1, g2 ∈ G, ϕ(g1g2) = ϕ(g1)ϕ(g2).436

• There exists d character functions {ϕk} that satisfy the orthonormal condition437
1
d

∑
g∈G ϕk(g)ϕk′(g) = I(k = k′). Here ϕ is the complex conjugate of ϕ and is also438

a character function.439

• The set of character functions {ϕk} forms a character group Ĝ under pairwise multiplica-440

tion: ϕk1+k2 = ϕk1 ◦ ϕk2 .441

Note that the frequency k goes from 0 to d − 1, where ϕ0 ≡ 1 is the trivial representation (i.e., all442

g ∈ G maps to 1). According to the Fundamental Theorem of Finite Abelian Groups, each finite443

Abelian group can be decomposed into a direct sum of cyclic groups, and the character function444

of each cyclic group is exactly (scaled) Fourier bases. Therefore, in Abelian group, k is a multi-445

dimensional frequency index. Conrad (2010) shows that Ĝ ∼= G (Theorem 3.13) so each character446

function ϕ ∈ Ĝ can also be indexed by g itself. Right now we keep the index k.447

For convenience, we define ϕ−k := ϕk as the conjugate representation of ϕk.448

Let ϕk = [ϕk(g)]g∈G ∈ Cd be the vector that contains the value of the character function ϕk.449

Then {ϕk} form an orthogonal base in Cd and we can represent the weight vector wj and vj as the450

following:451

wj = UG1

∑
k ̸=0

zakjϕk + UG2

∑
k ̸=0

zbkjϕk, vj =
∑
k ̸=0

zckjϕ̄k (12)

where z := {zpkj} are the complex coefficients (p ∈ {a, b, c}, 0 ≤ k < d and j runs through hidden452

nodes). Then it is clear that w⊤
j f [i] =

∑
k ̸=0 hakjϕk(ι0(g[i])) +

∑
k ̸=0 hbkjϕk(x[i]).453

Theorem 1 (Analytic form of L2 loss with quadratic activation). The objective of 2-layer MLP454

network with quadratic activation can be written as ℓ = d−1
∑

k ̸=0 ℓk + (d− 1)/d, where455

ℓk = −2rkkk+
∑
k1k2

|rk1k2k|2+
1

4

∣∣∣ ∑
p∈{a,b}

∑
k′

rp,k′,−k′,k

∣∣∣2+1

4

∑
m ̸=0

∑
p∈{a,b}

∣∣∣∑
k′

rp,k′,m−k′,k

∣∣∣2(3)

Here rk1k2k :=
∑

j zak1jzbk2jzckj and rpk1k2k :=
∑

j zpk1jzpk2jzckj .456

Proof. Note that the objective ℓ can be written down as457

ℓ = Eg,x

[
∥P⊥

1 (o(g, x)/2d− egx)∥2
]

(13)

= Eg,x

[
o⊤P⊥

1 o/4d2 − o⊤P⊥
1 egx/d+ e⊤gxP

⊥
1 egx

]
(14)

For E
[
o⊤P⊥

1 egx
]
, since458

e⊤gxP
⊥
1 o =

∑
j

e⊤gxP
⊥
1 vjσ(w

⊤
j f(g, x)) (15)

=
∑
j

∑
k′ ̸=0

ck′j ϕ̄k′(gx)

(∑
k

akjϕk(ι0(g)) + bkjϕk(x) + e⊤g w
⊥
j

)2

(16)

Note that by our previous analysis, there exists y1 := ι0(g) so that gy = x1y. Let x2 := x. For459

notation brevity, let zakj := akj , zbkj := bkj and zckj := ckj ,, then we have:460

e⊤gxP
⊥
1 o =

∑
j

∑
k′ ̸=0

ck′j ϕ̄k′(x1x2)

(∑
k

∑
p

zpkjϕk(xp) + e⊤x1
w⊥

j

)2

(17)
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A DECOUPLING L2 LOSS (PROOF)

Therefore, we have:461

Eg,x

[
e⊤gxP

⊥
1 o
]
=

∑
k1,k2,k′ ̸=0,p1,p2,j

ck′jzp1k1jzp2k2jE
[
ϕ̄k′(x1)ϕ̄k′(x2)ϕk1(xp1)ϕk2(xp2)

]
(18)

Note that due to the fact that Eg∈ι−1
0 (x1)

[
e⊤g w

⊥
j

]
= 0 and Eg∈ι−1

0 (x1)

[
ege

⊤
g

]
is only a function of462

x1 and becomes 0 if multiplied with
∑

k′ ̸=0 ck′j ϕ̄k′(x1x2) and taking expectation w.r.t x2, in the463

final expression, all terms involving w⊥
j vanish.464

Since Ex

[
ϕk(x)ϕ̄k′(x)

]
= I(k = k′), there are only a few cases that the summand is nonzero:465

• p1 = 1, p2 = 2, k′ = k1 = k2 ̸= 0.466

• p1 = 2, p2 = 1, k′ = k1 = k2 ̸= 0.467

In both cases, the summation reduces to
∑

k ̸=0,j ckjz1kjz2kj =
∑

k ̸=0,j ckjakjbkj . Let rk1k2k′ :=468 ∑
j ak1jbk2jck′j , then we have469

E
[
o⊤P⊥

1 egy
]
= 2

∑
k ̸=0,j

akjbkjckj = 2
∑
k ̸=0

rkkk (19)

For E
[
o⊤P⊥

1 o
]
, if w⊥

j = 0, then we have:470

o⊤P⊥
1 o =

∑
j,j′

v⊤
j P

⊥
1 vj′σ(w

⊤
j f(g, y))σ(w

⊤
j′f(g, y)) (20)

here471

v⊤
j P

⊥
1 vj′ =

∑
k′ ̸=0

ck′jϕ̄k′

⊤∑
k′′ ̸=0

c̄k′′j′ϕk′′

 = d
∑
k′ ̸=0

ck′j c̄k′j′ (21)

due to the fact that ϕ̄⊤
k ϕk′ =

∑
y ϕ̄k(y)ϕk′(y) = dI(k = k′).472

Then the key part is to compute the following terms:473

Ey1,y2 [zp1k1j1zp2k2j1zp3k3j2zp4k4j2ck′j1 c̄k′j2ϕk1(yp1)ϕk2(yp2)ϕk3(yp3)ϕk4(yp3)] (22)

summing over {p1, p2, p3, p4, k1, k2, k3, k4, k′ ̸= 0, j1, j2}. Note that since each p ∈ {a, b}, there474

are 24 = 16 choices of (p1, p2, p3, p4). For notation brevity, we use (1, 3) to represent the subset of475

p that takes the value of a (e.g., (1, 3) means that p1 = p3 = a and p2 = p4 = b). It is clear that for476

odd assignments such as (1, 2, 3), since zp0j = 0, the summation is zero. Then, we only discuss the477

even cases as follows:478

Case 1: (1, 3), (2, 4), (1, 4), (2, 3). The 4 cases are identical so we only need to analyze one. We479

take (1, 3) as an example. For (1, 3), p1 = p3 = a, p2 = p4 = b and the only nonzero terms is when480

k1 + k3 = 0 mod d, k2 + k4 = 0 mod d, since Ey1
[ϕk1

(y1)ϕk3
(y1)] = I(k1 + k3 = 0 mod d)481

(and similar in other cases). Then Eqn. 22 becomes:482 ∑
k1,k2,k′ ̸=0

∑
j1j2

zak1j1zbk2j1za,−k1,j2zb,−k2,j2ck′j1 c̄k′j2 (23)

=
∑

k1,k2,k′ ̸=0

∑
j1

zak1j1zbk2j1ck′j1

∑
j2

zak1j2zbk2j2ck′j2 (24)

=
∑

k1,k2,k′ ̸=0

∑
j1

ak1j1bk2j1ck′j1

∑
j2

ak1j2bk2j2ck′j2 (25)

=
∑

k1,k2,k′ ̸=0

rk1k2k′rk1k2k′ =
∑

k1,k2,k′ ̸=0

|rk1k2k′ |2 (26)

Since there are 4 such cases, we have:483

ϵ1 = 4
∑
k′ ̸=0

∑
k1k2

|rk1k2k′ |2 (27)
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A DECOUPLING L2 LOSS (PROOF)

Case 2: (1, 2) and (3, 4). The two cases are identical. Take (1, 2) as an example. In this case,484

p1 = p2 = a and p3 = p4 = b. The only non-zero terms are when k1 + k2 = 0, k3 + k4 = 0. Then485

Eqn. 22 becomes:486 ∑
k1,k3,k′ ̸=0

∑
j1j2

zak1j1 z̄ak1j1zbk3j2 z̄bk3j2ck′j1 c̄k′j2 (28)

=
∑

k1,k3,k′ ̸=0

∑
j1

|ak1j1 |2ck′j1

∑
j2

|bk3j2 |2c̄k′j2 (29)

=
∑
k′ ̸=0

∑
j1

(∑
k1

|ak1j1 |2
)
ck′j1

∑
j2

(∑
k3

|bk3j2 |2
)
c̄k′j2

 (30)

Let r⊛amk′ :=
∑

j

(∑
k1+k2=m ak1jak2j

)
ck′j (similar for r⊛bmk′), then the above becomes487 ∑

k′ ̸=0 r
⊛
a0k′ r̄

⊛
b0k′ .488

Similarly, for (3, 4), the above equation becomes
∑

k′ ̸=0 r̄
⊛
a0k′r

⊛
b0k′ . Therefore, we have:489

ϵ2 =
∑
k′ ̸=0

r⊛a0k′ r̄
⊛
b0k′ + r̄⊛a0k′r

⊛
b0k′ (31)

Note that this term can be negative. However, we will see that when it is combined with the following490

terms, all terms will be non-negative.491

Case 3: (1, 2, 3, 4) and (). In this case we have:492 ∑
k′ ̸=0

∑
j1j2

∑
p∈{1,2}

∑
k1+k2+k3+k4=0

zpk1j1zpk2j1zpk3j2zpk4j2ck′j1 c̄k′j2 (32)

=
∑
k′ ̸=0

∑
j1j2

∑
p∈{1,2}

∑
k1+k2=k3+k4

zpk1j1zpk2j1 z̄pk3j2 z̄pk4j2ck′j1 c̄k′j2 (33)

=
∑
k′ ̸=0

∑
m

∑
p∈{1,2}

∑
j1j2

∑
p∈{1,2}

∑
k1+k2=m

∑
k3+k4=m

zpk1j1zpk2j1 z̄pk3j2 z̄pk4j2ck′j1 c̄k′j2 (34)

=
∑
k′ ̸=0

∑
m

∑
p∈{1,2}

∑
j1

( ∑
k1+k2=m

zpk1j1zpk2j1

)
ck′j1

∑
j2

( ∑
k3+k4=m

zpk3j2zpk4j2

)
c̄k′j2


=

∑
k′ ̸=0

∑
m

|r⊛amk′ |2 + |r⊛bmk′ |2 (35)

In particular, when m = 0, we have
∑

k′ ̸=0 |r
⊛
a0k′ |2 + |r⊛b0k′ |2. Therefore, we have493

ϵ2 + ϵ3,m=0 =
∑
k′ ̸=0

|r⊛a0k′ + r⊛b0k′ |2 (36)

Finally, putting them together, we have:494

E
[
o⊤P⊥

1 o
]

= d(ϵ1 + ϵ2 + ϵ3) = d(ϵ1 + (ϵ2 + ϵ3,m=0) + ϵ3,m ̸=0) (37)

= d
∑
k′ ̸=0

4
∑
k1k2

|rk1k2k′ |2 + |r⊛a0k′ + r⊛b0k′ |2 +
∑
m̸=0

|r⊛amk′ |2 + |r⊛bmk′ |2


≥ 0 (38)

Putting them together, we arrived at the conclusion.495

Lemma 1 (A Sufficient Conditions of Global optimizers of Eqn. 3). If the weight z to Eqn. 3 has496

0-sets Rc ∪Rn ∪R∗ and 1-set Rg, i.e.497

rkkk(z) = I(k ̸= 0), rk1k2k(z) = 0, rpk1k2k(z) = 0 (4)

then it is a global optimizer with zero loss ℓ(z) = 0. Here Rg := {rkkk, k ̸= 0}, Rc :=498

{rk1k2k, k1, k2, k not all equal}, Rn := {rp,k′,−k′,k} and R∗ := {rp,k′,m−k′,k,m ̸= 0}.499
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Proof. Note that 2
∑

k rkkk −
∑

k |rkkk|2 has a minimizer rkkk = 1. Therefore, the best loss value500

any assignment of weights is able to achieve is the following:501

rk1k2k′ =
∑
j

ak1jbk2jck′j = I(k1 = k2 = k′) k′ ̸= 0 (39)

r⊛a0k′ + r⊛b0k′ :=
∑
j

(∑
k

|akj |2 + |bkj |2
)
ck′j = 0 k′ ̸= 0 (40)

r⊛amk′ :=
∑
j

( ∑
k1+k2=m

ak1jak2j

)
ck′j = 0 k′ ̸= 0,m ̸= 0 (41)

r⊛bmk′ :=
∑
j

( ∑
k1+k2=m

bk1jbk2j

)
ck′j = 0 k′ ̸= 0,m ̸= 0 (42)

Therefore the sufficient conditions (Eqn. 4) will make all above come true.502

B Semi-ring structure of Z (Proof)503

Theorem 2 (Algebraic Structure of Z). ⟨Z,+, ∗⟩ is a commutative semi-ring.504

Proof. Straightforward from the definition of addition and multiplication (Def. 5) and identification505

of hidden nodes under permutation (Def. 4). Note that ring addition (i.e., concatenation) does not506

have inverse and thus it is a semi-ring.507

Theorem 3. For any monomial potential r : Z 7→ C, r(1) = 1, r(z1 + z2) = r(z1) + r(z2) and508

r(z1 ∗ z2) = r(z1)r(z2) and thus r is a ring homomorphism.509

Proof. Let r(z) =
∑

j

∏
(p,k)∈idx(r) zpkj . Since the ring identity 1 is order-1 and all zpkj = 1, it is510

obvious that r(1) = 1.511

Let supp(z1) be the subset of the hidden nodes that corresponds to z1 in the concatenated solution512

z1 + z2, similar for supp(z2). Note that513

r(z1 + z2) =
∑

j∈supp(z1)

∏
(p,k)∈idx(r)

z
(1)
pkj +

∑
j∈supp(z2)

∏
(p,k)∈idx(r)

z
(2)
pkj = r(z1) + r(z2) (43)

On the other hand, we have514

r(z1 ∗ z2) =
∑
j1j2

∏
(p,k)∈idx(r)

(
z
(1)
pkj1

z
(2)
pkj2

)
(44)

=
∑
j1j2

 ∏
(p,k)∈idx(r)

z
(1)
pkj1

 ∏
(p,k)∈idx(r)

z
(2)
pkj2

 (45)

=

∑
j1

∏
(p,k)∈idx(r)

z
(1)
pkj1

∑
j2

∏
(p,k)∈idx(r)

z
(1)
pkj2

 (46)

= r(z1)r(z2) (47)

515

Corollary 1. If z is a global optimizer and y is a unit, then z ∗ y is also a global optimizer.516

Proof. Straightforward by leveraging the property of ring homomorphism. E.g.,517

rkkk(z ∗ y) = rkkk(z)rkkk(y) = rkkk(z) (48)

and the proof is complete.518
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C Solution Construction (Proof)519

C.1 Construction of Partial Solutions520

Theorem 4 (Construction of partial solutions). Suppose u has 1-set R1, ΩR(u) := {r(u)|r ∈521

R} ⊆ C is a set of evaluations on R (multiple values counted once), then if 1 /∈ ΩR, then the522

polynomial solution ρR(u) :=
∏

s∈ΩR(u)(u + ŝ) has 0/1-set (R,R1) up to a scale. Here ŝ is any523

order-1 weight that satisfies r(ŝ) = −s for any r ∈ R ∪R+. For example, ŝ = −s1/31.524

Proof. By definition, for any r ∈ R we have:525

r(z(u)) =
∏

s∈ΩR(u)

(r(u) + r(ŝ)) =
∏

s∈ΩR(u)

(r(u)− s) = 0 (49)

similarly for any rkkk ∈ R+ we have:526

rkkk(z(u)) =
∏

s∈ΩR(u)

(rkkk(u) + rkkk(ŝ)) =
∏

s∈ΩR(u)

(1− s) ̸= 0 (50)

which is constant over different k. So z(u) satisfies Lemma 1, up to a scaling factor.527

C.2 Construction of Global Optimizers528

Corollary 2 (Order-6 global optimizers). The following “3× 2” Fourier solutions satisfy the suffi-529

cient condition (Lemma 1) and thus are global optimizers (assuming d is odd):530

zF6 =
1
3
√
6

(d−1)/2∑
k=1

z(k)
syn ∗ z(k)

ν ∗ yk (6)

Here z
(k)
syn := ρ(u

(k)
syn) and z

(k)
ν := u

(k)
ν + 1k (i.e., not maximal polynomial), where usyn and uν531

are defined in Table 1. y is an order-1 unit. As a result, ord(zF6) = 3 · 2 · 1 · (d− 1)/2 = 3(d− 1)532

and each frequency are affiliated with 6 hidden nodes (order-6).533

Proof. Just notice that zsyn := ρ(usyn) = u2
syn+usyn+1k (superscript (k) are omitted for brevity)534

makes all MPs in Rn, Rc and part of R∗ (Tbl. 1) equal to 0, except for “aac” and “bbc”, which535

corresponds to monomial polynomials rakkk :=
∑

j zakjzakjzckj and rbkkk :=
∑

j zbkjzbkjzckj .536

On the other hand, according to Tbl. 1, zν := uν + 1k has rakkk(zν) = rbkkk(zν) = 0. Therefore,537

using ring homomorphism, we know that for any r ∈ Rn ∪ Rc ∪ R∗, r(zsyn ∗ zν) = 0 and thus538

Rn ∪Rc ∪R∗ is the 0-sets.539

On the other hand for any k′, we have:540

rk′k′k′(zF6) = rk′k′k′

 1
3
√
6

(d−1)/2∑
k=1

z(k)
syn ∗ z(k)

ν ∗ yk

 (51)

=
1

6

(d−1)/2∑
k=1

rk′k′k′(z(k)
syn ∗ z(k)

ν ∗ yk) (52)

=
1

6

(d−1)/2∑
k=1

6(I(k = k′) + I(k = −k′)) = 1 (53)

The last equality is due to the fact that we only sum over half of the frequency. This means that541

Rg is a 1-set of zF6. Therefore, zF6 satisfies the sufficient condition (Eqn. 4) and the conclusion542

follows.543

Corollary 3 (Perfect Memorization). We construct two d-order weights za and zb:544

za =

d−1∑
j=0

uj
a, zb =

d−1∑
j=0

uj
b (7)

18



C.2 Construction of Global Optimizers C SOLUTION CONSTRUCTION (PROOF)

Here za ∈ Rc(k1 ̸= k)∩Rn∩R∗(p = b orm ̸= k), zb ∈ Rc(k2 ̸= k)∩Rn∩R∗(p = a orm ̸= k).545

Then zM = d−2/3za∗zb satisfies the sufficient condition (Lemma 1) and is the perfect memorization546

solution with ord(zM ) = d2:547

z
(M)
akj1j2

= ωkj1/
3
√
d2, z

(M)
bkj1j2

= ωkj2/
3
√
d2, z

(M)
ckj1j2

= ω−k(j1+j2)/
3
√
d2 (8)

where each hidden node is indexed by j = (j1, j2), 0 ≤ j1, j2 < d, k ̸= 0.548

Proof. Simply plugging in the solution and check whether the equations specified the equations. For549

za, for k = 0 everything is zero; for k ̸= 0, we have:550

rk1k2k(za) =
∑
j

ak1jbk2jckj =
∑
j

ωj(k1−k) = I(k1 = k ̸= 0) (54)

ramk′k(za) =
∑
j

ak′jam−k′,jckj =
∑
j

ωj(m−k) = I(m = k ̸= 0) (55)

rbmk′k(za) =
∑
j

bk′jbm−k′,jckj =
∑
j

ω−jk = I(k = 0) = 0 (56)

(57)

Therefore, za ∈ Rc(k1 ̸= k)∩Rn∩R∗(p = b orm ̸= k). Similar for zb. For zM := d−2/3za ∗zb,551

it satisfies all 0-sets constraints (i.e., for any r, either za satisfies with r(za) = 0, or zb satisfies with552

r(zb) = 0) and we have:553

rkkk(d
−2/3za ∗ zb) = d−2rkkk(za)rkkk(zb) = d−2 · d · d = 1 (58)

So zM satisfies the sufficient conditions (Eqn. 4).554

Corollary 4 (Order-4 single frequency solution). Define single frequency order-2 solution zξ:555

zak· = [1, ξ], zbk· = [1,−iξ̄], zck· = [1, i] (9)

where |ξ| = 1. Then the order-4 solution z
(k)
F4 := ρ(u

(k)
ν=i)∗z

(k)
ξ has 0-sets Rc and R∗ (but not Rn).556

Proof. First, uν=i = u4c in Tbl. 1 and thus ρ(uν=i) has 0-sets Rc and R∗ except for “abc̄”, which557

corresponds to MP rk,k,−k ∈ Rc. On the other hand, we have558

rk,k,−k(zξ) = 1 + ξ · (−iξ̄) · (−i) = 0 (59)

With the property of ring homomorphism, the conclusion follows.559

Corollary 5 (Mixed order-4/6 global optimizers). With z
(k)
F4 , there is a global optimizer to Eqn. 3560

that does not meet the sufficient condition, i.e.,
∑

k′ rp,k′,−k′,m = 0 but rp,k′,−k′,m ̸= 0:561

zF4/6 =
1
3
√
6
ẑ
(k0)
F6 +

1
3
√
4

(d−1)/2∑
k=1,k ̸=k0

z
(k)
F4 (10)

where ẑ(k0)
F6 is a perturbation of z(k0)

F6 := z
(k0)
syn ∗z(k0)

ν=1 by adding constant biases to its (c, k) entries562

for k ̸= k0. The order is lower than zF6: ord(zF4/6) = 6 + 4 · ((d− 1)/2− 1) = 2d < ord(zF6).563

Proof. While z
(k)
F4 does not satisfy Rn, a weaker condition for a global optimizer to Theorem 1 is564

that
∑

k′ rp,k′,−k′,m = 0. We show that by adding constants to (c, k) entries of z(k0)
F6 for k ̸= ±k0,565

we can achieve that while not changing the value of other MPs.566

To see this, we compute for each m ̸= ±k0:567 ∑
k′

rp,k′,−k′,m(ẑ
(k0)
F6 ) = 2

∑
k′

∑
j

|[ẑ(k0)
F6 ]pk′j |2[ẑ(k0)

F6 ]cmj (60)

= 2
∑
j

|[ẑ(k0)
F6 ]pk0j |2[ẑ

(k0)
F6 ]cmj = 2

∑
j

[ẑ
(k0)
F6 ]cmj (61)
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C.3 Canonical Forms C SOLUTION CONSTRUCTION (PROOF)

… 𝑎!!" 𝑏!!" 𝑐!!" 0 0

𝑐!# = const!

… 𝑎!!$ 𝑏!!$ 𝑐!!$ 0 0

… 𝑎!!% 𝑏!!% 𝑐!!% 0 0

… 𝑎!!& 𝑏!!& 𝑐!!& 0 0

… 𝑎!!' 𝑏!!' 𝑐!!' 0 0

… 𝑎!!( 𝑏!!( 𝑐!!( 0 0

+𝒛)*
!!

Figure 7: Visualization of ẑ(k0)
F6 .

The second equality is because all (a, k′) and (b, k′) entries are 0 except for k′ = ±k0, and the last568

equality is because all nonzero entries of z(k0)
F6 have magnitude 1.569

On the other hand, we have:570

∑
k′

rp,k′,−k′,m

∑
k ̸=k0

z
(k)
F4

 =
∑
k′

rp,k′,−k′,m(ρ(u
(m)
4c ))rp,k′,−k′,m(z

(m)
ξ ) (62)

= 2rp,m,−m,m(ρ(u
(m)
4c ))rp,m,−m,m(z

(m)
ξ ) (63)

= 2(1 + 1)(1 + i) = 4(1 + i) (64)

For m = ±k0, we have rp,k′,−k′,m(ẑ
(k0)
F6 ) = 0 and rp,k′,−k′,m(z

(k)
F4 ) = 0 for k ̸= m.571

Therefore, we just let572

[ẑ
(k0)
F6 ]cmj = −4(1 + i)

2 · 6
= −1

3
(1 + i) (65)

and
∑

k′ rp,k′,−k′,m(zF4/6) = 0 for all m. See Fig. 7) for the construction.573

To see why such a modification of z
(k0)
F6 won’t change other MPs, simply notice that candidate574

MPs that may not be zero anymore are r±k0±k0m, rpk0k0m and rp,−k0,−k0,m for m ̸= ±k0. For575

m = ±k0, z(k0)
F6 are well behaved.576

Note that r±k0±k0k(ẑ
(k0)
F6 ) is the same as applying r±k0±k0k0 to a solution ẑ which replaces (c, k0)577

entries of ẑ(k0)
F6 by (c,m) entries. Let ûsyn = [ω3, ω3, 1] and ûone = [1,−1, 1]. Then ẑ = ρ(ûsyn)∗578

ρ(ûone) and thus for m ̸= ±k0, we have:579

r±k0±k0m(zF4/6) = r±k0±k0m(ẑ
(k0)
F6 ) ∝ r±k0±k0k0

(ẑ) (66)

= r±k0±k0k0
(ρ(ûsyn))r±k0±k0k0

(ρ(ûone)) = 0 (67)

since r±k0±k0k0(ρ(ûone)) = 0. Similarly for m ̸= ±k0,580

rpk0k0m(zF4/6) = rpk0k0m(ẑ
(k0)
F6 ) ∝ rpk0k0k0(ẑ) (68)

= rpk0k0k0
(ρ(ûsyn))rpk0k0k0

(ρ(ûone)) = 0 (69)

since rpk0k0k0
(ρ(ûsyn)) = 0. Similarly for rp,−k0,−k0,m.581

C.3 Canonical Forms582

Definition 8. A solution z is called canonical at k0, or z ∈ Ck0
, if zpk0 = 1 for all p and k = ±k0.583

Lemma 4 (Canonical Decomposition). Any solution z with rk0k0k0(z) ̸= 0 can be decomposed into584

z = z′ ∗y, where z′ is canonical at k0 and ord(y) = 1. Both rk0k0k0(z
′) ̸= 0 and rk0k0k0(y) ̸= 0.585

Proof. Since rk0k0k0
(z) =

∑
j ak0jbk0jck0j ̸= 0, there must exist some j so that zak0jzbk0jzck0j ̸=586

0, which means that zak0j ̸= 0, zbk0j ̸= 0 and zck0j ̸= 0. Since the node index j can be permuted,587
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D GRADIENT DYNAMICS (PROOF)

we can let node j be the first node 0 and let ypk0 = zpkj and z′pkj′ = zpkj′z
−1
pkj for p ∈ {a, b, c} and588

k = ±k0, then z′ is canonical at k0 and ord(y) = 1. Finally, by ring homomorphism, since589

rk0k0k0
(z) = rk0k0k0

(z′)rk0k0k0
(y) ̸= 0 (70)

we know that both rk0k0k0
(z′) ̸= 0 and rk0k0k0

(y) ̸= 0.590

D Gradient Dynamics (Proof)591

Theorem 5 (Dynamics of MPs). The dynamics of MPs satisfies ṙ = −JJ∗∇rℓ, which has positive592

inner product with the negative gradient direction −∇rℓ.593

Proof. By gradient descent of W , we have Ẇ = −∇Wℓ. By chain rule, we have:594

Ẇ = −∇Wℓ = −J⊤∇rℓ = −J∗∇rℓ (71)

Then the dynamics of r = r(z(W)), as driven by the dynamics of W , is given by595

ṙ = JẆ = −JJ∗∇rℓ (72)

To show positive inner product, we have:596

−∇rℓ
∗
ṙ = ∇rℓ

∗
JJ∗∇rℓ = ∥J∗∇rℓ∥22 ≥ 0 (73)

597

Theorem 6 (The Occam’s Razer: Preference of low-order solutions). If z = y ∗ z′ and both z (of598

order q) and z′ are global optimal solutions, then there exists a path of zero loss connecting z and z′599

in the space of Zq . As a result, lower-order solutions are preferred if trained with L2 regularization.600

Proof. Let ord(z) = q and ord(z′) = q′. Then q′|q. Since both z and z′ are global optimal. Since601

rkkk is ring homomorphism, we know that rkkk(z) = rkkk(z
′)rkkk(y) = 1/2d = rkkk(z

′) and602

thus rkkk(y) = 1 for all k ̸= 0.603

Let the augmented identity e ∈ Zq be epmj = I(j = 0). Then rkkk(e) = 1 for all k ̸= 0.604

We want to construct a path in Zq , the space of order-q solutions as follows:605

z̃(t) = ỹ(t) ∗ z′, 0 ≤ t ≤ 1 (74)

in which ỹ(0) = e, ỹ(1) = y, and rkkk(ỹ(t)) = 1 for any t. To see why this is possible, pick a606

continuous family of trajectories ŷ(t;λ) with λ ∈ [0, 1] so that they satisfies607

ŷ(0;λ) = e, ŷ(1;λ) = y, rkkk(ŷ(t; 0)) ≤ 1, rkkk(ŷ(t; 1)) ≤ 1 (75)

which can always be achieved by scaling some trajectory with a factor that depends on λ. Then608

by intermediate theorem, there exists λ(t) so that rkkk(ŷ(t;λ(t))) = 1 for some k. Note that for609

different frequency k and k′, rkkk and rk′k′k′ involves disjoint components of z so we could find610

such a path for all k ̸= 0.611

Therefore, for any monomial potential r included in MSE loss (Eqn. 3), we have612

r(z̃(t)) = r(ỹ(t))r(z′) =

{
finite · 0 = 0 r ̸= rkkk

1 · 1/2d = 1/2d r = rkkk
(76)

and thus the entire trajectory z̃(t) = ỹ(t)∗z′ ∈ Zq connecting z and e∗z′, which is z′ in the space613

of Zq , is also globally optimal.614

To see why weight decay regularization leads to lower-order solution, we could simply compare the615

ℓ2 norm of z = y ∗ z′ and e ∗ z′. At each frequency k, this reduces to the following optimization616

problem:617

min
∑
j

|aj |2 + |bj |2 + |cj |2, s.t.
∑
j

ajbjcj = 1 (77)
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D GRADIENT DYNAMICS (PROOF)

where aj := yakj , bj := ybkj and cj := yckj . Since we know that arithmetic mean is no less than618

geometric mean:619

|aj |2 + |bj |2 + |cj |2

3
≥ 3

√
|ajbjcj |2 (78)

We have:620 ∑
j

|aj |2 + |bj |2 + |cj |2 ≥ 3
∑
j

|ajbjcj |2/3 ≥ 3 (79)

The last inequality holds because (1) if any |ajbjcj | ≥ 1, then it holds, (2) if all |ajbjcj | < 1, then621

since ax is a decreasing function for a < 1,
∑

j |ajbjcj |2/3 ≥
∑

j |ajbjcj | ≥ |
∑

j ajbjcj | = 1.622

The minimizer is reached when |aj | = |bj | = |cj |. Note that if ajbjcj has any complex phase or623

negative, then in order to satisfy
∑

j ajbjcj = 1, objective function needs to be larger. So without624

loss of generality, we could study aj = bj = cj = xj ≥ 0 and the optimization problem becomes625

min
∑
j

x2
j , s.t.

∑
j

x3
j = 1, xj ≥ 0 (80)

which has a minimizer at the corners (1, 0, . . .). This corresponds to aj = bj = cj = I(j = 0),626

which is the augmented identity e ∈ Zq .627

Theorem 7 (Infinite Width Limits at Initialization). Considering the modified loss of Eqn. 3 with628

only the first two terms: ℓ̃k := −2rkkk +
∑

k1k2
|rk1k2k|2, if the weights are i.i.d Gaussian and629

network width q → +∞, then JJ∗ converge to diagonal and the dynamics of MPs is decoupled.630

Proof. Let ℓ̃ :=
∑

k ∇ℓ̃k. Let’s compute the dynamics of MPs following Theorem 5: ṙ =631

−JJ∗∇r ℓ̃.632

First it is clear that633

∂ℓ̃

∂rk1k2k
=
∑
k

∂ℓ̃k
∂rk1k2k

= −2I(k1 = k2 = k) + 2rk1k2k (81)

So the (k1, k2, k) component of ∇r ℓ̃ only contains rk1k2k.634

Then we compute H := JJ∗ and show that it is asymptotically diagonal. To see this, each compo-635

nent of H , i.e., hk1k2k3,k′
1k

′
2k

′
3

can be computed as the following:636

hk1k2k3,k′
1k

′
2k

′
3
=
∑
pmj

∂rk1k2k3

∂zpmj

∂rk′
1k

′
2k

′
3

∂zpmj
(82)

= I(k1 = k′1)
∑
j

bk2j b̄k′
2j
ck3j c̄k′

3j
(83)

+ I(k2 = k′2)
∑
j

ak1j āk′
1j
ck3j c̄k′

3j
(84)

+ I(k3 = k′3)
∑
j

ak1j āk′
1j
bk2j b̄k′

2j
(85)

where akj := zakj , bkj := zbkj and ckj := zckj . Then for component (k1k2k3, k′1, k
′
2, k

′
3), if any637

kp ̸= k′p for some p ∈ {a, b, c}, then the corresponding zpkpj z̄pk′
pj

has random phase for hidden638

node j, and hk1k2k3,k′
1k

′
2k

′
3
→ 0 when q → +∞.639

Combining the two, we know that the dynamics of MPs is decoupled, that is, each rk1k2k evolves640

independently over time.641

Ripple effects. While Theorem 7 only holds at initialization, the resulting decoupled MP dynamics,642

e.g., drkkk/dt = 1 − rkkk that leads to rkkk(t) = 1 − e−t, already captures the rough shape of643

the curve (Fig. 3 top right). To capture its fine structures (e.g., ripples before stabilization), we can644

also model the dynamics of the diagonal element in JJ∗. Consider a symmetric 1D case on a fixed645
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D GRADIENT DYNAMICS (PROOF)

frequency k, where all diagonal rkkk = r0 − r (where r0 = 1/2d) and all off-diagonal rk1k2k = r,646

then647

ṙ = −ṙkkk = κ(rkkk−r0) = −κr, κ̇ = α(r0−rkkk)−(1−α)rk1k2k−c0 = (2α−1)r−c0 (86)

where κ > 0 is the diagonal element of JJ∗ and α is a coefficient that characterizes the relative648

strength of two negative gradient −∇rkkk
ℓ = r0 − rkkk and −∇rk1k2k

ℓ = −rk1k2k, and c0 is the649

gradient terms caused by asymmetry and/or other frequencies. This yields a second-order ODE that650

has complex roots in the characteristic function when c0 > 0.651
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E EXTENDING COGO TO GROUP ACTION PREDICTION
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Figure 8: An example case of group action on state set X , X can be partitioned into several disjointed
components, each is a transitive graph w.r.t the group actions in G.

E Extending CoGO to Group Action Prediction652

While in this work we mainly focus on Abelian group, CoGO can be extended to more general group653

action prediction: given a group element g ∈ G and the current state x ∈ X , the goal is to predict654

gx ∈ X , i.e., the next state after action g. Such tasks include modular addition/multiplication in655

which the group acts on itself (i.e., X = G), and also includes the transition function in reinforce-656

ment learning (Sutton, 2018) and world modeling (Garrido et al., 2024), in which an action changes657

the current state to a new one.658

Setup. Consider a state space X and group action G × X 7→ X where g ∈ G is a group element659

acting on a state x ∈ X to get an update state gx ∈ X . It satisfies two axioms (1) the group identity660

maps everything to itself: ex = x, and (2) the group action is compatible with group multiplication:661

g(hx) = (gh)x for any g, h ∈ G and x ∈ X .662

Equipped with the group action, the state space now can be decoupled into a disjoint of transitive663

components.664

Definition 9 (Transitive group action). A group action is transitive, if for any x1, x2 ∈ X , there665

exists g ∈ G so that gx1 = x2.666

Since the group action is compatible with multiplication, X under G will be partitioned into disjoint667

components X =
⋃

l Xl and we can analyze each component separately (Fig. 8).668

Transitive Group Action. For each transitive component X (dropping l for brevity), under certain669

conditions, we could define a state multiplication operation (a formal definition in Def. 10 in Ap-670

pendix) so that for any group action gx ∈ X , there is an associated state x′ ∈ X so that x′ · x = gx.671

Furthermore, under the multiplication, X itself becomes a group:672

Theorem 8 (X ∼= G/Gx0
). If the group stabilizer Gx0

:= {g|gx0 = x0} is a normal subgroup of673

G, then X is isomorphic to the quotient group G/Gx0
and thus forms a group.674

Moreover, we can prove that for any group element g ∈ G, there exists x = ι0(g) ∈ X so that for675

any state x′, the group action gx′ is the same as the state multiplication x′ · x. Therefore, for group676

action prediction tasks, we have (note the difference compared to Eqn. 12):677

wj = UG

(
P0w

||
j,G +w⊥

j,G

)
+ UXwj,X (87)

where w||
j,G ∈ R|X | is the “in-graph” component of G, w⊥

j,G ∈ R|G| is the “out-of-graph” component678

of G, and P0 ∈ R|G|×|X| “lifts” from X to G using ι0, i.e., (P0)gx = 1 for g ∈ ι−1
0 (x), and679

w⊥
j,G ⊥ P0w

||
j,G. Since any g just behaves like ι0(g) when acting on X , our framework can be680

applied to characterize the learning of w||
j,G. Intuitively, we only learn representation of G’s element681

“module” its kernel Gx0
, since element in the kernel is indistinguishable from each other.682

On the other hand, the behavior of w⊥
j,G will be influenced by g acting on other graphs, and the final683

learned representation of a group element g is the direct sum of them.684
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F DETAILED EXPLANATION OF SEC. E

F Detailed explanation of Sec. E685

Matrix Representation. Each group element g can be represented by a matrix Rg , i.e., its matrix686

representation, so that it respects the group multiplication (i.e., homomorphism): Rgh = RgRh for687

any group elements g, h ∈ G.688

The dimension of such a representation may differ widely. Some representation can be 1-689

dimensional (e.g., for Abelian group), while others can be infinitely dimensional. The permutation690

representation Rg ∈ Rd×d maps a one-hot representation ex ∈ Rd of an object X into its image691

egx ∈ Rd, also a one-hot representation. Intuitively, (Rg)jk = 1 means that it maps the k-th element692

into the j-th element.693

Lemma 5 (Structure of Rg). For any g ∈ G, Rg is a permutation matrix.694

Lemma 6 (Summation of Rg). If the group action is transitive, then
∑

g∈G Rg = |G|
d 11⊤.695

F.1 Transitive Case696

To construct the multiplication operation on X , we first pick reference point x0 ∈ X , and establish697

a mapping ι0 : G 7→ X : ι0(g) = gx0. Note that ι0 is not necessarily a bijection; in fact we have:698

Lemma 7 (Co-set Mapping ι0). There is a bijection between {ι−1
0 (x)}x∈X and co-sets [G : Gx0 ]699

of group stabilizer Gx0 := {g ∈ G|gx0 = x0}, which is a subgroup of G fixing x0.700

Lemma 8 (Uniqueness of Multiplication Mapping). If Gx0 is a normal subgroup, then for all g1 ∈701

ι−1
0 (x1) and g2 ∈ ι−1

0 (x2), all g1g2Gx0 correspond to the same coset.702

Definition 10 (The multiplication operator on X ). When Gx0 is a normal subgroup, we define703

multiplication on X : X × X 7→ X to be x1x2 := ι0(g1g2Gx0) for x1 = g1x0 and x2 = g2x0.704

Under this definition, x0 is the identity element.705

Lemma 9. If g ∈ ι−1
0 (x), then for any x′ ∈ X , gx′ = xx′.706

This means that in terms of group action, the group element g is indistinguishable to x on X .707

F.2 General group action708

In this case, Rg can be decomposed into a direct sum of smaller matrices, and all our analysis applies709

to each of these small matrices.710

In the main text, to simplify the notation, we assume that the group action is transitive, i.e., for any711

y, y′ ∈ Y , there exists g ∈ G so that gy = y′. In the following we will show that for general group712

actions, the conclusion still follows.713

Group orbit. For any x ∈ X , Let G · y := {gy|g ∈ G} ⊆ Y be its orbit.714

Lemma 10. For y, y′ ∈ G, either G · y = G · y′ (two orbits collapse) or G · y ∩ G · y′ ̸= ∅ (two715

orbits are disjoint). Therefore, orbits form a partition of X .716

Let X/G := {G ·y|x ∈ X} be the collection of all orbits. The following lemma tells that the matrix717

representation Rg can be decomposed into a direct sum (i.e., block diagonal matrix) on each orbit.718

Lemma 11 (Direct sum decomposition of Rg).

Rg =
⊕

Y ′∈Y/G

RY ′

g (88)

and each RY ′

g ∈ R|Y ′|×|Y ′| is a permutation matrix with
∑

g R
Y ′

g = |G|
|Y ′|11

⊤.719

Proof. By the definition of group orbits, the group action g is closed within each Y ′. Therefore, Rg720

is a direct sum (i.e., block-diagonal).721

For each element x ∈ X ′, let’s check its destination under G. It is clear that if two group elements722

g, h ∈ G maps X to the same destination, then723

gy = hy ⇐⇒ y = g−1hy ⇐⇒ g−1h ∈ Gy ⇐⇒ h = gGy (89)
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where Gy is the stabilizer of X , a subgroup of G. Therefore, g and h map X to the same destination,724

if and only if they are from the same coset of Gy . Therefore, each entry of
∑

g R
Y ′

g on the column725

X equals to the size of cosets of Gy , which is |Gy|. Furthermore, for y1, y2 ∈ Y ′, since they belong726

to the same orbit, there exists g so that gy1 = y2 and thus for any g′ ∈ Gy1 , we have727

g′y1 = y1 ⇐⇒ gg′y1 = gy1 = y2 ⇐⇒ gg′g−1y2 = y2 ⇐⇒ gg′g−1 ∈ Gy2
(90)

So there exists bijection between Gy1
and Gy2

. This means that |Gy| is constant for any x ∈ X ′ and728

thus all elements in
∑

g R
Y ′

g are equal to |G|/|Y ′| (i.e., the number of the group elements that send729

X out to various destinations in Y ′, divided by the possible distinct destinations |Y ′|, results in the730

number of times each destination gets hit).731

G Proofs for the content in Appendix732

Lemma 5 (Structure of Rg). For any g ∈ G, Rg is a permutation matrix.733

Proof. Since every element needs to have a destination, every column of Rg sums to 1, i.e., 1⊤Rg =734

1⊤. Then we prove that the mapping y 7→ gy is a bijection. Suppose there exists y1, y2 so that735

gy1 = gy2. Therefore by compatibility we have:736

g−1(gy1) = g−1(gy2) ⇐⇒ (g−1g)y1 = (g−1g)y2 ⇐⇒ ey1 = ey2 ⇐⇒ y1 = y2 (91)

So any g is a bijective mapping on X . Since every element of Rg is either 0 or 1, Rg is a permutation737

matrix.738

Lemma 6 (Summation of Rg). If the group action is transitive, then
∑

g∈G Rg = |G|
d 11⊤.739

Proof. Simply apply Lemma 11 and notice that for transitive group action, X/G = {Y }.740

Lemma 7 (Co-set Mapping ι0). There is a bijection between {ι−1
0 (x)}x∈X and co-sets [G : Gx0

]741

of group stabilizer Gx0
:= {g ∈ G|gx0 = x0}, which is a subgroup of G fixing x0.742

Proof. First we have743

ι0(g) = ι0(h) ⇐⇒ gy0 = hy0 ⇐⇒ y0 = g−1hy0 ⇐⇒ g−1h ∈ Gy0
⇐⇒ h ∈ gGy0

(92)

So for any y = gy0, all elements in ι−1
0 (y) are also in gGy0 and vice versa. The bijection is:744

ι−1
0 (y) ↔ gGy0 , for y = gy0 (93)

or equivalently,745

y ↔ ι0(gGy0) (94)

746

Lemma 9. If g ∈ ι−1
0 (x), then for any x′ ∈ X , gx′ = xx′.747

Proof. For g ∈ ι−1
0 (x), we have gx0 = x. For any x′ = hx0, we have:748

gx′ = ghx0 = (gh)x0 (95)

On the other hand, by definition, xx′ := ι0(ghGx0
) = (gh)x0. So for any x′, gx′ = xx′.749
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Figure 9: Distribution of solutions with hidden size q = 256.

H Additional Experiments750

Algorithm to extract factorization from gradient descent solutions. Given the solutions obtained751

by gradient descent using Adam optimizer, we first compute the corresponding z via the Fourier752

transform (that is, Eqn. 12). Here z = [zpkj ] is a 3-by-d-by-q tensor. Here d = |G| and q is the753

number of hidden nodes in the 2-layer neural networks.754

Then for each frequency k, we extract the salient components of z by thresholding with a universal755

threshold (e.g. 0.05). The number of salient components (e.g., 6 or 4) is the order of the per-756

frequency solution.757

Suppose we now get z(k) for frequency k, which is a 3-by-6 (and thus an order-6) solution. Then758

we enumerate all possible permutation of 6 hidden nodes (6! = 720 possibilities) to find one permu-759

tation τ so that ∥zpkτ(·)− z
(1)
pk·⊗ z

(2)
pk·∥ is minimized, following ring multiplication defined in Def. 5.760

Note that for each permutation, we also need to consider whether 1̃ := [−1,−1, 1] can be applied to761

each hidden node j (1̃ is also defined in Tbl. 1). This is because both z1 + z2 and z1 + 1̃ ∗ z2 have762

exactly the same values on all monomial potentials (MPs) we consider, due to the fact that r(1̃) = 1763

for any r ∈ Rg ∪Rc ∪Rn ∪R∗. Therefore we call 1̃ “pseudo-1”.764

For search efficiency, we therefore first consider the permutation τ so that ∥zckτ(·) − z
(1)
ck· ⊗ z

(2)
ck·∥ is765

minimized, since the component c is invariant to the pseudo-1 transformation 1̃, and then for those766

eligible τ , we search whether 1̃ should be applied when considering p ∈ {a, b}.767

Once we find such z1 and z2, we convert them into their canonical forms z̃1 and z̃2 (Def. 8) to768

eliminate any possible multiplicative term y so that z1 = y ∗ z̃1. We then compare the canonical769

forms (up to complex conjugate) with various order-3 and order-2 partial solutions constructed by770

CoGO, as detailed in Sec. 5. If their distance is below a certain threshold (e.g., < 10% of the norm771

after normalizing both ẑ1 and ẑ2), then a match is detected.772
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Figure 10: Distribution of solutions with hidden size q = 512.
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Figure 11: Distribution of solutions with hidden size q = 1024.

0 5 10
Solution order

0

200

d=127, wd=0.0001

0 5 10
Solution order

0

200

d=127, wd=0.0002

0 5 10
Solution order

0

200

d=127, wd=0.0005

0 5 10
Solution order

0

100

200

Co
un

ts

d=127, wd=1e-05

0 5 10
Solution order

0

50

100

d=127, wd=5e-05

0

10

20

d=23, wd=0.0001

0

20

d=23, wd=0.0002

0

20

d=23, wd=0.0005

0

20

Co
un

ts

d=23, wd=1e-05

0

20

d=23, wd=5e-05

0

50

100

d=71, wd=0.0001

0

50

100

d=71, wd=0.0002

0

100

d=71, wd=0.0005

0

50

Co
un

ts

d=71, wd=1e-05

0

50

100

d=71, wd=5e-05

Figure 12: Distribution of solutions with hidden size q = 2048.
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