Under review as a conference paper at ICLR 2025

TRANSFORMERS CAN LEARN
TEMPORAL DIFFERENCE METHODS FOR
IN-CONTEXT REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Traditionally, reinforcement learning (RL) agents learn to solve new tasks by
updating their parameters through interactions with the task environment. However,
recent works have demonstrated that transformer-based RL agents, after certain
pretraining procedures, can learn to solve new out-of-distribution tasks without
parameter updates, a phenomenon known as in-context reinforcement learning
(ICRL). The empirical success of ICRL is widely attributed to the hypothesis that
the forward pass of these models implements an RL algorithm. However, no prior
works have demonstrated a precise equivalence between a forward pass and any
specific RL algorithm, even in simplified settings like transformers with linear
attention. In this paper, we present the first proof by construction demonstrating
that transformers with linear attention can implement temporal difference (TD)
learning in the forward pass — referred to as in-context TD. We also provide
theoretical analysis and empirical evidence demonstrating the emergence of in-
context TD after training the transformer with a multi-task TD algorithm, offering
the first constructive explanation for transformers’ ability to perform in-context
reinforcement learning.

1 INTRODUCTION

In reinforcement learning (RL, Sutton and Barto (2018)), an agent typically learns to solve new
tasks by updating its parameters based on interactions with the task environment. For example, the
DQN agent (Mnih et al., 2015) incrementally updates the parameters of its (Q-network while playing
the Atari games (Bellemare et al., 2013). However, recent works (Laskin et al., 2022; Raparthy
et al., 2023; Sinii et al., 2023; Zisman et al., 2023; Krishnamurthy et al., 2024; Lee et al., 2023; Park
et al., 2024; Brooks et al., 2024) demonstrate that RL can also occur without any parameter updates.
Specifically, after certain pretraining procedures (on some task distribution), transformer-based RL
agents can learn to solve new out-of-distribution tasks without updating their network parameters.
These works demonstrate that an RL agent with fixed pretrained parameters can take as input its
observation history in the new task (referred to as context) and output good actions for that task.
Let 7 = (So, Ao, R1,--.,St—1, As_1, R¢) be a sequence of state-action-reward triples that an agent
obtains until time ¢ in some new task. This 7; is referred to as the context. The agent then outputs
an action A, based on the context 7; and the current state .S; without updating its parameters. As
the context length increases, action quality improves, suggesting that this improvement is not due to
memorized policies encoded in the fixed transformer weights. Instead, it indicates that a reinforcement
learning process occurs during the forward pass as the agent processes the context—a phenomenon
termed in-context reinforcement learning (ICRL), where RL happens at inference time within the
forward pass.

The empirical success of ICRL is widely hypothesized to result from an RL algorithm being imple-
mented in the forward pass to process the context during the inference time. Previous works (Lin
et al., 2023) support this claim by demonstrating behavioral similarities (i.e., input-output matching)
between the pretrained fixed-weight transformers and known RL algorithms (e.g. UCB-VI (Azar
et al., 2017)). However, there has been no proof identifying an exact equivalence between any

Under review as a conference paper at ICLR 2025

known RL algorithm and the forward pass of a neural network, even in simplified cases such as
transformers with linear attention'. This work provides the first such proof.

While most existing ICRL studies focus on control tasks (i.e., outputting actions given a state and
context), to better understand ICRL, in this work, we investigate ICRL for policy evaluation, as it
is widely known in the RL community that understanding policy evaluation is often the first step to
understanding control (Sutton and Barto, 2018). Specifically, suppose an agent with fixed pretrained
parameters follows some fixed policy 7 in a new task. We explore how the agent can estimate the
value function v, () for a given state s based on its context 7;> without parameter updates. We call
this in-context policy evaluation and believe understanding in-context policy evaluation will pave the
way to fully understanding ICRL.

1.25 .|

MSVE 100 - B TFp
0.75 1 SO)A07R17-"7St717At717Rt)8—>v(s> z’Uﬂ'(s)
~—~
0.50 1 . input: context 74 + query s output
0.25, | | | J
0 10 20 30 40

Context Length (t)

Figure 1: A transformer capable of in-context policy evaluation. This 15-layer transformer TF, takes
the context 7; and a state of interest s as input and outputs TFy, (7¢, s) as the estimation of the state
value v, (s). The y-axis is the mean square value error (MSVE) } " d(s)(TFg, (7¢,5) — vx (s))%,
with d(s) being the stationary state distribution. The curves are averaged over 300 randomly
generated policy evaluation tasks, with shaded regions being standard errors. The tasks vary in state
space, transition function, reward function, and policy. Yet a single 6, is used for all tasks. See
Appendix B for more details.

Figure 1 provides a concrete example of a transformer capable of in-context policy evaluation. To
our knowledge, this is the first empirical demonstration of in-context policy evaluation. Let TFy,
denote the transformer used in Figure 1 with parameters 6,.. Figure 1 demonstrates that the value
approximation error of this transformer drops when the context length ¢ increases even though
0. remains fixed. Notably, this improvement cannot be attributed to 6, hardcoding the true value
function. The approximation error in Figure 1 is averaged over a wide range of tasks and policies,
each with distinct value functions, while only a single 6, is used. The only plausible explanation
seems to be that the transformer TFy, is able to perform some policy evaluation algorithm in the
forward pass to process the context and thus predict the value of s. This immediately raises two key
questions:

(Q1) What is exactly that policy evaluation algorithm that TFy, is implementing?
(Q2) What kind of pretraining can generate such a powerful transformer?

This work aims to answer these questions to better understand in-context RL for policy evaluation as
a first step toward understanding the whole landscape of ICRL. To this end, this work makes three
contributions.

First, we confirm the existence of such a 6, by construction. We prove that this 6, enables in-context
policy evaluation because the layer-by-layer forward pass of TFy, is precisely equivalent to the
iteration-by-iteration updates of a batch version of Temporal Difference learning (TD, Sutton (1988)).
To summarize, a short answer to (Q1) is “TD”. Additionally, we also prove by construction that
transformers are able to implement many other policy evaluation algorithms, including TD()) (Sutton,
1988), residual gradient (Baird, 1995), and average reward TD (Tsitsiklis and Roy, 1999).

"Linear attention is a widely used transformer variant for simplifying both computation and analysis
(Katharopoulos et al., 2020; Wang et al., 2020; Schlag et al., 2021; Choromanski et al., 2020; Mahankali et al.,
2023; Ahn et al., 2023; von Oswald et al., 2023; Von Oswald et al., 2023; Wu et al., 2023; Ahn et al., 2024;
Gatmiry et al., 2024; Zhang et al., 2024; Zheng et al., 2024; Sander et al., 2024).

2We, of course, also need to provide the discount factor to the agent. We ignore it for now for simplifying
presentations.

Under review as a conference paper at ICLR 2025

Second, we empirically demonstrate that this 6, naturally emerges after we regard TF as a standard
nonlinear function approximator and train it using nonlinear TD on multiple randomly generated
policy evaluation tasks (similar to training a single DQN agent on multiple Atari games). This
empirical finding is surprising because the pretraining only drives TFy to output good value estimates.
There is no explicit mechanism that forces the transformer’s weights to implement TD in its forward
pass (cf. that the forward pass of DQN’s ()-network can be anything as long as it outputs good action
value approximations). Despite having the capacity to implement other algorithms like residual
gradient, the pretraining process consistently leads the transformer weights to converge to those
that implement TD. This observation parallels the historical development of the RL community
itself, where TD became the favored method for policy evaluation after extensive trial-and-error with
alternative approaches. Thus, a short answer to Question (Q2) is also “TD”. Naturally, this leads to
our third and final question.

(Q3) Why does TD pretraining give rise to in-context TD?

Our third contribution addresses this question by proving that the parameters 6, that implement TD in
the forward pass lie in an invariant set of the TD pretraining algorithm. It is, of course, not a complete
answer. Similar to Wu et al. (2023); Zhang et al. (2024), we only prove the single-layer case, and we
do not prove that the parameters will for sure converge to this invariant set. However, we argue that
our invariant set analysis and the techniques developed to prove it are a significant step toward future
work that can fully characterize how in-context reinforcement learning emerges from pretraining.

2 RELATED WORKS

Our first question (Q1) is closely related to the expressivity of neural networks (Siegelmann and
Sontag, 1992; Graves et al., 2014; Jastrzgbski et al., 2017; Hochreiter et al., 2001; Lu et al., 2017).
Per the universal approximation theorem (Hornik et al., 1989; Cybenko, 1989; Leshno et al., 1993;
Bengio et al., 2017), sufficiently wide neural networks can approximate any function arbitrarily
well. However, this theorem focuses only on input-output behavior, meaning that given the same
input, the network will produce similar outputs as the target function. It does not say anything
about how the forward pass is able to produce the desired outputs, nor how the number of layers
affects the approximation error. In the supervised learning community, there are a few works that
are able to white-box the forward pass of neural networks to some extent (Frosst and Hinton, 2017;
Alvarez Melis and Jaakkola, 2018; Chan et al., 2022; Yu et al., 2023; von Oswald et al., 2023; Ahn
et al., 2024). But in the RL community, this work is, to our knowledge, the first to white-box how
the forward pass can implement RL algorithms. Although this study primarily focuses on ICRL for
policy evaluation and leaves the exploration of ICRL for control to future work, it represents the first
step toward understanding how neural networks can implement RL algorithms in context.

Our second question (Q2) is closely related to the pretraining in ICRL. In general, the pretraining
methods in ICRL are quite diverse, including, e.g., behavior cloning based pretraining (Laskin et al.,
2022; Raparthy et al., 2023; Sinii et al., 2023; Zisman et al., 2023; Krishnamurthy et al., 2024) and
regret minimization based pretraining (Park et al., 2024). Since ICRL can also be viewed as a special
case of meta RL (Duan et al., 2016; Wang et al., 2016; Finn et al., 2017; Kirsch et al., 2019; Oh et al.,
2020; Lu et al., 2022; Kirsch et al., 2022; Beck et al., 2023; Lu et al., 2023), in particular, offline
meta RL (Mitchell et al., 2021; Dorfman et al., 2021; Pong et al., 2022), the diverse pretraining
schemes in meta RL are also related here. The pretraining method we use is exactly a very simple
version of multi-task RL and is very standard in the meta RL community (Beck et al., 2023). We
do not claim any novelty in our pretraining method. Instead, the novelty lies in the empirical and
theoretical analysis of this simple yet standard pretraining method. Roughly speaking, the pretraining
of ICRL is to learn an RL algorithm from data using transformers. It is closely related to offline
policy distillation, the goal of which is to learn a policy from offline data using transformers (Chen
et al., 2021; Janner et al., 2021; Lee et al., 2022; Reed et al., 2022; Kirsch et al., 2023).

Our third question (Q3) is closely related to the training dynamics of RL algorithms (Borkar and
Meyn, 2000; Bhandari et al., 2018; Cai et al., 2019), which is an active research area. In particular,
a few works (Lin et al., 2023; Lee et al., 2023) have studied the pretraining of ICRL, i.e., how the
pretraining algorithm yields ICRL capability. However, these works focus on behavioral similarity
through input-output matching. In other words, they analyze how the pretraining algorithm ends
up with a neural network that can output similar actions to an RL algorithm in terms of various

Under review as a conference paper at ICLR 2025

behavioral metrics, e.g., regret and policy probability similarity. This work is the first in the ICRL
area to white-box the internal mechanism within the forward pass.

ICRL is broadly related to the general in-context learning (ICL) community in machine learning (Garg
et al., 2022; Miiller et al., 2022; Akyiirek et al., 2023; von Oswald et al., 2023; Zhao et al., 2023;
Allen-Zhu and Li, 2023; Mahankali et al., 2023; Ahn et al., 2024; Zhang et al., 2024). While ICL is
widely studied in the context of large language models (LLMs) (Brown et al., 2020), ICRL and LLM-
based ICL represent distinct areas of research. ICRL typically needs RL-based pretraining while
LLM’s pretraining is usually unsupervised. Additionally, ICRL focuses on RL capabilities during
inference, while LLM-based ICL typically examines supervised learning behavior during inference.
RL and supervised learning are fundamentally different problems, and similarly, ICRL and in-context
supervised learning (ICSL) require different approaches. For example, Ahn et al. (2024) prove that
ICSL can be viewed as gradient descent in the forward pass. While our work draws inspiration
from Ahn et al. (2024), the scenario in ICRL is more complex. Temporal Difference (TD) learning,
which we analyze in this paper, is not equivalent to gradient descent. Our proof that transformers can
implement TD in the forward pass is, therefore, more intricate, especially when extending it to TD())
and average reward TD. Moreover, Ahn et al. (2024) consider a gradient descent-based pretraining
paradigm where the transformer is trained to minimize an in-context regression loss. As a result,
they analyze the critical points of the regression loss to understand their pretraining. In contrast, we
consider TD-based pretraining, which is not gradient descent. To address this, we introduce a novel
invariant set perspective to analyze the behavior of transformers under TD-based pretraining.

3 BACKGROUND

Transformers and Linear Self-Attention. All vectors are column vectors. We denote the identity
matrix in R" by I,, and an m x n all-zero matrix by 0, x,,. We use Z T to denote the transpose of
Z and use both (z,y) and "y to denote the inner product. Given a prompt Z € R?*", standard
single-head self-attention (Vaswani et al., 2017) processes the prompt by Attny, w, w,(Z) =
W, Z softmax (Z "W,] W,Z), where W,, € R4 W, € R™*4, and W, € R™*¢ represent the
value, key and query weight matrices. The softmax function is applied to each row. Linear attention
is a widely used architecture in transformers (Mahankali et al., 2023; Ahn et al., 2023; von Oswald
et al., 2023; Von Oswald et al., 2023; Wu et al., 2023; Ahn et al., 2024; Gatmiry et al., 2024; Zhang
et al., 2024; Zheng et al., 2024; Sander et al., 2024), where the softmax function is replaced by an
identity function. Given a prompt Z € R(2¢+1)x(n+1) [inear self-attention is defined as

LinAttn(Z; P,Q) = PZM(Z ' QZ), (1)

where P € R4+ x(2d+1) apnd Q € RRAHDX(2d+1) are parameters and M € R DX (n+1) g 5
fixed mask of the input matrix Z, defined as

KR In 01’L><1
M= [O > } @

Note that we can view P and () as reparameterizations of the original weight matrices for simplifying
presentation. The mask M is introduced for in-context learning (von Oswald et al., 2023) to designate
the last column of Z as the query and the first n columns as the context. We use this fixed mask
in most of this work. However, the linear self-attention mechanism can be altered using a different
mask M’, when necessary, by defining LinAttn(Z; P,Q, M') = PZM'(Z7QZ). In an L-layer
transformer with parameters {(F, Q1)},_q ;. the input Z, evolves layer by layer as

Ziy1 =21+ %LinAttnpl,Ql(Zl) =7+ %PlZlM(ZlTQlZl) 3)

Here, % is a normalization factor simplifying presentation. We follow the convention in von Oswald

et al. (2023); Ahn et al. (2024) and use
TFL(ZO; {Pl7 Ql}l:()’l’mLfl) = -7y [2d +1n+ 1} 4)

to denote the output of the L-layer transformer, given an input Zy. Note that Z;[2d + 1,n + 1] is
the bottom-right element of Z;. Equation (4) establishes the notation convention we adopt to define
the output of an L-layer transformer. Specifically, linear attention produces a matrix, but for policy

Under review as a conference paper at ICLR 2025

evaluation, we require a scalar output. Following prior works, we define the bottom-right element of
the output matrix as this scalar.

Reinforcement Learning. We consider an infinite horizon Markov Decision Process (MDP, Puterman
(2014)) with a finite state space S, a finite action space A, a reward function rypp : S X A — R, a
transition function pypp : S X S x A — [0, 1], a discount factor v € [0, 1), and an initial distribution
po : S — [0,1]. An initial state Sy is sampled from py. At a time ¢, an agent at a state .S; takes an
action A; ~ 7(+|S¢), where m : A x S — [0, 1] is the policy being followed by the agent, receives
areward R;y1 = mmpp(St, A¢), and transitions to a successor state S; 11 ~ pmpp(+|St, Az). If the
policy = is fixed, the MDP can be simplified to a Markov Reward Process (MRP) where transitions
and rewards are determined solely by the current state:S; 1 ~ p(-|S:) with Ry1 = r(S;). Here,
p(s'|s) = >, m(als)pmpp(s’|s, a) and r(s) = > m(als)rmpp(s, a). In this work, we consider the
policy evaluation problem where the policy = is fixed. So, it suffices to consider only an MRP
represented by the tuple (po, p,), and trajectories (Sp, Ry, S1, Rz, ...) sampled from it. The value
function of this MRP is defined as v(s) = E [>;°, ;7" ~*"'R;|S; = s|. Estimating the value
function v is one of the fundamental tasks in RL. To this end, one can consider a linear architecture.
Let ¢ : S — R be the feature function. The goal is then to find a weight vector w € R? such that
for each s, the estimated value (s;w) = w ' ¢(s) approximates v(s). TD is a prevalent method for
learning this weight vector, which updates w iteratively as

W1 =Wt -+ Qg (Rt+1 -+ "}/'lA) (St+1; "U.)t) — ’lA) (St, wt)) V{) (St, wt)
=wy + ap (Res1 +yw/ ¢(Se1) —w/ 6(S51)) ¢(Se), S)

where {«;} is a sequence of learning rates. Notably, TD is not a gradient descent algorithm. It is
instead considered as a semi-gradient algorithm because the gradient is only taken with respect to
¥ (S¢; wy) and does not include the dependence on ¥ (S;11; w;) (Sutton and Barto, 2018). Including
this dependency modifies the update to

W41 = Wi + O (Rt+1 + ’thT¢)(St+1) - th¢(St)) (6(St) — ¥b(St41)) (6)

known as the (naive version of) residual gradient method (Baird, 1995).> The update in (5) is also
called TD(0) — a special case of the TD()) algorithm (Sutton, 1988). TD(\) employs an eligibility
trace that accumulates the gradients as e_; = 0, e; = yAe;—1 + ¢(S¢) and updates w iteratively as

w1 = wi + oy (Reqr + 7w;¢(5t+1) - th¢(St))€t-

The hyperparameter A controls the decay rate of the trace. If A = 0, we recover (5). On the other
end with A = 1, it is known that TD()\) recovers Monte Carlo (Sutton, 1988). Another important
setting in RL is the average-reward setting (Puterman, 2014; Sutton and Barto, 2018), focusing on
the rate of receiving rewards, without using a discount factor . The average reward 7 is defined as

7= limy o0 7 Zthl E[R;]. Similar to the value function in the discounted setting, a differential
value function ¥(s) is defined for the average-reward setting as o(s) = E [Y>;2,. | (R; — 7)[S; = s].

One can similarly estimate ¥(s) using a linear architecture with a vector w as w' ¢(s). Average-
reward TD (Tsitsiklis and Roy, 1999) updates w iteratively as

W1 = Wi + Q¢ (Rt+1 —Tgp1 + w:¢(5t+1) - wt—r(Z)(St))qﬁ(St),

_ 1t
where 7y = ; > ., R; is the empirical average of the received reward.

4 TRANSFORMERS CAN IMPLEMENT IN-CONTEXT TD(0)

In this section, we reveal the parameters of the transformer used to generate Figure 1 and answer
(Q1). Namely, we construct that transformer below and prove that it implements TD(0) in its forward
pass. Given a trajectory (So, Ry, S1, R2, S3, R4, . .., Sy) sampled from an MRP, using as shorthand
oi = ¢(S;), we define forl =0,1,..., L —1

Po o o1 On ™ - |O2dx2d 0O2dx1 ™ - —C' G Oaa
Zo= |71 ... Yon O, P° = 0104 1 1" Q@ = |Oaxa Oaxa Oaxi|. (7)
R1 Rn 0 x 01><d 01><d 0

3This is a naive version because the update does not account for the double sampling issue. We refer the
reader to Chapter 11 of Sutton and Barto (2018) for detailed discussion.

Under review as a conference paper at ICLR 2025

Here, Z, € REHUx(+D) jg the prompt matrix, C; € R%*? is an arbitrary matrix, and
{(P™,Q™)},_,, ,_, arethe parameters of the L-layer transformer. We then have

Theorem 1 (Forward pass as TD(0)). Consider the L-layer linear transformer following (3), using
the mask (2), parameterized by { PP QI }1:0 ., in(7). Let yl(nﬂ) be the bottom right element

L
of the l-th layer’s output, i.e., yl(n+1) = Z[2d + 1,n + 1]. Then, it holds that yl("+1) = —{(n,wy),
where {w, } is defined as wy = 0 and

w1 =w + 10 Z;:é (Rjt1 +yw/ djp1 —w) ¢;) ;. (8)

The proof is in Appendix A.1 and with numerical verification in Appendix H as a sanity check.
Notably, Theorem 1 holds for any Cj. In particular, if C; = ;I (this is used in the transformer
to generate Figure 1), then the update (8) becomes a batch version of TD(0) in (5). For a general
C}, the update (8) can be regarded as preconditioned batch TD(0) (Yao and Liu, 2008). Theorem 1
precisely demonstrates that transformers are expressive enough to implement iterations of TD in its
forward pass. We call this in-context TD. It should be noted that although the construction of Z; in
(7) uses ¢, as the query state for conceptual clarity, any arbitrary state s € S can serve as the query
state and Theorem 1 still holds. In other words, by replacing ¢,, with ¢(s), the transformer will then
estimate v(s). Notably, if the transformer has only one layer, i.e., L = 1, there are other parameter
configurations that can also implement in-context TD(0).

Corollary 1. Consider the I-layer linear transformer following (3), using the mask (2). Consider
the following parameters

D - 02d><2d 02d><1 ™ - _Cvl—r OdXd 0d><1
PO —|:01><2d 1 :|7 0 = ded ded OXm (9)

led O1><cl 0
Then, it holds that y§"+1) = —(¢n,w1), where wy is defined as

w1 = wo + %Ol Z?;ol (Rj+1 + ’ywOTgij - ’LU(—)F(,ZSJ) ¢j with Wy = 0.

The proof is in Appendix A.2. An observant reader may notice that this corollary holds primarily
because wy = 0, making it a unique result for L. = 1. Nevertheless, this special case helps understand
a few empirical and theoretical results below.

5 TRANSFORMERS DO IMPLEMENT IN-CONTEXT TD(0)

In this section, we reveal our pretraining method that generates the powerful transformer used in
Figure 1, answering (Q2). We also theoretically analyze this pretraining method, answering (Q3).

Multi-Task Temporal Difference Learning. In existing ICRL works for control, the transformer
takes the observation history as input and outputs actions. A behavior cloning loss is used during
pretraining to ensure that the transformer outputs actions similar to those in the pretraining data. In
contrast, our work seeks to understand ICRL through the lens of policy evaluation, where the goal
is for the transformer to output value estimates rather than actions. To ground the value estimation,
we use the most straightforward method in RL: the TD loss. This yields a pretraining algorithm
(Algorithm 1) where the transformer is trained using nonlinear TD on multiple tasks. We call it
multi-task TD.

Recall that a policy evaluation task is essentially a tuple (pg, p, 7, ¢). In Algorithm 1, we assume
that there is a task distribution dy, over those tuples. Recall that TF(Zy;) and TF(Z/; 0) are
intended to estimate v(S¢4p41) and v(S¢n42) respectively. So, Algorithm 1 essentially applies
TD using (Stin+1, Ritnt2, Stini2) to train the transformer. Ideally, when a new prompt Zie is
constructed using a trajectory from a new (possibly out-of-distribution) evaluation task (pg, p, 7, @)est,
the predicted value TFy, (Zeq; 8) with 8 from Algorithm 1 should be close to the value of the query
state in Zies. This problem is a multi-task meta-learning problem, a well-explored area with many
existing methodologies (Beck et al., 2023). However, the unique and significant aspect of our
work is the demonstration that in-context TD emerges in the learned transformer, providing a novel
explanation for how the model solves the problem.

Under review as a conference paper at ICLR 2025

Algorithm 1: Multi-Task Temporal Difference Learning

1: Input: context length n, MRP sample length 7, number of training tasks k, learning rate «,
discount factor -, transformer parameters ¢ = {F;, Qi},_o . ;1

2: fori <+ 1to kdo
3: Sample (po, p, r, ¢) from dy,g
4: Sample (So, R1, 51, Ray ..., S+, Rr41, S7+1) from the MRP (pg, p,)
5 fort=0,....T—n—1do
¢t e ¢t+n71 ¢t+n+1 ¢t+1 e ¢t+n ¢t+n+2
6: Zy = |YPt41 0 YPt4n 0 [,Z)+ |7Pt42 -+ VDtant1 0
Rt+1 e Rt+n 0 Rt+2 Tt Rt+n+l 0
7 0«6+ Oé(Rt+n+2 + ’)/TFL(Z(/); 9) — TFL(ZO; 9))VQTFL(Z0; 9) // TD
8: end for
9: end for

Empirical Analysis. We first empirically study Algorithm 1. To this end, we construct dy,s based on
Boyan’s chain (Boyan, 1999), a canonical environment for diagnosing RL algorithms. We keep the
structure of Boyan’s chain but randomly generate initial distributions py, transition probabilities p,
reward functions r, and the feature function ¢. Details of this random generation process are provided
in Algorithm 2 with Figure 3 visualizing Boyan’s chain, both in Appendix C.

For the linear transformer specified in (3), we first consider the autoregressive case following
(Akytirek et al., 2023; von Oswald et al., 2023), where all the transformer layers share the same
parameters, i.e., P, = Pyand @Q; = Qg forl = 0,1,..., L —1. We consider a three-layer transformer
(L = 3). Importantly, all elements of Py and @ are equally trainable — we did not force any element
of Py or Qg to be 0. We then run Algorithm 1 with Boyan’s chain-based evaluation tasks (i.e., diasx)
to train this autoregressive transformer. The dimension of the feature is d = 4 (i.e., ¢(s) € R*).
Other hyperparameters of Algorithm 1 are specified in Appendix D.1.

Figure 2a visualizes the final learned Py and)y by Algorithm 1 after 4000 MRPs (i.e., & = 4000),
which closely match our specifications P™ and QP in (7) with C; = I;. In Figure 2b, we visualize
the element-wise learning progress of Py and (). We observe that the bottom right element of Fy
increases (the Py[—1, —1] curve), while the average absolute value of all other elements remain
close to zero (the “Avg Abs Others” curve), closely aligning with P™ up to some scaling factor.
Furthermore, the trace of the upper left d x d block of Qg approaches —d (the tr(Qq[: d, : d]) curve),
and the trace of the upper right block (excluding the last column) approaches d (the tr(Qo[: d,d : 2d])
curve). Meanwhile, the average absolute value of all the other elements in)y remain near zero,
aligning with Q™ using C; = I; up to some scaling factor.

. . 10
Final P, Final Qg Py Metrics Qo Metrics
0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8§ o 20 T T T T 4T T T T T
0 — Rl-1,-1] — w(Qlid,) |
| 050 sl Ave Abs Others ol —— t(Ql:d,d:2d])
5f 1
2 —— Avg Abs Others
05
: 0
' om0 10F]
’ 025 -2
° 0.5+ b
: 050
—4
s
075 0.0
0 1000 2000 3000 4000 0 1000 2000 3000 4000
. # MRPs # MRPs

(a) Learned Py and Qo after 4000 MRPs (b) Element-wise learning progress of Py and Qo

Figure 2: Visualization of the learned transformers and the learning progress. Both (a) and (b) are
averaged across 30 seeds and the shaded regions in (b) denotes the standard errors. Since Py and Qg
are in the same product in (1), the algorithm can rescale both or flip the sign of both, but still end
up with exactly the same transformer. Therefore, to make sure the visualization are informative, we
rescale Py and Qg properly first before visualization. See Appendix D.1.1 for details.

More empirical analysis is provided in the Appendix. In particular, besides showing the parameter-
wise convergence in Figure 2, we also use other metrics including value difference, implicit weight
similarity, and sensitivity similarity, inspired by von Oswald et al. (2023); Akyiirek et al. (2023), to

Under review as a conference paper at ICLR 2025

examine the learned transformer. We also study normal transformers without parameter sharing
(Appendix D.3), as well as different choices of hyperparameters in Algorithm 1. Furthermore, we
empirically investigate the original softmax-based transformers (Appendix E). Finally, we also
conducted experiments where we constructed d,sx based on the Cartpole environment (Brockman
et al., 2016) (Appendix F). The overall conclusion is the same — in-context TD emerges in the
transformers learned by Algorithm 1. Notably, Theorem 1 and Corollary 1 suggest that for L = 1,
there are two distinct ways to implement in-context TD (i.e., (7) v.s. (9)). Our empirical results in
Appendix D.2 show that Algorithm 1 ends up with (9) in Corollary 1 for L = 1, aligning well with
Theorem 2. For L = 2, 3, 4, Algorithm 1 always ends up with (7) in Theorem 1, as shown in Figure 4
in Appendix D.2. We also empirically observed that for in-context TD to emerge, the task distribution
dyask has to be “difficult” enough. For example, if (pg, p) or ¢ are always fixed, we did not observe
the emergence of in-context TD.

Theoretical Analysis. The problem that Algorithm 1 aims to solve is highly non-convex and
non-linear (the linear transformer is still a nonlinear function). We analyze a simplified version of
Algorithm 1 and leave the treatment to the full version for future work. In particular, we study the
single-layer case with L = 1 and let § = (P, Qo) be the parameters of the single-layer transformer.
We consider expected updates, i.e.,

Here, the expectation integrates both the randomness in sampling (pg, p, 7, ¢) from dy,« and the

randomness in constructing (R, Zy, Z{)) thereafter. We sample (So, R1, 51, ..., Snt1, Rnt2, Snt2)
following (po, p,) and construct using shorthand ¢; = ¢(S;)
[P0 o Pn-1 dana o $1 oo On Pnt2 .
Zo= (701 - YPn 0 |,Zp= {792 --- YPnt1 0 |,R=Ryq2. (11)
Ri ... R, 0 Ry ... Rpa O

The structure of Zy and Z{) is similar to those in Algorithm 1. The main difference is that we do not
use the sliding window. We recall that (pg, p, 7,) are random variables with joint distribution dg.

Here, ¢ is essentially a random matrix taking value in R?*I5!, represented as ¢ = [¢(s)]scs. We use
£ to denote “equal in distribution" and make the following assumptions.
Assumption 5.1. The random matrix ¢ is independent of (po, p,r).

Assumption 5.2. I1p £ ¢, Ap £ ¢, where 11 is any d-dimensional permutation matrix and A is any
diagonal matrix in R? where each diagonal element of A can only be —1 or 1.

Those assumptions are easy to satisfy. For example, as long as the elements of the random matrix ¢

are i.i.d. from a symmetric distribution centered at zero, e.g., a uniform distribution on [—1, 1], then
both assumptions hold. We say a set O is an invariant set of (10) if forany &k, 0, € © — 6,1 € ©.

Define

Theorem 2. Let Assumptions 5.1 and 5.2 hold. For the construction (11) of (R, Zy, Z|), the set
O, ={0.(n,c,c)|n, ¢, € R} is an invariant set of (10).

/
Iy Ogxqd Ogxi

01><d O1><d 0

01x24d]

0 0 clg Ogxa Odxi
9*(7770’ c/) - PO — |: 2dx2d 2d><1:|;QO —

The proof is in Appendix A.3. Theorem 2 demonstrates that once 6}, enters ©, at some k, it can
never leave, i.e., O, is a candidate set that the update (10) can possibly converge to. Consider a
subset ©, C O, with a stricter constraint ¢’ = 0, i.e., ©, = {0.(n,¢,0)|n,c € R}. Corollary 1
then confirms that all parameters in ©’, implement in-context TD. That being said, whether (10) is
guaranteed to converge to O, or further to @, is left for future work.

6 TRANSFORMERS CAN IMPLEMENT MORE RL ALGORITHMS

In this section, we prove that transformers are expressive enough to implement three additional well-
known RL algorithms in the forward pass. We warm up with the (naive version of) residual gradient
(RG). We then move to the more difficult TD()). This section culminates with average-reward TD,

Under review as a conference paper at ICLR 2025

which requires multi-head linear attention and memory within the prompt. We do note that whether
those three RL algorithms will emerge after training is left for future work.

Residual Gradient. The construction of RG is an easy extension of Theorem 1. We define

_Cl—r Cl—r del
FRO=FP.QI = | Cf Gl 0g| e RAACHD, 12
O1><d 01><d 0

Corollary 2 (Forward pass as Residual Gradient). Consider the L-layer linear transformer following
(3), using the mask (2), parameterized by { PR°, QfG}l:O ;. in(12). Define yl("'H) = Zj2d +

1,n + 1]. Then, it holds that yl("H) = —(Pn, wy), where {w,} is defined as wy = 0 and

w1 =w; + £C Z;—:& (Rjs1 +yw/ ¢jp1 — w/ ¢5) (¢ — ¥djt1). (13)

The proof is in A.4 with numerical verification in Appendix H as a sanity check. Again, if C; = o1y,
then (13) can be regarded as a batch version of (6). For a general (Y, it is then preconditioned
batch RG. Notably, Figure 2 empirically demonstrates that Algorithm 1 eventually ends up with
in-context TD instead of in-context RG. This observation aligns with the conventional wisdom in
the RL community that TD is usually superior to the naive RG (see, e.g., Zhang et al. (2020) and
references therein).

TD()). Incorporating eligibility traces is an important extension of TD(0). We now demonstrate that
by using a different mask, transformers are able to implement in-context TD()). We define

1 0 0 0 - 0 0
A 1 0 0 -0 0
MTPON) oo e R(n+1)><(n+1) (14)
)\n—l)\n—2)\n—3)\n—4 ... 1 0
0 0 0 0 -0 0

Notably, if A = 0, the above mask for TD()\) recovers the mask for TD(0) in (2).

Corollary 3 (Forward pass as TD(X)). Consider the L-layer linear transformer parameterized by
{P, lTD}lzo ., as specified in (7) with the input mask used in (3) being M i (14).

Define yl("H) = Z|2d + 1,n + 1]. Then, it holds that yl("H) = — (¢, w;) where {w,} is defined
withwy = 0,e0 = 0, e; = Aej_1 + ¢}, and

—1
w1 = wi + 5 Cr Y1y (riv1 +ywy ¢ — wy di)e.

The proof is in A.5 with numerical verification in Appendix H as a sanity check.

Average-Reward TD. We now demonstrate that transformers are expressive enough to implement
in-context average-reward TD. Different from TD(0), average-reward TD (Tsitsiklis and Roy, 1999)
exhibits additional challenges in that it updates two estimates (i.e., w; and 7) in parallel. To account
for this challenge, we use two additional mechanisms beyond the basic single-head linear transformer.
Namely, we allow additional “memory” in the prompt and consider two-head linear transformers.
Given a trajectory (So, R1, S1, Ra, S5, R4, . .., Sy) sampled from an MRP, we construct the prompt
matrix Zg as

¢O v ¢n—1 ¢n
Zo = 211 %; 8 e R4+ x(n+1)
0o ... 0 0

Notably, the last row of zeros is the “memory”, which is used by the transformer to store some
intermediate quantities during the inference time. We then define the transformer parameters and
masks as

_ 02dx2d O2dx1 O2gx1] 02dx2d O2dx1 O2dx1
PPW 201000 1 0 |,p™®= [lezd 0 0 |, (15)
01x24d 0 0 01x24d 0 1

Under review as a conference paper at ICLR 2025

__ *OZT ClT 0d><2 0 0 0 0
T . - [02ax2a O2dx1 O2gx(2d+2) O2dx1
1 =|0axa Odxa Oaxz2|,Wi= |:01><2d 1 01 (odss 1| (16)
O2xa O2xq O2x2 x(2d+2)
M :[Oun oﬂ’ MO = Ly = Upadiag([L 5 - 757]))M™@,a7)

where C; € R%*4 is again an arbitrary matrix, U,, 11 is the (n + 1) x (n + 1) upper triangle matrix
where all the nonzero elements are 1, and diag(x) constructs a diagonal matrix, with the diagonal

entry being x. Here, {PITD’(I), QlTiD} are the parameters of the first attention heads, with
1=0,...,L—1

the input mask being M TD,(1), {PITD’(Q), QZTT)} are the parameters of the second attention
1=0,...,L—1

heads, with the input mask being M TD,(2) The two heads coincide on some parameters. W is
the affine transformation that combines the embeddings from the two attention heads. Define the
two-head linear-attention as

LinAttn(Z; P,Q, M)
LinAttn(Z; P, Q', M) |
The L-layer transformer we are interested in is then given by

Zis1 = Zy+ tTwoHead(Z; P>, QP, M™ (), pT>® QTP ™™ Wiy, (18)

TwoHead(Z; P,Q, M, P, Q", M', W) = W{

Theorem 3 (Forward pass as average-reward TD). Consider the L-layer transformer in (18). Let
hl(nH) be the bottom-right element of the [-th layer output, i.e., hl("ﬂ) = Z;[2d + 2,n + 1]. Then, it
holds that h;nﬂ) = —(¢pn,w;) where {w; } is defined as wy = 0,

wipr = wi+ =0 Y0 (R — 75+ w) éj —w ¢j1) ¢
forl=0,...,L—1,wherer; =13 | Ry

The proof is in A.6 with numerical verification in Appendix H as a sanity check.

7 CONCLUSION

Transformers have recently shown a remarkable ability to implement reinforcement learning (RL)
during the forward pass, a phenomenon called in-context RL (ICRL). This work makes the first
step towards white-boxing the mechanism of ICRL, focusing specifically on policy evaluation. We
provide constructive proof that transformers can implement multiple temporal difference algorithms
in the forward pass for in-context policy evaluation. Additionally, we theoretically and empirically
show that the parameters enabling in-context policy evaluation emerge naturally through multi-task
TD pretraining. We find it compelling that a randomly initialized transformer, trained on simple
tasks, can, in the tested environments, learn to discover and implement TD, a provably capable RL
algorithm for policy evaluation.

Admittedly, this work does have a few limitations. First, we focus solely on policy evaluation. Second,
to facilitate theoretical analysis, we make a few assumptions (e.g., Assumptions 5.1 & 5.2) and
simplifications (e.g., using linear attention instead of softmax attention). Yet those assumptions and
simplifications may not hold in many popular scenarios. Third, our pretraining method (Algorithm 1)
requires access to random generation of policy evaluation tasks, which may not be available in many
scenarios, e.g., offline training. Fourth, despite that we evaluate Algorithm 1 in both Boyan’s chain
and CartPole, it is not evaluated on large-scale environments such as Atari games (Bellemare et al.,
2013) and DeepMindLab (Beattie et al., 2016). We believe that addressing those limitations would be
fruitful directions for future works.

REFERENCES

Ahn, K., Cheng, X., Daneshmand, H., and Sra, S. (2024). Transformers learn to implement pre-
conditioned gradient descent for in-context learning. Advances in Neural Information Processing
Systems, 36.

10

Under review as a conference paper at ICLR 2025

Ahn, K., Cheng, X., Song, M., Yun, C., Jadbabaie, A., and Sra, S. (2023). Linear attention is (maybe)
all you need (to understand transformer optimization). arXiv preprint arXiv:2310.01082.

Akyiirek, E., Schuurmans, D., Andreas, J., Ma, T., and Zhou, D. (2023). What learning algorithm is
in-context learning? investigations with linear models. The Eleventh International Conference on
Learning Representations.

Allen-Zhu, Z. and Li, Y. (2023). Physics of language models: Part 1, context-free grammar. arXiv
preprint arXiv:2305.13673.

Alvarez Melis, D. and Jaakkola, T. (2018). Towards robust interpretability with self-explaining neural
networks. Advances in neural information processing systems, 31.

Ansel, J., Yang, E., He, H., Gimelshein, N., Jain, A., Voznesensky, M., Bao, B., Bell, P., Berard,
D., Burovski, E., Chauhan, G., Chourdia, A., Constable, W., Desmaison, A., DeVito, Z., Ellison,
E., Feng, W., Gong, J., Gschwind, M., Hirsh, B., Huang, S., Kalambarkar, K., Kirsch, L., Lazos,
M., Lezcano, M., Liang, Y., Liang, J., Lu, Y., Luk, C., Maher, B., Pan, Y., Puhrsch, C., Reso,
M., Saroufim, M., Siraichi, M. Y., Suk, H., Suo, M., Tillet, P., Wang, E., Wang, X., Wen, W.,
Zhang, S., Zhao, X., Zhou, K., Zou, R., Mathews, A., Chanan, G., Wu, P., and Chintala, S.
(2024). PyTorch 2: Faster Machine Learning Through Dynamic Python Bytecode Transformation
and Graph Compilation. In 29th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 2 (ASPLOS ’24). ACM.

Azar, M. G., Osband, 1., and Munos, R. (2017). Minimax regret bounds for reinforcement learning.
In International conference on machine learning, pages 263-272. PMLR.

Baird, L. C. (1995). Residual algorithms: Reinforcement learning with function approximation. In
Proceedings of the International Conference on Machine Learning.

Beattie, C., Leibo, J. Z., Teplyashin, D., Ward, T., Wainwright, M., Kiittler, H., Lefrancq, A., Green,
S., Valdés, V., Sadik, A., et al. (2016). Deepmind lab. arXiv preprint arXiv:1612.03801.

Beck, J., Vuorio, R., Liu, E. Z., Xiong, Z., Zintgraf, L., Finn, C., and Whiteson, S. (2023). A survey
of meta-reinforcement learning. arXiv preprint arXiv:2301.08028.

Bellemare, M. G., Naddaf, Y., Veness, J., and Bowling, M. (2013). The arcade learning environment:
An evaluation platform for general agents. Journal of Artificial Intelligence Research.

Bengio, Y., Goodfellow, 1., and Courville, A. (2017). Deep learning, volume 1. MIT press Cambridge,
MA, USA.

Bhandari, J., Russo, D., and Singal, R. (2018). A finite time analysis of temporal difference learning
with linear function approximation. In Proceedings of the Conference on Learning Theory.

Borkar, V. S. and Meyn, S. P. (2000). The ode method for convergence of stochastic approximation
and reinforcement learning. SIAM Journal on Control and Optimization.

Boyan, J. A. (1999). Least-squares temporal difference learning. In Proceedings of the International
Conference on Machine Learning.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., and Zaremba, W.
(2016). OpenAl Gym. arXiv preprint arXiv:1606.01540.

Brooks, E., Walls, L., Lewis, R. L., and Singh, S. (2024). Large language models can implement
policy iteration. Advances in Neural Information Processing Systems, 36.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan, A., Shyam,
P, Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R.,
Ramesh, A., Ziegler, D., Wu, J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M., Gray,
S., Chess, B., Clark, J., Berner, C., McCandlish, S., Radford, A., Sutskever, 1., and Amodei, D.
(2020). Language models are few-shot learners. In Larochelle, H., Ranzato, M., Hadsell, R.,
Balcan, M., and Lin, H., editors, Advances in Neural Information Processing Systems, volume 33,
pages 1877-1901. Curran Associates, Inc.

11

Under review as a conference paper at ICLR 2025

Cai, Q., Yang, Z., Lee, J. D., and Wang, Z. (2019). Neural temporal-difference and g-learning
provably converge to global optima. arXiv preprint arXiv:1905.10027.

Chan, K. H. R, Yu, Y., You, C., Qi, H., Wright, J., and Ma, Y. (2022). Redunet: A white-box deep
network from the principle of maximizing rate reduction. Journal of machine learning research,
23(114):1-103.

Chen, L., Lu, K., Rajeswaran, A., Lee, K., Grover, A., Laskin, M., Abbeel, P., Srinivas, A., and
Mordatch, 1. (2021). Decision transformer: Reinforcement learning via sequence modeling.
Advances in neural information processing systems, 34:15084—15097.

Choromanski, K., Likhosherstov, V., Dohan, D., Song, X., Gane, A., Sarlos, T., Hawkins, P., Davis,
J., Mohiuddin, A., Kaiser, L., et al. (2020). Rethinking attention with performers. arXiv preprint
arXiv:2009.14794.

Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Mathematics of
control, signals and systems, 2(4):303-314.

Dorfman, R., Shenfeld, 1., and Tamar, A. (2021). Offline meta reinforcement learning—identifiability
challenges and effective data collection strategies. Advances in Neural Information Processing
Systems, 34:4607-4618.

Duan, Y., Schulman, J., Chen, X., Bartlett, P. L., Sutskever, 1., and Abbeel, P. (2016). RL?: Fast
reinforcement learning via slow reinforcement learning. arXiv preprint arXiv:1611.02779.

Elman, J. L. (1990). Finding structure in time. Cognitive science, 14(2):179-211.

Finn, C., Abbeel, P., and Levine, S. (2017). Model-agnostic meta-learning for fast adaptation of deep
networks. In International conference on machine learning, pages 1126—1135. PMLR.

Frosst, N. and Hinton, G. (2017). Distilling a neural network into a soft decision tree. arXiv preprint
arXiv:1711.09784.

Garg, S., Tsipras, D., Liang, P. S., and Valiant, G. (2022). What can transformers learn in-context?
a case study of simple function classes. Advances in Neural Information Processing Systems,
35:30583-30598.

Garrett, J. D. (2021). garrettj403/SciencePlots.

Gatmiry, K., Saunshi, N., Reddi, S. J., Jegelka, S., and Kumar, S. (2024). Can looped transformers
learn to implement multi-step gradient descent for in-context learning? In Forty-first International
Conference on Machine Learning.

Graves, A., Wayne, G., and Danihelka, 1. (2014). Neural turing machines. arXiv preprint
arXiv:1410.5401.

Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser,
E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett, M.,
Haldane, A., del Rio, J. F., Wiebe, M., Peterson, P., Gérard-Marchant, P., Sheppard, K., Reddy,
T., Weckesser, W., Abbasi, H., Gohlke, C., and Oliphant, T. E. (2020). Array programming with
NumPy. Nature, 585(7825):357-362.

Hochreiter, S., Younger, A. S., and Conwell, P. R. (2001). Learning to learn using gradient descent.
In Dorffner, G., Bischof, H., and Hornik, K., editors, Artificial Neural Networks — ICANN 2001,
pages 87-94, Berlin, Heidelberg. Springer Berlin Heidelberg.

Hornik, K., Stinchcombe, M., and White, H. (1989). Multilayer feedforward networks are universal
approximators. Neural Networks, 2(5):359-366.

Hunter, J. D. (2007). Matplotlib: A 2d graphics environment. Computing in Science & Engineering,
9(3):90-95.

Janner, M., Li, Q., and Levine, S. (2021). Offline reinforcement learning as one big sequence
modeling problem. Advances in neural information processing systems, 34:1273—1286.

12

Under review as a conference paper at ICLR 2025

Jastrzebski, S., Arpit, D., Ballas, N., Verma, V., Che, T., and Bengio, Y. (2017). Residual connections
encourage iterative inference. arXiv preprint arXiv:1710.04773.

Katharopoulos, A., Vyas, A., Pappas, N., and Fleuret, F. (2020). Transformers are rnns: Fast
autoregressive transformers with linear attention. In International conference on machine learning,
pages 5156-5165. PMLR.

Kingma, D. P. and Ba, J. (2015). Adam: A method for stochastic optimization. In Proceedings of the
International Conference on Learning Representations.

Kirsch, L., Flennerhag, S., Hasselt, H. v., Friesen, A., Oh, J., and Chen, Y. (2022). Introducing
symmetries to black box meta reinforcement learning. Proceedings of the AAAI Conference on
Artificial Intelligence, 36(7):7202-7210.

Kirsch, L., Harrison, J., Freeman, C., Sohl-Dickstein, J., and Schmidhuber, J. (2023). Towards
general-purpose in-context learning agents. In NeurIPS 2023 Foundation Models for Decision
Making Workshop.

Kirsch, L., van Steenkiste, S., and Schmidhuber, J. (2019). Improving generalization in meta
reinforcement learning using learned objectives. arXiv preprint arXiv:1910.04098.

Krishnamurthy, A., Harris, K., Foster, D. J., Zhang, C., and Slivkins, A. (2024). Can large language
models explore in-context? arXiv preprint arXiv:2403.15371.

Laskin, M., Wang, L., Oh, J., Parisotto, E., Spencer, S., Steigerwald, R., Strouse, D., Hansen, S.,
Filos, A., Brooks, E., et al. (2022). In-context reinforcement learning with algorithm distillation.
arXiv preprint arXiv:2210.14215.

Lee, J., Xie, A., Pacchiano, A., Chandak, Y., Finn, C., Nachum, O., and Brunskill, E. (2023).
Supervised pretraining can learn in-context reinforcement learning. Advances in Neural Information
Processing Systems, 36.

Lee, K.-H., Nachum, O., Yang, M. S., Lee, L., Freeman, D., Guadarrama, S., Fischer, 1., Xu, W.,
Jang, E., Michalewski, H., et al. (2022). Multi-game decision transformers. Advances in Neural
Information Processing Systems, 35:27921-27936.

Leshno, M., Lin, V. Y., Pinkus, A., and Schocken, S. (1993). Multilayer feedforward networks with a
nonpolynomial activation function can approximate any function. Neural networks, 6(6):861-867.

Lin, L., Bai, Y., and Mei, S. (2023). Transformers as decision makers: Provable in-context reinforce-
ment learning via supervised pretraining. arXiv preprint arXiv:2310.08566.

Lu, C., Kuba, J., Letcher, A., Metz, L., Schroeder de Witt, C., and Foerster, J. (2022). Discovered
policy optimisation. Advances in Neural Information Processing Systems, 35:16455-16468.

Lu, C., Schroecker, Y., Gu, A., Parisotto, E., Foerster, J., Singh, S., and Behbahani, F. (2023).
Structured state space models for in-context reinforcement learning. In Oh, A., Naumann, T.,
Globerson, A., Saenko, K., Hardt, M., and Levine, S., editors, Advances in Neural Information
Processing Systems, volume 36, pages 470164703 1. Curran Associates, Inc.

Lu, Z., Pu, H., Wang, F., Hu, Z., and Wang, L. (2017). The expressive power of neural networks: A
view from the width. Advances in neural information processing systems, 30.

Mahankali, A., Hashimoto, T. B., and Ma, T. (2023). One step of gradient descent is provably the
optimal in-context learner with one layer of linear self-attention. arXiv preprint arXiv:2307.03576.

Mitchell, E., Rafailov, R., Peng, X. B., Levine, S., and Finn, C. (2021). Offline meta-reinforcement
learning with advantage weighting. In International Conference on Machine Learning, pages
7780-7791. PMLR.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A.,
Riedmiller, M. A., Fidjeland, A., Ostrovski, G., Petersen, S., Beattie, C., Sadik, A., Antonoglou,
L., King, H., Kumaran, D., Wierstra, D., Legg, S., and Hassabis, D. (2015). Human-level control
through deep reinforcement learning. Nature.

13

Under review as a conference paper at ICLR 2025

Miiller, S., Hollmann, N., Arango, S. P., Grabocka, J., and Hutter, F. (2022). Transformers can do
bayesian inference. In International Conference on Learning Representations.

Oh, J., Hessel, M., Czarnecki, W. M., Xu, Z., van Hasselt, H. P., Singh, S., and Silver, D. (2020).
Discovering reinforcement learning algorithms. Advances in Neural Information Processing
Systems, 33:1060-1070.

Park, C., Liu, X., Ozdaglar, A., and Zhang, K. (2024). Do 1lm agents have regret? a case study in
online learning and games. arXiv preprint arXiv:2403.16843.

Pong, V. H., Nair, A. V., Smith, L. M., Huang, C., and Levine, S. (2022). Offline meta-reinforcement
learning with online self-supervision. In International Conference on Machine Learning, pages
17811-17829. PMLR.

Puterman, M. L. (2014). Markov decision processes: discrete stochastic dynamic programming. John
Wiley & Sons.

Raparthy, S. C., Hambro, E., Kirk, R., Henaff, M., and Raileanu, R. (2023). Generalization to new
sequential decision making tasks with in-context learning. arXiv preprint arXiv:2312.03801.

Reed, S., Zolna, K., Parisotto, E., Colmenarejo, S. G., Novikov, A., Barth-Maron, G., Gimenez,
M., Sulsky, Y., Kay, J., Springenberg, J. T., et al. (2022). A generalist agent. arXiv preprint
arXiv:2205.06175.

Sander, M. E., Giryes, R., Suzuki, T., Blondel, M., and Peyré, G. (2024). How do transformers
perform in-context autoregressive learning? arXiv preprint arXiv:2402.05787.

Schlag, I., Irie, K., and Schmidhuber, J. (2021). Linear transformers are secretly fast weight
programmers. In International Conference on Machine Learning, pages 9355-9366. PMLR.

Siegelmann, H. T. and Sontag, E. D. (1992). On the computational power of neural nets. In
Proceedings of the fifth annual workshop on Computational learning theory, pages 440-449.

Sinii, V., Nikulin, A., Kurenkov, V., Zisman, I., and Kolesnikov, S. (2023). In-context reinforcement
learning for variable action spaces. arXiv preprint arXiv:2312.13327.

Sutton, R. S. (1988). Learning to predict by the methods of temporal differences. Machine Learning.

Sutton, R. S. and Barto, A. G. (2018). Reinforcement Learning: An Introduction (2nd Edition). MIT
press.

Tsitsiklis, J. N. and Roy, B. V. (1999). Average cost temporal-difference learning. Automatica.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L. u., and
Polosukhin, I. (2017). Attention is all you need. In Guyon, I., Luxburg, U. V., Bengio, S., Wallach,
H., Fergus, R., Vishwanathan, S., and Garnett, R., editors, Advances in Neural Information
Processing Systems, volume 30. Curran Associates, Inc.

von Oswald, J., Niklasson, E., Randazzo, E., Sacramento, J., Mordvintsev, A., Zhmoginov, A., and
Vladymyrov, M. (2023). Transformers learn in-context by gradient descent.

Von Oswald, J., Niklasson, E., Schlegel, M., Kobayashi, S., Zucchet, N., Scherrer, N., Miller, N.,
Sandler, M., Vladymyrov, M., Pascanu, R., et al. (2023). Uncovering mesa-optimization algorithms
in transformers. arXiv preprint arXiv:2309.05858.

Wang, J. X., Kurth-Nelson, Z., Tirumala, D., Soyer, H., Leibo, J. Z., Munos, R., Blundell, C.,
Kumaran, D., and Botvinick, M. (2016). Learning to reinforcement learn. arXiv preprint
arXiv:1611.05763.

Wang, S., Li, B. Z., Khabsa, M., Fang, H., and Ma, H. (2020). Linformer: Self-attention with linear
complexity. arXiv preprint arXiv:2006.04768.

Wu, J., Zou, D., Chen, Z., Braverman, V., Gu, Q., and Bartlett, P. L. (2023). How many pretraining
tasks are needed for in-context learning of linear regression? arXiv preprint arXiv:2310.08391.

14

Under review as a conference paper at ICLR 2025

Yao, H. and Liu, Z.-Q. (2008). Preconditioned temporal difference learning. In Proceedings of the
25th international conference on Machine learning, pages 1208—1215.

Yu, Y., Buchanan, S., Pai, D., Chu, T., Wu, Z., Tong, S., Haeffele, B., and Ma, Y. (2023). White-box
transformers via sparse rate reduction. Advances in Neural Information Processing Systems,
36:9422-9457.

Zhang, R., Frei, S., and Bartlett, P. L. (2024). Trained transformers learn linear models in-context.
Journal of Machine Learning Research, 25(49):1-55.

Zhang, S., Boehmer, W., and Whiteson, S. (2020). Deep residual reinforcement learning. In
Proceedings of the International Conference on Autonomous Agents and Multiagent Systems.

Zhao, H., Panigrahi, A., Ge, R., and Arora, S. (2023). Do transformers parse while predicting the
masked word? arXiv preprint arXiv:2303.08117.

Zheng, C., Huang, W., Wang, R., Wu, G., Zhu, J., and Li, C. (2024). On mesa-optimization in
autoregressively trained transformers: Emergence and capability. arXiv preprint arXiv:2405.16845.

Zisman, L., Kurenkov, V., Nikulin, A., Sinii, V., and Kolesnikov, S. (2023). Emergence of in-context
reinforcement learning from noise distillation. arXiv preprint arXiv:2312.12275.

15

Under review as a conference paper at ICLR 2025

TABLE OF CONTENTS

—

Introduction

2 Related Works

3 Background

4 Transformers Can Implement In-Context TD(0)

5 Transformers Do Implement In-Context TD(0)

6 Transformers Can Implement More RL Algorithms
7 Conclusion

A Proofs
A.l1 Proofof Theorem 1
A2 ProofofCorollary 1 e
A3 Proofof Theorem?2 e
A4 Proofof Corollary 2 e
A5 Proofof Corollary 3. e
A.6 Proofof Theorem3

B Experimental Details of Figure 1
C Boyan’s Chain Evaluation Task Generation

D Additional Experiments with Linear Transformers
D.1 ExperimentSetup
D.1.1 Trained Transformer Element-wise Convergence Metrics
D.1.2 Trained Transformer and Batch TD Comparison Metrics
D.2 Autoregressive Linear Transformers with L =1,2,3,4 Layers

D.3 Sequential Transformers with L =2,3,4 Layers
E Nonlinear Attention

F Experiments with CartPole Environment
F.1 CartPole Evaluation Task Generation

F.2 Experimental Results of Pre-training with CartPole

G Investigation of In-Context TD with RNN
G.1 Theoretical Analysis of Linear RNN
G.2 Multi-task TDwithDeep RNN

10

18
18
22
24
29
31
36

41

41

42
42
43
43
44
46

47

48
48
49

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

H Numerical Verification of Proofs

17

52

Under review as a conference paper at ICLR 2025

A PROOFS

A.1 PROOF OF THEOREM 1
Proof. We recall from (3) that the embedding evolves according to
1
Ziy1 =21+ EPJZIM(ZzTQlZz)

We first express Z; using elements of Zj. To this end, it is convenient to give elements of Z; different

names, in particular, we refer to the elements in Z; as {(xl(i), yl(z))} in the following way
i=1,...,n+1
7 _ a:l(l) e m(n) J;(”H)
L D €Y (n) (n+1)
Yi Y Y

where we recall that Z; € R(2d+1)x(n+1) a:()¢ R24 4 () € R. Sometimes it is more convenient
to refer to the first half and second half of a:l(2 separately, by, e.g., Vl(l) S Rd,fl(l) e R? je.,

. (@)
2V = lyl(i)] . Then we have
&

'Vl(l) Vl(n) Vz(nH)
Zi= g g g
o g e
We utilize the shorthands
X =z .. xl(”)}eR“X”,
YLZ_yl(l) yl(")}eR“”.

Then we have

X, wl(n+1)
YE yl(n+1)
For the input Zj, we assume &; (n+1) — y(nﬂ) = 0 but all other entries of Z are arbitrary. We
recall our definition of M in (2) and {PTD, QTD} I=0.. , in (7). In particular, we can express

Q7P in a more compact way as

-1 I 2dx2d
My = € R**%

"7 0axd Odxa ’

lch oo
B = 1 dxd c R2d><2d
"7 0axd ded} ’

_ T T
A, =B/M; = |: Cl Cl :l ERQdXQd,

Odxd Ogxa
™. A 0O c R24+1)x(2d+1)
t ~ |01x24 0 '

We now proceed with the following claims.

Claim 1. X; = Xo, 2"V = 2" .

Recall that PP = |:%21d><22; Ozgim} € RRA+DX(2d+1) [et
X

Wi = ZM (2] QI°Z;) € REHDx (i),

18

Under review as a conference paper at ICLR 2025

The embedding evolution can then be expressed as
1
Zl+1 = Zl + EP)ZTDV‘/Z'

By simple matrix arithmetic, we get

™11, _ | 02dx(nt1)
FimWe= {Wl(2d+1) :

where W;(2d + 1) denotes the (2d + 1)-th row of W;. Therefore, we have X;,1 = X, xl(flrl) =

a:l(nH). By induction, we get X; = X, and a:l(nH) = :v[()"+1) forall/ =[0,...,L —1].
In light of this, we drop all the subscripts of X, as well as subscripts of xl(i) fore=1,...,n+ 1.
Claim 2.

1
Yo=Y+ -V X"4X
n

n n 1 n
ui D =Y VX T A,

The easier way to show why this claim holds is to factor the embedding evolution into the product of
P Z,M and Z;' QP Z,. Firstly, we have

02axn O2qx1
PPz = { le y(n+1):|-
1

Applying the mask, we get

D _ {02daxn O2gx1
S |

Then, we analyze Z lT QTP Z,. Applying the block matrix notations, we get

r T T n+1
ZlTQlTDZz = x(’ﬂ)i-l)T yl(};lﬂ)} {Uilzd OQ%Xl] [;i z;n;ﬂ
[XTA O] [X 2D
a0 HYZ yf”“)]
XTAX XT Azt
_o:(”+1)TAlX x(”J“l)TAla:("*l)} ’

Combining the two, we get

XTAX X T AyzntD)

D T HTD O2dxn O2dx1
PPZM(Z) QP Z)) = [3 i } |:$(n+1)TAlX (DT A,z (4D

Y, 0

| O2axn 024qx1
T VX TAX VX TAztY |

Hence, according to our update rule in (3), we get

1
Yig =Y+ -V XTAX
n

n n 1
o =y 4 2y X T A,
n

Claim 3.

l
@ _ () o 1 T T
Yi1 =Y + <M1x()’EZBJ’ My XY; >’
j=0

19

Under review as a conference paper at ICLR 2025

fori =1,...,n+ 1, where My = {Ojdd 8?3]
x X

Following Claim 2, we can unroll Y;; as
1
Yip1 =Y+ -VXTAX
n

1
Vi=Y1+ ﬁyl_lXTAl_lx

1
Vi =Y+ —YoXTApX.
n

We can then compactly express Y;4; as

l
1
Y. =Y, f§ YV:XTAX.
+1 O+’ﬂ J J

=0

Recall that we define A; = B;M;. Then, we can rewrite Y} as

l
1
Yip = - > ; .
b1 =Y+ ZYJX MyB; My X
7=0
The introduction of M5 here does not break the equivalence because B; = M, B;. However, it will
help make our proof steps easier to comprehend later.

(n+1)

With the identical procedure, we can easily rewrite y; ,

as
(1) _) Ly
n+l) _ (n+l - v T . (n+1)
= EYXMBM .
Y Yo +n j 20 My

+1
=0

In light of this, we define g = 0 and for [=0, . ..

l
21 T T 2d
Vi =— ZBj MXY," € R*, (19)
7=0
Then we can write
udy = o) + (Mia®,), 0)
for: =1,...,n+ 1, which is the claim we made. In particular, since we assume y(()n+1) =0, we

have

yl(ﬁl) = <M135("+1)71/)z+1>-

Claim 4. The bottom d elements of ; are always 0, i.e., there exists a sequence {wl S]Rd} such
that we can express ¢; as

W = { i] Q1)

del
foralll =0,1,..., L.

We prove the claim by induction. The base case holds trivially since ¥g = 0. Suppose that for some /,
(21) holds. It can be easily verified from the definition of ;11 in (19) that

1
Yip1 = U + ﬁBI MyXY,". (22)

20

Under review as a conference paper at ICLR 2025

If we let
1
Nl _ 7M2X}GT c RQXm,
n
the evolution of ;4 can then be compactly expressed as,

+
Y1 = Y1 + B Np.
By matrix arithmetic, we have

Od><d Ni(1:d)
ded Oaxa| |MNi(d:2d)
ClNl 1: d
del

where Ny(1 : d) € R? and Ny(d : 2d) € R? represent the first d and second d elements of N,
respectively. Substituting in our inductive hypothesis into (22), we have:

ey = [w] N [ClNl(l : d)]’

del del

_ IUZ+’CHAG(1 :d)
Ogx1

if we let w11 = w; + C;N;(1 : d), we can see that the property holds for 11, thereby verifying
Claim 4.

Given all the claims above, we can then compute that

<¢l+1, M1CU("+1)>

=(s0, M1z) 4 2(BT ML XY, M) (By (22))
:<1/)l M x("+1)> + ! Z<B Moz @y M x("+1)>
=1
= (0, M1at) 4 257 (B M ((, M1a®) 440, My) (By (20))
=1
)\, L~/ o7 [v® —v(® 4 £ (i) (n41)
:<wl’M1x >+n;<Bl [dej <<wl’ [Odx1]>+y0)’Mlx >
=<¢l, M1sc("+1)> + % i < {%l;j(l)} (() + wy, 6(2) wsz/(i)),Mlx("+1)> (By Claim 4)
i=1 x
- N L /O (yl 4w e® — T (@) N
(a0 0D e

This means

<wl+1aV(n+1)> = <wl7V(n+1)> + rll 27; <Cll/ (y + w, 5(1 (i)),y(”+1)>.

Since the choice of the query ("1 is arbitrary, we get
wiy1 = wp + — ZC’Z(+ w, 5 l—ru(i)>u(i).

In particular, when we construct Zy such that v(9) = ¢;_1, £() = ~¢; and y(()i) = R;, we get

1 n
Wit =W+ ZCZ (R + yw, ¢ — w/ di—1) i1

i=1

21

Under review as a conference paper at ICLR 2025

which is the update rule for pre-conditioned TD learning. We also have

yl(”'f‘l) _ <1/)Z,M1x(”+1)> — 7<wl7¢(n+1)>'

This concludes our proof. O

A.2 PROOF OF COROLLARY 1

Proof. The proof presented here closely mirrors the methodology and notation established in Theorem
1. Since we are only considering a 1-layer transformer in this Corollary, we can recall the embedding
evolution from (3) and write

1
7y =20+ gPOZOM(ZJQOZO).

We once again refer to the elements in Z; as {(xl(i), yl(z))} in the following way
i=1,...,n+1

xl(l) ml(n) xl(n-i-l)
g []
NI U C

where we recall that Z; € R4+ x(n+1) a:l(i) € R, yl(i) € R. We utilize, Vl(i) € RY, fl(i) € R to

| , (i)

refer to the first half and second half of z" i.e., 2\" = [Zl(l)
!

. Then we have

Vl(l) - Vl(n) Vl("H)
yl() yl(n) yl(n+)
‘We further define as shorthands
X, = 951(1) xl(n)} € R2xn 'y, — [l/z(l) yl(n):| c RIXn.

Then the block-wise structure of Z; can be succinctly expressed as:

X, xl(n+1)
Z = Y, (n+1) |-
Y

For the input Z;, we assume 53”“) =0, y(()nﬂ) = 0 but all other entries of Z are arbitrary. We
recall our definition of M in (2) and { Py, Qo} in (7). In particular, we can express (o in a more
compact way as

Mlﬁ__ld Odxa € R2x2d B = Cy Odxa € R24x2d
10dxd Odxa Odxd Odxd

- _|-Cd Oaxa 2dx2d
Ao =BoMy = |:0d><d Odxd €R ’

[Ao 0241 (2d+1) % (2d+1)
= R .
o [O1x2¢ 0 €

We will proceed with the following claims.
Claim 1. X, = X, 2{"™") = 2"

Because we are considering the special case of L = 1 and because we utilize the same definition of
Py as in Theorem 1, the argument proving Claim 1 in Theorem 1 holds here as well. As a result, we

drop all the subscripts of X7, as well as subscripts of xgi) fori=1,...,n+ 1.

Claim 2.

1
Vi =Y+ Yo X A X
n

22

Under review as a conference paper at ICLR 2025

n n 1 n
y§ +1) = y(() +1) + %Y()XTA().SC(+1).

This claim is a special case of Claim 2 from the proof of Theorem 1 in Appendix A.1, where L = 1.
Our block-wise construction of)y matches that in the proof of Theorem 1. Although our A here
differs from the specific form of Ay in the proof of Theorem 1, this specific form is not utilized in the
proof of Claim 2. Therefore, the proof of Claim 2 in Appendix A.1 applies here, and we omit the
steps to avoid redundancy.

Claim 3.
i i o 1
gt =y 4 <M1x() nBOTMQXYOT>,

fori =1,...,n+ 1, where My = {Ojdd 8?3]
x x

This claim once again is the L = 1 case of Claim 3 from the proof of Theorem 1 in Appendix A.1.
The specific form of M is not utilized in the proof of Claim 3 from Appendix A.1, so it applies here.

We can then define 1)y = 0 and,
1
Py = gBOT MyXY, € R*, (23)
Then we can write

fori =1,...,n 4+ 1, which is the claim we made. In particular, since we assume yénﬂ) =0, we

have
y§n+1) _ <M1$("+1), w1>

Claim 4. The bottom d elements of 1; are always 0, i.e., there exists wy € R? such that we can
express 11 as
_ | W
dh _.{del].

Since our By here is identical to that in the proof of Theorem 1 in A.1, Claim 4 holds for the same
reason. We therefore omit the proof details to avoid repetition.

Given all the claims above, we can then compute that

1)
(w1, M12 D) = (B MpXY,T, My D) (By (23))

n
LS ()

1 ¢ 0) (n+1)

N CH I [CORTES)

;Z<[CO”(}) M1x<"+1>> (By Claim 4)
=1

0d><1
n

1 3 Corys” |y, pnt)
n J—

0
i—1 d><1

This means

1 N
<w17 (1) > = <Coy<z>y(()l>, y<”+1>>.
n

i=1

23

Under review as a conference paper at ICLR 2025

Since the choice of the query v("*1) is arbitrary, we get
Z Coy(i) (z)
(i)

In particular, when we construct Z such that () = ¢i—1and 5’ = R;, we get
1 n
= — Z CoRipi—1
n “
=1

which is the update rule for a single step of TD(0) with wy = 0. We also have
y§”+1) = </¢)11 Mlx(n+1)> = —<’LU1, ¢(n+l)>

This concludes our proof. O

A.3 PROOF OF THEOREM 2

Preliminaries Before we present the proof, we first introduce notations convenient for our analysis.
We decompose P, and @) as

P e R2dx(2d+1) Q. € RZXZ Qb € RZXZ qc € RZXI
0_[GRIX(2d+1):| 0= QQ€RX QZGRX qéERXI
e eRlxd qbeRlxd ngR

One can readily check that TF; is independent of P, Qy, Q}, 9b, ¢c, G., g - Thus, we can assume that
these matrices are zero. Let 2(¥) be the i-th column of Zo. Indeed, TF; can be written as

TF1(Zo,{Fo, Qo}) = —Z1[2d + 1,n + 1] By 4)

1 N
— _ng (Z (0) (D))Qozml)

i=1

<p7 () >Z<i>TQoz<n+1>

I
<~

=1

|
< |-

<p, Z(l)> (¢iT—1Qa¢n+l + 7¢?Q;¢n+1 + Rz‘@:ﬂ%) (24)

i=1

1 n
— Z (ppeaps bi-1) + V{Plat1:2d)> i) + Pa+1) Ri

a;(Zo,Po)

¢ 1Qa¢n+1 + ’Y((b) Q ¢n+1 + Rz¢7L+1Qa

Bi(Z0,Qo)
We prepare the following gradient computations for future use:

vp[l:d] TFl(Zo, {P07 QO}) = _% Z Bi(Z()a QO)(ZSifl

Viiasraa TF1(Zo, {Po, Qo}) = Z Bi(Zo, Qo)
VQ.TF1(Zo, {Fo, Qo}) = — Zo‘i(ZO>P0)¢i—1¢Z+1 (25)
YV, TF1(Zo, {Po, Qo}) Za, (Zo, Po) i1
V4. TF1(Zo, { Py, Qo}) = —— Z Rii(Zo, Po) -
=1

24

Under review as a conference paper at ICLR 2025

We will also reference the following two lemmas in our main proof.

Lemma A.3.1. Let A be a diagonal matrix whose diagonal elements are i.i.d Rademacher random
variables * (1, .. .(q. For any matrix K € R4, we have that EA[AK A] = diag(K).

Proof. First, we can write AK A explicitly as

Cl 0 0 /{311 /{312 l{ild Cl 0o ... 0

Cg e 0 kgl kgg e kgd 0 Cg e 0

AKA = S .
0 0 ... Callkar Koz .. Kaad O 0 ... G

Using (AKA),; to denote the element in the i-th row at column j of AKA, from elementary matrix
multiplication we have

(AKA)ij = Cikij<j~

When i # j, E[(;(;] = E[G]E[(;] = 0 becasue ; and (; are independent. For i = j, E[(;(;] =
E[¢?] = 1. We can then compute the expectation

kij i=j
Consequently,
EA[AKA] = diag(K).
O

Lemma A.3.2. Let IT € R¥*? pe a random permutation matrix uniformly distributed over all d x d
permutation matrices and L € R%*? be a diagonal matrix. Then, it holds that

1
En (LI | = = tr(L) 4.
d
Proof. By definition,

d
LI, = Z i Lo IL .
k=1

We note that each row of II is a standard basis. Given the orthogonality of standard bases, we get

ML), = {0 2
qu‘%‘ =17
where g; is the unique index such that IT;,, = 1. If the distribution of IT is uniform, then [TILIT "];;
is equal to one of L1,..., Lyg with the same probability. Thus, the expected value [HLHT]“- is
1
=tr(L). O
d

Now, we start with the proof of the theorem statement.

Proof. We recall the definition of the set ©* as

02dx24 0O2ax1 cla Oaxa Oaxa
0" =Upceery P = {01 ng nx }Q = |1a Oaxa Oaxi| ¢-
x 01><d O1><d 0

Suppose 6, € ©F, then by (24) and (25), we get

TF1(Zo,0k) = —% Z Ri(ckdi_1dns1 + hvd; dns1) (26)
i=1

*A Rademacher random variable takes values 1 or —1, each with an equal probability of 0.5.

25

Under review as a conference paper at ICLR 2025

TF(Zy, 0k) = —

vpu:d]TFl(ZOa 0k) = -

\Y%

Pld+1:2d)]

Vo.TF (Zo, Qk) =

Vo, TF1(Zo, Ox) =

V4. TF1 (Zo, 0r) =

TFI(ZOa ek) = -

Rit1(ckd] dnia + o 10ni2)

SRS

@
I
-

(kD 10ni1 + hYD] Dni1)dia

S
-
I

(k@1 Pns1 + YD, dnt1) i

3=

Il
_

%

Mk

n

.
Ripi—10,44

M:

=1

’Ynk Z Rld)l n+1

Nk ZR2¢”+1

Recall the definition of A() in (10). With a slight abuse of notation, we define A(py;.q)) to be the
P[1:.4) component of A(6), i.e.,
OTF,(Zy, 6)

Alpan) = B | (R +7TFA(Z.0) ~ TF1 (2, 0) T2

Same goes for A(pjay1:247), A(Qa), A(Q7,), and A(qq).

We will prove that

@) A(pri:q) = A(Plasi:2q) = Alga) = 0 for A(0y);

(b) A(Qq) = dIgand A(QY,) = §'I, for some 6,0 € R for A(6y)
using Assumptions 5.1 and 5.2. We can see that the combination of (a) and (b) are sufficient for

proving the theorem. Recall that Z; and Z{, are sampled from (pg, p, 7, ¢). We make the following
claims to assist our proof of (a) and (b).

Claim 1. Let ¢ be a Rademacher random variable. We denote Z; and Zé as the prompts sampled
from (po, p, 7, ($). We then have Zy £ Z and Z} = Zé. To show this is true, we notice that for any
realization of ¢, denoted as ¢ € {1,

Pr<p07pa T, (b)

—1}, we have

- Pr(p07p7 T) Pr<¢)
= Pr(p()vpa T) PI‘(EIdQS)
= Pr<p07pa T, &Z)) .

(Assumption 5.1)
(Assumption 5.2)
(Assumption 5.1)

It then follows that

Pr(po,p,r,¢) =Pr(po,p,m¢) Y, Pr(¢=)

fe{1,-1}
Z PT(PO;P» T, d)) PI‘(C = E)
¢ef1,-1}
= Z Pr(p()ap> T, E(b) PI‘(C = E)
¢e{1,-1}

= Pr(p07p7 r? CQS).
This implies Claim 1 holds.

Claim 2. Define A as the diagonal matrix whose diagonal elements are i.i.d. Rademacher random
variables (1, ..., (q. We denote Zx and Z} as the prompts sampled from (po, p, r, A¢), where A¢p

26

Under review as a conference paper at ICLR 2025

means [Ad(s)]ses. We then have Zy = Z, and Z}, £ Z/,. The proof follows the same procedures as
Claim 1.

Claim 3. Let IT be a random permutation matrix uniformly distributed over all d x d permutation
matrices. We denote Zy; and Z}; as the prompts sampled from (po, p, r, I1¢), where II¢$ means

[TI¢(s)]ses. We then have Zy = Zy and Z) £ Z{;. The proof follows the same procedures as
Claim 1.

Proof of (a) using Claim 1 It is easy to check by (26) that

TF1(Z¢, 0r) = ZR rC?0{_10ns1 +] dnia)

= (? TFl(ZO,Gk)
eyl
= TF1(Zo, Oy). 27

Similarly, one can check that TFl(Zé7 0) = TF1(Z, 0).

Furthermore,
1 n
Vo TR1(Ze,00) = = = > | ex (F ol 16ns1 +cky ¢ dnir | (din

= =1 \:1/
C n

= Z (cr@10nt1 + YD Pnr)di1

i=1
:Cvpu:d] TFl(ZOa 0k)' (28)

Then, from (10), we get
A(pp.ay)
=E[(Rnt2 +YTF1(Z, 0x) — TF1(Zo, 01)) V., TF1(Z0, 6]
=E[(Rns2 +7TF1(ZL, 0k) — TF1(Z¢, 01)) V. TF1(Z¢, 01 (By Claim 1)
=E¢ [E[(Rns2 +9TFL(ZE, 0k) — TF1(Zc, 04)) V.. TF1(Ze, 01) | ¢]]
[)
[
[

=E¢ [E[(Rnt2 +vTF1(Zg, 0x) — TF1(Zo, 0%))¢ V.o TF1(Z0, 01) | ¢]] (By (27), (28))
=E¢ [CE[(Rn+2 +YTF1(Zg, 0k) — TF1(Zo, 0k)) V. TF1(Z0, 01) | ¢]]

=E¢ [CE[(Rn+2 +YTF1(Zg, 0k) — TF1(Zo, 0k)) V. TF1(Z0, 01)] |

=E¢[CJE[(Rny2 +YTF1(Zy, 0x) — TF1(Zo, 01)) V.. TF1(Z0, O1)]

=0.
The proof is analogous for A(p441:24) = 0, and A(ga) = 0.

Proof of (b) using Claims 2 and 3 We first show that A(Q,) is a diagonal matrix. Similar to (a),
we have

1 n
TFI(ZA7‘9k):_nZ77kRi<Ck¢ A2 ¢n+1+cw¢ A? ¢n+1> (29)
i=1 > >

— TF,(Z0, 01.).

Similarly, we get TF1(Z}, 0x) = TF1(Z}, 0),). Additionally, we have

Vo.TF(Z,01) = —fznkR Api—1¢p AT = AV, TF1(Zo, 0) A (30)

1=1

By (10) again, we get
A(Qa)

27

Under review as a conference paper at ICLR 2025

=E[(Rn12 + vTF1(Z), 01) — TF1(Zo, 01))V o, TF1 (Zo, 01.)]

=E[(Rn+2 + YTF1(Z}, 0k) — TF1(ZA, 0x))V o, TF1(Za, 01)] (By Claim 2)
=EA[E[(Rn+t2 +YTF1(Z), 0k) — TF1(Zx, 0k))VQ, TF1(Za, O1) | Al]

Al] (By (29), (30))

=EA[E[(Ryt2 + YTF1(Z], 0k) — TF1(Z0,0k))AV o, TF1(Zo, 0k) A |

=EA[AE[(Rn+2 + YTF1(Zy, 0k) — TF1(Zo, 0x))V . TF1(Zo, 01) | A]A]

=EA[AE[(Rp42 + YTF1(Z, 0x) — TF1(Zo, 0x))V o, TF1(Zo, 0k) |A]

=diag(E[(Rn+2 + YTF1(Zy, 0x) — TF1(Zo, 0x))V o, TF1(Zo, 0k)]) (By Lemma A.3.1)
=diag(A(Qa))-

The last equation holds if and only if A(Q,) is diagonal. We have proven this claim.

Now, we prove that A(Q,) = §I4 for some § € R using Claim 3 and Lemma A.3.2. Let IT be a
random permutation matrix uniformly distributed over all permutation matrices. Recall the definition
of Zir and Z{; in Claim 3. We have

1 n
TFy (Zm, 0x) = = > iR <Ck¢31,HTH $n1 + cyo] LT ¢>n+1> = TF1(Z0, 0x)-(31)
i=1 =TI =1

Analogously, we get TF1 (Z{;, 0x) = TF1(Z{, 6)). Furthermore, we have

1
V. TFy (Zm, 0;) = —fznkR ;16,1117 =1V, TF1(Zo, 0x)I1". (32)

By (10), we are ready to show that

A(Qa)
:E[(Rn+2 + ’YTFl(Z{), 91@) — TFl(Z(), ek))VQaTFl(Z(), Qk)]
=E[(Rn4+2 + YTF1(Z;, 0x) — TF1(Zn, 01))V o, TF1 (Zn, 01)] (By Claim 3)

=En[E[(Rn+2 +yTF1(Z1, 0k) — TF1(Zn, 1))V, TF1(Zn, Oy) | 11]]

=En [E[(Rn+2 +YTF1(Z)), 0x) — TF1(Zo, 0x))[IV o, TF1(Zo,0,)I" |II]] (By (31), (32))
=En [HE[(Ry 42 + YTF1(Z), 0x) — TF1(Zo,01)) Vo, TF1(Zo, 0)) | T]

=En[IE[(Ro12 +vTF1(Z5, 0k) — TF1(Zo, 61,)) Vo, TF1(Zo. 1)1]

=Eq [Hdlag (Qa))HT]

:% tr(A(Qu)) g (By Lemma A.3.2)

=01,.
The proof is analogous for A(Q!,) = §'I4 for some ¢’ € R.
Suppose that A(pj2q+1)) = p € R, we now can conclude that

02dx2d 0O2ax1 (S,Id Odxa Odx1
A0r) = A(Py) = o P JA(Qo) = | "Iy Ogxa Oaxi| b
" O1xa Oixqa O

Therefore, according to (10), we get

Ok
:ek + OékA(ek)
{ |:02d><2d O2dx1 C/k + ak(s,‘[d Oaxa Ogx1
- +ard'ly Oaxa Oaxi
012 }7 Cr,
x3d T+ Gif O1xd O1xa 0O

}e@*.

28

Under review as a conference paper at ICLR 2025

A.4 PROOF OF COROLLARY 2

Proof. We recall from (3) that the embedding evolves according to

1
iy = 21+ gPlZlM(ZlTQlZl)-

We again refer to the elements in Z; as {(xl(i), yl(i))} in the following way
i=1,...,n+1

gasey

Zl _ :cl(l) N .Tl(n) $l(n+1)
yl(l) yl(n) yl(n+1) ’

where we recall that 7, € R24HDx (1) () ¢ R2d () ¢ R Sometimes, it is more convenient

to refer to the first half and second half of xl(i) separately, by, e.g., Vl(i) S Rd,ﬁl(i) € R4 ie.,

) (%)
xl(z) = lyl(i)] . Then, we have

&
_Vl(l) . Vl(n) Vl(n+1)
7 = gf? g™ g}”*?
E/ T i
We utilize the shorthands
X =z .. xl(”)} e R,
Y, = :yl(l) yl(”)} e R*",
Then we have
7 X acl("ﬂ)]
L= Y (n+1) |
Y

For the input Z;, we assume g(()”“) =0, y(()"+1) = 0 but all other entries of Z; are arbitrary. We

recall our definition of M in (2) and {PR% QRS} in (12). In particular, we can express QRC in a
more compact way as

M, = —Ii Ig | € R24x2d,
Odxd Odxd]
My =— M,
B = C" Oaxd] € R2dx2d,
Odxd Odxd]
. o of
Ay =My BiMy = | l } € R?24,
2 el

RG - | A O2ax1 € R(2d+1)x(2d+1)
! O1x2¢ O '

We then verify the following claims.
Claim 1. X; = X, 2" ™" = 2" .

We note that PRY is the key reason Claim 1 holds and is the same as the TD(0) case. Referring to
A.1, we omit the proof of Claim 1 here.

Claim 2.

1
Vg =Y+ VX AX
n

n n 1
yiT = g+ X T A,
n

29

Under review as a conference paper at ICLR 2025

Since the only difference between the true residual gradient and TD(0) configurations is the internal
structure of A;, we argue that it’s irrelevant to Claim 2. We therefore again refer the readers to A.1
for a detailed proof.

Claim 3.
1
)) L1
=)+ (300 L5 BT,
j=0
fortr=1,...,n+ 1.

By Claim 2, we can unroll Y}, as
1
Vi =Y+ -V XTAX
n

1
Vi=Y1+ ﬁm_leAl_lx

1
Vi =Yo+ ~YoXTApX.
n

We can then compactly express Y;y; as

l
1
Vii=Yo+-) V. XTA.X.
1+1 o+njz=(:)a j

Recall that we define A; = J\/[2T B; M. Then, we can rewrite Y711 as

l
1
Y=Y, f§ Y. X" M B.M; X.
I+1 o+n j 2 DjiM

=0

(n+1)

With the identical procedure, we can easily rewrite ;. |

as

l
n n 1 n
yl(-‘r—l&-l) — y(() +1) + ﬁ Z)/JXTMQTBlel,(+1)'

§=0
In light of this, we define)9 = 0 and for [=0, ...

l
1
Vi1 =) B MpXY;" € R*

j=0
1
= + —B My XY;" (33)
n
Then we can write
(@) _ @) M@ 34
Y1 =Y + Mz g), (34)
fori =1,...,n + 1, which is the claim we made. In particular, since we assume yénﬂ) =0, we

have

yl(—TﬁLl) = <M133("+1)7 ¢l+1>-

Claim 4. The bottom d elements of ¢; are always 0, i.e., there exists a sequence {wl IS Rd} such
that we can express ¢; as
_ wy
djl a |:Od>< 1] '

30

Under review as a conference paper at ICLR 2025

foralll =0,1,..., L.

Since B; is the key reason Claim 4 holds and is identical to the TD(0) case, we refer the reader to A.1
for detailed proof.

Given all the claims above, we can then compute that
<1/11+17 M1fﬂ(n+1)>

<B1TM2XYIT, M1x<"+1>> (By (33))

Q

B[Myati (<¢l,M1z >>+yé)> M1x<”“>> (By (34))

- (i) _ gl) 4 g ; .
XZ: <Bl { def } (<¢l7 { Vodjlg }> + yé))7M1x(+1)>
_ Mlx(n+1) + %i < [C (&) — 5(1):| (9 +u; éh(Q) (i)),Ml.%'(n+1)>

del
(By Claim 4)

C 1/(1 _)(y(i) + ng(i) — wlTy(i))‘| ,M1x(n+1)>

del

This means

<wz+1,V(n+1)> = <wl7V(n+1 > +

z":< (_))(y +wT§<i>7wlTy<i>)7y<n+1>>.

i=1

SRS

Since the choice of the query v("*1) is arbitrary, we get
RS i i i i i
Wil = Wy + o ZC’l (y(()) + wng(,) - wlTV()> (1/(‘) — &)).
i=1

In particular, when we construct Zy such that (9 = ¢, _1, £() = ~v¢; and y(()i) = R;, we get

1 n
Wiy =W+ Z Ci(Ri + yw]" i — w; ¢i—1)(di-1 — 7:)

i=1

which is the update rule for pre-conditioned residual gradient learning. We also have

yz(nH) = <¢1,M1x("+1)> = —<wl7¢(n+1)>-

This concludes our proof. O

A.5 PROOF OF COROLLARY 3

Proof. The proof presented here closely mirrors the methodology and notation established in the
proof of Theorem 1 from Appendix A.1. We begin by recalling the embedding evolution from (3) as,

1
Ziv1 = Z+ —PZiM™N(Z] Q7).
n

31

Under review as a conference paper at ICLR 2025

where we have substituted the original mask defined in (2) with the TD(\) mask in (14). We once
again refer to the elements in Z; as {(ml(l), yl(l))})) in the following way
1t

Ty

(1) () (n+1)
Zi= 1"t (n) %n+1>] ;
yl e yl yl

where we recall that Z; € R4+ x (1) () ¢ p2d () ¢ R We utilize, v/” € R, ¢ € R, to

. . ()
refer to the first half and second half of z") i.e., 2\") = |;b
!

Then we have

_Vl(l) Vl(n) Vl("H)
7 = gf? g™ g{”*?
_yl() yl(n) yl(n+)
‘We further define as shorthands,
X =z xl(")} € R2dxm,
R RURE P

Then the blockwise structure of Z; can be succinctly expressed as:

We proceed to the formal arguments by paralleling those in Theorem 1. As in the theorem, we assume
that certain initial conditions, such as gé"“) =0and yénH) = 0, hold, but other entries of Z, are

arbitrary. We recall our definition of A/™™ in (14) and { P, Q[P } 0.1y in (7). In particular,

we can express Q7P in a more compact way as

.....

1o I 2dx2d
My = R

' 0axd 0d><d:| © ’
B, = [Oaxa R24x2d.
[0dxd Odxd

- _ |-t o 2dx2d
Ar =BiMy = |:0d><d Odxd €R ’

™ .| A Oaxi € R@d+1)x(2d+1)
[O1x2¢ 0O
We now proceed with the following claims.

In subsequent steps, it sometimes is useful to refer to the matrix M ™™ Z T in block form. Therefore,
we will define H T € R("*2) as the first n rows of Mrp(y)Z | except for the last column, which we

define as Yl()‘) € R™.

MO ZT {OHT Yl(”] € RnHD)x(2d+1)
1x2d

Let A9 denote i-th column of H.

We proceed with the following claims.

Claim 1. X; = X, 2" = 20" wi.

32

Under review as a conference paper at ICLR 2025

Because we utilize the same definition of P as in Theorem 1, the argument proving Claim 1 in
Theorem 1 holds here as well. As a result, we drop all the subscripts of X7, as well as subscripts of

xl(i)forizl,...,n—kl.

Claim 2. Let H € R(24%7) where the i-th column of H is,
R =3 Akl e R
k=1

Then we can write the updates for Y; 1, and yl(ﬁrl) as,

1
Viy1 =Y+ -V H AX,
n

n n 1 n
yi D =y S VHT A,

We will show this by factoring the embedding evolution into the product of P?Z; and M N7 lT ,
and Q[P Z,. Firstly, we have
02d><'n 02d><1 :|

PITDZI = |: Y, y(nJrl)
l

Next we analyze M ™™ Z,". From basic matrix algebra we have,

M1 0 0 0 0 O] M7 y(l)_

A 1 0 0 0 0 @7 @)

XA 10 0ol Ty Y

TD(A) o T A3 A2 A 1 0 0 2 y®
M™NZT = _
)\n'—l)\n'—2)\n.—?))\n‘—4 . 1 0 x(n)TT y(")
0 0 0 0 - 0 0] [2(»*D 0 |

- T
1;(1) yl(l)

I
Zi;l)‘ni%iT Z?:1)\niiyl(z)
L 01x24 0

- T
B yl(l)

WOy oyt

P : .n_i §
h(m) Die1)\O yl()

_01><2d
_ I HT Kl(/\):|
O1x2¢ 0 |’

where K I(A) € R is introduced for notation simplicity.

Then, we analyze M™™ Z " QTP Z,. Applying the block matrix notations, we get

[T) X gD
(MTD(A)ZZT)QITDZl: _Oim K6 }[Oilzd OQ%M} {Yl Z/z(nﬂ)}
_[HTA O] [X 2l
Lo “8][S
_[HTAX HTAZQS(”+1):|

| O1x24 0 '

33

Under review as a conference paper at ICLR 2025

Combining the two, we get
O2dxn O2ax1 | [HT A X HT AxtD)
PTDZ MTD()\)Z—F TDZ — o l l
1 l(L Q@ l) Y, yl(+1) 01 %94 0

| O2dxn 0241
T\VHTAX YHTAz®+D|

Hence, according to our update rule in (3), we get

1
Vig1 =Y+ -V HTAX
n

. 1
yl(—i-l‘rl) _ yl(7L+1) + E}/}HTAII(nJrl).

Claim 3.

l
i i o 1
2=+ (0,3 Ty,
1=0

fori =1,...,n+ 1, where My = {Ojdd 8?3]
x X

Following Claim 2, we can unroll the recursive definition of Y;; and express it compactly as,

l
1
Y. =Y 7§ :YiHTAZ—X.
I+1 o+ n 2

Recall that we define A; = B; M. Then, we can rewrite Y, as

l
1
YVign =Yoo+~ Y YiH MyB;M; X.
I4+1 o+ " ; 2 1
The introduction of M5 here does not break the equivalence because B; = M B;. However, it will
help make our proof steps easier to comprehend later.

(n+1)

With the identical recursive unrolling procedure, we can rewrite y;.,

as

l
(n+1) _ (n+1) | 1 T .
Y1 =Y + EZ;YiH My B; My Y,

1=

In light of this, we define)9 = 0 and for [=0, ...
!

1
Vi = ;) B/ M,HY;' € R*, (35)
Then we can write
ui =" + (M i), (36)
fori =1,...,n 4+ 1, which is the claim we made. In particular, since we assume yénﬂ) =0, we

have

yl(ﬁrl) = <M1~’U("+1),1/)z+1>-

Claim 4. The bottom d elements of 1); are always O, i.e., there exists a sequence {wl € Rd} such
that we can express ¢; as
_ | W
djl B |:Od>< 1] '

34

Under review as a conference paper at ICLR 2025

foralll =0,1,..., L.

Because we utilize the same definition of B; as in Theorem 1 when defining ;4 ;, the argument
proving Claim 4 in Theorem 1 holds here as well. We omit the steps to avoid redundancy.

Given all the claims above, we can then compute that

<¢l+17 Mlx(n+1)>

<¢l Mlx(”+1)> %<BZT MyHY,T, Mlx("+1)> (By (35))
=<¢ Mz n+1)> + ;g <B;M2h(i)yl(i), Mlx("+1)>
(0 M) + L S (BTAMO (10,2000 +40). 20 (By (36)
i=1
()

1 n
M (n+1) - E
wh 1T +’n

(ZZ:I)\ifky(i)) " —p(@) + 5(7) n y(z) M1$(n+1)
Oax1 ’ Odx1)

:<¢l7M1x(n+1)> + %an < Ci (2261)@—kz,(i))] (y(Do e — wlTV(i))7Mlx(n+1)>
i dx1
- (By Claim 4)

A (y(()z) o €0 — w?u(i)) (2221 Ai—ky(i))] ,Mlx("+1)>

Od><1

This means

n

<wl+1’V(n+1)> = <wz,l/("+l)> + Tll Z <Cl (yo +wl § — wlT (@)) <Z A=k, ()) n+1)>.

i=1
Since the choice of the query »(**1) is arbitrary, we get
_ RS (4) T ¢(4) T (3) d i—k (i)
wl+1—wl+EZC’l(yO +w; €Y —w v) Z)\ v .
i=1 k=1
In particular, when we construct Zy such that (9 = ¢;_;, £€() = ~v¢; and yO = R;, we get

1 n
Wi =w At D Ci(Ri+yw ¢ —w di1)ei

=1

where
= Z)\i_k(ﬁk. eR?
k=1

which is the update rule for pre-conditioned TD(\). We also have

yl(n+1) = <¢1,M1I("+1)> = *<wl7¢(n+1)>-

This concludes our proof. O

35

Under review as a conference paper at ICLR 2025

A.6 PROOF OF THEOREM 3

Proof. We recall from (18) that the embedding evolves according to

pTD 10

Ziyn =21+ Tonead(Zl, ™. Mﬁ,(l)ﬂﬁ,(?)’@lﬁ), M™® ;)

=Z1+-W

1 - |LinAtn(Z; P>, QTP, M™-()
n' " |LinAttn(Z;; P>, QMP, MTD.(2))

In this configuration, we refer to the elements in Z; as {(xl ,yl h(l)} in the following
i=1,...,n+1
way, et
(1) x(n) J;l(nH)
N Y T O S
h(” h<"> Y

where we recall that Z; € R24+2x(nt1) () ¢ R2d @) ¢ R and b € R

Sometimes, it is more convenient to refer to the first half and second half of xl(i) separately, by, e.g.,

. . . (@)
v e R e e RY e, 2l = |;%)] Then we have
!

Vz(l) . Vz(n) (n+1)
1 n) n
P [g””
L= (n) (n+1)
Y, e
hl(l) h(") h("+1)
We further define as shorthands
X1 = {xl(l) xl(n)} € R,
Y, = {yl(l) o yl(n)} c R1><n7
Hy= [n .. h™] eRM,
Then we can express Z; as
X, (n+1)
7, = Y, (7L+1)
H, h(""'l)
For the input Z,, we assume 5("+1) = 0 and h(i) = 0for: = 1,...,n + 1. All other entries of

Z, are arbitrary. We recall our definition of M™-(1) }/T0:(2) jp (17), { p™ (1) Plﬁ’@), QmP, VV;}
in (15) and (16). We again express QI as

(-1a I 2dx2d
M, = € R2dx2d.
" 0axa 0d><d:|

|G Oaxa 2dx2d
B =|.! Xl g R
"7 0dxa Odxa

T T
Al ;BlMl |:O(gld Oi’i(d:| S RQdXQd?
T [A 024 € R(24+2)x(2d+2).
! [02x2a O2x2

We now proceed with the following claims that assist in proving our main theorem.

36

Under review as a conference paper at ICLR 2025

Claim 1. X; = Xo, 2\ = 2™, vy = Yo,y = 4", W
We define
Vl(l) - Plﬁ,(l)ZlMﬁ,u) (ZZTQZTT)ZZ) € R+ x(n+1)

Vl(z) - Plﬁ,(z)ZlMﬁ,(z) (ZlTQlTT)Zl) € R4 x(n+1)
Then the evolution of the embedding can be written as

‘/2(1)

1
Ziyr =21+ W, e

n

By simple matrix arithmetic, we realize W; is merely summing up the (2d + 1)-th row of V}(l) and
the (2d + 2)-th row of VZ(Q) and putting the result on its bottom row. Thus, we have

e

Wi Vi(z)

_ [VZ(U(QdOj_Qd;)lj:‘(gé%)(zd . 2)] € RR4+2)x(n+1),
where Vl(l)(2d + 1) and Vl(2)(2d + 2) respectively indicate the (2d + 1)-th row of V}(l) and the
(2d + 2)-th row of VZ(Q). It clearly holds according to the update rule that
Z141(1:2d4+1)=Z(1:2d+ 1)
= X1 = Xi5
gD — g nt D).

I+1 l
Yl+1 =Y
(n+1) (n+1)

yzL = yln .

Then, we can easily arrive at our claim by a simple induction. In light of this, we drop the subscripts
ole,xl(l),Yl and yl(l) foralli =1,...,n + 1 and write Z; as

X m(n+1)
Zl - Y y(n+1)
H, hl(nJrl)

Claim 2.
1 _
Hiy o =H + E(Hl +Y -YV)XTAX
Rt _ hl(n+1) n

It (Hi+Y = V)X T A2+,

1
n
where g = Yi_ ¥ and V = [0 5@ gm] e RIxn,

We show how this claim holds by investigating the function of each attention head in our formulation.

1)

The first attention head, corresponding to V;*" in claim 1, has the form

PO z, p ™) (ZITQTDZ[).

We first analyze P">"") Z,M™-() 1t should be clear that PTP:(1) Z; selects out the (2d + 1)-th row
of Z; and gives us

.0) 02dxn O2dx1
P = Y y(n+1)
len O

The matrix M TD.(1) j5 essentially computing Y — Y and filtering out the (n + 1)-th entry when
applied to PZTD’(DZl. We break down the steps here:

PlTli(l)ZlMﬁ,(l)

37

Under review as a conference paper at ICLR 2025

PO 7, (L1 — Upprdiag([1 L ... 1])M™
:PZTD,(l)ZlMﬁ,(z) _ PZTD,(l)ZlUaniag([l % %])Mﬁ,(z)
[O2dxn O2dx1 [024%1 O24x1 S O2gx1 . 02dX11 . o
=| Y 0] — y(l) %(y(l) + y(2)) %Z?:l y(z) 7l-1‘r1 Z:L;l y(l) MD(2)
L O1xn 0 L 0 0 ce 0
[O2dxn O2dx1 [02dxn O2dx1
=| Y 0 — Y 0
L Oan 0 _01><7L O
[O2axn 02dx1
=Y -Y 0
L O1><n 0

We then analyze the remaining product Z,” QTP Z;.

Z QP Z)
[X7 YT H A Ozaxa Oagsa] [X wi”i;
= T T e | |01x2d 0 0 Y o
_a:(n—H) y(D) hz(+1) 01 ooy 0 0 i, hl(n+1)
_ X gt
_ XT/Tll Onx1 On><1:| Y y(n+1)
T pntD)
E A0 0 H hl(n+1)
[oXxTAX XTAz(+Y
__gc(”“)TAlX w(7L+1)TAlx(n+1) :
Putting them together, we get
_ _ _ —02d><n 02dx1 XTAX XTA (n+1)
PTD’(l)ZMTD=(1)(ZT TDZ>: Y-Y 0 ! i
l l e Oren 0 | [T TTAX D gty
[O2a5n ~ O2ax1
= |(Y-Y)XTAX (Y-Y)XTAz"tD].
01><n 0

)

The second attention head, corresponding to Vz(2 in claim 1, has the form

PP 2™ (2] QI 7).
It’s obvious that Plﬁ’@) selects out the (2d + 2)-th row of Z; as

T Od+1)xn O@d+1)x1
P2, { artxn Oparnxal
l l Hl hl(+1)
Applying the mask M D,(2) | we get

TD, (2) 70,2) _ |O@dr1)xn O@dr1)x1
PP zM _{ 2 o,

The product Z;" Q;TZI is identical to the first attention head. Hence, we see the computation of the
second attention head gives us

P)lﬁ7(2) ZlMﬁ,(Q) (ZIT Q}ﬂiDZl)

_[0@driyxn O@arnxi|[XTAX XT Az +D)
= H; 0 x(n+1)TAlX x(n+1)TAl.1:(n+l)

38

Under review as a conference paper at ICLR 2025

| O@d+1)xn O(2d+1)x1
TIHXTAX HXTAzHD|

Lastly, the matrix W; combines the output from the two heads and gives us

O@2d+1)xn O2d+1)x1

H+Y -Y)XTAX (H+Y-Y)XT Azt |

Plﬁ7(1)ZlMﬁ,(1) ZITQ}T)ZZ
W[== (

PPz, M™ (77 Q7

Hence, we obtain the update rule for H; and hl("+1) as
Hiy = H + %(Hl +Y -YV)XTAX
hiH = R 4 %(Hl +Y - V)X Azt
and claim 2 has been verified.

Claim 3.

l
; 1 _
Iy = <le(z)’ QZB;MzX(Hj +Y —Y)T>7

=0
fori =1,...,n+ 1, where My = [Ojdd 8?3]
x x

Following claim 2, we unroll H;; as

1 _
—(H+Y -Y)XTAX
n

1 _
Hy=H 1+ E(Hl_l +Y -Y)XT4, X

Hyy=H +

1 _
Hy=Hy+ —(Ho+Y - Y)X T 4 X.
n
We therefore can express H;4; as
l
1 _
Hiy = ~ ; — TAX.
1 =Ho+ Z(HJ +Y -V)XTA;X
7=0
Recall that we have defined A; = B;M; and assumed H(= 0. Then, we have
1
1 _
Hppy =~ ; - T ; .
= Z(HJ +Y - V)X MyB; M, X
7=0
Note that the introduction of M5 here does not break the equivalence because B; = M, B;. We
include it in our expression for the convenience of the main proof later.

(n+1)

With the identical procedure, we can easily rewrite ;. |

as

l
n 1 5
hY = =S T(Hy +Y = V)X T My B Mz,
n <
J=0
In light of this, we define ¥y = 0, and for [=0, . ..

l
1 _
Vi = EE :BJTMgX(Hj +Y -Y)" e R,
j=0

39

Under review as a conference paper at ICLR 2025

‘We then can write

hl(21 = <M19€(i),¢l+1> (37)
fori =1,...,n 4+ 1, which is the claim we made.

Claim 4. The bottom d elements of ¢; are always 0, i.e., there exists a sequence {w; € R?} such
that we can express 1; as
_ | w
¢l o |:0d>< 1] ’

foralll =0,1,...,L.

Since our B; here is identical to the proof of Theorem 1 in A.1 for j = 0,1,. .., Claim 4 holds for
the same reason. We therefore omit the proof details to avoid repetition.

Given all the claims above, we proceed to prove our main theorem.

<¢l+1’ M196(”+1)>

X

<
<
= (s, My) 4 257 (B M (i, 412 @) 4y — g0), Mz By 37)
<
<

1 (4) —p(® (#) . .
o)) (o[0w

O/ o , ,
[sz } (5 = 59+l €0 —wTu9), Mlx(”+1)>

im1 Od><1
(By Claim 4)
=, My) + Ly~ (e =9+l e —wlvO)| yp s
n Oax1 ’

This means

1 & .) .))
<wz+1, ,,<n+1>> — <wl, y<n+1>> +=3 <Cl,,<z> (yu) ORIy O w;,,m) , ,,<n+1>>.
n -

Since the choice of the query v("*1) is arbitrary, we get
1 — , . , , ,
_ i (() _) T e@ _ T m) (i)
Wiyl = Wit ;:1 Ny =Y +w &Y —w vy

In particular, when we construct Zy such that (") = ¢;_1, £ = ¢; and y¥) = R;, we get

1 n
Wil =W+ ZCZ (Ri — 7 +w ¢ — w] $i—1) i1

i=1

which is the update rule for pre-conditioned average reward TD learning. We also have

B = (g1, My Dy = (g, 60,

This concludes our proof. O

40

Under review as a conference paper at ICLR 2025

B EXPERIMENTAL DETAILS OF FIGURE 1

We generate Figure 1 with 300 randomly generated policy evaluation tasks. Each task consists of a
randomly generated Markov Decision Process (MDP), a randomly generated policy, and a randomly
generated feature function (See Section 3 for detailed definition). The number of states of the MDP
ranges from 5 to 10, while the features are always in R®. The reward is also randomly generated, but
we make sure the true value function is representable (cf. Algorithm 3). This treatment ensures that
the minimal possible MSVE for each task is always 0. The discount factor is always v = 0.9.

C BOYAN’S CHAIN EVALUATION TASK GENERATION

To generate the evaluation tasks used to meta-train our transformer in Algorithm 1, we utilize Boyan’s
chain, detailed in Figure 3. Notably, we make some minor adjustments to the original Boyan’s chain
in Boyan (1999) to make it an infinite horizon chain.

Recall that an evaluation task is defined by the tuple (po, p, 7, ¢). We consider Boyan’s chain MRPs
with m states. To construct pg, we first sample a m-dimensional random vector uniformly in [0, 1]
and then normalize it to a probability distribution. To construct p, we keep the structure of Boyan’s
chain but randomize the transition probabilities. In particular, the transition function p can be regarded
as a random matrix taking value in R™*™. To simplify the presentation, we use both p(s, s’) and
p(s’|s) to denote the probability of transitioning to s from s. In particular, fori = 1,...,m — 2, we
set p(i,4+ 1) = eand p(i,7 + 2) = 1 — ¢, with € sampled uniformly from (0, 1). For the last two
states, we have p(m|m — 1) = 1 and p(-|m) is a random distribution over all states. Each element
of the vector » € R™ and the matrix ¢ € RY*™ are sampled i.i.d. from a uniform distribution over
[—1,1]. The overall task generation process is summarized in Algorithm 2. Almost surely, no task
will be generated twice. In our experiments in the main text, we use Boyan Chain MRPs, which
consist of m = 10 states, each with feature dimension d = 4.

Figure 3: Boyan’s Chain of m States

Representable Value Function. With the above sampling procedure, there is no guarantee that the
true value function v is always representable by the features. In other words, there is no guarantee
that there exists a w € R? satisfying v(s) = (w, ¢(s)) for all s € S. Most of our experiments use
this setup. It is, however, also beneficial sometimes to work with evaluation tasks where the true value
function is guaranteed to be representable. Algorithm 3 achieves this by randomly generating a w,
first and compute v(s) = (w., ¢(s)). The reward is then analytically computed as r = (I,,, — yp)v.
We recall that in the above, we regard p as a matrix in R™*™.

41

Under review as a conference paper at ICLR 2025

Algorithm 2: Boyan Chain MRP and Feature Generation (Non-Representable)

1: Input: state space size m = |S|, feature dimension d
: fors € Sdo

: ¢(s) ~ Uniform [(—=1,1)¢] // feature

: end for

2
3

4

5: po ~ Uniform [(0,1)™] // initial distribution
6)

7

8

: po < po/ Y, pols
: r ~ Uniform[(—1,1)™] // reward function
:p40Opmxm // transition function
9: fori=1,...,m—2do
10: € ~ Uniform [(0, 1)]
11 p(i,i+1) e
122 p(i,i+2)«1—¢
13: end for
14: p(m —1,m) + 1
15: z <= Uniform [(0,1)™]
16: 22/ . 2(s)
17: p(m,1:m) + z
18: Output: MRP (pg, p,) and feature map ¢

Algorithm 3: Boyan Chain MRP and Feature Generation (Representable)

1: Input: state space size m = |S|, feature dimension d, discount factor ~y
2: w* ~ Uniform [(—1,1)d] // ground-truth weight

3: for s € Sdo

4: @(s) ~ Uniform [(—1,1)¢] // feature

5: w(s) « (w*,¢(s)) // ground-truth value function
6: end for

7: po ~ Uniform[(0,1)™] // initial distribution

8: po < po/ D, Po(s)

9: p< Opmxm // transition function

10: fort=1,...,m —2do

11: € ~ Uniform [(0, 1)]

122 p(i,i+1)<e€

13: p(i,i+2)«1—¢

14: end for

15: p(m —1,m) + 1

16: z < Uniform [(0,1)™]

17: 242/, %(s)

18: p(m,1:m) <+ z

19: 7« (I, —yp)v // reward function

20: Output: MRP (pg, p,) and feature map ¢

D ADDITIONAL EXPERIMENTS WITH LINEAR TRANSFORMERS

D.1 EXPERIMENT SETUP

We use Algorithm 2 as dy,g for the experiments in the main text with Boyan’s chain of 10 states. In
particular, we consider a context of length n = 30, feature dimension d = 4, and utilize a discount
factor v = 0.9. In Section 5, we consider a 3-layer transformer (L = 3), but additional analyses on
the sensitivity to the number of transformer layers (L) and results from a larger scale experiment
with d = 8,n = 60, and |S| = 20 are presented in D.2. We also explore non-autoregressive (i.e.,
"sequential") layer configurations in D.3.

When training our transformer, we utilize an Adam optimizer (Kingma and Ba, 2015) with an
initial learning rate of & = 0.001 and weight decay rate of 1 x 1076, P, and Q, are randomly

42

Under review as a conference paper at ICLR 2025

initialized using Xavier initialization with a gain of 0.1. We trained our transformer on £ = 4000
different evaluation tasks. For each task, we generated a trajectory of length 7 = 347, resulting in
T —n — 2 = 320 transformer parameter updates.

Since the models in these experiments are small (~ 10 KB), we did not use any GPU during our
experiments. We trained our transformers on a standard Intel 19-12900-HK CPU, and training each
transformer took ~ 20 minutes.

For implementation®, we used NumPy (Harris et al., 2020) to process the data and construct Boyan’s
chain, PyTorch (Ansel et al., 2024) to define and train our models, and Matplotlib (Hunter, 2007)
plus SciencePlots (Garrett, 2021) to generate our figures.

D.1.1 TRAINED TRANSFORMER ELEMENT-WISE CONVERGENCE METRICS

To visualize the parameters of the linear transformer trained by Algorithm 1, we report element-wise
metrics. For Py, we report the value of its bottom-right entry, which, as noted in (7), should approach
one if the transformer is learning to implement TD. The other entries of P, should remain close
to zero. Additionally, we report the average absolute value of the elements of P, excluding the
bottom-right entry, to check if these elements stay near zero during training.

For @), we recall from (7) that if the transformer learned to implement normal batch TD, the upper-
left d x d block of the matrix should converge to some —I;, while the upper-right d x d block
(excluding the last column) should converge to I;. To visualize this, we report the trace of the
upper-left d x d block and the trace of the upper-right d x d block (excluding the last column). The
rest of the elements of g should remain close to 0, and to verify this, we report the average absolute
value of the entries of (), excluding the entries that were utilized in computing the traces.

Since, Py and) are in the same product in (1) we sometimes observe during training that Py
converges to —PaP and Qg converges to —Q}P simultaneously. When visualizing the matrices, we
negate both Py and)y when this occurs.

It’s also worth noting that in Theorem 1 we prove a L-layer transformer parameterized as in (7)
with Cy = I; implements L steps of batch TD exactly with a fixed update rate of one. However,
the transformer trained using Algorithm 1 could learn to perform TD with an arbitrary learning rate
(a in (5)). Therefore, even if the final trained Py and ()¢ differ from their constructions in (7) by
some scaling factor, the resulting algorithm implemented by the trained transformer will still be
implementing TD. In light of this, we rescale Py and Q) before visualization. In particular, we divide
Py and Q) by the maximum of the absolute values of their entries, respectively, such that they both
stay in the range [—1, 1] after rescaling.

D.1.2 TRAINED TRANSFORMER AND BATCH TD COMPARISON METRICS

To compare the transformers with batch TD we report several metrics following von Oswald et al.
(2023); Akyiirek et al. (2023). Given a context C' € R24+1D*" and a query ¢ € R?, we construct the

prompt as
¢
C Od x1 .
0

We will suppress the context C' in subscript when it does not confuse. We use Z(9) = Z(¢(s)) as
shorthand. We use d,, to denote the stationary distribution of the MRP with transition function p
and assume the context C' is constructed based on trajectories sampled from this MRP. Then, we
can define vy € RISI, where vg(s) = TFL(ZSS); 0) for each s € S. Notably, vy is then the value
function estimation induced by the transformer parameterized by 6 = {(P,, Q;)} given the context C.
In the rest of the appendix, we will use 61 as the learned parameter from Algorithm 1. As a result,
UTF = Vg, denotes the learned value function.

7(#.0) =

vey

UTD(S) = TFL(Z(()é), 9TD)-

The code will be made publicly available upon publication.

43

Under review as a conference paper at ICLR 2025

In light of Theorem 1, vpp is then the value function estimation obtained by running the batch TD
algorithm (8) on the context C for L iterations, using a constant learning rate c.

We would like to compare the two functions vyr and vrp to future examine the behavior of the
learned transformers. However, vrp is not well-defined yet because it still has a free parameter «, the
learning rate. von Oswald et al. (2023) resolve a similar issue in the in-context regression setting
via using a line search to find the (empirically) optimal «. Inspired by von Oswald et al. (2023), we
also aim to find the empirically optimal « for vrp. We recall that vrp is essentially the transformer

TFp, (Z(()S); O1p) with only 1 single free parameter . We then train this transformer with Algorithm 1.
We observe that o quickly converges and use the converged « to complete the definition of vrp. We
are now ready to present different metrics to compare vt and vrp. We recall that both are dependent
on the context C'.

Value Difference (VD). First, for a given context C, we compute the Value Difference (VD) to
measure the difference between the value function approximated by the trained transformer and the
value function learned by batch TD, weighted by the stationary distribution. To this end, we define,

VD(vrg, v1p) = ||vTE — UTDHZpa

We recall that d, € RISl is the stationary distribution of the MRP, and the weighted /5 norm is defined
as [v]|; = /225 v(s)?d(s).

Implicit Weight Similarity (IWS). We recall that vrp is a linear function, i.e., vrp(s) = (wr, ¢(s))
with wy, defined in Theorem 1. We refer to this wy, as wrp for clarity. The learned value function vrg
is, however, not linear even with a linear transformer. Following Akyiirek et al. (2023), we compute
the best linear approximation of vrg. In particular, given a context C, we define

wrr = argmin || Pw — vrg||, -
w P

Here ® € RISI* is the feature matrix, each of which is ¢(s) . Such a wrg is referred to as implicit
weight in Akytirek et al. (2023). Following Akytirek et al. (2023), we define

IWS (vtE, D) = deos (WTE, WD)
to measure the similarity between wrr and wrp. Here deos(+, -) computes the cos similarity between

two vectors.

Sensitivity Similarity (SS). Recall that vrp(s) = TFL(ZSS); O1r) and vrp(s) = TF L(Zés); O1p). In
other words, given a context C, both vrg(s) and vrp(s) are functions of ¢(s). Following von Oswald
et al. (2023), we then measure the sensitivity of vrp(s) and vrp(s) w.r.t. ¢(s). This similarity is
easily captured by gradients. In particular, we define

¢—¢(S)>

SS(’UTF, UTD) = Z dp(S)dcos <V¢TFL(Z(S¢); 9TF) , V¢TFL(ZS¢); HTD)

d=¢(s)
Notably, it trivially holds that

wTp = V¢TFL(Z(()¢); GTD)

d=(s)

We note that the element-wise convergence of learned transformer parameters (e.g., Figure 2a) is
the most definite evidence for the emergence of in-context TD. The three metrics defined in this
section are only auxiliary when linear attention is concerned. That being said, the three metrics are
important when nonlinear attention is concerned.

D.2 AUTOREGRESSIVE LINEAR TRANSFORMERS WITH L = 1,2, 3,4 LAYERS

In this section, we present the experimental results for autoregressive linear transformers with different
numbers of layers. In Figure 4, we present the element-wise convergence metrics for autoregressive
transformers with L = 1, 2, 4 layers. The plot with L = 3 is in Figure 2 in the main text. We can see
that for the L = 1 case, Py and)y converge to the construction in Corollary 1, which, as proved,
implements TD(0) in the single layer case. For the L = 2,4 cases, we see that P, and) converge to

44

Under review as a conference paper at ICLR 2025

Final Py Final Qp " v Py Metrics Qo Metrics
o o Py-1, 1) 0
, 050 sl ~—— Avg Abs Others | B
.
s tr(Qul:d, :d])
4 om 10} 1 -2 —— te(Qo[:d, d: 2d])
5 —— Avg Abs Others
—0.2: -3
} sk |
. —4
o 00 0 1000 2000 3000 4000 0 1000 2000 3000 4000
100 # MRPs # MRPs
(a) Learned Py and Qo with L = 1 (b) Element-wise learning progress of Py and Qo
Final P() Final QO e 20 Py Metncs Qo Metrics
' " [
050 L~ Ave Abs Others |2 ﬁ
,
0.00 10F 1
ol |- t(Qol:d,)
050 ’ te(Qo[: d, d: 2d])
41— Avg Abs Others
o 00 0 1000 2000 3000 4000 0 1000 2000 3000 4000
~100 # MRPs # MRPs
(¢) Learned Py and Qo with L = 3 (d) Element-wise learning progress of Py and Qo
Final PO i w Py Metrics Qo Metrics
o 123 15 o 7 o 5 7 o 20
B, 1] (Qol:d,)
050 —— Avg Abs Others | 2 tr(Qo[:d, d:2d])

—— Avg Abs Others

0 1000 2000 3000 4000 0 1000 2000 3000 4000

100 # MRPs # MRPs
(e) Learned Py and Qo with L = 4 (f) Element-wise learning progress of Py and Qo

Figure 4: Visualization of the learned autoregressive transformers and the learning progress. Av-
eraged across 30 seeds and the shaded region denotes the standard errors. See Appendix D.1.1 for
details about normalization of P, and Q) before visualization.

45

Under review as a conference paper at ICLR 2025

the construction in Theorem 1. We also observe that as the number of transformer layers L increases,
the learned parameters are more aligned with the construction of PaP and Q{P with Cy = 1.

We also present the comparison of the learned transformer with batch TD according to the metrics
described in Appendix D.1.2. In Figure 5, we present the value difference, implicit weight similarity,
and sensitivity similarity. In Figures Sa — 5d, we present the results for different transformer layer
numbers L = 1,2, 3, 4. In Figure 5e, we present the metrics for a 3-layer transformer, but we increase
the feature dimension to d = 8 and also the context length to n = 60.

In all instances, we see a strong similarity between the trained linear transformers and batch TD. We
see that the cosine similarities of the sensitivities are near one, as are the implicit weight similarities.
Additionally, the value difference approaches zero during training. This further demonstrates that the
autoregressive linear transformers trained according to Algorithm 1 learn to implement TD(0).

Learned TF and Batch TD Comparisor& 20 Learned TF and Batch TD Compariso% 2 Learned TF and Batch TD Comparisor(n] 2

1.0 10 101

1o, i QWWM"WW 10.25
0.8 2 Z 0.8

-- SS -- SS

=)
o
S

I
o
S

Cosine Similarity
S
S
Value Difference
Cosine Similarity
=
=
Value Difference

—— IWS A — IWS 10.15
— VD
0.4 0.10 0.4 0.10
02 10.05 0.2 10.05
00 0 1000 2000 3000 4000 0-00 00 0 1000 2000 3000 4000 0.00 00 0 1000 2000 3000 4000 0-00
MRPs # MRPs # MRPs
(@L=1 (b)L =2 ©L=3
Learned TF and Batch TD Comparison Learned TF and Batch TD Comparison
T T T T — 0.30 T T T T ™ 0.30

1.0 101

%
3

=
>
e
>

lue Difference

S
=

Cosine Similarity
Cosine Similarity

=
15
al

0.2 0.05 0.2 0.05
0055 000 2000 3000 4000 0055 1000 2000 3000 4000
MRPs # MRPs

(dL=4 ()L =3(d=8, n==60)

Figure 5: Value difference (VD), implicit weight similarity (IWS), and sensitivity similarity (SS)
between the learned autoregressive transformers and batch TD with different layers. All curves are
averaged over 30 seeds and the shaded regions are the standard errors.

D.3 SEQUENTIAL TRANSFORMERS WITH L = 2, 3,4 LAYERS

So far, we have been using linear transformers with one parametric attention layer applied repeatedly
for L steps to implement an L-layer transformer. Another natural architecture in contrast with the
autoregressive transformer is a sequential transformer with L distinct attention layers, where the
embedding passes over each layer exactly once during one pass of forward propagation.

In this section, we repeat the same experiments we conduct on the autoregressive transformer with
sequential transformers with L = 2, 3, 4 as their architectures coincide when L = 1. We compare the
sequential transformers with batch TD(0) and report the three metrics in Figure 6. We observe that
the implicit weight similarity and the sensitivity similarity grow drastically to near 1, and the value
difference drops considerably after a few hundred MRPs for all three layer numbers. It suggests that
sequential transformers trained via Algorithm 1 are functionally close to batch TD.

Figure 7 shows the visualization of the converged {F;, Q;} 1=0,1,2 Of a 3-layer sequential linear
transformer and their element-wise convergence. Sequential transformers exhibit very special
patterns in their learned weights. We see that the input layer converges to a pattern very close
to our configuration in Theorem (1). However, the deeper the layer, we observe the more the diagonal
of Q[1:d,d+1:2d] fades. The P matrices, on the other hand, follow our configuration closely,
especially for the final layer. We speculate this pattern emerges because sequential transformers have

46

Under review as a conference paper at ICLR 2025

more parametric attention layers and thus can assign a slightly different role to each layer but together
implement batch TD(0) as suggested by the black-box functional comparison in Figure 6.

Learned TF and Batch TD Comparisortn) " Learned TF and Batch TD Comparisox(l) 2 Learned TF and Batch TD Comparisol?] 2
1.0 10 1.0+
0.25 10.25 10.25
208 g Z08f ¢ Z08F g
= 020 8 & 1020 £ £ 40.20 £
% 0.6 E —g 0.6 g ;i 0.6 g
a f 055 & | 0155 & | 10.15 5
© o o
= g 2 £ E g4l g
g 04r 0105 F 04 {010z E04 1010 %
9} > O = O =
02 0.05 02r 10.05 02 10.05
0075 1000 2000 3000 1000 % 0075 1000 2000 3000 1000 % 0075 1000 2000 3000 000 "%
MRPs # MRPs # MRPs
(@)L =2 b L=3) L=4

Figure 6: Value difference (VD), implicit weight similarity (IWS), and sensitivity similarity (SS)
between the learned sequential transformers and batch TD with different layers. All curves are
averaged over 30 seeds, and the shaded regions are the standard errors.

Flnal P() Flnal QO e 20 Py Metncs Qo Metrlcs
—hio) w(Qolid, 1)
050 sl ~—— Avg Abs Others | —— tx(Qy[:d, d: 2d])
. b 1 —— Avg Abs Others
0
0.00 1.0+ 1
R -1
N 0.25
0.5F 4 -2
-3
—o7s 0.0
0 1000 2000 3000 4000 0 1000 2000 3000 4000
~100 # MRPs # MRPs
(a) Learned Py and Qo (b) Element-wise learning progress of Py and Qo
Final Pl Final Ql e P, Metrics @1 Metrics
0 1 2 3 4 5 0 1 2 3 4 5 0 2.0
— P[-1,-1] 2
050 sk T Ave Abs Others
0 (Qi[:d, d)
om 10} 1 —— te(Qu[:d, d: 2d])
-2 —— Avg Abs Others
s
) 0.5 J
7 ~050 —4
o 00 0 1600 2600 3600 4600 6 1600 2600 30‘00 40‘00
~1.00 # MRPs # MRPs
(¢) Learned P; and Q1 (d) Element-wise learning progress of P; and (1

Flnal P2 i Flnal Qz "

100
Py Metncs Q> Metrics
0 7 7 o 2.0 T T T T T T T
_— Pz[1, -1]
050 —— Avg Abs Others
15F q
- 0.25 -2
0.00 1or 4
5 —4
om r(Qo:d, :d])
.l 1 o — w2 \
. —— Avg Abs Others

o

0 1000 2000 3000 4000 0 1000 2000 3000 4000
o # MRPs # MRPs

(e) Learned P> and Q2 (f) Element-wise learning progress of P> and Q)2

Figure 7: Visualization of the learned L. = 3 sequential transformers and the learning progress.
Averaged across 30 seeds and the shaded region denotes the standard errors. See Appendix D.1.1 for
details about normalization of P, and Qg before visualization.

E NONLINEAR ATTENTION

Until now, we have focused on only linear attention. In this section, we empirically investigate
original transformers with the softmax function. Given a matrix Z, we recall that self-attention
computes its embedding as

Atn(Z; P, Q) = PZMsoftmax(Z ' QZ).

47

Under review as a conference paper at ICLR 2025

Learned TF and Batch TD Comparison Learned TF and Batch TD Comparisora o
T T T T ™ 0.30 T T T T ™ 3.

10 ---- SS 10f ---- S8
{025 WS

O D MR RBRRA - 2.

A"

4
o

0.8

o
=S

H
@
Value Difference

=
o

Cosine Similarity

4
12

0 1000 2000 3000 4000 0.00 00 0 1000 2000 3000 4000

MRPs # MRPs

0.0

(a) General Value Function (b) Representable Value Function

Figure 8: Value difference (VD), implicit weight similarity (IWS), and sensitivity similarity (SS)
between the learned softmax transformers and linear batch TD. All curves are averaged over 30 seeds,
and the shaded regions are the standard errors.

Let Z; € RE4+Dx(n+1) denote the input to the I-th layer, the output of an L-layer transformer with
parameters {(F}, Qi)},—q . 7, is then computed as

Zipy1 =21+ LAun(Z;; P, Qi) = Zy + L PZMsoftmax (27 QZ).

Analogous to the linear transformer, we define
TF;, (ZO; (P, Ql}l:O,I.II,L_l) = —Zp2d+1,n+1].

As a shorthand, we use TF, (Zp) to denote the output of the softmax transformers given prompt Z.
We use the same training procedure (Algorithm 1) to train the softmax transformers. In particular, we
consider a 3-layer autoregressive softmax transformer.

Notably, the three metrics in Appendix D.1.2 apply to softmax transformers as well. We still compare
the learned softmax transformer with the linear batch TD in (8). In other words, the vp related
quantities are the same, and we only recompute vy related quantities in Appendix D.1.2. As shown
in Figure 8a, the value difference remains small, and the implicit weight similarity increases. This
suggests that the learned softmax transformer behaves similarly to linear batch TD. The sensitivity
similarity, however, drops. This is expected. The learned softmax transformer TFy, is unlikely to
be a linear function w.r.t. to the query while vrp is linear w.r.t. the query. So their gradients w.r.t.
the query are unlikely to match. To further investigate this hypothesis, we additionally consider
evaluation tasks where the true value function is guaranteed to be representable (Algorithm 3) and is
thus a linear function w.r.t. the state feature. This provides more incentives for the learned softmax
transformer to behave like a linear function. As shown in Figure 8b, the sensitivity similarity now
increases.

F EXPERIMENTS WITH CARTPOLE ENVIRONMENT

In this section, we present additional experimental results demonstrating that in-context TD emerges
after large-scale pretraining using Algorithm 1 where dy,s is derived from the CartPole environment
(Brockman et al., 2016).

F.1 CARTPOLE EVALUATION TASK GENERATION

Recall that in the main text, as well as Appendix D and E, the transformers are pre-trained with
tasks drawn from dy,s based on Boyan’s Chain (See Appendix C). Here, we extend the analysis
by introducing di,sx based on the CartPole environment. Figure 9 provides an introduction to the
CartPole environment.

Recall that an evaluation task is defined by the tuple (po, p, 7, ¢). In the canonical CartPole envi-
ronment, the states are a vector s € R* where the entries are the current position of the cart, the
velocity of the cart, the angle of the pole, and the angular velocity of the pole. In our experiments, the
initial state distribution po and environment transition dynamics p(s’|s, a) are given by the standard
CartPole equations (e.g. see OpenAl CartPole Github). These transition dynamics, which we denote

48

https://github.com/openai/gym/blob/master/gym/envs/classic_control/cartpole.py

Under review as a conference paper at ICLR 2025

Figure 9: The OpenAl Gym CartPole environment (Brockman et al., 2016) is a classic RL control
task where the goal is to balance a pole on a cart by applying forces to move the cart left or right.
The state consists of the cart’s position and velocity and the pole’s angle and angular velocity. The
episode ends if the cart moves out of bounds or the pole falls beyond a threshold angle.

as Pcarpole (5|5, @), implicitly depend on the physical parameters ¥ = (mcart, Mpole; 95 lpole, 75 f)
representing the mass of the cart and pole, gravitational constant, length of the pole, frame rate,
and the force magnitude. We abuse the notation of pcarpole (|3, a; ¥) to highlight the transition
dependency on W. The joint distribution over these parameters, denoted by Ay, defines the the possi-
ble CartPole environments. In our experiments, we sampled mcar, Mpole, lpotle ~ Uniform [0.5,1.5],
g ~ Uniform [7,12], 7 ~ Uniform [0.01, 0.05], f ~ Uniform [5, 15].

Then, the state transition function p(s’|s) which characterizes an MRP is defined using
Dcarpole (8|8, @), and a fixed random policy 7 (als) parameterized by € ~ Uniform [(0,1)]. Un-
der 7. (als), the probability of moving the cart to the right is € and the probability of moving the cart
to the left is 1 — €. This means that p(s'[s) = >_,c (o 1} P(s'|s, a)m(als) where 0 means going left
and 1 means going right. The environment is extended to an infinite horizon. When the pole falls, or
the cart moves out of bounds, the state is reset by sampling a new initial state from py.

Rather than using the standard CartPole observations and reward structure of +1 per time step until
failure, we provide a diverse set of reward functions and features by sampling r and ¢ randomly.
In CartPole, the state s is continuous, resulting in an infinite state space S. To address this, we
use tile coding (Sutton and Barto, 2018) with a random projection to generate a feature function
¢:S — R?for s € S. Tile coding with random projection maps s to a feature vector sampled from
Uniform [(—1,1)?]. Similarly, for the reward function r : S — R, s is mapped to a reward value,
also sampled from Uniform [—1, 1]. The joint distribution over random features and reward functions
is denoted Ay ,-(d). For each CartPole MRP, we sample from Ay . to obtain the feature and reward
functions ¢ and r. This approach, detailed in Algorithm 4, enables the transformer to encounter a
variety of tasks during pre-training.

Algorithm 4: CartPole MRP and Feature Generation

1: Input: feature dimension d, action space A = {0, 1}, joint distribution over CartPole
parameters Ay, joint distribution over features and rewards Ay ,

: U~ Ay // sample CartPole parameter

: po < Uniform [(—0.05,0.05)*] // CartPole initial distribution

c 9,74 ANy, (d) // sample features and rewards

: € ~ Uniform[(0,1)] // sample random policy parameter

2 p(s'[s) <= 3 c 4 e(als)pearpore(8'|s,a; W) // CartPole state transition

: Output: MRP (po, p, r) and feature map ¢

F.2 EXPERIMENTAL RESULTS OF PRE-TRAINING WITH CARTPOLE

In our experiments in Figure 10, we pre-train a 3-layer autoregressive transformer using Algorithm 1,
where the task distribution dy,g is generated using CartPole MRPs (see Algorithm 4) with a feature
vector of dimension d = 4. We used a significantly larger context window length n = 250. Despite
the increased complexity of the transition dynamics in the CartPole environment compared to Boyan’s

49

Under review as a conference paper at ICLR 2025

chain environment used in Figure 2, our results demonstrate that Py and () still converge to the
construction in Theorem 1 (up to some noise), which we proved exactly implements TD(0).

It is worth noting that our theoretical results (Theorem 2), which prove that the weights implementing
TD are in the invariant set of the updates in Algorithm 1, do not depend on any specific properties of
the environment p. Thus, it is unsurprising that TD(0) emerges naturally even after pre-training on
environments with complicated dynamics.

Final P Final Q " v P, Metrics Qo Metrics

0 o — PR-1,-1]

. 050 . Avg Abs Others 2t

) 1.5

3 : oF

4 0.00 1.0

o 2 w(Qul:d,)

. B t(Qol:d.d:2d)

s o 4r Avg Abs Others e
" 00 0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
L0 # MRPs # MRPs

(a) Learned Py and Qo after 10000 MRPs (b) Element-wise learning progress of Py and Qo

Figure 10: Visualization of the learned transformers and the learning progress after pretraining with
the CartPole environment for 10,000 MRPs. Both (a) and (b) are averaged across 30 seeds and the
shaded regions in (b) denote the standard errors.

G INVESTIGATION OF IN-CONTEXT TD WITH RNN

We have focused primarily on the transformer’s capability to implement TD in context. Before
transformers, the canonical architecture to tackle sequence modelling problems is the recurrent neural
network (RNN) (Elman, 1990; Bengio et al., 2017). Thus, it’s worth investigating the algorithmic
capacity of RNN in implementing TD in its forward pass. In particular, we try to answer the following
two questions in this section:

1. Can RNN implement TD in context?
2. Does in-context TD emerge in RNN via multi-task pre-training?

A canonical deep RNN with L layers is parameterized by {Wé? , Wéfl) , bfll)} . Letm
1=0,...,.L—1

denote the dimension of the raw input tokens and /h denote that of the hidden states, respectively.
Then, we have W% e Rhxm) ¢ Rhxh for | = 1,...,L—1,and Wi e Rk pM ¢ RE for
[=0,...,L —1. Let acgl) denote the input token and agl) denote the hidden state for layer [at time

step t. Unlike transformers that process the whole sequence at once, an RNN processes one token
after another sequentially by updating the hidden states. The hidden state evolves according to

oy = F(WDa + wlal® +40)

where f is an activation function. In addition, we have xil) = agl_l) foralltandl =1,...,L — 1.
In other words, the input to the next depth is the hidden state from the previous depth except for the

first layer. The initial hidden states a(()l),l =0,...,L — 1 are selected arbitrarily. Popular options
include zero initialization and random normal initialization.

When we apply RNN to policy evaluation, we are interested in predicting a scalar value at the end,
also known as many-to-one prediction. Suppose the input sequence has n tokens one typically
passes aZ~!, the final hidden state at the last recurrent layer, through a fully connected output layer
W, € R1*" such that

o= W,ak=t.

G.1 THEORETICAL ANALYSIS OF LINEAR RNN

We first investigate Question 1 via a theoretical analysis of RNN in the context of TD. Due to the
intractable difficulty of nonlinear activations present in deep neural network analysis, we resort to

50

Under review as a conference paper at ICLR 2025

analyzing a single-layer linear RNN, i.e., L = 1 and f is the identity mapping. Hence, we will drop
the superscript indicating the layer index and f in our notation to simplify the presentation. We
shall also remove the bias term b, because it is a constant independent of the context. Under this
formulation, the hidden state evolves according to

i1 = Waa®s + Waaas.
If we initialize ag = 0, we then have
ap =0
a1 = Waaao + Wazzo = Waemo
az = Waaar + Wazr1 = Waews + WaoaWaazo
a3 = Waaaz + Wao@z = Waoms + WaaWazzy + W2, Waamo

Assuming a sequence of n tokens, the final hidden state a,, is
n—1

n—t—1
a, = E wa Wazt.

t=0

Applying a linear output layer W, € R'*" to the hidden state for value prediction, we then get
n—1 n—1
b= Woan = > WoWi ™ Waawy =Y w/lay, (38)
t=0 t=0

. T . . .
where w; = (WOWfa*t*WM) € R" is a vector. (38) demonstrates that the predicted value is
the sum of the inner product between each token and some vector for linear RNN. Recall that each
context token x; for in-context TD is defined as

o}
Yo}
Ry

corresponding to column ¢ of the prompt Z. Hence, we can write

n—1 Q’)t
b= w/ Wl :

t=0 Ry
Under this representation, it is impossible to construct the TD error, not to mention applying the
semi-gradient term. Therefore, it is safe for us to claim that linear RNN is incapable of implementing
TD in its forward pass. This result is easily extendable to the multi-layer case since it is only
performing linear combinations of the tokens, thus reducible to the format of (38). One important
insight gained by comparing the forward pass of an RNN and a transformer under linear activation
is that one at least needs x,; Qx; where () is a square matrix to have any hope to compute the TD
error, which is necessary for TD. Therefore, we speculate that a deep RNN equipped with a common
nonlinear activation such as tanh and ReLLU is also unable to implement TD in context. We will leave
the investigation to Question 2. For now, we can confidently give a negative answer to Question 1
concerning linear RNNGs.

Ty = ’

G.2 MULTI-TASK TD wiTH DEEP RNN

We answer Question 2 via an empirical study with a deep RNN. We employ a 3-layer RNN with a
hidden state dimension of h = 4 and tanh as the activation function and train it via multi-task TD
(Algorithm 1) on 4,000 randomly generated Boyan’s chain MRPs with a feature dimension of d = 4.
Since we cannot apply a mask M like in the transformer to distinguish the query from the context,
we instead append a binary flag to each token for the same purpose. Suppose there are n context
columns, the prompt Z has the form

¢¢1, (b(;l . (Z;n/ ¢n+1

_ |71 P2 - YPn 0 (2d+2) x (n+1)

Z=\R, Ry, ... R, o |k :
0 o ... 0 1

51

Under review as a conference paper at ICLR 2025

The forward pass of the deep RNN processes the tokens sequentially in the prompt to update the
hidden states. The final hidden state of the last layer of the RNN is fed into a fully connected layer
to output a scalar value prediction. Figure 11 shows the learning curve of the RNN throughout the
multi-task TD training. The MSVE decreases for the first 1,000 MRPs and stays low for the remainder
of the training. Thus, some learning occurs during the training of RNN. However, it is unclear whether
it is implementing in-context TD. To clarify, we use the last checkpoint of the model and repeat the
same experiment used to generate Figure 1. We gradually increase the context length and verify if the
MSVE drops as observed in the transformers. We run the experiment on the Loop environment used
to generate Figure 1 and the Boyan’s chain environment used for training for 500 instances each to
produce Figure 12. The MSVE increases with context length in both environments for the trained
RNN, exhibiting a trend opposite to the transformer. Furthermore, the standard errors are much
higher than in Figure 1 despite having more runs. Therefore, the prediction does not improve with
more context data for the RNN, indicating the absence of any in-context policy evaluation algorithms.
Consequently, the answer to Question 2 is again negative.

30 .

MSVE 20 i

10 y

0 C 1 1 1 1]
0 1000 2000 3000 4000
Number of MRPs

Figure 11: RNN MSVE against the number of MRPs in multi-task TD training.

30 24F]
2.8 2.3F 1
26| 9.9
MSVE | | MSVE
22} 2.0
20} 19
0 20 40 60 80 100 0 20 40 60 80 100

Context Length (t) Context Length (t)

(a) Loop (b) Boyan’s chain
Figure 12: MSVE vs. context length with the trained RNN. The shaded regions are the standard
errors.

H NUMERICAL VERIFICATION OF PROOFS

We provide numerical verification for our proofs by construction (Theorem 1, Corollary 2, Corollary 3,
and Theorem 3) as a sanity check. In particular, we plot log |—<¢n, wy) — yl”H| against the number

of layers . For example, for Theorem 1, we first randomly generate Zy and {C;}. Then yl("+1) is

computed by unrolling the transformer layer by layer following (3) while w; is computed iteration by
iteration following (8). We use double-precision floats and run for 30 seeds, each with a new prompt.

52

Under review as a conference paper at ICLR 2025

As shown in Figure 13, even after 40 layers/iterations, the difference is still in the order of 10710, 1t
is not strictly 0 because of numerical errors. It sometimes increases because of the accumulation of
numerical errors.

— TD(0)

| === Residual Gradient
TD(X)

"""" Avg Reward TD

, ni)|
10g | — (G, wr) — "

0 5 10 15 20 25 30 35 m

Layers

Figure 13: Differences between transformer output and batch TD output. Curves are averaged over
30 random seeds with the (invisible) shaded region showing the standard errors.

53

	Introduction
	Related Works
	Background
	Transformers Can Implement In-Context TD(0)
	Transformers Do Implement In-Context TD(0)
	Transformers Can Implement More RL Algorithms
	Conclusion
	Proofs
	Proof of Theorem 1
	Proof of Corollary 1
	Proof of Theorem 2
	Proof of Corollary 2
	Proof of Corollary 3
	Proof of Theorem 3

	Experimental Details of Figure 1
	Boyan's Chain Evaluation Task Generation
	Additional Experiments with Linear Transformers
	Experiment Setup
	Trained Transformer Element-wise Convergence Metrics
	Trained Transformer and Batch TD Comparison Metrics

	Autoregressive Linear Transformers with L = 1, 2, 3, 4 Layers
	Sequential Transformers with L = 2, 3, 4 Layers

	Nonlinear Attention
	Experiments with CartPole Environment
	CartPole Evaluation Task Generation
	Experimental Results of Pre-training with CartPole

	Investigation of In-Context TD with RNN
	Theoretical Analysis of Linear RNN
	Multi-task TD with Deep RNN

	Numerical Verification of Proofs

