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Abstract

Mechanistic interpretability (MI) aims to explain how neural networks work by un-1

covering their underlying causal mechanisms. As the field grows in influence, it is2

increasingly important to examine not just models themselves, but the assumptions,3

concepts and explanatory strategies implicit in MI research. We argue that mecha-4

nistic interpretability needs philosophy: not as an afterthought, but as an ongoing5

partner in clarifying its concepts, refining its methods, and assessing the epistemic6

and ethical stakes of interpreting AI systems. Taking three open problems from the7

MI literature as examples, this position paper illustrates the value philosophy can8

add to MI research, and outlines a path toward deeper interdisciplinary dialogue.9

1 Introduction10

How and why do neural networks produce the outputs they do? Since the resurgence of deep learning11

approximately a decade ago, this question has driven various efforts to interpret and explain AI12

systems. Within this landscape, mechanistic interpretability (MI) has emerged as a distinctive and13

increasingly influential strand of research [Saphra and Wiegreffe, 2024]. MI, as we define it, is14

characterised by two key commitments. First, it seeks to explain models’ behaviour by uncovering15

their underlying causal mechanisms, rather than relying only on input–output correlations [Bereska16

and Gavves, 2024]. Second, while safety and trustworthiness are motivating concerns for MI research,17

the field primarily aims for scientific understanding of models, producing useful and intelligible18

insights for researchers and developers, rather than directly targeting end-users or the general public.19

As AI systems become more powerful and the demand for interpretability grows from regulators,20

ethicists, and researchers alike, MI will likely play an increasingly central role [Bereska and Gavves,21

2024, Lad, 2024].22

Yet, despite its rapid rise, MI is often described as a "pre-paradigmatic" field [Bereska and Gavves,23

2024]: several foundational open problems remain unsolved [Sharkey et al., 2025] and MI has faced24

significant critiques regarding its tractability, the soundness of its methods, and the significance of25

its results [Adolfi et al., 2024, Méloux et al., 2025, Morioka and Hyvärinen, 2024, Makelov et al.,26

2024]. Making progress on these problems will require input from various perspectives and skill27

sets. In this paper, we focus on one potential cross-disciplinary contribution that has not received28

sufficient attention: we argue that mechanistic interpretability needs philosophy. While some29

MI researchers have begun to acknowledge the existence of "philosophical" questions in their field30

[Sharkey et al., 2025, Fierro et al., 2024], we argue that the potential role of philosophy in MI31

remains underappreciated. MI can gain immensely from extended dialogue with philosophers and32

philosophical frameworks, making greater and more efficient progress towards its scientific and33

societal goals. Our position parallels arguments that have been made for the crucial role of philosophy34

in the fields of physics [Rovelli, 2018], cognitive science [Thagard, 2009], economics [Nussbaum,35

2016], AI research more broadly [Buckner, 2024], and science in general [Laplane et al., 2019].36

To make our case more concrete, we begin by situating MI in the broader fields of explainable AI37

and interpretability. We then examine three broad research questions in MI to show how each of38
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Figure 1: How philosophy can help: a case based on three open problems in MI.

them could benefit from grounding in pre-existing philosophical frameworks. The examples we39

discuss serve to illustrate how philosophy can add value to MI research by clarifying conceptual40

confusion, scrutinising assumptions, interpreting results, providing ethical and normative accounts,41

and suggesting new lines of inquiry.42

What Do We Mean When We Talk About Mechanistic Interpretability? Artificial neural43

networks are notoriously opaque. AI Interpretability [Ghosh and Kandasamy, 2020, Sathyan et al.,44

2022, Shin et al., 2022, Calderon and Reichart, 2024] and Explainable Artificial Intelligence (XAI)45

[Goebel et al., 2018, Miller, 2019, Xu et al., 2019, Dwivedi et al., 2023] encompass various approaches46

to address the issue of opacity.1 While there are many XAI taxonomies [Miller, 2019, Guidotti et al.,47

2018, Carvalho et al., 2019, Molnar, 2020, Kotonya and Toni, 2020, Søgaard, 2021], one central48

distinction is between attempts to create models that are interpretable by design and attempts to49

interpret "black box" models [Rudin, 2019, Lakkaraju et al., 2019]. Within this latter branch, we can50

distinguish between the goal of generating explanations for various non-specialist audiences and51

that of developing explanations for theorists. The latter goal requires emulating something like the52

scientific method, i.e., an iterative, coordinated research strategy in which a range of experimental53

methods are deployed, data are integrated, hypotheses are tested, and theories are refined [Kästner and54

Crook, 2024]. While there are various kinds of explanation that theorists might aim for, mechanistic55

interpretability is characterised by the search for explanations of the mechanisms by which a model56

works [Sharkey et al., 2025, Bereska and Gavves, 2024]. We discuss mechanistic explanations in57

detail in Section 2.1.258

2 Open Problems in MI – And How Philosophy Can Help59

We focus on three open problems in MI, drawing on Sharkey et al. [2025], and show how philosophy60

can help investigate each (see Figure 1).61

2.1 How Should We Decompose Networks Into More Interpretable Constituent Parts?62

A core open problem in MI is how best to decompose complex neural networks into more interpretable63

constituent parts [Mueller et al., 2024, Sharkey et al., 2025]. Obvious structural components of neural64

networks, like neurons, parameters, attention heads, and convolutional filters, often fail to map cleanly65

onto functionally meaningful roles. As a result, interpretability researchers increasingly seek more66

abstract, distributed, or coarse-grained decompositions that better capture a model’s internal logic67

and behaviour [Huben et al., 2023, Todd et al., 2024, Merullo et al., 2024]. While this is often framed68

as a purely empirical task, empirical work on its own may be guided by unexamined assumptions69

1We will use these terms interchangeably, though we note that others use "interpretability" and "explainability"
to delineate two different research agendas [Miller, 2019].

2While "mechanistic interpretability" is sometimes used narrowly to refer to a specific, culturally identified
research community [Saphra and Wiegreffe, 2024] (e.g. to those associated with Distill.pub’s Circuits thread
[Olah et al., 2020] and Anthropic’s Transformer Circuits thread [Elhage et al., 2022, Olsson et al., 2022]), we
adopt a broader usage that includes (e.g.) prior and parallel work in the NLP and computer vision communities.

2



about what counts as a good explanation or an appropriate level of analysis. Here, philosophy of70

science and, in particular, the literature on mechanistic explanation can offer critical conceptual tools.71

Explanations come in many flavours. Some are contrastive [Lipton, 1990], others invoke natural72

laws (like Newton’s). Some explanations refer to functional roles (e.g., the heart’s role in pumping73

blood). Mechanistic interpretability ultimately seeks what philosophers call mechanistic explanations74

– accounts of how phenomena arise from organized causal interactions among parts [Machamer et al.,75

2000, Bechtel and Abrahamsen, 2005, Craver, 2007, Craver et al., 2024]. Common across fields76

like biology, physics, cognitive science, and economics, these explanations identify a mechanism:77

a set of entities and activities, organised to produce or maintain a phenomenon [Glennan et al.,78

2022].3 Mechanistic explanations do not just describe regularities but show how they emerge79

from causal structure; they provide us with transition theories, so to speak.4 A key virtue of such80

explanations is that they support intervention: by revealing the components and activities responsible81

for a phenomenon, they clarify how it might be changed or controlled [Woodward, 2005, Craver82

and Darden, 2013]. This philosophical literature can offer MI researchers a robust answer to an83

increasingly common question [Saphra and Wiegreffe, 2024, Sharkey et al., 2025]: What makes84

mechanistic interpretability "mechanistic"? The answer, we suggest (along with others [Kästner85

and Crook, 2024]), is that MI aspires to explain neural network models in terms of their underlying86

mechanisms, in this technical sense.587

Emphasising the Interrelation of Mechanism and Behaviour Mechanistic interpretability is88

often presented as targeting the "inner" workings of neural networks, in contrast to approaches that89

focus on input-output behaviour [Räuker et al., 2023, Vilas et al., 2024, Grzankowski, 2024]. Indeed,90

a common motivation for MI is the idea that, for any given task, there are many possible algorithms91

or solutions [see, e.g. Zhong et al., 2023], and thus a model’s ability to achieve some input–output92

function does not tell us how the function is carried out. It is thus tempting to dismiss "behavioural"93

approaches to studying AI systems as being distinct from (and perhaps inferior to) "mechanistic"94

approaches. However, the philosophical literature on mechanistic explanation reveals this contrast95

between mechanistic and behavioural approaches to be misleading.96

Firstly, behaviour is one important source of data that can inform and constrain hypotheses about97

algorithms. In neuroscience, several theorists have stressed the indispensability of behavioural data98

in formulating plausible models, or suggesting "sketches" for mechanisms [Krakauer et al., 2017,99

Piccinini and Craver, 2011]. Philosophers Budding and Zednik [2024] point out that the same100

approach can fruitfully extend to mechanistic interpretability. Studying behaviour should not be101

construed narrowly as benchmarking a model’s success at a task. A more fruitful approach, relevant to102

the explanatory goals of MI, involves carefully designed studies that systematically map unexpected103

behaviours in edge cases, identify patterns of breakdown, and test for other behavioural "signatures"104

of specific algorithms [Taylor et al., 2022].6105

Secondly, even for methods that involve observing and probing model internals, behaviour remains106

highly relevant. In philosophy of cognitive science and philosophy of neuroscience, the notion107

that internal structure can be understood independently of behaviour has long been challenged:108

theorists have emphasised the need to look "down, around and up" to uncover causal mechanisms109

[Bechtel, 2009]; that is, understanding a part’s role requires determining its contribution within110

larger behavioural contexts. Internal structure acquires explanatory force only when its functional111

significance is validated through observed effects on system-level outputs. This is especially true112

when the mechanisms in question are representational (see Section 2.2), as representations involve113

the exploitation of correspondences between inner components and environmental conditions. This114

suggests that mechanistic interpretability is most fruitful when it (1) identifies internal components115

and (2) demonstrates that these components play well-defined causal roles in producing system-level116

behaviour. In fact, much work in MI already integrates behavioural data in meaningful ways, using117

3Connections between mechanistic interpretability and philosophical theories of mechanistic explanation are
explored by Kästner and Crook [2024] and Rabiza [forthcoming].

4Thus, philosophers sometimes contrast mechanistic models with merely descriptive (or "phenomenal")
models, which don’t aim to capture the causal structure of a system [Kaplan and Craver, 2011].

5Older work in XAI has had similar aspirations [Balkir et al., 2022]; we happily extend the label of MI to
include this work, too.

6For examples, see some recent work on Theory of Mind [Ullman, 2023, Strachan et al., 2024] and reasoning
[Nezhurina et al., 2024, Lewis and Mitchell, 2024] capacities in LLMs.
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interventions and observations of downstream behaviour to validate hypotheses about components and118

circuits [Conmy et al., 2023, Bereska and Gavves, 2024]. Here we highlight, based on philosophical119

insights about mechanistic explanation, that MI research stands to benefit from deepening the120

integration of behavioural evidence with investigation of model internals.7121

Challenging the Assumption of the One True Decomposition Discussions of decomposition in122

MI are often framed as the search for the right level of analysis, hinting at a privileged cut through123

a network that reveals its "true" structure. Drawing on a Platonic metaphor, Sharkey et al. [2025]124

describe this aspiration as "carving neural networks at their joints" (p. 13). But this metaphor,125

while evocative, imports a problematic assumption: that complex systems have a unique and natural126

decomposition, independent of explanatory context.127

Philosophers of science have long emphasized that mechanisms span multiple levels of organization128

[Craver, 2015], and mechanisms in biology, neuroscience, and cognitive science rarely submit to129

a single, correct level of analysis. In the life sciences, scientists might study whole ecosystems,130

individual organisms, systems of organs, mechanisms within cells, or molecular interactions. One131

view of how these perspectives fit together is in terms of mechanisms nested within mechanisms –132

what we treat as a simple activity of a component at one level (e.g. a neuron firing) can be subjected133

to a further "how does it work?" question, which can often be answered in terms of a lower-level134

mechanism (e.g. opening and closing ion channels). Importantly, no single level of description has a135

unique claim to being mechanistic – there are simply different levels of mechanisms. And taking a136

mechanistic approach need not involve treating lower-level mechanisms as more important (or more137

"real") than higher-level ones.8138

In practice, which level of mechanism is most important depends largely on the pragmatic goals of139

researchers. Often, a model inference is the result of a complex web of small routines that have proven140

adaptive across tasks. While there is no privileged level at which mechanistic truth resides, different141

levels of mechanism offer partial but contextually salient insights. This insight has direct implications142

for MI: decompositions are not value-neutral descriptions of structure but explanatory tools shaped143

by the goals of the inquiry. Different decompositions may be more or less useful, whether we are144

trying to control outputs, understand generalisation, or detect deception. Philosophically, this reflects145

the view that scientific understanding often requires integrating multiple, non-reducible models,146

tailored to different explanatory aims: explanatory pluralism [Mitchell, 2023]. Recent developments147

in MI echo this pluralist turn. The causal abstraction framework [Geiger et al., 2024, 2021, 2025]148

formalises the idea that high-level and low-level descriptions of neural networks can serve different149

explanatory goals.9 Taken together, these philosophical insights can help to refocus and reframe150

efforts to decompose neural networks into components. Decompositions should be evaluated not by151

how well they mirror the "real" structure of the network, but by how effectively they support causal152

understanding, prediction, and intervention across different research contexts.10153

2.2 What “Features” Do AI Systems Discover and Leverage?154

While there are many kinds of natural and human-engineered mechanisms, a core, if not universal,155

working assumption in MI is that deep neural networks are mechanisms of a certain kind — ones156

whose fundamental components are features. Unpacking, clarifying, and interrogating this assumption157

are further ways philosophers can make a practical contribution to MI.158

7It should be noted that mechanistic explanation, particularly as an approach to neuroscience and psychology,
has its critics, with some advocating causal-interventionist but non-mechanistic explanations [Kaplan, 2017,
Woodward, 2013]. If brains and DNNs pose similar problems, these critiques may carry over to MI. While
entering this debate is beyond the scope of this paper, we note that much of it hangs on how broadly or narrowly
one defines "mechanisms" and "mechanistic explanation".

8Thus, MI practitioners are on firm footing in dismissing the charge that their field is "reductionist"
[Hendrycks and Hiscott, 2025].

9It is perhaps no coincidence that this work is partly influenced by formal philosophical work on causation
and explanation.

10Another valuable resource from the philosophy of science can be found in attempts to abstract, systematise,
and codify mechanism-discovery strategies often implicit in scientific practices [Darden, 2006, Craver and
Darden, 2013, Darden, 2017]. These accounts can help MI researchers to better understand their own toolkits
and perhaps inspire new methods through analogies with other fields.
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At a first pass, features involve a correspondence between an aspect of model internals and an external159

condition that the model leverages in carrying out some task. Early work in image classification160

models suggested that individual units (neurons) within a network may encode visual attributes,161

such as red, or vertical edge Zeiler and Fergus [2014]. But as models became larger and network162

architectures more complex, this straightforward mapping between neuron and feature has been163

questioned. Evidence suggests that neurons can be activated in instances of different and unrelated164

input properties [Olah et al., 2020], prompting MI researchers to hypothesise that features are encoded165

"in superposition" – that is, features are represented as almost-orthogonal directions in activation166

space, allowing for more features to be represented than there are neurons in a layer Elhage et al.167

[2022].168

To explain neural networks in terms of features is, in philosophical jargon, to adopt a representational169

lens. Representations, in the philosophical sense, are system-internal components whose function170

is to encode information (or "carry content") about things external to the system, and thus to drive171

appropriate behaviour. Feature-based explanations are representational explanations, because they172

are attempts to explain system behaviour in terms of internal representations, in this sense.11 The173

nature of representations – especially in the context of human and animal cognition – has long been174

discussed in philosophy, and this remains an active area of research. (For helpful introductions and175

book-length treatments, see [Ryder, 2009a,b, Shea, 2018, Schulte, 2023]). Here we highlight three176

ways the philosophy of representation can contribute to MI research into features: disentangling177

conceptual confusion, refining experimental approaches, and suggesting new lines of investigation.178

Distinguishing Vehicles From Content The term "feature" is often used in inconsistent ways,179

sometimes referring to an internal component of a model – such as a neuron, or a non-basis direction180

in activation space – and sometimes referring to a property of an input – such as a curve, the Golden181

Gate Bridge or positive sentiment. Williams [2024] argues that this confusion rests on an equivocation182

between two aspects of a representation, which it has become standard practice to distinguish in the183

philosophical literature, namely the vehicle and the content of a representation. A representational184

vehicle is the internal symbol, signal, or aspect of activity whose function is to encode content185

(to detect, represent, or refer to something external). Representational vehicles enter into causal-186

computational relations with other representational vehicles and ultimately generate the behavioural187

output of a system. By contrast, the content of a representation is the task-relevant external condition188

(object, property, category, relation, proposition) that is represented by a representational vehicle, and189

which makes sense of the cascade of causal interactions between vehicles.12190

One benefit of clearly differentiating the vehicle sense of "feature" from the content sense of "feature"191

(beyond avoiding unnecessary confusion and cross-talk) is that it allows researchers to clearly192

articulate distinct research questions. For example, one line of inquiry is what contents do models193

learn to represent? For instance, do language models represent causal information about real-world194

entities, or do they simply represent syntactic and distributional properties of words? Does a given195

model represent the states and properties of users? If so, which properties? Does the model represent196

"self"-related contents? And so on. A quite different line of inquiry is what are the vehicles of197

content in ML models? For instance, when do models develop representational vehicles that align198

with non-basis directions vs. with individual neurons? How do simple representational vehicles199

(e.g., those representing objects and properties) combine into complex representational vehicles200

(e.g., those representing facts)? And what are the specific vehicles for specific contents – e.g., the201

vehicle responsible for encoding the language of an input. Further, given that many of these questions202

have parallels in the study of biological cognition, the content–vehicle distinction can point to prior203

research which may inspire hypotheses in MI.204

Refining Experimental Approaches A key concern in philosophical discussions of representation205

has been the search for the right theory of content, that is, a story about how particular contents get206

assigned to individual vehicles. This literature can be a rich resource for MI practitioners keen to207

11In the ML literature, "representation" is sometimes used in a looser sense to refer to any intermediate
activation pattern (irrespective of whether it has a clearly defined content-encoding role). Presumably, though,
the term representation is used precisely because they are assumed to play a representational function in the
narrower sense (i.e., exploitable encoding of information). We will adopt this narrower usage in what follows.

12Philosophers have contributed to discussions over how best to individuate representational vehicles in neural
networks for some time [Clark, 1993, Shea, 2007, Azhar, 2016], in many ways prefiguring recent debates about
the linear representation hypothesis in mechanistic interpretability.
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identify explanatorily relevant representational components rather than mere correlations between208

internal activity and input properties. For one example of this bridging work in practice, Harding209

[2023] draws on philosophical theories of content and operationalises key criteria in a way that210

can directly guide MI research. Her paper makes concrete recommendations for selecting probes,211

choosing appropriate causal interventions, and inferring representational contents from these methods.212

Philosophical theories can also suggest alternative bases on which to assign representational contents,213

which depart from the information-based approaches discussed by Harding. For example, an alterna-214

tive family of theories appeals to structural correspondences or morphisms between internal activity215

and external domains [Cummins, 1996, O’Brien and Opie, 2004, Shea, 2014], and philosophers have216

explored the application of such theories of content to LLMs [Søgaard, 2023] and earlier neural217

networks [O’Brien and Opie, 2006, Churchland, 1998].218

Suggesting New Lines of Investigation Finally, philosophical research on representation can219

suggest new avenues for MI research. As Chalmers [2025] points out, generic talk of "features"220

tends to obscure the fact that representations in neural networks could in principle represent many221

different kinds of content: They may represent objects, properties, or relations (concepts, loosely222

speaking). But they could also represent entire facts or propositions (e.g., that Paris is the capital of223

France). This suggests an open question for MI research — (how) do models construct propositional224

representations out of sub-propositional representations? Philosophers also distinguish between a225

proposition and the attitude of a system towards it – believing the proposition the house is on fire is226

quite different from intending to bring that proposition about. Whether and how such distinctions are227

realised in the mechanisms of advanced AI systems are important, but under-investigated questions228

[Chalmers, 2025].229

2.3 How Can We Detect Deceptive Behaviour From Model Internals?230

One major hope for MI is that it can help to detect unsafe or misaligned model processing that is231

not evident from outward behaviour [Amodei, 2025]. Here, too, philosophy can make important232

contributions to MI research. While there are many forms of unsafe or misaligned model processing,233

we will illustrate our point by focusing on one of the most discussed clusters of issues – deception234

[Hubinger et al., 2019, Park et al., 2024] and lying [Azaria and Mitchell, 2023, Pacchiardi et al.,235

2023]. MI researchers hope to detect, anticipate, and mitigate deceptive behaviour by AI systems.236

As Sharkey et al. [2025] argue, "By monitoring internal representations, [MI methods] could aid in237

detecting potential sabotage or deceptive behaviour before deployment" (p. 26). However, the very238

concept of AI deception raises significant philosophical puzzles.239

Clarifying Deception, Lying, and Related Concepts While the concepts of deception and lying240

are easy enough to grasp intuitively, characterising them precisely turns out to be a challenge. But241

precise and actionable definitions are needed for MI researchers to target the right phenomena. There242

is a rich literature in ethics and philosophy of language that attempts to clarify the notions of lying243

and deception, and distinguish them from neighbouring concepts. A standard view of deception in244

philosophy is that it is the act of intentionally causing another agent to form a false belief [Mahon,245

2016]. There are two key elements to this definition: (i) the inducement of false belief in another,246

and (ii) the presence of an intention or goal on the part of the deceiver [Carson, 2010, Martin, 2009].247

Lying is a related, but distinct concept. Lying is typically taken to involve stating a false claim to248

someone, where the speaker does not believe the claim to be true [Mahon, 2016]. Deception doesn’t249

always involve lying – one can deceive with one’s actions (e.g., "dummies" and "feints" in sports) or250

by omitting certain information in conversation without uttering a falsehood. Philosophy provides251

important insights into such questions by examining how lying involves not just deception but a252

specific assertoric commitment to a false proposition, distinguishing it from other speech acts like253

jokes or questions [Marsili, 2021].254

Another important contribution of the philosophical literature is to highlight various ways in which255

one can make false statements or induce false beliefs without lying or deceiving. For instance, in256

the cases of jokes, metaphorical statements, fiction-writing, and role play, or mere error, one can257

utter a falsehood that is not a lie, and in the case of accidentally misleading, one can induce a false258

belief without deceiving. What these definitions reveal is that lying and deception, as traditionally259

understood, require significant cognitive complexity. In particular:260
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1. Deception requires intentions on the part of the deceiver. (On "deceptionist" accounts of261

lying, this requirement carries over to lying.)262

2. Lying requires an ability to make statements.263

3. Lying requires beliefs on the part of the liar.264

These criteria raise an immediate difficulty when applied to AI systems, as it is highly controversial265

whether even frontier models possess beliefs, goals, and intentions — or even the ability to make266

statements or assertions [Williams and Bayne, 2024] — in the relevant sense.267

One tempting move is to weaken the definition of lying or deception, to allow that AI systems could268

lie or deceive without possessing the psychological states or communicative capacities demanded by269

traditional accounts. For example, if a model persistently outputs misleading answers in contexts270

where users predictably misinterpret them, we might label that as deception, regardless of the model’s271

internal "motivations" [Tarsney, 2025]. However, the idea that insights from MI can help to develop272

methods for detecting deceptive behaviour based on model internals is premised on a richer notion of273

lying and deception, one on which the internal states of a system, and not just its behaviour or its274

effect on users, are relevant. Another approach is to attempt to identify states like beliefs, intentions,275

and speech acts – or close functional analogues of them – in AI systems. In the next section, we276

discuss such attempts in MI research and show how philosophy can play a guiding role in this research277

program.278

Guiding the Search for AI “Beliefs” A key strategy for lie-detection via MI has been to attempt279

to identify models’ "beliefs" from internal states and to detect mismatches between beliefs and280

outputs. Initial studies used probing classifiers to identify directions in models’ internal activations281

that correspond to the truth value of inputs. For instance, Azaria and Mitchell [2023] and Burns282

et al. [2022], using different probing methods, presented evidence that the truth value of inputs could283

indeed be decoded from model activations. Azaria and Mitchell frame this project as "extract[ing] the284

LLM’s internal belief" (2023, p. 2) and gave their paper the bold title "The Internal State of an LLM285

Knows When It’s Lying". Should we accept these claims at face value? Belief is a central concept in286

philosophy, particularly in the sub-fields of philosophy of mind, epistemology, and philosophy of287

action, so this is a natural place where philosophical engagement can add value to MI research.288

The philosophers Ben Levinstein and Daniel Herrmann [Levinstein and Herrmann, 2024, Herrmann289

and Levinstein, 2025] have raised questions about the face-value interpretation of the above findings.290

Some of their critiques point to more straightforward methodological issues: for instance, they show291

that the probes of Azaria and Mitchell [2023] "often learn features that correlate with truth in the292

training set, but do not necessarily generalise well to broader contexts" (p. 12). However, they also293

offer arguments concerning the concept of belief and the roles that beliefs are standardly taken to294

play in philosophical and psychological theories. For instance, they stress the requirement that for an295

information-carrying state to qualify as a belief, it must be used by the system – i.e., causally drive296

behaviour appropriate to the content of that belief (see also Harding 2023). Partly in response to297

these concerns, a subsequent study by Marks and Tegmark [2023] curated new datasets to address298

generalisation issues. They also investigated the causal role of the candidate beliefs identified by299

their probes, establishing through interventions that these components causally mediate outputs in300

appropriate ways: modulating activations along the probe-identified directions caused the models to301

treat false statements as true, and vice versa.302

In a follow-up paper Herrmann and Levinstein [2025] expand on their previous conceptual work by303

proposing four criteria for LLM representations to count as beliefs, grounded in existing philosophical304

literature on belief. They also offer some meta-reflections on the nature and utility of concepts like305

"belief", suggesting that rather than being a binary issue, "[t]he satisfaction of these requirements306

come in degrees; in general, the more a representation satisfies these requirements, the more helpful it307

is to think of the representation as belief-like" (p. 7). This dialogue illustrates yet another domain in308

which philosophy can contribute to MI research. By clarifying concepts like belief, philosophers can309

help refine the methods by which MI researchers identify belief-like representations in AI systems,310

and thus ultimately improve "lie-detection" methods.311

Drawing Ethical and Normative Boundaries MI techniques can identify circuits that are deceptive312

or suppress information during evaluations. However, not all cases of deception are ethically313
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equivalent. As a result, developers face complex questions about which to modify and which to314

preserve. These decisions require normative frameworks that current MI research lacks.315

Consider three hypothetical "deceptive" circuits that may be discovered using MI. The first detects316

regulatory oversight procedures and triggers the concealment of malicious capabilities (e.g., capacity317

for producing malware). The second suppresses the home addresses of public figures. The third318

withholds diagnostic information for certain medical prompts (e.g., "sharp chest pain and difficulty319

breathing") and redirects users to seek out emergency medical care.320

Standard MI approaches might flag all three mechanisms as instances of the same "deceptive"321

mechanism since they all conceal information contained in the model. Yet, each circuit has distinct322

ethical implications requiring different interventions. In particular, the first circuit selectively conceals323

capabilities to circumvent regulatory constraints and should reasonably be targeted for removal. The324

second circuit protects information that users have no legitimate right to access, and should likely be325

preserved and potentially strengthened. Finally, the third circuit redirects users to urgent medical care326

for their own safety and should therefore be preserved and constantly updated to ensure its medical327

urgency detection is accurate while preserving the core redirection function.328

Integrating ethics into MI methodology can provide ethical normative frameworks that assist devel-329

opers in distinguishing ethically problematic cases of information suppression and deception that330

demand intervention from those that are ethically benign [see Danaher, 2022, Sætra, 2021, Kneer,331

2021]. For example, philosophical work on manipulation, nudging, and epistemic agency can help332

researchers reason about which kinds of model behaviour warrant intervention or risk mitigation333

and which do not [Barnhill, 2022, Pepp et al., 2022]. Careful ethical analysis is crucial to avoid334

downstream harms of broad-brush approaches to detecting and dealing with deception.335

3 Objections336

The proposal that philosophy has a central role to play in mechanistic interpretability (MI) may be met337

with skepticism. We address four common objections below and argue why they do not undermine338

the value of sustained philosophical engagement in the field.339

“Armchair Theorising Won’t Get Us Anywhere.” A common worry is that philosophical con-340

tributions are overly abstract or speculative. These "armchair" exercises are disconnected from341

empirical reality and risk missing the complexities of real-world interpretability problems. We think342

that this is a very valid worry for some philosophical traditions that emphasise a priori reasoning and343

"in-principle" arguments. However, much of contemporary philosophy, and especially MI-relevant344

fields such as philosophy of science, are deeply engaged with empirical research. Many of the philo-345

sophical works cited in this paper are informed by close engagement with bleeding-edge empirical346

findings. Some philosophers even get their hands dirty attempting replications of studies [Levinstein347

and Herrmann, 2024] and operationalising concepts for empirical investigation [Harding, 2023].348

Armchair philosophy of mechanisitic interpretability may be a non-starter, but philosophy need not349

be practised from the armchair.350

“MI Researchers Can Do the Philosophising Themselves.” A second prominent claim is that351

the philosophical dimensions of MI can just as well be addressed internally by MI researchers352

without needing philosophers. We surely acknowledge that scientists can contribute to answering353

philosophical questions about their field, especially those related to the foundations, methods, and354

implications of scientific practice. Early computer scientists like Alan Turing, with his many writings355

about the potential of automated machines, are a great example of this (see Turing [1950]). But356

while many MI researchers do engage with philosophical questions (as exemplified by Sharkey357

et al. [2025]), doing so effectively requires philosophical training and knowledge of philosophical358

literature. As illustrated in this paper, philosophy has many tools, distinctions, and debates that359

are unfamiliar or underutilised in ML. And crucially, because philosophers are not burdened with360

technical implementation, they are often better placed to take a step back — to see the forest for361

the trees, to question framing assumptions, and to ask big-picture questions [Bickle et al., 2024].362

Collaboration between MI researchers and philosophers makes the most of each party’s expertise,363

and can mitigate the ever-present risk of reinventing the wheel.364
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“Philosophers Aren’t Well Informed About MI.” We do not want to dispute that some philoso-365

phers lack technical fluency in machine learning. However, many philosophers have substantial366

knowledge of scientific concepts, methods, and history. There is a growing cohort of philosophers367

with deep interdisciplinary training, including backgrounds in computer science, neuroscience, or368

cognitive modelling. Many philosophy of science programs require coursework in both philoso-369

phy and specific scientific disciplines, ensuring that students gain technical foundations alongside370

philosophical training. And communities of empirically-oriented, technically literate philosophers371

exist within most branches of philosophy, including philosophy of mind, epistemology, ethics and372

philosophy of language. Moreover, as noted above, the key to productive collaboration is not perfect373

symmetry of expertise, but mutual recognition of complementary strengths. Just as technical advisors374

often contribute to ground philosophical projects in technical standards and expertise, philosophical375

advisors can illuminate and guide technical research by grounding it in philosophical frameworks.376

“MI Researchers Already Engage With Philosophy.” Finally, it might be claimed that MI already377

draws on philosophical ideas, citing occasional references to philosophers like Judea Pearl, Daniel378

Dennett and Imre Lakatos. While such engagement is a great addition to mechanistic interpretability379

work, it is often selective or incomplete. Systematic, ongoing collaboration with philosophers can380

deepen this engagement, ensuring that conceptual borrowings are used precisely and productively. It381

also ensures that the work is aligned with current and ongoing philosophical discussion, to which382

philosophers have wider and more direct access. Just as MI benefits from close alignment with383

neuroscience or systems biology, deeper philosophical involvement can sharpen its foundational384

debates, grounding in current debates, and normative orientation.385

4 Conclusion386

Mechanistic interpretability is a rapidly evolving field, driven by urgent practical needs and rich with387

conceptual complexity. As we have argued throughout this paper, philosophy is deeply relevant to388

this field. MI raises foundational questions about explanation, representation, knowledge, agency,389

and values. Philosophers can help provide conceptual clarity, identifying and scrutinizing assump-390

tions, proposing novel research questions, interpreting empirical results, and illuminating ethical391

complexities. At the same time, this is neither a call for disciplinary silos to remain intact, nor a392

claim that philosophy has ready-made answers. Instead, it is an invitation to deeper interdisciplinary393

collaboration that is technically informed and philosophically grounded. As AI systems become more394

powerful and more deeply embedded in society, the stakes of understanding them, not just how they395

behave, but how they work and what they mean, have never been higher. Enriched by philosophy,396

mechanistic interpretability has a clearer shot of success.397
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