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Abstract

Retrieval-Augmented Generation (RAG) has001
been widely applied to enhance large language002
models (LLMs)’ integration of external knowl-003
edge. Attributing the RAG-generated content,004
which provides citations to support responses,005
has attracted a lot of research interest. However,006
most existing studies focus on coarse-level at-007
tribution by linking claims to passages or doc-008
uments, which still require certain time costs009
for verification. On the other hand, existing010
fine-grained attribution methods rely on fine-011
tuned LLMs to generate citations along with012
the content, which is expensive and hard to con-013
trol. In this work, we introduce a simple yet ef-014
fective Linguistic Aligned Matching (LAM) ap-015
proach for sentence-level attribution, which fol-016
lows a two-step process: refinement and match-017
ing. The refinement step aligns the expression018
of claims with expressions of retrieved docu-019
ments using LLMs. The matching step then020
combines the claims and refined expressions to021
identify supporting sentences via vector-based022
matching. Unlike traditional fine-grained attri-023
bution methods, LAM is training-free and can024
be seamlessly integrated into existing RAG sys-025
tems. Experiments across diverse domains and026
tasks demonstrate significant improvements,027
achieving an average 7.87% ROUGE-F1 gain028
on both short- and long-context datasets 1.029

1 Introduction030

Retrieval-Augmented Generation has achieved re-031

markable success across knowledge-intensive NLP032

tasks like question answering (Gao et al., 2023c)033

and summarization (Edge et al., 2024). However,034

RAG systems are still suffering from generating035

hallucinated content due to imperfect retrieval or036

overconfident generation (Tonmoy et al., 2024).037

To address this, recent efforts have focused on038

1Our code and data can be found at
https://anonymous.4open.science/r/LAM-Linguistic-
Aligned-Matching-1C4C/

augmenting RAG answers with attribution or ci- 039

tations, enabling users to trace claims back to 040

source documents (Li et al., 2023; Nakano et al., 041

2021; Gao et al., 2023a). Unfortunately, exist- 042

ing approaches predominantly rely on paragraph- 043

level (Nakano et al., 2021; Gao et al., 2023b) or 044

document-level (Thoppilan et al., 2022) citations, 045

which requires users to expend considerable ad- 046

ditional time and effort in identifying supporting 047

sentences, undermining efficiency and trustworthi- 048

ness. 049

Recent advances in fine-grained attribution at- 050

tempt to address this through fine-tuned LLMs to 051

generate citations along with the content (Sun et al., 052

2023; Zuccon et al., 2023; Jain et al., 2023). Ap- 053

proaches such as LongCite (Zhang et al., 2024) 054

and ReClaim (Xia et al., 2024) require exten- 055

sive synthetic annotation data for fine-tuning, in- 056

curring substantial annotation and computational 057

costs. Moreover, these approaches remain sus- 058

ceptible to producing hallucinated citations dur- 059

ing generation, which limits their applicability in 060

safety-critical scenarios demanding rigorous verifi- 061

cation. In contrast to generation-based approaches, 062

matching-based approaches attributing supporting 063

sentences to claims through Natural Language In- 064

ference (NLI) models or vector-based models (Gao 065

et al., 2023b; Huo et al., 2023; Chen et al., 2024). 066

These methods ensure verifiability and traceabil- 067

ity by directly extracting verbatim supporting sen- 068

tences from source texts. However, matching-based 069

approaches often exhibit limited capacity in captur- 070

ing global document-level coherence and contex- 071

tual dependencies, resulting in suboptimal perfor- 072

mance in complex scenarios that demand corefer- 073

ence resolution, ellipsis interpretation, or implicit 074

reasoning capabilities. 075

To address the limitations of matching ap- 076

proaches, we propose a post-hoc Linguistic 077

Aligned Matching (LAM) approache that syner- 078

gizes the global linguistic comprehension capabili- 079
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ties of LLMs with rigorous textual correspondence080

verification. The LAM follows a two-step proce-081

dure: (1) The refinement step: Leveraging LLMs082

to establish semantic alignment between original083

claims and document expressions through context-084

aware rephrasing, thereby encoding document-085

level contextual information; (2) The matching step:086

Employing vector-based models to attribute sup-087

porting sentences to contextually-aligned claims088

while preserving textual consistency. Our training-089

free approach uniquely synthesizes the contex-090

tual comprehension strengths of generation-based091

approaches with the textual fidelity inherent in092

matching-based approaches.093

To evaluate the effectiveness of our method, we094

adapted multi-domain open-source datasets (in-095

cluding FEVER (Thorne et al., 2018), WebGLM-096

QA (Liu et al., 2023) and LongBench (Bai et al.,097

2023)) to fit the task of sentence-level attribution.098

Experiments on these datasets demonstrate that099

LAM achieves an average 7.87% improvement in100

Rouge-F1 over baseline methods, show the effec-101

tiveness and generalization on various tasks and102

document lengths.103

2 Method104

This paper studies the sentence-level attribution105

problem in RAG, aiming to provide supporting106

sentences for all claims in the answers. For-107

mally, given a set of K claims {c0, c1, ..., cK}108

in the answers generated by RAG and a corpus109

of retrieved documents D, the sentence-level at-110

tribution is to identify the supporting sentences111

S = {si0, si1, ...} within D that substantiate the112

claim ci.113

In this paper, we integrate the strengths of both114

the generation method and the matching method to115

propose LAM, a training-free, reliable method that116

is capable of effectively handling complex scenar-117

ios. Specifically, LAM consists of two steps: the118

refinement step and the matching step, as shown in119

Figure 2. The refinement step utilizes generative120

models to refine the claims, aligning expressions121

and key information between the claims and the122

document, thus mitigating information incomplete-123

ness and expression discrepancies caused by coref-124

erence resolution, cross-sentence inference, and so125

on. Then,the matching step combines the claims126

and refined expressions, using vector-based mod-127

els to attribute supporting sentences to the claim,128

ensuring consistency with the original document.129

2.1 The Refinement Step 130

To achieve the refinement, we use LLM as the foun- 131

dational model and design a zero-shot prompt to 132

guide the model in generating sentences related to 133

claims within the document. We have carefully de- 134

signed a structured prompt to achieve constrained 135

generation, which ensures textual consistency with 136

the document. The staged instruction format "Mem- 137

orize...select..." induces structured reasoning sim- 138

ulating human cognitive processing. In addition, 139

"return original sentences" instruction implements 140

strict textual consistency constraints, preventing 141

paraphrasing or generative hallucination. The de- 142

tailed design of the prompt is shown in Appendix 143

C. The formal description is as follows: 144

ĉ = fLM(c,D) (1) 145

where ĉ denotes aligned claim and fLM (·) denotes 146

the model. 147

2.2 The Matching Step 148

After refinement, we use the claim and the refined 149

expressions as input to achieve precise supporting 150

sentence identification. 151

Specifically, to perform sentence-level attribu- 152

tion, we first use NLTK’s sentence tokenizer to 153

segment the given relevant document into atomic 154

sentences, forming a candidate sentence set S = 155

{s1, s2, ..., sn}. Then we encode the claims c, re- 156

fined expressions ĉ and candidate sentences si with 157

vector model, formalized as: 158

vc,vĉ,vsi = Encode(c, ĉ, si) (2) 159

Where vc,vĉ,vsi donate encoded texts. 160

As the fusion manner of the claim and refined 161

expressions may affect the matching performance, 162

we designed two strategies, i.e. concatenation and 163

feature pooling, to provide greater flexibility in 164

adapting to various models. The details are outlined 165

below: 166

• Concatenation: Directly concatenate the two 167

claims and then encode the concated claim 168

ccon to the fused vector vclaim: 169

ccon = concat (c, ĉ) (3) 170
171

vclaim = Encode (ccon) ∈ Rd (4) 172

• Feature Pooling: Compute element-wise 173

mean pooling of the two vectors: 174

vclaim =
vc + vĉ

2
∈ Rd (5) 175
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Figure 1: Method overview of LAM

Finally, we compute the cosine similarity be-176

tween the embeddings of the fused claim vclaim177

and candidate sentences vsi to identify the support-178

ing sentences. Then the sentence with the highest179

score is selected as the supporting sentence sc for180

the current claim c.181

score(vclaim,vsi) =
vclaim · vsi

∥vclaim∥∥vsi∥
(6)182

183
sc = argmax

si∈S
score(si) (7)184

3 Experiments185

In this section, we evaluate the performance of186

our method on several natural language processing187

(NLP) tasks across five datasets by comparing it188

with multiple baselines.189

3.1 Experiments Settings190

Datasets. We construct a multi-dimensional191

benchmark comprising five datasets with vari-192

ous task types and document lengths. Specifi-193

cally, we choose short-text fact verification dataset194

FEVER, open-domain QA dataset WebGLM-QA,195

and three long-text datasets from LongBench, in-196

cluding MultiFieldQA, HotpotQA and GovRe-197

port. All datasets are converted into a unified198

claim-document-supporting sentence triplet format199

through specific transformation pipelines. The200

statistics of our evaluation datasets are presented in201

Appendix A.202

Evaluation Metric. We use ROUGE-L as the met-203

ric to evaluate our LAM, comparing the consis-204

tency between the model output and the ground205

truth. Recognizing that low-precision citations206

risk introducing hallucinations, we focus on high- 207

confidence outputs by setting a strict precision 208

threshold: 209

Valid sc = {sc|Prouge(sc, sgt) ≥ 0.9} (8) 210

where sgt denote the ground truth supporting sen- 211

tence. Specifically, for matching-based models, we 212

focus on the top-1 retrieved sentence. 213

Methods and Baselines. We compare LAM with 214

five representative baselines, including generation- 215

based methods and matching-based methods. For 216

generation-based methods we choose GPT-4o- 217

0806 (Achiam et al., 2023), as it is the best per- 218

forming generative model. For matching-based 219

methods, we choose two tower models including 220

DPR (Karpukhin et al., 2020), bert-based model 221

Simcse (Gao et al., 2021), and LLM-based vector 222

model NV-Embed-V2 2 (Lee et al., 2024). In addi- 223

tion, we also include the recently introduced con- 224

strained generation method, named CFIC (Qian 225

et al., 2024), as the baseline. We choose Mistral- 226

7B (Jiang et al., 2023) as the base model of CFIC. 227

3.2 Experiment Results 228

Overall Performance. As shown in Table 1, the 229

experimental results highlight three principal find- 230

ings: 231

First, despite GPT-4o’s impressive language 232

generation capabilities, its next-token decoding 233

paradigm introduces limitations in preserving strict 234

textual consistency, which is evidenced by average 235

F1 score of only 41.98%. Due to the limitations of 236

2NV-Embed-V2 is the best open-source embedding model
on MTEB benchmark.
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Method
WebGLM-QA FEVER MultiFieldQA HotpotQA GovReport

P R F1 P R F1 P R F1 P R F1 P R F1

CFIC 24.08 17.90 19.72 49.46 46.53 47.42 21.24 16.14 17.70 10.95 7.28 8.26 18.39 10.56 12.52
GPT-4o 39.72 35.72 37.04 59.43 54.01 55.72 50.33 42.17 44.77 52.81 38.91 43.41 33.45 26.82 28.97

DPR 50.83 36.81 40.93 56.36 53.14 54.14 46.31 32.85 36.59 43.39 30.66 33.98 39.96 23.43 27.77
Simcse 63.14 46.95 51.98 66.82 63.01 64.19 69.74 53.82 58.10 69.42 52.40 57.00 61.60 39.24 45.24

NV-Embed-V2 66.25 50.33 54.98 62.45 61.39 61.28 79.88 61.07 65.86 73.84 56.39 61.09 70.38 47.71 53.71
LAM(Ours) 70.96 53.95 59.04 83.14 82.00 81.76 81.90 64.08 68.74 78.32 59.85 64.82 80.24 54.90 61.92

Table 1: Main results of our experiment. LAM here uses GPT-4o in contextual refinement Step and NV-Embed-V2
in precision matching step, as well as feature pooling method in claim vector fusion.

WebGLM-QA MultiFieldQA HotpotQA
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Figure 2: F1 increase of LAM results with different
vectors. Results on FEVER and GovReport can be
found in Appendix 3.

the basic model, the performance of CFIC performs237

less well than GPT-4o.238

Second, conventional vector-based models239

achieve higher accuracy (average F1=59.38%)240

through exact pattern matching but encounter in-241

herent limitations. The local semantic matches fail242

to capture document-level coherence, resulting in243

mismatch errors according to our diagnostic analy-244

sis.245

Lastly, our LAM method establishes new state-246

of-the-art performance by synergistically com-247

bining complementary strengths: the generative248

model’s contextual awareness with the vector249

model’s textual consistency. On short-text dataset250

FEVER, LAM surpasses GPT-4o by 27.47% in F1-251

score (83.19% vs. 55.72%) and exceeds standalone252

vector models by 19%. These advantages persist253

in long-context tasks, where LAM achieves consis-254

tent improvements of 3.73%–8.21% across various255

long-text datasets, demonstrating exceptional scal-256

ability.257

Ablation Study. To evaluate the robustness of258

our LAM approach across various vector models,259

we performed a comparison of embeddings from260

DPR, Simcse and NV-Embed-V2. As shown in261

fusion method WQA GR HQA
No fusion 54.98 53.71 61.09

Concatenation 57.57 61.78 63.04
Feature pooling 59.04 61.92 64.82

Table 2: Results of F1 score for different vector fu-
sion methods on WebGLM-QA, GovReport and Hot-
potQA datasets. The vector model here is NV-Embed-
V2. Other results in Appendix B.

Figure 2, our LAM approach has demonstrated im- 262

provements across all of three vector models with 263

different architectures on various dataset. Espe- 264

cially, models with relatively weaker capabilities, 265

such as DPR, demonstrate particularly pronounced 266

(more than 10 F1 score on average) improvement, 267

which demonstrates that our method have strong 268

robustness and excellent generalization. 269

To evaluate the influence of different vector fu- 270

sion methods, we compared the performance be- 271

tween No fusion, Concatenation and Feature pool- 272

ing. As shown in Table 2, feature pooling shows 273

better performance in most cases. The reason is that 274

concatenation may exceed the input length limit of 275

model in some cases, which significantly affect the 276

performance of the concatenation method. 277

4 Conclusion 278

This work proposes LAM, a simple but effec- 279

tive two-step approach designed for fine-grained, 280

sentence-level attribution. Through contextual re- 281

finement and precision matching, our approach 282

achieve new SOTA sentence-level attribution. Ex- 283

periments on various task datasets show the effec- 284

tiveness and scalability of our approach. In the 285

future, we intend to further explore other directions 286

for enhancing matching methods, such as reason- 287

enhanced matching, in order to achieve more pre- 288

cise and comprehensive fine-grained attribution. 289
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Limitations290

While our framework demonstrates promising re-291

sults, two principal constraints merit considera-292

tion. First, constrained by practical experimen-293

tation scales, our comparative analysis with gen-294

erative baselines is currently limited to GPT-4o295

model. An empirical investigation encompassing296

open-source generative models (e.g., LLaMA-3,297

Mistral) would provide more comprehensive in-298

sights into cross-model generalizability.299

Second, the inherent document segmentation300

process in matching-based paradigms introduces301

limitations when handling composite evidence re-302

quiring multi-sentence reasoning, which demands303

further experiments and optimization.304
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A Dataset Statistics436

The statistics of our evaluation datasets are pre-437

sented in Table 3. WQA, MQA, HQA and GR438

denote WebGLM-QA, Multifield-QA, HotpotQA439

and GovReport. AvL donates average document440

length, as well as t donates token length.441

Dataset AvL(t) Numc Task Type
FEVER 1881(483) 3595 Fact Verification
WQA 8656(2022) 460 Open-domain QA
MQA 31459(8086) 287 Long-form QA
HQA 56191(14492) 274 Multi-hop QA
GR 54548(11868) 663 Summarization

Table 3: Dataset Statistics and Transformation Details

For FEVER, We select 3,595 SUPPORTS-labeled442

instances. For WebGLM-QA, we curating 200443

high-quality QA pairs, search relevant documents 444

through Google API, and manual annotated sup- 445

porting sentences. For the other three datasets, we 446

follow LongCite’s methodology, employ GPT-4o 447

to annotate citation spans, retaining only claims 448

with perfect citation precision (no redundancy). 449

B Ablation study of Embedding and 450

Fusion 451

The results of LAM with different embeddings and 452

fusion methods on FEVER and GovReport datasets 453

are shown in Figure 3 and Table ??.
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Figure 3: F1 increase of LAM results with different
vector models on FEVER and GovReport datasets.

454

vector fusion method FEVER MQA
No fusion 61.28 65.86

Concatenation 79.97 69.79
Feature pooling 81.76 68.74

Table 4: Results of F1 score for different vector fusion
methods on FEVER and Multifield-QA datasets.

C Prompt Template 455

The detailed design of our prompt in contextual 456

refinement step is shown in Table 5

Input: Original claim c + relevant document D
Prompt Template:Below is an article. Memorize
the article and select several sentences supporting my
claim after the article.
The article begins:[Document]
Now the article ends.
Select the most relevant sentences from the above
article that semantically consistent with the claim.
Return the original sentences without any additional
information.
Claim: [claim]
Output: [sentences]

Table 5: The prompt of Contextual Refinement.
457

6


	Introduction
	Method
	The Refinement Step
	The Matching Step

	Experiments
	Experiments Settings
	Experiment Results

	Conclusion
	Dataset Statistics
	Ablation study of Embedding and Fusion
	Prompt Template

