
Quiet Feature Learning in Algorithmic Tasks

Prudhviraj Naidu, Zixian Wang, Leon Bergen∗, Ramamohan Paturi∗
Department of Computer Science

UC San Diego
San Diego, CA 92093, USA

{prnaidu,ziw081,lbergen,rpaturi}@ucsd.edu

Abstract

We train Transformer-based language models on ten foundational algorithmic tasks
and observe pronounced phase transitions in their loss curves that deviate from
established power-law scaling trends. Over large ranges of compute, the valida-
tion loss barely improves, then abruptly decreases. Probing the models’ internal
representations reveals that quiet features are learned prior to any decrease in task
loss. These quiet features represent intermediate algorithmic computations that do
not by themselves improve the output loss. Ablation experiments demonstrate that
individual quiet features are causally necessary for task performance. Our results
demonstrate that substantial representational progress can remain hidden beneath
an apparently flat loss curve, challenging the prevailing use of cross-entropy as a
proxy for learning and motivating richer diagnostics for monitoring model training.

1 Introduction

Understanding how and when large language models acquire new capabilities has become an impor-
tant question in deep learning. While language models demonstrated remarkable performance across
a broad range of tasks, the precise mechanisms driving their improvements remain unknown. Recent
discussions of “emergent abilities" – where larger-scale models outperform baselines abruptly, even
though smaller-scale counterparts exhibit little improvement – have led to debate over whether such
phenomena are genuine or artifacts of measurement [Wei et al., 2022, Ganguli et al., 2022, Schaeffer
et al., 2023].

Questions about emergent abilities are closely tied to the observation of scaling laws in model training
[Kaplan et al., 2020, Ruan et al., 2024, Henighan et al., 2020, Dubey et al., 2024, OpenAI, 2023].
These scaling laws typically show a smooth, power-law relationship between compute and model
performance. However, most empirical demonstrations of these laws derive from heterogeneous data
and tasks, leaving open the possibility that “averaging out" many distinct learning behaviors masks
more abrupt transitions that occur for individual skills or subtasks.

In order to better understand skill learning in a tractable setting, we focus on ten foundational
algorithmic problems spanning various input types. These algorithmic tasks have precisely defined
solutions, making it straightforward to identify clear success criteria, isolate the specific features
the model must learn, and ensure that improvements cannot be attributed to memorization or partial
heuristics. These tasks allow us to investigate fine-grained learning phenomena which might otherwise
be obscured by heterogeneous data.

Our key findings include:

*These authors contributed equally to this work.
Code at https://github.com/prudhvirajn/quiet-feature-learning-in-algorithmic-tasks

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Mechanistic Inter-
pretability.

https://github.com/prudhvirajn/quiet-feature-learning-in-algorithmic-tasks

Figure 1: Model performance (validation loss) abruptly improves as we increase the model size,
dataset size, and amount of compute (Training FLOPs) used for training. The input size for addition,
multiplication, and activity selection is 16. For graph tasks, the input size is 11. For maximum
subarray, the input size is 64, while for majority of majorities it is 32. The red dotted line indicates
random performance.

1. Phase transitions occur during learning: We observe two distinct phases in scaling laws
across tasks and input sizes. In the slow phase, loss improves minimally or remains flat.
Then, loss drops rapidly (fast phase). We refer to the change between these two phases as a
phase transition. Phase transitions occur for scaling laws estimated across many training
runs and within individual training runs.

2. Quiet features precede phase transitions: Models learn meaningful internal representations
during the slow phase, but these features do not yet yield noticeable gains in the output loss
(we call these quiet features). Ablating them severely degrades performance, demonstrating
they are causally related to the eventual sharp drop in loss.

These findings challenge the assumption that improvements in loss necessarily coincide with im-
provements in feature representations. Instead, substantive internal reorganization may occur below
the surface, revealing itself only at discrete points during training.

The rest of this paper is organized as follows: Section 2 reviews related work in scaling laws,
emergent abilities, and algorithmic learning. Section 3 describes our experimental methodology and
presents our observations of phase transitions across tasks and input sizes. Section 4 introduces our
feature analysis framework and demonstrates how quiet and loud features evolve during training.
Finally, Section 5 discusses the broader implications of our findings and suggests directions for future
research.

2 Related Work

2.1 Scaling Laws

Hestness et al. [2017] observed that scaling dataset size and deep neural network model size led to
a predictable decrease in generalization error for neural machine translation, language modeling,
image classification and speech recognition. Kaplan et al. [2020] and Hoffmann et al. [2022]
observed predictable relationships between training compute and language modeling loss. Henighan
et al. [2020] extended this work for generative models across modalities: image, video, multimedia
image-text and math. They demonstrated classification loss and error rates predictably decreased on
downstream image classification tasks. Chen et al. [2021] studied language model performance on
coding. They observed a predictable relationship between language modeling loss on a held out code
corpus and model size.

2

Figure 2: Models exhibit similar abrupt improvement in performance during a single training run.
Plots show compute-optimal training runs for the smallest compute budget where test accuracy is
100%. The red dotted line indicates random performance.

2.2 Predicting LLM abilities

Ganguli et al. [2022] and Wei et al. [2022] demonstrated some large language models’ capabilities
could not be predicted from capabilities of small language models. However, Schaeffer et al. [2023],
OpenAI [2023], Ruan et al. [2024], and Dubey et al. [2024] provide evidence that this is due to choice
of metrics and that large language models capabilities can be predicted from small language models.

2.3 Proposed explanations for scaling laws

Michaud et al. [2023] proposed that neural networks learn discrete skills called “quanta." They argue
that there is a strict ordering, which they called Q sequence, in which quanta must be learned, and that
the frequencies of these quanta follow a power law, leading to the power law relationship observed
by Kaplan et al. [2020] and others. Hutter [2021] proposes that the relationship between the error
rate and dataset size is guided by the distribution of features in the data. They show that a Zipfian
distribution of features results in power law scaling.

2.4 Grokking

In grokking [Power et al., 2022, Nanda et al., 2023, Varma et al., 2023], a model trained for many
epochs quickly memorizes the training set (thus achieving high training accuracy early) but only later
learns a generalizing solution, causing a sudden jump in test accuracy. Our scaling law results are
related to grokking, but occur in the single epoch setting. Unlike grokking, models trained in the
single-epoch setting do not exhibit a transition from memorization to generalization.

2.5 Progress Measures

Several previous works have identified measures which track progress toward the final, fully-
generalizing solution, even when the test loss shows no improvement. Barak et al. [2022] propose a
metric for measuring similarity of network weights in the context of sparse parity, and demonstrate
that this metric continuously improves throughout training, including prior to measurable improve-
ment in generalization performance. Nanda et al. [2023] propose a different metric on network
weights in the context of modular arithmetic grokking, and demonstrate that this metric improves
before the phase transition. Mallinar et al. [2024] propose tracking features using Average Gradient
Outer Product (AGOP) for Recursive Feature Machines. While this prior work has focused on measur-
ing progress in model weights, they do not demonstrate that the networks are computing interpretable

3

activations prior to generalization. We close this gap by directly probing for human-interpretable
features and showing they appear well before the loss drop.

2.6 Phase Transitions

Phase transitions were previously observed for a limited number of algorithmic tasks. Olsson et al.
[2022], Garg et al. [2022], and Edelman et al. [2024] find phase transitions for in-context learning
during individual training runs. Barak et al. [2022] observed phase transitions in parity. Lee et al.
[2024] measure relationships between test accuracy and number of examples (over a fixed model
size), with observed phase transitions potentially being explained by the metric artifacts of Schaeffer
et al. [2023].

3 Scaling Laws for Algorithmic Tasks

We first aim to estimate scaling laws for 10 foundational algorithmic tasks. Scaling laws are estimated
by training models over a range of compute budgets, and identifying the optimal model at each
budget.

3.1 Task Formulation

We examine 10 algorithmic tasks which are drawn from three broad categories: binary arithmetic,
graph algorithms and sequence-based optimization. The tasks capture a range of input types, and
have well-understood algorithms for solving them.

All tasks are formulated as sequence prediction problems. The input to the problem is serialized, and
an autoregressive model is trained to predict the solution. All tasks use a standard cross-entropy loss,
with the loss masked on the input tokens. We describe how we formulate three of the tasks below.
For other tasks, please see Appendix A.

3.1.1 Binary Addition

We formulate n-bit binary addition as the following sequence prediction task:

x1x2 . . . xn+y1y2 . . . yn=z1z2 . . . zn+1<EOS>

where x, y, and z are binary numbers, presented from the least significant bit to the most significant
bit. Each bit is represented as a separate token, and +, =, and <EOS> are also represented as individual
tokens.

3.1.2 Breadth First Search

Given a connected undirected graph G with n vertices V = {v1, v2, . . . , vn}, a set of edges E, and a
start vertex vs, the task is to predict the traversal order in a breadth first search.

We formulate this as:
vsvi1vj1 . . . vimvjm=vt1vt2 . . . vtn<EOS>

where (vik , vjk) represents an edge in E, m = |E| is the number of edges, and vt1vt2 . . . vtn is the
complete BFS traversal sequence starting from vs (where vt1 = vs). Ties in BFS ordering are broken
by lexicographic ordering.

3.1.3 Maximum Subarray

Given a sequence of n integers k1, k2, . . . , kn where ki ∈ [−9, 9], the maximum subarray task is to
predict the contiguous subarray with the maximum sum.

We formulate this as:
k1k2 . . . kn=kiki+1 . . . kj<EOS>

Where kiki+1 . . . kj is the maximum sum subarray (i ≤ j).

4

Figure 3: Models learn quiet features before the phase transition. The loss is averaged over the first
third of token positions (Beginning), second third (Middle), and last third (End). The red vertical
line indicates the task success threshold, which is the smallest compute budget at which the task loss
starts to decrease (see Appendix Figure 6). Horizontal dotted lines represent random baselines.

3.2 Experimental Methodology

3.2.1 Model Training

Each task is trained independently with the Transformer++ architecture. Transformer++ [Gu and
Dao, 2024] is a decoder-only transformer model with enhancements detailed in Appendix Table 4,
based on modifications in Llama and PaLM [Touvron et al., 2023, Chowdhery et al., 2023]. This
architecture is chosen because it has improved performance in scaling law experiments compared
to other transformer variants [Gu and Dao, 2024]. Models are trained with the AdamW optimizer
[Loshchilov and Hutter, 2017] with linear warmup followed with cosine learning rate annealing as
prescribed by Hoffmann et al. [2022].

3.2.2 Estimating Scaling Laws

The scaling law experiments aim to estimate the best performance achievable on a task given a
compute budget. Separate scaling laws are estimated for each task and input size. Each model is
trained up to a pre-specified compute budget, which ranged from 109 − 1015 FLOPs.1 For each
budget, we conduct a grid search across model sizes, batch sizes, and learning rates (see Appendix
Table 3 for details about the hyperparameter search). Following the procedure from Chinchilla
[Hoffmann et al., 2022], the period of the learning rate scheduler is set to the number of training
steps.

The number of training runs per task varies from 1316 to 3565, and the total number of training runs is
18544. All models are trained for at most a single epoch; each algorithmic task has a sufficient number
of unique examples to avoid repetition even with the highest compute budgets. The number of training
examples is determined based on training compute budget and model size, with all configurations
evaluated using randomly generated validation and test sets with 1000 examples each. We choose

1For multiplication, the maximum budget was increased to 1016, since this was the minimum budget needed
to train the task to 100% accuracy.

5

Figure 4: Models learn quiet features before the phase transition within single training runs. The
loss is averaged over the first third of token positions (Beginning), second third (Middle), and last
third (End). Plots show compute-optimal training runs for the smallest compute budget where test
accuracy is 100%. The red vertical line indicates the task success threshold, which is the training step
at which the task loss starts to decrease. Horizontal dotted lines represent random baselines.

the configuration with minimum validation loss for each training compute and designate it as the
“compute-optimal validation loss."

3.3 Scaling Law Results

We observe phase transitions for compute-optimal validation loss across three scenarios: (1) when
we vary both model size & dataset size, (2) when we fix the model size & vary the dataset size, and
(3) during individual (compute-optimal) training runs. Figure 1 shows that for six of the tasks, the
compute-optimal validation loss undergoes a clear phase transition as the training compute budget
increases. For these tasks, there are two distinct phases of learning: a slow phase and a fast phase.
During the slow phase, loss is stagnant or decreasing slowly. During the fast phase, the loss decreases
rapidly.

For addition, majority of majorities, activity selection and maximum subarray the validation loss
is roughly constant in the slow phase then suddenly goes to near zero during the fast phase. For
multiplication and breadth first search, the slow phase has a gradual decrease followed by a steeper
decrease in the fast phase.

Next, we investigate the effects of varying the dataset size. In Appendix Figure 6, we fix the model
size (selecting the model size corresponding to the smallest training compute budget that achieves
100% test accuracy) and increase the dataset size. We continue to observe phase transitions even
when the model size is fixed. In this setting, additional graph tasks exhibit distinct phase transitions.

We next analyze model behavior within individual training runs.2 Figure 2 shows these individual
training runs exhibit phase transitions in the loss. For addition and majority of majorities, there is a
predictable power-law regime after the phase transition.

2These training runs correspond to compute-optimal hyperparameter settings.

6

Figure 5: Models learn different set of features (loud features) at or after the phase transition. The
loss is averaged over the first third of token positions (Beginning), second third (Middle), and last
third (End). The red vertical line indicates the task success threshold, which is the smallest compute
budget at which the task loss starts to decrease (see Appendix Figure 6). Cross-entropy loss is used
for training probes for first_operand, adjacency_list. The probing loss is mean squared error for
start_time and max_ending_here, since these are continuous features.

Phase transitions in compute-optimal validation losses occur across different task sizes (see Appendix
Figure 7). For addition, phase transitions are observed across task sizes and similarly within individual
training runs (Appendix Figure 9). As the input size increases, the Pareto frontier shifts to the right
but maintains the same shape. However, for maximum subarray, the phase transition only appears at
task sizes greater than 16.

4 Feature Learning before Phase Transitions

In order to better understand the observed phase transitions, we investigate the emergence of human-
interpretable features during learning. We focus on features corresponding to intermediate outputs of
standard algorithms used to perform the tasks. We use linear probing to identify whether the model
learned these features.

4.1 Feature Probing Methodology

For each algorithm-specific feature, we train separate linear probes across each token position and
each layer. Probes are trained on the residual streams after each layer (see Appendix B.3). Each
probe is trained with 10,000 examples which had been held-out from the original model training set.

For each task, we aim to identify the smallest compute budget at which a feature emerges. We select a
single model size to study for this task; models of this size are trained for different compute budgets.3
We train separate linear probes for each (model, token position, layer) triple. For each (model, token
position) pair, we select the probe that achieves the lowest training loss across layers. We report the
test performance of the selected probe for each (model, token position) pair.

We establish random baselines by applying the same probing methodology to models initialized with
random weights. Test loss is estimated on a separate test set of 1,000 unseen examples.

4.2 Intermediate Task Features

We describe the features investigated for each of the tasks which exhibit phase transitions in their
loss. These features are intermediate values computed in standard algorithms for the tasks.

3The model size is chosen so that it is nearly optimal across compute budgets. A fixed model size is chosen
in order to make feature metrics easier to compare for models across training runs.

7

Task Feature Feature Ablation
∆ Accuracy (%)

Addition (16) carry −41.2∗

Addition (32) carry −50.4∗

Addition (64) carry −75.1∗

Addition (16) first_operand 0.00
Addition (32) first_operand −92.7∗

Addition (64) first_operand −6.40∗

Multiplication (16) carry −20.3∗

Multiplication (16) first_operand −0.05
Maximum Subarray (64) is_prev_negative −4.14∗

Breadth first search (11) queue −43.6∗

Table 1: Average difference in test accuracy after ablating a quiet feature compared to ablating a
random direction (random ablation). Ablating quiet features degrades test accuracy more than random
ablation. For random ablation, we estimate test accuracy over 32 trials. ∗ indicates p < 0.001 using
bootstrapping. For complete accuracy / loss values see Appendix Table 6

Addition & Multiplication. For n-bit binary addition, we probe for the following at each token
zi: first_operand, which is input bit xi+1 (required to compute zi+1); and carry ci, the carry bit
used to compute zi+1. Carry c0 for z1 is not considered since the first carry is always zero. For
multiplication, we check whether the model learns carries generated when adding the last partial
product to the sum of the previous n− 1 partial products.

Breadth/Depth First Search. For breadth first search, we probe at each token vti for the following:
queue, which is the set of vertices on the queue (in the standard search algorithms) after we have
explored vertex vti ; and adjacency_list, which is the set of vertices adjacent to vti .

Maximum Subarray. For the maximum subarray problem, we probe at each token ki (before the
= token) for: is_prev_negative, which represents whether ki−1 is negative; and max_ending_here,
which is the maximum sum of the contiguous subarray ending at ki. (Refer to Kadane [2023] for the
standard algorithm.)

Activity Selection. For the activity selection problem, we probe at each token fi for start_time,
which is the corresponding start time si. Since the model has to output sifi in order, it must know
which start times correspond to which finish times. (Refer to Kleinberg and Tardos [2005] for the
standard algorithm.)

4.3 Feature Probing Results

The model learns algorithmic features before, during and after the phase transition. We call features
learned prior to the phase transition quiet features, as they occur during the slow phase where loss is
stagnant or slowly decreasing. Features learned in the fast phase (during and after the phase transition)
are loud features as the task loss decreases rapidly. Figure 3 shows the trajectory of the probing loss
for quiet features. For addition, multiplication, and maximum subarray, the model learns features
for early token positions prior to the phase transition. However, for breadth first search, later token
positions are learned first.

These results apply across distinct, compute-optimal training runs (for a fixed model size). Figure
4 shows that quiet features also emerge during individual training runs. Features for early token
positions are also generally learned first in this case.

Figure 5 shows models learn loud features in the fast phase (during and after the phase transition).

A surprising finding is the U-shaped feature learning curves in Figure 3, indicating that the probing
loss increases for many quiet features after the phase transition. This may indicate that the models
are learning alternative representations in the highest compute budget regimes, though the probing
loss remains below the random baseline.

8

4.4 Are quiet features causal?

For a given task, we ablate a quiet feature from the residual stream at each position, using the feature
probes (one probe per position) identified the previous section. We restrict our analyses to binary
features. By comparing to ablations of random features, we can evaluate whether a quiet feature is
causally responsible for task performance.

We ablate a feature by removing its direction from the residual stream. A linear feature probe
w⊤x∗ + b outputs 0 (assigns 0.5 probability to each label) when it detects no information from the
ablated residual stream at that layer. Letting x be the residual stream at a desired layer, we perform
the following optimization:

argmin
x∗

∥x− x∗∥2

subject to w⊤x∗ + b = 0.

Solving this yields x∗ = x− w⊤x+b
||w||2 w. The residual stream activation at the linear probe’s layer is

replaced with x∗.

Ablation results are shown in Table 1. Quiet feature ablations are compared to ablating a random
direction. When we ablate quiet features, we observe test accuracy generally degrades more than
ablating a random direction, indicating a causal role for quiet features. Similar results are seen for
test loss, as shown in Appendix Table 6. However, for first_operand at input size 16, we do not see
any significant change after ablating the feature compared to random in addition or multiplication.
At larger input sizes, ablating first_operand for addition leads to significant test loss degradation
compared to random ablation.

5 Discussion

Our findings show that, across different algorithmic tasks, there is often a long phase of training
with little apparent improvement in next-token prediction loss. Despite this plateau, we observe
that essential internal features (e.g., carry bits in binary addition, adjacency in breadth first search)
emerge during these periods. These quiet features emerge prior to any substantial improvement in task
performance. Ablation experiments confirm that these features are causally important to solving the
tasks, suggesting that models can accumulate partial competence that does not immediately translate
into lower loss.

One reason for this quiet period may be the all-or-nothing nature of these tasks: obtaining just
some of the required subroutines (e.g., some correct carry bits) does not prevent errors on next
token prediction. Consequently, any reduction in loss is small until all sub-features are aligned. In
over-parameterized models, there is sufficient capacity to learn these subroutines in the background,
allowing partial solutions to remain in the representations until they can be combined into a correct
overall procedure.

These findings have practical and conceptual implications. For practitioners, they highlight the risk
of judging model capabilities based solely on loss curves. Probe or circuit-based diagnostics could
provide earlier warnings that a model is nearing a capability threshold. Conceptually, they raise
questions about whether similar quiet phases exist in more complex natural-language settings. They
also underscore the need for theoretical frameworks that explain why models accumulate latent
subroutines before they begin to pay off in observable metrics.

6 Conclusion

We observe Transformer-based models for algorithmic tasks encode important intermediate computa-
tions well before they show significant gains in next-token prediction. This quiet period exposes a gap
between internal representation learning and external task performance, indicating that sub-features
may lie dormant until the final pieces align. We hope these insights motivate new methods for probing
and monitoring internal learning dynamics – particularly in larger, more complex models – where
hidden phases of progress may likewise precede sudden improvements in capability.

9

References
Boaz Barak, Benjamin L. Edelman, Surbhi Goel, Sham M. Kakade, Eran Malach, and Cyril

Zhang. Hidden progress in deep learning: SGD learns parities near the computational limit.
In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh, editors,
Advances in Neural Information Processing Systems 35: Annual Conference on Neural Infor-
mation Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - De-
cember 9, 2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
884baf65392170763b27c914087bde01-Abstract-Conference.html.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Pondé de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios
Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino,
Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan Morikawa,
Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob
McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating
large language models trained on code. CoRR, abs/2107.03374, 2021. URL https://arxiv.
org/abs/2107.03374.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, Parker Schuh,
Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker Barnes, Yi Tay, Noam
Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du, Ben Hutchinson, Reiner Pope, James
Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke, Anselm Lev-
skaya, Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier Garcia, Vedant Misra, Kevin
Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim, Barret Zoph,
Alexander Spiridonov, Ryan Sepassi, David Dohan, Shivani Agrawal, Mark Omernick, Andrew M.
Dai, Thanumalayan Sankaranarayana Pillai, Marie Pellat, Aitor Lewkowycz, Erica Moreira, Rewon
Child, Oleksandr Polozov, Katherine Lee, Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark
Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy Meier-Hellstern, Douglas Eck, Jeff Dean,
Slav Petrov, and Noah Fiedel. Palm: Scaling language modeling with pathways. J. Mach. Learn.
Res., 24:240:1–240:113, 2023. URL https://jmlr.org/papers/v24/22-1144.html.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony Hartshorn,
Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark, Arun Rao, Aston
Zhang, Aurélien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Rozière, Bethany Biron, Binh
Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris Marra, Chris McConnell,
Christian Keller, Christophe Touret, Chunyang Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus
Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz, Danny Livshits, David Esiobu, Dhruv
Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin,
Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip Radenovic, Frank Zhang,
Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Graeme Nail, Grégoire Mialon, Guan
Pang, Guillem Cucurell, Hailey Nguyen, Hannah Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov,
Imanol Arrieta Ibarra, Isabel M. Kloumann, Ishan Misra, Ivan Evtimov, Jade Copet, Jaewon
Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Mahadeokar, Jeet Shah, Jelmer van der Linde,
Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie
Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph Rocca, Joshua Johnstun, Joshua
Saxe, Junteng Jia, Kalyan Vasuden Alwala, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth
Heafield, Kevin Stone, and et al. The llama 3 herd of models. CoRR, abs/2407.21783, 2024. doi:
10.48550/ARXIV.2407.21783. URL https://doi.org/10.48550/arXiv.2407.21783.

Ezra Edelman, Nikolaos Tsilivis, Benjamin L. Edelman, Eran Malach, and Surbhi Goel. The evo-
lution of statistical induction heads: In-context learning markov chains. In Amir Globersons,
Lester Mackey, Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng
Zhang, editors, Advances in Neural Information Processing Systems 38: Annual Conference on

10

http://papers.nips.cc/paper_files/paper/2022/hash/884baf65392170763b27c914087bde01-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/884baf65392170763b27c914087bde01-Abstract-Conference.html
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://jmlr.org/papers/v24/22-1144.html
https://doi.org/10.48550/arXiv.2407.21783

Neural Information Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, Decem-
ber 10 - 15, 2024, 2024. URL http://papers.nips.cc/paper_files/paper/2024/hash/
75b0edb869e2cd509d64d0e8ff446bc1-Abstract-Conference.html.

Deep Ganguli, Danny Hernandez, Liane Lovitt, Amanda Askell, Yuntao Bai, Anna Chen, Tom
Conerly, Nova DasSarma, Dawn Drain, Nelson Elhage, Sheer El Showk, Stanislav Fort, Zac
Hatfield-Dodds, Tom Henighan, Scott Johnston, Andy Jones, Nicholas Joseph, Jackson Kernian,
Shauna Kravec, Ben Mann, Neel Nanda, Kamal Ndousse, Catherine Olsson, Daniela Amodei,
Tom B. Brown, Jared Kaplan, Sam McCandlish, Christopher Olah, Dario Amodei, and Jack Clark.
Predictability and surprise in large generative models. In FAccT ’22: 2022 ACM Conference on
Fairness, Accountability, and Transparency, Seoul, Republic of Korea, June 21 - 24, 2022, pages
1747–1764. ACM, 2022. doi: 10.1145/3531146.3533229. URL https://doi.org/10.1145/
3531146.3533229.

Shivam Garg, Dimitris Tsipras, Percy Liang, and Gregory Valiant. What can transformers
learn in-context? A case study of simple function classes. In Sanmi Koyejo, S. Mo-
hamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh, editors, Advances in Neu-
ral Information Processing Systems 35: Annual Conference on Neural Information Pro-
cessing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - Decem-
ber 9, 2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
c529dba08a146ea8d6cf715ae8930cbe-Abstract-Conference.html.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. In
First Conference on Language Modeling, 2024. URL https://openreview.net/forum?id=
tEYskw1VY2.

Tom Henighan, Jared Kaplan, Mor Katz, Mark Chen, Christopher Hesse, Jacob Jackson, Hee-
woo Jun, Tom B. Brown, Prafulla Dhariwal, Scott Gray, Chris Hallacy, Benjamin Mann, Alec
Radford, Aditya Ramesh, Nick Ryder, Daniel M. Ziegler, John Schulman, Dario Amodei,
and Sam McCandlish. Scaling laws for autoregressive generative modeling, 2020. URL
https://arxiv.org/abs/2010.14701.

Joel Hestness, Sharan Narang, Newsha Ardalani, Gregory Diamos, Heewoo Jun, Hassan Kianinejad,
Md. Mostofa Ali Patwary, Yang Yang, and Yanqi Zhou. Deep learning scaling is predictable,
empirically, 2017. URL https://arxiv.org/abs/1712.00409.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom
Hennigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia
Guy, Simon Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and Laurent
Sifre. Training compute-optimal large language models. CoRR, abs/2203.15556, 2022. doi:
10.48550/ARXIV.2203.15556. URL https://doi.org/10.48550/arXiv.2203.15556.

Marcus Hutter. Learning curve theory. CoRR, abs/2102.04074, 2021. URL https://arxiv.org/
abs/2102.04074.

Joseph B. Kadane. Two kadane algorithms for the maximum sum subarray problem. Algorithms, 16
(11):519, 2023. doi: 10.3390/A16110519. URL https://doi.org/10.3390/a16110519.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

Jon Kleinberg and Eva Tardos. Algorithm Design. Addison-Wesley Longman Publishing Co., Inc.,
USA, 2005. ISBN 0321295358.

Nayoung Lee, Kartik Sreenivasan, Jason D. Lee, Kangwook Lee, and Dimitris Papailiopoulos.
Teaching arithmetic to small transformers. In The Twelfth International Conference on Learning
Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024. URL
https://openreview.net/forum?id=dsUB4bst9S.

Ilya Loshchilov and Frank Hutter. Fixing weight decay regularization in adam. CoRR, abs/1711.05101,
2017. URL http://arxiv.org/abs/1711.05101.

11

http://papers.nips.cc/paper_files/paper/2024/hash/75b0edb869e2cd509d64d0e8ff446bc1-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/75b0edb869e2cd509d64d0e8ff446bc1-Abstract-Conference.html
https://doi.org/10.1145/3531146.3533229
https://doi.org/10.1145/3531146.3533229
http://papers.nips.cc/paper_files/paper/2022/hash/c529dba08a146ea8d6cf715ae8930cbe-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/c529dba08a146ea8d6cf715ae8930cbe-Abstract-Conference.html
https://openreview.net/forum?id=tEYskw1VY2
https://openreview.net/forum?id=tEYskw1VY2
https://arxiv.org/abs/2010.14701
https://arxiv.org/abs/1712.00409
https://doi.org/10.48550/arXiv.2203.15556
https://arxiv.org/abs/2102.04074
https://arxiv.org/abs/2102.04074
https://doi.org/10.3390/a16110519
https://openreview.net/forum?id=dsUB4bst9S
http://arxiv.org/abs/1711.05101

Neil Mallinar, Daniel Beaglehole, Libin Zhu, Adityanarayanan Radhakrishnan, Parthe Pandit, and
Mikhail Belkin. Emergence in non-neural models: grokking modular arithmetic via average
gradient outer product. CoRR, abs/2407.20199, 2024. doi: 10.48550/ARXIV.2407.20199. URL
https://doi.org/10.48550/arXiv.2407.20199.

Brendan D. McKay. Combinatorial data – graphs, 2025. URL https://users.cecs.anu.edu.
au/~bdm/data/graphs.html. Accessed: 2025-03-23.

Eric J. Michaud, Ziming Liu, Uzay Girit, and Max Tegmark. The quantization model of neural
scaling. In Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey
Levine, editors, Advances in Neural Information Processing Systems 36: Annual Conference on
Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, Decem-
ber 10 - 16, 2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
5b6346a05a537d4cdb2f50323452a9fe-Abstract-Conference.html.

Neel Nanda, Lawrence Chan, Tom Lieberum, Jess Smith, and Jacob Steinhardt. Progress measures for
grokking via mechanistic interpretability. In The Eleventh International Conference on Learning
Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023. URL
https://openreview.net/forum?id=9XFSbDPmdW.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Dawn Drain, Deep Ganguli,
Zac Hatfield-Dodds, Danny Hernandez, Scott Johnston, Andy Jones, Jackson Kernion, Liane
Lovitt, Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish,
and Chris Olah. In-context learning and induction heads. Transformer Circuits Thread, 2022.
https://transformer-circuits.pub/2022/in-context-learning-and-induction-heads/index.html.

OpenAI. GPT-4 technical report. CoRR, abs/2303.08774, 2023. doi: 10.48550/ARXIV.2303.08774.
URL https://doi.org/10.48550/arXiv.2303.08774.

Alethea Power, Yuri Burda, Harri Edwards, Igor Babuschkin, and Vedant Misra. Grokking: Gener-
alization beyond overfitting on small algorithmic datasets. CoRR, abs/2201.02177, 2022. URL
https://arxiv.org/abs/2201.02177.

Yangjun Ruan, Chris J. Maddison, and Tatsunori Hashimoto. Observational scaling laws and the
predictability of language model performance. CoRR, abs/2405.10938, 2024. doi: 10.48550/
ARXIV.2405.10938. URL https://doi.org/10.48550/arXiv.2405.10938.

Rylan Schaeffer, Brando Miranda, and Sanmi Koyejo. Are emergent abilities of large language
models a mirage? In Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt,
and Sergey Levine, editors, Advances in Neural Information Processing Systems 36: Annual
Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA,
USA, December 10 - 16, 2023, 2023. URL http://papers.nips.cc/paper_files/paper/
2023/hash/adc98a266f45005c403b8311ca7e8bd7-Abstract-Conference.html.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurélien Rodriguez, Armand
Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation language
models. CoRR, abs/2302.13971, 2023. doi: 10.48550/ARXIV.2302.13971. URL https://doi.
org/10.48550/arXiv.2302.13971.

Vikrant Varma, Rohin Shah, Zachary Kenton, János Kramár, and Ramana Kumar. Explaining
grokking through circuit efficiency. CoRR, abs/2309.02390, 2023. doi: 10.48550/ARXIV.2309.
02390. URL https://doi.org/10.48550/arXiv.2309.02390.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani
Yogatama, Maarten Bosma, Denny Zhou, Donald Metzler, Ed H. Chi, Tatsunori Hashimoto,
Oriol Vinyals, Percy Liang, Jeff Dean, and William Fedus. Emergent abilities of large lan-
guage models. Transactions on Machine Learning Research, 2022. ISSN 2835-8856. URL
https://openreview.net/forum?id=yzkSU5zdwD. Survey Certification.

12

https://doi.org/10.48550/arXiv.2407.20199
https://users.cecs.anu.edu.au/~bdm/data/graphs.html
https://users.cecs.anu.edu.au/~bdm/data/graphs.html
http://papers.nips.cc/paper_files/paper/2023/hash/5b6346a05a537d4cdb2f50323452a9fe-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/5b6346a05a537d4cdb2f50323452a9fe-Abstract-Conference.html
https://openreview.net/forum?id=9XFSbDPmdW
https://doi.org/10.48550/arXiv.2303.08774
https://arxiv.org/abs/2201.02177
https://doi.org/10.48550/arXiv.2405.10938
http://papers.nips.cc/paper_files/paper/2023/hash/adc98a266f45005c403b8311ca7e8bd7-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/adc98a266f45005c403b8311ca7e8bd7-Abstract-Conference.html
https://doi.org/10.48550/arXiv.2302.13971
https://doi.org/10.48550/arXiv.2302.13971
https://doi.org/10.48550/arXiv.2309.02390
https://openreview.net/forum?id=yzkSU5zdwD

A Task formulation

Binary Addition

Binary addition involves adding two n-bit numbers to produce an (n+ 1)-bit result. We formulate
this as a sequence prediction task:

x1x2 . . . xn+y1y2 . . . yn=z1z2 . . . zn+1<EOS>

Where x, y, and z represent binary numbers, with x1 denoting the least significant bit (LSB). Each
bit is represented as a separate token, and +, =, and <EOS> are special tokens.

Binary Multiplication

Binary multiplication combines two n-bit numbers to produce a 2n-bit result. We formulate this as:

x1x2 . . . xn*y1y2 . . . yn=z1z2 . . . z2n<EOS>

Following the same convention as in binary addition, with bits ordered from least significant bit to
most significant bit.

Majority of Majorities

Given an n-bit number (where n is divisible by 4), we partition the bits into 4 equal consecutive
groups. For each group, we compute its majority bit value gi. The final output is the majority bit
value among g1, g2, g3, g4.

We formulate this as:

x1x2 . . . xn=z1<EOS>

Where z1 is the final majority bit.

Breadth First Search

Given a connected undirected graph G with n vertices V = {v1, v2, . . . , vn}, a set of edges E, and a
start vertex vs, we predict the BFS traversal order.

We formulate this as:

vsvi1vj1 . . . vimvjm=vt1vt2 . . . vtn<EOS>

Where (vik , vjk) represents an edge in E, m = |E| is the number of edges, and vt1vt2 . . . vtn is the
complete BFS traversal sequence starting from vs (where vt1 = vs).

Depth First Search

This follows the same formulation as BFS, but the expected output vt1vt2 . . . vtn represents the DFS
traversal order:

vsvi1vj1 . . . vimvjm=vt1vt2 . . . vtn<EOS>

Shortest Path

Given a connected undirected graph G with n vertices, a set of edges E, and two vertices vs (source)
and vf (destination), we predict the shortest path between them.

We formulate this as:

vsvfvi1vj1 . . . vimvjm=vp1
vp2

. . . vpk
<EOS>

Where vp1
vp2

. . . vpk
is the shortest path from vs to vf (with vp1

= vs and vpk
= vf).

Topological Sorting

13

Given a directed acyclic graph (DAG) G with n vertices and a set of edges E, we predict a valid
topological ordering of vertices.

We formulate this as:

vi1vj1 . . . vimvjm=vt1vt2 . . . vtn<EOS>

Where (vik , vjk) represents a directed edge from vik to vjk , and vt1vt2 . . . vtn is a valid topological
ordering.

Minimum Spanning Tree

Given a connected undirected graph G with n vertices and a set of weighted edges E, we predict the
set of edges forming the minimum spanning tree (MST).

We formulate this as:

vi1vj1w1 . . . vimvjmwm=vp1vq1 . . . vpn−1vqn−1<EOS>

Where (vik , vjk , wk) represents an edge with weight wk, and {(vp1
, vq1), . . . , (vpn−1

, vqn−1
)} are the

edges in the MST.

Maximum Subarray

Given a sequence of n integers k1, k2, . . . , kn where ki ∈ [−9, 9], we predict the contiguous subarray
with the maximum sum.

We formulate this as:

k1k2 . . . kn=kiki+1 . . . kj<EOS>

Where kiki+1 . . . kj is the maximum sum subarray (i ≤ j), and for a single-element result, only ki is
the output.

Activity Selection

Given a sequence of n activities represented by their start times (s1, s2, . . . , sn) and finish times
(f1, f2, . . . , fn), we predict the largest subset of non-overlapping activities.

We formulate this as:

s1s2 . . . snf1f2 . . . fn=si1fi1 . . . sikfik<EOS>

Where si1fi1 . . . sikfik represents the selected non-overlapping activities in ascending order of finish
times.

B Experimental Methodology

B.1 Generating Samples

Binary Tasks. For addition and multiplication, pairs of n-bit binary numbers (a, b) are uniformly
sampled without replacement. To prevent memorization, if a pair (a, b) appears in the training set,
then (b, a) is removed from the validation and test sets. The input for majority of majorities is a
single bit string, which is sampled uniformly without replacement.

Graph Tasks. For graph-based tasks (breadth first search, depth first search, shortest path, minimum
spanning tree and topological sorting), we uniformly sample non-isomorphic undirected connected
graphs, using the graph dataset of McKay [2025], and randomly permute the vertex labels. For
topological sorting, edge directions are determined by randomly sampling a vertex ordering.

Integer Sequence Tasks For maximum subarray and activity selection, we uniformly sample
multisets without replacement.

14

B.2 Estimating Scaling Laws (Additional Details)

During grid search, we filter out hyperparameter combinations that exceed a pre-defined maximum
number of steps.4 We ensure at least one trained model across compute budgets reaches 100% test
accuracy on a 1000-example held-out set.

Task Input Sizes
Addition 8, 16, 32, 64, 128
Multiplication 16, 32
Majority of Majorities 32, 64
Breadth First Search 10, 11
Depth First Search 10, 11
Shortest Path 10, 11
Topological Sorting 10, 11
Minimum Spanning Tree 10, 11
Maximum Subarray 8, 16, 32, 64
Activity Selection 8, 16, 32

Table 2: Computational tasks and their corresponding input sizes used in our experiments.

Hyperparameter Range
Model Dimension [8, 16, 32, 64, 128, 256, 512]
Number of Layers [4, 16]
Number of Heads 4
Batch Sizes [8, 64]
Peak Learning Rate [10−1, 10−2, 10−3, 10−4]
Maximum Steps 105 (107 for compute > 1015 FLOPs)

Table 3: Hyperparameter ranges used in our grid search.

Component Implementation
Normalization Pre-Norm, RMSNorm
Positional Embeddings RoPE
Feed-forward Network SwiGLU
AdamW betas 0.9, 0.95
Linear Bias False
Learning Rate Scheduler Linear Warmup

(from 0.01 of peak LR
over 10% of training steps)
+ Cosine Decay to 0.1 of peak LR

Table 4: Architectural modifications used in our Transformer++ implementation.

B.3 Training Feature Probes

B.3.1 Transformer Architecture and Residual Stream

Consider a transformer model with L layers. For each layer l ∈ {1, 2, ..., L} and token position t, we
define the layer computation as:

4Binary addition, the first task investigated, did not have this restriction on number of steps.

15

x
(l,t)
mid = x(l,t)

pre +
∑

head h

attn(l,h)
(
x(1,t)

pre ,x(1,1:t)
pre

)
(1)

x
(l,t)
post = x

(l,t)
mid + MLP(l)

(
x
(l,t)
mid

)
(2)

where:

• x
(l,t)
pre ∈ Rd is input to the layer l at position t (the pre-residual stream). d is the transformer

model dimension.

• x
(l,t)
mid ∈ Rd is the mid-residual stream (after attention)

• x
(l,t)
post ∈ Rd is the output of layer l (post-residual stream)

• attn(l,h) denotes the h-th attention head in layer l

• MLP(l) denotes the feedforward network in layer l

We train linear probes on the output of the layer, x(l,t)
post for each layer l and token position t.

B.3.2 Probe Training Procedure

For each feature f at token position t and layer l, we train a probe pf,l,t on the output of layer l, x(l,t)
post .

The type of probe depends on the feature:

Binary Features. For binary feature f ∈ {0, 1}, we train a logistic regression classifier:

pf,l,t(x
(l,t)
post) = σ(wT

f,l,tx
(l,t)
post + bf,l,t) (3)

where σ is the sigmoid function, wf,l,t ∈ Rd, and bf,l,t ∈ R. The following features are binary:
first_operand, carry, is_prev_negative.

Multi-valued Features. Features queue & adjacency_list represent list of binary variables. For
example, adjacency_list at token t is a list (e1, . . . , ek) where ej ∈ 0, 1 represents whether vertex vt
is connected with vertex vj . To detect such features, we train k independent logistic classifiers:

p
(i)
f,l,t(x

(l,t)
post) = σ(w

(i)T
f,l,tx

(l,t)
post + b

(i)
f,l,t) for i = 1, ..., k (4)

Real-valued Features. For continuous features, max_ending_here & start_time, we train a linear
regressor:

pf,l,t(x) = wT
f,l,tx+ bf,l,t (5)

B.3.3 Training Configuration

All probes are trained using the configuration noted in Table 5.

Parameter Value
Training examples 10,000
Regularization strength (C) 100
Fit intercept True
Maximum iterations 1,000
Optimizer L-BFGS (scikit-learn default)

Table 5: Probe training hyperparameters

16

B.3.4 Probe Selection

Given a trained model with compute budget B, we select the best probe for each feature f and token
position t as follows:

l∗f,t = argmin
l∈{1,...,L}

Ltrain(pf,l,t) (6)

where Ltrain denotes the training loss (cross-entropy for classification, mean squared error for regres-
sion). The test performance is then evaluated using probe pf,l∗f,t,t on a held-out test set of 1,000
examples.

All our training was done on an 8U HGX server with Dual Intel Sapphire Rapids and 8 NVIDIA
H100 GPUs. Test accuracies for feature ablation were computed on a machine with Intel(R) Xeon(R)
Gold 6230 CPU and NVIDIA GeForce RTX 2080 Ti.

17

Ta
sk

Fe
at

ur
e

B
as

el
in

e
Fe

at
ur

e
A

bl
at

io
n

R
an

do
m

A
bl

at
io

n

A
cc

.(
%

)
L

os
s

A
cc

.(
%

)
L

os
s

A
cc

.(
%

)
L

os
s

A
dd

iti
on

(1
6)

ca
rr

y
10

0
7.

91
e-

10
58

.8
3.

12
e-

2
10

0
7.

96
e-

10
[9

9.
6,

10
0]

[6
.5

9e
-1

0,
9.

29
e-

10
]

[5
5.

8,
61

.9
]

[3
.0

6e
-0

2,
3.

18
e-

02
]

[9
9.

6,
10

0]
[7

.7
3e

-1
0,

8.
20

e-
10

]

A
dd

iti
on

(3
2)

ca
rr

y
10

0
1.

53
e-

10
49

.6
2.

87
e-

2
10

0
1.

66
e-

10
[9

9.
6,

10
0]

[9
.2

0e
-1

1,
2.

42
e-

10
]

[4
6.

5,
52

.7
]

[2
.7

0e
-2

,3
.0

4e
-2

]
[9

9.
6,

10
0]

[1
.4

97
e-

10
,1

.8
22

e-
10

]

A
dd

iti
on

(6
4)

ca
rr

y
10

0
4.

68
e-

10
24

.9
4.

60
e-

2
10

0
1.

25
e-

9
[9

9.
6,

10
0]

[3
.5

4e
-1

0,
6.

16
e-

10
]

[2
2.

3,
27

.6
]

[4
.3

9e
-2

,4
.8

1e
-2

]
[9

9.
6,

10
0]

[1
.2

0e
-9

,1
.3

2e
-9

]

A
dd

iti
on

(1
6)

fir
st

_o
pe

ra
nd

10
0

7.
91

e-
10

10
0

7.
91

e-
10

10
0

8.
68

e-
10

[9
9.

6,
10

0]
[6

.5
9e

-1
0,

9.
22

e-
10

]
[9

9.
62

,1
00

]
[6

.6
5e

-1
0,

9.
29

e-
10

]
[9

9.
6,

10
0]

[8
.4

4e
-1

0,
8.

93
e-

10
]

A
dd

iti
on

(3
2)

fir
st

_o
pe

ra
nd

10
0

1.
53

e-
10

7.
00

7.
57

e-
1

99
.7

3.
46

e-
4

[9
9.

6,
10

0]
[8

.8
6e

-1
1,

2.
42

e-
10

]
[5

.4
0,

8.
60

]
[7

.2
5e

-1
,7

.8
9e

-1
]

[9
9.

6,
10

0]
[2

.5
8e

-4
,4

.4
3e

-4
]

A
dd

iti
on

(6
4)

fir
st

_o
pe

ra
nd

10
0

4.
68

e-
10

93
.6

3.
65

e-
3

10
0

1.
07

e-
8

[9
9.

6,
10

0]
[3

.5
1e

-1
0,

6.
10

e-
10

]
[9

2.
1,

95
.1

]
[2

.7
2e

-3
,4

.6
6e

-3
]

[9
9.

6,
10

0]
[6

.8
8e

-9
,1

.5
7e

-8
]

M
ul

tip
lic

at
io

n
(1

6)
ca

rr
y

76
.8

1.
07

e-
2

56
.4

5.
55

e-
2

76
.7

1.
10

e-
2

[7
4.

2,
79

.3
]

[9
.7

9e
-3

,1
.1

6e
-2

]
[5

3.
3,

59
.5

]
[4

.9
8e

-2
,6

.1
7e

-2
]

[7
6.

2,
77

.2
]

[1
.0

8e
-2

,1
.1

7e
-2

]

M
ul

tip
lic

at
io

n
(1

6)
fir

st
_o

pe
ra

nd
76

.8
1.

07
e-

2
76

.8
1.

07
e-

2
76

.9
1.

07
e-

2
[7

4.
2,

79
.3

]
[9

.7
9e

-3
,1

.1
6e

-2
]

[7
4.

2,
79

.3
]

[9
.7

9e
-3

,1
.1

6e
-2

]
[7

6.
2,

77
.3

]
[1

.0
6e

-2
,1

.0
9e

-2
]

M
ax

im
um

Su
ba

rr
ay

(6
4)

is
_p

re
v_

ne
ga

tiv
e

95
.6

1.
51

e-
2

89
.9

3.
15

e-
2

94
.4

1.
84

e-
2

[9
4.

3,
96

.8
]

[9
.2

5e
-3

,2
.1

9e
-2

]
[8

8.
0,

91
.7

]
[2

.3
2e

-2
,4

.0
7e

-2
]

[9
3.

8,
94

.3
]

[1
.7

2e
-2

,1
.9

7e
-2

]

B
re

ad
th

fir
st

se
ar

ch
(1

1)
qu

eu
e

99
.7

8.
71

e-
4

54
.6

1.
30

e-
1

98
.2

4.
87

e-
3

[9
9.

1,
99

.9
]

[3
.2

3e
-4

,1
.6

3e
-3

]
[5

1.
5,

57
.6

]
[1

.2
0e

-1
,1

.4
0e

-1
]

[9
8.

1,
98

.4
]

[4
.4

4e
-3

,5
.3

5e
-3

]

Ta
bl

e
6:

Te
st

ac
cu

ra
cy

&
lo

ss
w

ith
an

d
w

ith
ou

tf
ea

tu
re

ab
la

tio
ns

on
10

00
ex

am
pl

es
fo

r
di

ff
er

en
tt

as
ks

an
d

in
pu

ts
iz

es
.

B
as

el
in

e
re

fe
rs

to
th

e
la

ng
ua

ge
m

od
el

’s
ac

cu
ra

cy
w

ith
ou

ta
ny

pe
rt

ur
ba

tio
ns

.F
or

ra
nd

om
ab

la
tio

n,
w

e
re

po
rt

th
e

m
ea

n
ov

er
32

tr
ia

ls
.9

5%
co

nfi
de

nc
e

in
te

rv
al

s
sh

ow
n

in
sm

al
le

rt
ex

tb
el

ow
ea

ch
va

lu
e.

18

Figure 6: Despite holding model size constant, model performance shows abrupt improvement across
various amount of training compute. Plot the minimum validation loss for each compute. Model sizes
are compute-optimal for the earliest training compute where test accuracy is 100%. The input sizes
are the same as in Figure 1.

Figure 7: Models trained for addition exhibit phase transition for all task lengths. However, models
trained for maximum subarray do not exhibit phase transition for smaller task lengths

19

Figure 8: Compute-optimal dataset size (# of training examples) vs training FLOPs

Figure 9: Models exhibit phase transitions for increasing task lengths. Compute-optimal training run
is selected for the earliest training FLOPs in the same fashion as Figure 2

20

	Introduction
	Related Work
	Scaling Laws
	Predicting LLM abilities
	Proposed explanations for scaling laws
	Grokking
	Progress Measures
	Phase Transitions

	Scaling Laws for Algorithmic Tasks
	Task Formulation
	Binary Addition
	Breadth First Search
	Maximum Subarray

	Experimental Methodology
	Model Training
	Estimating Scaling Laws

	Scaling Law Results

	Feature Learning before Phase Transitions
	Feature Probing Methodology
	Intermediate Task Features
	Feature Probing Results
	Are quiet features causal?

	Discussion
	Conclusion
	Task formulation
	Experimental Methodology
	Generating Samples
	Estimating Scaling Laws (Additional Details)
	Training Feature Probes
	Transformer Architecture and Residual Stream
	Probe Training Procedure
	Training Configuration
	Probe Selection

