
Quiet Feature Learning in Algorithmic Tasks

Anonymous Author(s)
Affiliation
Address
email

Abstract

We train Transformer-based language models on ten foundational algorithmic tasks1

and observe pronounced phase transitions in their loss curves that deviate from2

established power-law scaling trends. Over large ranges of compute, the valida-3

tion loss barely improves, then abruptly decreases. Probing the models’ internal4

representations reveals that quiet features are learned prior to any decrease in task5

loss. These quiet features represent intermediate algorithmic computations that do6

not by themselves improve the output loss. Ablation experiments demonstrate that7

individual quiet features are causally necessary for task performance. Our results8

demonstrate that substantial representational progress can remain hidden beneath9

an apparently flat loss curve, challenging the prevailing use of cross-entropy as a10

proxy for learning and motivating richer diagnostics for monitoring model training.11

1 Introduction12

Understanding how and when large language models acquire new capabilities has become an impor-13

tant question in deep learning. While language models demonstrated remarkable performance across14

a broad range of tasks, the precise mechanisms driving their improvements remain unknown. Recent15

discussions of “emergent abilities" – where larger-scale models outperform baselines abruptly, even16

though smaller-scale counterparts exhibit little improvement – have led to debate over whether such17

phenomena are genuine or artifacts of measurement [Wei et al., 2022, Ganguli et al., 2022, Schaeffer18

et al., 2023].19

Questions about emergent abilities are closely tied to the observation of scaling laws in model training20

[Kaplan et al., 2020, Ruan et al., 2024, Henighan et al., 2020, Dubey et al., 2024, OpenAI, 2023].21

These scaling laws typically show a smooth, power-law relationship between compute and model22

performance. However, most empirical demonstrations of these laws derive from heterogeneous data23

and tasks, leaving open the possibility that “averaging out" many distinct learning behaviors masks24

more abrupt transitions that occur for individual skills or subtasks.25

In order to better understand skill learning in a tractable setting, we focus on ten foundational26

algorithmic problems spanning various input types. These algorithmic tasks have precisely defined27

solutions, making it straightforward to identify clear success criteria, isolate the specific features28

the model must learn, and ensure that improvements cannot be attributed to memorization or partial29

heuristics. These tasks allow us to investigate fine-grained learning phenomena which might otherwise30

be obscured by heterogeneous data.31

Our key findings include:32

1. Phase transitions occur during learning: We observe two distinct phases in scaling laws33

across tasks and input sizes. In the slow phase, loss improves minimally or remains flat.34

*These authors contributed equally to this work.
Code at https://anonymous.4open.science/r/quiet-feature-learning-in-algorithmic-tasks-0778

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

Figure 1: Model performance (validation loss) abruptly improves as we increase the model size,
dataset size, and amount of compute (Training FLOPs) used for training. The input size for addition,
multiplication, and activity selection is 16. For graph tasks, the input size is 11. For maximum
subarray, the input size is 64, while for majority of majorities it is 32. The red dotted line indicates
random performance.

Then, loss drops rapidly (fast phase). We refer to the change between these two phases as a35

phase transition. Phase transitions occur for scaling laws estimated across many training36

runs and within individual training runs.37

2. Quiet features precede phase transitions: Models learn meaningful internal representations38

during the slow phase, but these features do not yet yield noticeable gains in the output loss39

(we call these quiet features). Ablating them severely degrades performance, demonstrating40

they are causally related to the eventual sharp drop in loss.41

These findings challenge the assumption that improvements in loss necessarily coincide with im-42

provements in feature representations. Instead, substantive internal reorganization may occur below43

the surface, revealing itself only at discrete points during training.44

The rest of this paper is organized as follows: Section 2 reviews related work in scaling laws,45

emergent abilities, and algorithmic learning. Section 3 describes our experimental methodology and46

presents our observations of phase transitions across tasks and input sizes. Section 4 introduces our47

feature analysis framework and demonstrates how quiet and loud features evolve during training.48

Finally, Section 5 discusses the broader implications of our findings and suggests directions for future49

research.50

2 Related Work51

2.1 Scaling Laws52

Hestness et al. [2017] observed that scaling dataset size and deep neural network model size led to53

a predictable decrease in generalization error for neural machine translation, language modeling,54

image classification and speech recognition. Kaplan et al. [2020] and Hoffmann et al. [2022]55

observed predictable relationships between training compute and language modeling loss. Henighan56

et al. [2020] extended this work for generative models across modalities: image, video, multimedia57

image-text and math. They demonstrated classification loss and error rates predictably decreased on58

downstream image classification tasks. Chen et al. [2021] studied language model performance on59

coding. They observed a predictable relationship between language modeling loss on a held out code60

corpus and model size.61

2

Figure 2: Models exhibit similar abrupt improvement in performance during a single training run.
Plots show compute-optimal training runs for the smallest compute budget where test accuracy is
100%. The red dotted line indicates random performance.

2.2 Predicting LLM abilities62

Ganguli et al. [2022] and Wei et al. [2022] demonstrated some large language models’ capabilities63

could not be predicted from capabilities of small language models. However, Schaeffer et al. [2023],64

OpenAI [2023], Ruan et al. [2024], and Dubey et al. [2024] provide evidence that this is due to choice65

of metrics and that large language models capabilities can be predicted from small language models.66

2.3 Proposed explanations for scaling laws67

Michaud et al. [2023] proposed that neural networks learn discrete skills called “quanta." They argue68

that there is a strict ordering, which they called Q sequence, in which quanta must be learned, and that69

the frequencies of these quanta follow a power law, leading to the power law relationship observed70

by Kaplan et al. [2020] and others. Hutter [2021] proposes that the relationship between the error71

rate and dataset size is guided by the distribution of features in the data. They show that a Zipfian72

distribution of features results in power law scaling.73

2.4 Grokking74

In grokking [Power et al., 2022, Nanda et al., 2023, Varma et al., 2023], a model trained for many75

epochs quickly memorizes the training set (thus achieving high training accuracy early) but only later76

learns a generalizing solution, causing a sudden jump in test accuracy. Our scaling law results are77

related to grokking, but occur in the single epoch setting. Unlike grokking, models trained in the78

single-epoch setting do not exhibit a transition from memorization to generalization.79

2.5 Progress Measures80

Several previous works have identified measures which track progress toward the final, fully-81

generalizing solution, even when the test loss shows no improvement. Barak et al. [2022] propose a82

metric for measuring similarity of network weights in the context of sparse parity, and demonstrate83

that this metric continuously improves throughout training, including prior to measurable improve-84

ment in generalization performance. Nanda et al. [2023] propose a different metric on network85

weights in the context of modular arithmetic grokking, and demonstrate that this metric improves86

before the phase transition. Mallinar et al. [2024] propose tracking features using Average Gradient87

Outer Product (AGOP) for Recursive Feature Machines. While this prior work has focused on measur-88

ing progress in model weights, they do not demonstrate that the networks are computing interpretable89

3

activations prior to generalization. We close this gap by directly probing for human-interpretable90

features and showing they appear well before the loss drop.91

2.6 Phase Transitions92

Phase transitions were previously observed for a limited number of algorithmic tasks. Olsson et al.93

[2022], Garg et al. [2022], and Edelman et al. [2024] find phase transitions for in-context learning94

during individual training runs. Barak et al. [2022] observed phase transitions in parity. Lee et al.95

[2024] measure relationships between test accuracy and number of examples (over a fixed model96

size), with observed phase transitions potentially being explained by the metric artifacts of Schaeffer97

et al. [2023].98

3 Scaling Laws for Algorithmic Tasks99

We first aim to estimate scaling laws for 10 foundational algorithmic tasks. Scaling laws are estimated100

by training models over a range of compute budgets, and identifying the optimal model at each101

budget.102

3.1 Task Formulation103

We examine 10 algorithmic tasks which are drawn from three broad categories: binary arithmetic,104

graph algorithms and sequence-based optimization. The tasks capture a range of input types, and105

have well-understood algorithms for solving them.106

All tasks are formulated as sequence prediction problems. The input to the problem is serialized, and107

an autoregressive model is trained to predict the solution. All tasks use a standard cross-entropy loss,108

with the loss masked on the input tokens. We describe how we formulate three of the tasks below.109

For other tasks, please see Appendix A.110

3.1.1 Binary Addition111

We formulate n-bit binary addition as the following sequence prediction task:

x1x2 . . . xn+y1y2 . . . yn=z1z2 . . . zn+1<EOS>

where x, y, and z are binary numbers, presented from the least significant bit to the most significant112

bit. Each bit is represented as a separate token, and +, =, and <EOS> are also represented as individual113

tokens.114

3.1.2 Breadth First Search115

Given a connected undirected graph G with n vertices V = {v1, v2, . . . , vn}, a set of edges E, and a116

start vertex vs, the task is to predict the traversal order in a breadth first search.117

We formulate this as:
vsvi1vj1 . . . vimvjm=vt1vt2 . . . vtn<EOS>

where (vik , vjk) represents an edge in E, m = |E| is the number of edges, and vt1vt2 . . . vtn is the118

complete BFS traversal sequence starting from vs (where vt1 = vs). Ties in BFS ordering are broken119

by lexicographic ordering.120

3.1.3 Maximum Subarray121

Given a sequence of n integers k1, k2, . . . , kn where ki ∈ [−9, 9], the maximum subarray task is to122

predict the contiguous subarray with the maximum sum.123

We formulate this as:
k1k2 . . . kn=kiki+1 . . . kj<EOS>

Where kiki+1 . . . kj is the maximum sum subarray (i ≤ j).124

4

Figure 3: Models learn quiet features before the phase transition. The loss is averaged over the first
third of token positions (Beginning), second third (Middle), and last third (End). The red vertical
line indicates the task success threshold, which is the smallest compute budget at which the task loss
starts to decrease (see Appendix Figure 6). Horizontal dotted lines represent random baselines.

3.2 Experimental Methodology125

3.2.1 Model Training126

Each task is trained independently with the Transformer++ architecture. Transformer++ [Gu and127

Dao, 2024] is a decoder-only transformer model with enhancements detailed in Appendix Table 4,128

based on modifications in Llama and PaLM [Touvron et al., 2023, Chowdhery et al., 2023]. This129

architecture is chosen because it has improved performance in scaling law experiments compared130

to other transformer variants [Gu and Dao, 2024]. Models are trained with the AdamW optimizer131

[Loshchilov and Hutter, 2017] with linear warmup followed with cosine learning rate annealing as132

prescribed by Hoffmann et al. [2022].133

3.2.2 Estimating Scaling Laws134

The scaling law experiments aim to estimate the best performance achievable on a task given a135

compute budget. Separate scaling laws are estimated for each task and input size. Each model is136

trained up to a pre-specified compute budget, which ranged from 109 − 1015 FLOPs.1 For each137

budget, we conduct a grid search across model sizes, batch sizes, and learning rates (see Appendix138

Table 3 for details about the hyperparameter search). Following the procedure from Chinchilla139

[Hoffmann et al., 2022], the period of the learning rate scheduler is set to the number of training140

steps.141

The number of training runs per task varies from 1316 to 3565, and the total number of training runs is142

18544. All models are trained for at most a single epoch; each algorithmic task has a sufficient number143

of unique examples to avoid repetition even with the highest compute budgets. The number of training144

examples is determined based on training compute budget and model size, with all configurations145

evaluated using randomly generated validation and test sets with 1000 examples each. We choose146

1For multiplication, the maximum budget was increased to 1016, since this was the minimum budget needed
to train the task to 100% accuracy.

5

Figure 4: Models learn quiet features before the phase transition within single training runs. The
loss is averaged over the first third of token positions (Beginning), second third (Middle), and last
third (End). Plots show compute-optimal training runs for the smallest compute budget where test
accuracy is 100%. The red vertical line indicates the task success threshold, which is the training step
at which the task loss starts to decrease. Horizontal dotted lines represent random baselines.

the configuration with minimum validation loss for each training compute and designate it as the147

“compute-optimal validation loss."148

3.3 Scaling Law Results149

We observe phase transitions for compute-optimal validation loss across three scenarios: (1) when150

we vary both model size & dataset size, (2) when we fix the model size & vary the dataset size, and151

(3) during individual (compute-optimal) training runs. Figure 1 shows that for six of the tasks, the152

compute-optimal validation loss undergoes a clear phase transition as the training compute budget153

increases. For these tasks, there are two distinct phases of learning: a slow phase and a fast phase.154

During the slow phase, loss is stagnant or decreasing slowly. During the fast phase, the loss decreases155

rapidly.156

For addition, majority of majorities, activity selection and maximum subarray the validation loss157

is roughly constant in the slow phase then suddenly goes to near zero during the fast phase. For158

multiplication and breadth first search, the slow phase has a gradual decrease followed by a steeper159

decrease in the fast phase.160

Next, we investigate the effects of varying the dataset size. In Appendix Figure 6, we fix the model161

size (selecting the model size corresponding to the smallest training compute budget that achieves162

100% test accuracy) and increase the dataset size. We continue to observe phase transitions even163

when the model size is fixed. In this setting, additional graph tasks exhibit distinct phase transitions.164

We next analyze model behavior within individual training runs.2 Figure 2 shows these individual165

training runs exhibit phase transitions in the loss. For addition and majority of majorities, there is a166

predictable power-law regime after the phase transition.167

2These training runs correspond to compute-optimal hyperparameter settings.

6

Figure 5: Models learn different set of features (loud features) at or after the phase transition. The
loss is averaged over the first third of token positions (Beginning), second third (Middle), and last
third (End). The red vertical line indicates the task success threshold, which is the smallest compute
budget at which the task loss starts to decrease (see Appendix Figure 6). Cross-entropy loss is used
for training probes for first_operand, adjacency_list. The probing loss is mean squared error for
start_time and max_ending_here, since these are continuous features.

Phase transitions in compute-optimal validation losses occur across different task sizes (see Appendix168

Figure 7). For addition, phase transitions are observed across task sizes and similarly within individual169

training runs (Appendix Figure 9). As the input size increases, the Pareto frontier shifts to the right170

but maintains the same shape. However, for maximum subarray, the phase transition only appears at171

task sizes greater than 16.172

4 Feature Learning before Phase Transitions173

In order to better understand the observed phase transitions, we investigate the emergence of human-174

interpretable features during learning. We focus on features corresponding to intermediate outputs of175

standard algorithms used to perform the tasks. We use linear probing to identify whether the model176

learned these features.177

4.1 Feature Probing Methodology178

For each algorithm-specific feature, we train separate linear probes across each token position and179

each layer. Probes are trained on the residual streams after each layer (see Appendix B.3). Each180

probe is trained with 10,000 examples which had been held-out from the original model training set.181

For each task, we aim to identify the smallest compute budget at which a feature emerges. We select a182

single model size to study for this task; models of this size are trained for different compute budgets.3183

We train separate linear probes for each (model, token position, layer) triple. For each (model, token184

position) pair, we select the probe that achieves the lowest training loss across layers. We report the185

test performance of the selected probe for each (model, token position) pair.186

We establish random baselines by applying the same probing methodology to models initialized with187

random weights. Test loss is estimated on a separate test set of 1,000 unseen examples.188

4.2 Intermediate Task Features189

We describe the features investigated for each of the tasks which exhibit phase transitions in their190

loss. These features are intermediate values computed in standard algorithms for the tasks.191

3The model size is chosen so that it is nearly optimal across compute budgets. A fixed model size is chosen
in order to make feature metrics easier to compare for models across training runs.

7

Task Feature Feature Ablation
∆ Accuracy (%)

Addition (16) carry −41.2∗

Addition (32) carry −50.4∗

Addition (64) carry −75.1∗

Addition (16) first_operand 0.00
Addition (32) first_operand −92.7∗

Addition (64) first_operand −6.40∗

Multiplication (16) carry −20.3∗

Multiplication (16) first_operand −0.05
Maximum Subarray (64) is_prev_negative −4.14∗

Breadth first search (11) queue −43.6∗

Table 1: Average difference in test accuracy after ablating a quiet feature compared to ablating a
random direction (random ablation). Ablating quiet features degrades test accuracy more than random
ablation. For random ablation, we estimate test accuracy over 32 trials. ∗ indicates p < 0.001 using
bootstrapping. For complete accuracy / loss values see Appendix Table 6

Addition & Multiplication. For n-bit binary addition, we probe for the following at each token192

zi: first_operand, which is input bit xi+1 (required to compute zi+1); and carry ci, the carry bit193

used to compute zi+1. Carry c0 for z1 is not considered since the first carry is always zero. For194

multiplication, we check whether the model learns carries generated when adding the last partial195

product to the sum of the previous n− 1 partial products.196

Breadth/Depth First Search. For breadth first search, we probe at each token vti for the following:197

queue, which is the set of vertices on the queue (in the standard search algorithms) after we have198

explored vertex vti ; and adjacency_list, which is the set of vertices adjacent to vti .199

Maximum Subarray. For the maximum subarray problem, we probe at each token ki (before the200

= token) for: is_prev_negative, which represents whether ki−1 is negative; and max_ending_here,201

which is the maximum sum of the contiguous subarray ending at ki. (Refer to Kadane [2023] for the202

standard algorithm.)203

Activity Selection. For the activity selection problem, we probe at each token fi for start_time,204

which is the corresponding start time si. Since the model has to output sifi in order, it must know205

which start times correspond to which finish times. (Refer to Kleinberg and Tardos [2005] for the206

standard algorithm.)207

4.3 Feature Probing Results208

The model learns algorithmic features before, during and after the phase transition. We call features209

learned prior to the phase transition quiet features, as they occur during the slow phase where loss is210

stagnant or slowly decreasing. Features learned in the fast phase (during and after the phase transition)211

are loud features as the task loss decreases rapidly. Figure 3 shows the trajectory of the probing loss212

for quiet features. For addition, multiplication, and maximum subarray, the model learns features213

for early token positions prior to the phase transition. However, for breadth first search, later token214

positions are learned first.215

These results apply across distinct, compute-optimal training runs (for a fixed model size). Figure216

4 shows that quiet features also emerge during individual training runs. Features for early token217

positions are also generally learned first in this case.218

Figure 5 shows models learn loud features in the fast phase (during and after the phase transition).219

A surprising finding is the U-shaped feature learning curves in Figure 3, indicating that the probing220

loss increases for many quiet features after the phase transition. This may indicate that the models221

are learning alternative representations in the highest compute budget regimes, though the probing222

loss remains below the random baseline.223

8

4.4 Are quiet features causal?224

For a given task, we ablate a quiet feature from the residual stream at each position, using the feature225

probes (one probe per position) identified the previous section. We restrict our analyses to binary226

features. By comparing to ablations of random features, we can evaluate whether a quiet feature is227

causally responsible for task performance.228

We ablate a feature by removing its direction from the residual stream. A linear feature probe229

w⊤x∗ + b outputs 0 (assigns 0.5 probability to each label) when it detects no information from the230

ablated residual stream at that layer. Letting x be the residual stream at a desired layer, we perform231

the following optimization:232

argmin
x∗

∥x− x∗∥2

subject to w⊤x∗ + b = 0.

Solving this yields x∗ = x− w⊤x+b
||w||2 w. The residual stream activation at the linear probe’s layer is233

replaced with x∗.234

Ablation results are shown in Table 1. Quiet feature ablations are compared to ablating a random235

direction. When we ablate quiet features, we observe test accuracy generally degrades more than236

ablating a random direction, indicating a causal role for quiet features. Similar results are seen for237

test loss, as shown in Appendix Table 6. However, for first_operand at input size 16, we do not see238

any significant change after ablating the feature compared to random in addition or multiplication.239

At larger input sizes, ablating first_operand for addition leads to significant test loss degradation240

compared to random ablation.241

5 Discussion242

Our findings show that, across different algorithmic tasks, there is often a long phase of training243

with little apparent improvement in next-token prediction loss. Despite this plateau, we observe244

that essential internal features (e.g., carry bits in binary addition, adjacency in breadth first search)245

emerge during these periods. These quiet features emerge prior to any substantial improvement in task246

performance. Ablation experiments confirm that these features are causally important to solving the247

tasks, suggesting that models can accumulate partial competence that does not immediately translate248

into lower loss.249

One reason for this quiet period may be the all-or-nothing nature of these tasks: obtaining just250

some of the required subroutines (e.g., some correct carry bits) does not prevent errors on next251

token prediction. Consequently, any reduction in loss is small until all sub-features are aligned. In252

over-parameterized models, there is sufficient capacity to learn these subroutines in the background,253

allowing partial solutions to remain in the representations until they can be combined into a correct254

overall procedure.255

These findings have practical and conceptual implications. For practitioners, they highlight the risk256

of judging model capabilities based solely on loss curves. Probe or circuit-based diagnostics could257

provide earlier warnings that a model is nearing a capability threshold. Conceptually, they raise258

questions about whether similar quiet phases exist in more complex natural-language settings. They259

also underscore the need for theoretical frameworks that explain why models accumulate latent260

subroutines before they begin to pay off in observable metrics.261

6 Conclusion262

We observe Transformer-based models for algorithmic tasks encode important intermediate computa-263

tions well before they show significant gains in next-token prediction. This quiet period exposes a gap264

between internal representation learning and external task performance, indicating that sub-features265

may lie dormant until the final pieces align. We hope these insights motivate new methods for probing266

and monitoring internal learning dynamics – particularly in larger, more complex models – where267

hidden phases of progress may likewise precede sudden improvements in capability.268

9

References269

Boaz Barak, Benjamin L. Edelman, Surbhi Goel, Sham M. Kakade, Eran Malach, and Cyril270

Zhang. Hidden progress in deep learning: SGD learns parities near the computational limit.271

In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh, editors,272

Advances in Neural Information Processing Systems 35: Annual Conference on Neural Infor-273

mation Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - De-274

cember 9, 2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/275

884baf65392170763b27c914087bde01-Abstract-Conference.html.276

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Pondé de Oliveira Pinto, Jared277

Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,278

Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,279

Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,280

Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios281

Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino,282

Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,283

Christopher Hesse, Andrew N. Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan Morikawa,284

Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob285

McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating286

large language models trained on code. CoRR, abs/2107.03374, 2021. URL https://arxiv.287

org/abs/2107.03374.288

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam289

Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, Parker Schuh,290

Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker Barnes, Yi Tay, Noam291

Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du, Ben Hutchinson, Reiner Pope, James292

Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke, Anselm Lev-293

skaya, Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier Garcia, Vedant Misra, Kevin294

Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim, Barret Zoph,295

Alexander Spiridonov, Ryan Sepassi, David Dohan, Shivani Agrawal, Mark Omernick, Andrew M.296

Dai, Thanumalayan Sankaranarayana Pillai, Marie Pellat, Aitor Lewkowycz, Erica Moreira, Rewon297

Child, Oleksandr Polozov, Katherine Lee, Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark298

Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy Meier-Hellstern, Douglas Eck, Jeff Dean,299

Slav Petrov, and Noah Fiedel. Palm: Scaling language modeling with pathways. J. Mach. Learn.300

Res., 24:240:1–240:113, 2023. URL https://jmlr.org/papers/v24/22-1144.html.301

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha302

Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony Hartshorn,303

Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark, Arun Rao, Aston304

Zhang, Aurélien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Rozière, Bethany Biron, Binh305

Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris Marra, Chris McConnell,306

Christian Keller, Christophe Touret, Chunyang Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus307

Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz, Danny Livshits, David Esiobu, Dhruv308

Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin,309

Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip Radenovic, Frank Zhang,310

Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Graeme Nail, Grégoire Mialon, Guan311

Pang, Guillem Cucurell, Hailey Nguyen, Hannah Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov,312

Imanol Arrieta Ibarra, Isabel M. Kloumann, Ishan Misra, Ivan Evtimov, Jade Copet, Jaewon313

Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Mahadeokar, Jeet Shah, Jelmer van der Linde,314

Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie315

Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph Rocca, Joshua Johnstun, Joshua316

Saxe, Junteng Jia, Kalyan Vasuden Alwala, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth317

Heafield, Kevin Stone, and et al. The llama 3 herd of models. CoRR, abs/2407.21783, 2024. doi:318

10.48550/ARXIV.2407.21783. URL https://doi.org/10.48550/arXiv.2407.21783.319

Ezra Edelman, Nikolaos Tsilivis, Benjamin L. Edelman, Eran Malach, and Surbhi Goel. The evo-320

lution of statistical induction heads: In-context learning markov chains. In Amir Globersons,321

Lester Mackey, Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng322

Zhang, editors, Advances in Neural Information Processing Systems 38: Annual Conference on323

10

http://papers.nips.cc/paper_files/paper/2022/hash/884baf65392170763b27c914087bde01-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/884baf65392170763b27c914087bde01-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/884baf65392170763b27c914087bde01-Abstract-Conference.html
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://jmlr.org/papers/v24/22-1144.html
https://doi.org/10.48550/arXiv.2407.21783

Neural Information Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, Decem-324

ber 10 - 15, 2024, 2024. URL http://papers.nips.cc/paper_files/paper/2024/hash/325

75b0edb869e2cd509d64d0e8ff446bc1-Abstract-Conference.html.326

Deep Ganguli, Danny Hernandez, Liane Lovitt, Amanda Askell, Yuntao Bai, Anna Chen, Tom327

Conerly, Nova DasSarma, Dawn Drain, Nelson Elhage, Sheer El Showk, Stanislav Fort, Zac328

Hatfield-Dodds, Tom Henighan, Scott Johnston, Andy Jones, Nicholas Joseph, Jackson Kernian,329

Shauna Kravec, Ben Mann, Neel Nanda, Kamal Ndousse, Catherine Olsson, Daniela Amodei,330

Tom B. Brown, Jared Kaplan, Sam McCandlish, Christopher Olah, Dario Amodei, and Jack Clark.331

Predictability and surprise in large generative models. In FAccT ’22: 2022 ACM Conference on332

Fairness, Accountability, and Transparency, Seoul, Republic of Korea, June 21 - 24, 2022, pages333

1747–1764. ACM, 2022. doi: 10.1145/3531146.3533229. URL https://doi.org/10.1145/334

3531146.3533229.335

Shivam Garg, Dimitris Tsipras, Percy Liang, and Gregory Valiant. What can transformers336

learn in-context? A case study of simple function classes. In Sanmi Koyejo, S. Mo-337

hamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh, editors, Advances in Neu-338

ral Information Processing Systems 35: Annual Conference on Neural Information Pro-339

cessing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - Decem-340

ber 9, 2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/341

c529dba08a146ea8d6cf715ae8930cbe-Abstract-Conference.html.342

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. In343

First Conference on Language Modeling, 2024. URL https://openreview.net/forum?id=344

tEYskw1VY2.345

Tom Henighan, Jared Kaplan, Mor Katz, Mark Chen, Christopher Hesse, Jacob Jackson, Hee-346

woo Jun, Tom B. Brown, Prafulla Dhariwal, Scott Gray, Chris Hallacy, Benjamin Mann, Alec347

Radford, Aditya Ramesh, Nick Ryder, Daniel M. Ziegler, John Schulman, Dario Amodei,348

and Sam McCandlish. Scaling laws for autoregressive generative modeling, 2020. URL349

https://arxiv.org/abs/2010.14701.350

Joel Hestness, Sharan Narang, Newsha Ardalani, Gregory Diamos, Heewoo Jun, Hassan Kianinejad,351

Md. Mostofa Ali Patwary, Yang Yang, and Yanqi Zhou. Deep learning scaling is predictable,352

empirically, 2017. URL https://arxiv.org/abs/1712.00409.353

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza354

Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom355

Hennigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia356

Guy, Simon Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and Laurent357

Sifre. Training compute-optimal large language models. CoRR, abs/2203.15556, 2022. doi:358

10.48550/ARXIV.2203.15556. URL https://doi.org/10.48550/arXiv.2203.15556.359

Marcus Hutter. Learning curve theory. CoRR, abs/2102.04074, 2021. URL https://arxiv.org/360

abs/2102.04074.361

Joseph B. Kadane. Two kadane algorithms for the maximum sum subarray problem. Algorithms, 16362

(11):519, 2023. doi: 10.3390/A16110519. URL https://doi.org/10.3390/a16110519.363

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott364

Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.365

arXiv preprint arXiv:2001.08361, 2020.366

Jon Kleinberg and Eva Tardos. Algorithm Design. Addison-Wesley Longman Publishing Co., Inc.,367

USA, 2005. ISBN 0321295358.368

Nayoung Lee, Kartik Sreenivasan, Jason D. Lee, Kangwook Lee, and Dimitris Papailiopoulos.369

Teaching arithmetic to small transformers. In The Twelfth International Conference on Learning370

Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024. URL371

https://openreview.net/forum?id=dsUB4bst9S.372

Ilya Loshchilov and Frank Hutter. Fixing weight decay regularization in adam. CoRR, abs/1711.05101,373

2017. URL http://arxiv.org/abs/1711.05101.374

11

http://papers.nips.cc/paper_files/paper/2024/hash/75b0edb869e2cd509d64d0e8ff446bc1-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/75b0edb869e2cd509d64d0e8ff446bc1-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/75b0edb869e2cd509d64d0e8ff446bc1-Abstract-Conference.html
https://doi.org/10.1145/3531146.3533229
https://doi.org/10.1145/3531146.3533229
https://doi.org/10.1145/3531146.3533229
http://papers.nips.cc/paper_files/paper/2022/hash/c529dba08a146ea8d6cf715ae8930cbe-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/c529dba08a146ea8d6cf715ae8930cbe-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/c529dba08a146ea8d6cf715ae8930cbe-Abstract-Conference.html
https://openreview.net/forum?id=tEYskw1VY2
https://openreview.net/forum?id=tEYskw1VY2
https://openreview.net/forum?id=tEYskw1VY2
https://arxiv.org/abs/2010.14701
https://arxiv.org/abs/1712.00409
https://doi.org/10.48550/arXiv.2203.15556
https://arxiv.org/abs/2102.04074
https://arxiv.org/abs/2102.04074
https://arxiv.org/abs/2102.04074
https://doi.org/10.3390/a16110519
https://openreview.net/forum?id=dsUB4bst9S
http://arxiv.org/abs/1711.05101

Neil Mallinar, Daniel Beaglehole, Libin Zhu, Adityanarayanan Radhakrishnan, Parthe Pandit, and375

Mikhail Belkin. Emergence in non-neural models: grokking modular arithmetic via average376

gradient outer product. CoRR, abs/2407.20199, 2024. doi: 10.48550/ARXIV.2407.20199. URL377

https://doi.org/10.48550/arXiv.2407.20199.378

Brendan D. McKay. Combinatorial data – graphs, 2025. URL https://users.cecs.anu.edu.379

au/~bdm/data/graphs.html. Accessed: 2025-03-23.380

Eric J. Michaud, Ziming Liu, Uzay Girit, and Max Tegmark. The quantization model of neural381

scaling. In Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey382

Levine, editors, Advances in Neural Information Processing Systems 36: Annual Conference on383

Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, Decem-384

ber 10 - 16, 2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/385

5b6346a05a537d4cdb2f50323452a9fe-Abstract-Conference.html.386

Neel Nanda, Lawrence Chan, Tom Lieberum, Jess Smith, and Jacob Steinhardt. Progress measures for387

grokking via mechanistic interpretability. In The Eleventh International Conference on Learning388

Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023. URL389

https://openreview.net/forum?id=9XFSbDPmdW.390

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,391

Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Dawn Drain, Deep Ganguli,392

Zac Hatfield-Dodds, Danny Hernandez, Scott Johnston, Andy Jones, Jackson Kernion, Liane393

Lovitt, Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish,394

and Chris Olah. In-context learning and induction heads. Transformer Circuits Thread, 2022.395

https://transformer-circuits.pub/2022/in-context-learning-and-induction-heads/index.html.396

OpenAI. GPT-4 technical report. CoRR, abs/2303.08774, 2023. doi: 10.48550/ARXIV.2303.08774.397

URL https://doi.org/10.48550/arXiv.2303.08774.398

Alethea Power, Yuri Burda, Harri Edwards, Igor Babuschkin, and Vedant Misra. Grokking: Gener-399

alization beyond overfitting on small algorithmic datasets. CoRR, abs/2201.02177, 2022. URL400

https://arxiv.org/abs/2201.02177.401

Yangjun Ruan, Chris J. Maddison, and Tatsunori Hashimoto. Observational scaling laws and the402

predictability of language model performance. CoRR, abs/2405.10938, 2024. doi: 10.48550/403

ARXIV.2405.10938. URL https://doi.org/10.48550/arXiv.2405.10938.404

Rylan Schaeffer, Brando Miranda, and Sanmi Koyejo. Are emergent abilities of large language405

models a mirage? In Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt,406

and Sergey Levine, editors, Advances in Neural Information Processing Systems 36: Annual407

Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA,408

USA, December 10 - 16, 2023, 2023. URL http://papers.nips.cc/paper_files/paper/409

2023/hash/adc98a266f45005c403b8311ca7e8bd7-Abstract-Conference.html.410

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée411

Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurélien Rodriguez, Armand412

Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation language413

models. CoRR, abs/2302.13971, 2023. doi: 10.48550/ARXIV.2302.13971. URL https://doi.414

org/10.48550/arXiv.2302.13971.415

Vikrant Varma, Rohin Shah, Zachary Kenton, János Kramár, and Ramana Kumar. Explaining416

grokking through circuit efficiency. CoRR, abs/2309.02390, 2023. doi: 10.48550/ARXIV.2309.417

02390. URL https://doi.org/10.48550/arXiv.2309.02390.418

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani419

Yogatama, Maarten Bosma, Denny Zhou, Donald Metzler, Ed H. Chi, Tatsunori Hashimoto,420

Oriol Vinyals, Percy Liang, Jeff Dean, and William Fedus. Emergent abilities of large lan-421

guage models. Transactions on Machine Learning Research, 2022. ISSN 2835-8856. URL422

https://openreview.net/forum?id=yzkSU5zdwD. Survey Certification.423

12

https://doi.org/10.48550/arXiv.2407.20199
https://users.cecs.anu.edu.au/~bdm/data/graphs.html
https://users.cecs.anu.edu.au/~bdm/data/graphs.html
https://users.cecs.anu.edu.au/~bdm/data/graphs.html
http://papers.nips.cc/paper_files/paper/2023/hash/5b6346a05a537d4cdb2f50323452a9fe-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/5b6346a05a537d4cdb2f50323452a9fe-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/5b6346a05a537d4cdb2f50323452a9fe-Abstract-Conference.html
https://openreview.net/forum?id=9XFSbDPmdW
https://doi.org/10.48550/arXiv.2303.08774
https://arxiv.org/abs/2201.02177
https://doi.org/10.48550/arXiv.2405.10938
http://papers.nips.cc/paper_files/paper/2023/hash/adc98a266f45005c403b8311ca7e8bd7-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/adc98a266f45005c403b8311ca7e8bd7-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/adc98a266f45005c403b8311ca7e8bd7-Abstract-Conference.html
https://doi.org/10.48550/arXiv.2302.13971
https://doi.org/10.48550/arXiv.2302.13971
https://doi.org/10.48550/arXiv.2302.13971
https://doi.org/10.48550/arXiv.2309.02390
https://openreview.net/forum?id=yzkSU5zdwD

A Task formulation424

Binary Addition425

Binary addition involves adding two n-bit numbers to produce an (n+ 1)-bit result. We formulate426

this as a sequence prediction task:427

x1x2 . . . xn+y1y2 . . . yn=z1z2 . . . zn+1<EOS>

Where x, y, and z represent binary numbers, with x1 denoting the least significant bit (LSB). Each428

bit is represented as a separate token, and +, =, and <EOS> are special tokens.429

Binary Multiplication430

Binary multiplication combines two n-bit numbers to produce a 2n-bit result. We formulate this as:431

x1x2 . . . xn*y1y2 . . . yn=z1z2 . . . z2n<EOS>

Following the same convention as in binary addition, with bits ordered from least significant bit to432

most significant bit.433

Majority of Majorities434

Given an n-bit number (where n is divisible by 4), we partition the bits into 4 equal consecutive435

groups. For each group, we compute its majority bit value gi. The final output is the majority bit436

value among g1, g2, g3, g4.437

We formulate this as:438

x1x2 . . . xn=z1<EOS>

Where z1 is the final majority bit.439

Breadth First Search440

Given a connected undirected graph G with n vertices V = {v1, v2, . . . , vn}, a set of edges E, and a441

start vertex vs, we predict the BFS traversal order.442

We formulate this as:443

vsvi1vj1 . . . vimvjm=vt1vt2 . . . vtn<EOS>

Where (vik , vjk) represents an edge in E, m = |E| is the number of edges, and vt1vt2 . . . vtn is the444

complete BFS traversal sequence starting from vs (where vt1 = vs).445

Depth First Search446

This follows the same formulation as BFS, but the expected output vt1vt2 . . . vtn represents the DFS447

traversal order:448

vsvi1vj1 . . . vimvjm=vt1vt2 . . . vtn<EOS>

Shortest Path449

Given a connected undirected graph G with n vertices, a set of edges E, and two vertices vs (source)450

and vf (destination), we predict the shortest path between them.451

We formulate this as:452

vsvfvi1vj1 . . . vimvjm=vp1
vp2

. . . vpk
<EOS>

Where vp1
vp2

. . . vpk
is the shortest path from vs to vf (with vp1

= vs and vpk
= vf).453

Topological Sorting454

13

Given a directed acyclic graph (DAG) G with n vertices and a set of edges E, we predict a valid455

topological ordering of vertices.456

We formulate this as:457

vi1vj1 . . . vimvjm=vt1vt2 . . . vtn<EOS>

Where (vik , vjk) represents a directed edge from vik to vjk , and vt1vt2 . . . vtn is a valid topological458

ordering.459

Minimum Spanning Tree460

Given a connected undirected graph G with n vertices and a set of weighted edges E, we predict the461

set of edges forming the minimum spanning tree (MST).462

We formulate this as:463

vi1vj1w1 . . . vimvjmwm=vp1vq1 . . . vpn−1vqn−1<EOS>

Where (vik , vjk , wk) represents an edge with weight wk, and {(vp1
, vq1), . . . , (vpn−1

, vqn−1
)} are the464

edges in the MST.465

Maximum Subarray466

Given a sequence of n integers k1, k2, . . . , kn where ki ∈ [−9, 9], we predict the contiguous subarray467

with the maximum sum.468

We formulate this as:469

k1k2 . . . kn=kiki+1 . . . kj<EOS>

Where kiki+1 . . . kj is the maximum sum subarray (i ≤ j), and for a single-element result, only ki is470

the output.471

Activity Selection472

Given a sequence of n activities represented by their start times (s1, s2, . . . , sn) and finish times473

(f1, f2, . . . , fn), we predict the largest subset of non-overlapping activities.474

We formulate this as:475

s1s2 . . . snf1f2 . . . fn=si1fi1 . . . sikfik<EOS>

Where si1fi1 . . . sikfik represents the selected non-overlapping activities in ascending order of finish476

times.477

B Experimental Methodology478

B.1 Generating Samples479

Binary Tasks. For addition and multiplication, pairs of n-bit binary numbers (a, b) are uniformly480

sampled without replacement. To prevent memorization, if a pair (a, b) appears in the training set,481

then (b, a) is removed from the validation and test sets. The input for majority of majorities is a482

single bit string, which is sampled uniformly without replacement.483

Graph Tasks. For graph-based tasks (breadth first search, depth first search, shortest path, minimum484

spanning tree and topological sorting), we uniformly sample non-isomorphic undirected connected485

graphs, using the graph dataset of McKay [2025], and randomly permute the vertex labels. For486

topological sorting, edge directions are determined by randomly sampling a vertex ordering.487

Integer Sequence Tasks For maximum subarray and activity selection, we uniformly sample488

multisets without replacement.489

14

B.2 Estimating Scaling Laws (Additional Details)490

During grid search, we filter out hyperparameter combinations that exceed a pre-defined maximum491

number of steps.4 We ensure at least one trained model across compute budgets reaches 100% test492

accuracy on a 1000-example held-out set.493

Task Input Sizes
Addition 8, 16, 32, 64, 128
Multiplication 16, 32
Majority of Majorities 32, 64
Breadth First Search 10, 11
Depth First Search 10, 11
Shortest Path 10, 11
Topological Sorting 10, 11
Minimum Spanning Tree 10, 11
Maximum Subarray 8, 16, 32, 64
Activity Selection 8, 16, 32

Table 2: Computational tasks and their corresponding input sizes used in our experiments.

Hyperparameter Range
Model Dimension [8, 16, 32, 64, 128, 256, 512]
Number of Layers [4, 16]
Number of Heads 4
Batch Sizes [8, 64]
Peak Learning Rate [10−1, 10−2, 10−3, 10−4]
Maximum Steps 105 (107 for compute > 1015 FLOPs)

Table 3: Hyperparameter ranges used in our grid search.

Component Implementation
Normalization Pre-Norm, RMSNorm
Positional Embeddings RoPE
Feed-forward Network SwiGLU
AdamW betas 0.9, 0.95
Linear Bias False
Learning Rate Scheduler Linear Warmup

(from 0.01 of peak LR
over 10% of training steps)
+ Cosine Decay to 0.1 of peak LR

Table 4: Architectural modifications used in our Transformer++ implementation.

B.3 Training Feature Probes494

B.3.1 Transformer Architecture and Residual Stream495

Consider a transformer model with L layers. For each layer l ∈ {1, 2, ..., L} and token position t, we496

define the layer computation as:497

4Binary addition, the first task investigated, did not have this restriction on number of steps.

15

x
(l,t)
mid = x(l,t)

pre +
∑

head h

attn(l,h)
(
x(1,t)

pre ,x(1,1:t)
pre

)
(1)

x
(l,t)
post = x

(l,t)
mid + MLP(l)

(
x
(l,t)
mid

)
(2)

where:498

• x
(l,t)
pre ∈ Rd is input to the layer l at position t (the pre-residual stream). d is the transformer499

model dimension.500

• x
(l,t)
mid ∈ Rd is the mid-residual stream (after attention)501

• x
(l,t)
post ∈ Rd is the output of layer l (post-residual stream)502

• attn(l,h) denotes the h-th attention head in layer l503

• MLP(l) denotes the feedforward network in layer l504

We train linear probes on the output of the layer, x(l,t)
post for each layer l and token position t.505

B.3.2 Probe Training Procedure506

For each feature f at token position t and layer l, we train a probe pf,l,t on the output of layer l, x(l,t)
post .507

The type of probe depends on the feature:508

Binary Features. For binary feature f ∈ {0, 1}, we train a logistic regression classifier:509

pf,l,t(x
(l,t)
post) = σ(wT

f,l,tx
(l,t)
post + bf,l,t) (3)

where σ is the sigmoid function, wf,l,t ∈ Rd, and bf,l,t ∈ R. The following features are binary:510

first_operand, carry, is_prev_negative.511

Multi-valued Features. Features queue & adjacency_list represent list of binary variables. For512

example, adjacency_list at token t is a list (e1, . . . , ek) where ej ∈ 0, 1 represents whether vertex vt513

is connected with vertex vj . To detect such features, we train k independent logistic classifiers:514

p
(i)
f,l,t(x

(l,t)
post) = σ(w

(i)T
f,l,tx

(l,t)
post + b

(i)
f,l,t) for i = 1, ..., k (4)

Real-valued Features. For continuous features, max_ending_here & start_time, we train a linear515

regressor:516

pf,l,t(x) = wT
f,l,tx+ bf,l,t (5)

B.3.3 Training Configuration517

All probes are trained using the configuration noted in Table 5.518

Parameter Value
Training examples 10,000
Regularization strength (C) 100
Fit intercept True
Maximum iterations 1,000
Optimizer L-BFGS (scikit-learn default)

Table 5: Probe training hyperparameters

16

B.3.4 Probe Selection519

Given a trained model with compute budget B, we select the best probe for each feature f and token520

position t as follows:521

l∗f,t = argmin
l∈{1,...,L}

Ltrain(pf,l,t) (6)

where Ltrain denotes the training loss (cross-entropy for classification, mean squared error for regres-522

sion). The test performance is then evaluated using probe pf,l∗f,t,t on a held-out test set of 1,000523

examples.524

All our training was done on an 8U HGX server with Dual Intel Sapphire Rapids and 8 NVIDIA525

H100 GPUs. Test accuracies for feature ablation were computed on a machine with Intel(R) Xeon(R)526

Gold 6230 CPU and NVIDIA GeForce RTX 2080 Ti.527

17

Ta
sk

Fe
at

ur
e

B
as

el
in

e
Fe

at
ur

e
A

bl
at

io
n

R
an

do
m

A
bl

at
io

n

A
cc

.(
%

)
L

os
s

A
cc

.(
%

)
L

os
s

A
cc

.(
%

)
L

os
s

A
dd

iti
on

(1
6)

ca
rr

y
10

0
7.

91
e-

10
58

.8
3.

12
e-

2
10

0
7.

96
e-

10
[9

9.
6,

10
0]

[6
.5

9e
-1

0,
9.

29
e-

10
]

[5
5.

8,
61

.9
]

[3
.0

6e
-0

2,
3.

18
e-

02
]

[9
9.

6,
10

0]
[7

.7
3e

-1
0,

8.
20

e-
10

]

A
dd

iti
on

(3
2)

ca
rr

y
10

0
1.

53
e-

10
49

.6
2.

87
e-

2
10

0
1.

66
e-

10
[9

9.
6,

10
0]

[9
.2

0e
-1

1,
2.

42
e-

10
]

[4
6.

5,
52

.7
]

[2
.7

0e
-2

,3
.0

4e
-2

]
[9

9.
6,

10
0]

[1
.4

97
e-

10
,1

.8
22

e-
10

]

A
dd

iti
on

(6
4)

ca
rr

y
10

0
4.

68
e-

10
24

.9
4.

60
e-

2
10

0
1.

25
e-

9
[9

9.
6,

10
0]

[3
.5

4e
-1

0,
6.

16
e-

10
]

[2
2.

3,
27

.6
]

[4
.3

9e
-2

,4
.8

1e
-2

]
[9

9.
6,

10
0]

[1
.2

0e
-9

,1
.3

2e
-9

]

A
dd

iti
on

(1
6)

fir
st

_o
pe

ra
nd

10
0

7.
91

e-
10

10
0

7.
91

e-
10

10
0

8.
68

e-
10

[9
9.

6,
10

0]
[6

.5
9e

-1
0,

9.
22

e-
10

]
[9

9.
62

,1
00

]
[6

.6
5e

-1
0,

9.
29

e-
10

]
[9

9.
6,

10
0]

[8
.4

4e
-1

0,
8.

93
e-

10
]

A
dd

iti
on

(3
2)

fir
st

_o
pe

ra
nd

10
0

1.
53

e-
10

7.
00

7.
57

e-
1

99
.7

3.
46

e-
4

[9
9.

6,
10

0]
[8

.8
6e

-1
1,

2.
42

e-
10

]
[5

.4
0,

8.
60

]
[7

.2
5e

-1
,7

.8
9e

-1
]

[9
9.

6,
10

0]
[2

.5
8e

-4
,4

.4
3e

-4
]

A
dd

iti
on

(6
4)

fir
st

_o
pe

ra
nd

10
0

4.
68

e-
10

93
.6

3.
65

e-
3

10
0

1.
07

e-
8

[9
9.

6,
10

0]
[3

.5
1e

-1
0,

6.
10

e-
10

]
[9

2.
1,

95
.1

]
[2

.7
2e

-3
,4

.6
6e

-3
]

[9
9.

6,
10

0]
[6

.8
8e

-9
,1

.5
7e

-8
]

M
ul

tip
lic

at
io

n
(1

6)
ca

rr
y

76
.8

1.
07

e-
2

56
.4

5.
55

e-
2

76
.7

1.
10

e-
2

[7
4.

2,
79

.3
]

[9
.7

9e
-3

,1
.1

6e
-2

]
[5

3.
3,

59
.5

]
[4

.9
8e

-2
,6

.1
7e

-2
]

[7
6.

2,
77

.2
]

[1
.0

8e
-2

,1
.1

7e
-2

]

M
ul

tip
lic

at
io

n
(1

6)
fir

st
_o

pe
ra

nd
76

.8
1.

07
e-

2
76

.8
1.

07
e-

2
76

.9
1.

07
e-

2
[7

4.
2,

79
.3

]
[9

.7
9e

-3
,1

.1
6e

-2
]

[7
4.

2,
79

.3
]

[9
.7

9e
-3

,1
.1

6e
-2

]
[7

6.
2,

77
.3

]
[1

.0
6e

-2
,1

.0
9e

-2
]

M
ax

im
um

Su
ba

rr
ay

(6
4)

is
_p

re
v_

ne
ga

tiv
e

95
.6

1.
51

e-
2

89
.9

3.
15

e-
2

94
.4

1.
84

e-
2

[9
4.

3,
96

.8
]

[9
.2

5e
-3

,2
.1

9e
-2

]
[8

8.
0,

91
.7

]
[2

.3
2e

-2
,4

.0
7e

-2
]

[9
3.

8,
94

.3
]

[1
.7

2e
-2

,1
.9

7e
-2

]

B
re

ad
th

fir
st

se
ar

ch
(1

1)
qu

eu
e

99
.7

8.
71

e-
4

54
.6

1.
30

e-
1

98
.2

4.
87

e-
3

[9
9.

1,
99

.9
]

[3
.2

3e
-4

,1
.6

3e
-3

]
[5

1.
5,

57
.6

]
[1

.2
0e

-1
,1

.4
0e

-1
]

[9
8.

1,
98

.4
]

[4
.4

4e
-3

,5
.3

5e
-3

]

Ta
bl

e
6:

Te
st

ac
cu

ra
cy

&
lo

ss
w

ith
an

d
w

ith
ou

tf
ea

tu
re

ab
la

tio
ns

on
10

00
ex

am
pl

es
fo

r
di

ff
er

en
tt

as
ks

an
d

in
pu

ts
iz

es
.

B
as

el
in

e
re

fe
rs

to
th

e
la

ng
ua

ge
m

od
el

’s
ac

cu
ra

cy
w

ith
ou

ta
ny

pe
rt

ur
ba

tio
ns

.F
or

ra
nd

om
ab

la
tio

n,
w

e
re

po
rt

th
e

m
ea

n
ov

er
32

tr
ia

ls
.9

5%
co

nfi
de

nc
e

in
te

rv
al

s
sh

ow
n

in
sm

al
le

rt
ex

tb
el

ow
ea

ch
va

lu
e.

18

Figure 6: Despite holding model size constant, model performance shows abrupt improvement across
various amount of training compute. Plot the minimum validation loss for each compute. Model sizes
are compute-optimal for the earliest training compute where test accuracy is 100%. The input sizes
are the same as in Figure 1.

Figure 7: Models trained for addition exhibit phase transition for all task lengths. However, models
trained for maximum subarray do not exhibit phase transition for smaller task lengths

19

Figure 8: Compute-optimal dataset size (# of training examples) vs training FLOPs

Figure 9: Models exhibit phase transitions for increasing task lengths. Compute-optimal training run
is selected for the earliest training FLOPs in the same fashion as Figure 2

20

	Introduction
	Related Work
	Scaling Laws
	Predicting LLM abilities
	Proposed explanations for scaling laws
	Grokking
	Progress Measures
	Phase Transitions

	Scaling Laws for Algorithmic Tasks
	Task Formulation
	Binary Addition
	Breadth First Search
	Maximum Subarray

	Experimental Methodology
	Model Training
	Estimating Scaling Laws

	Scaling Law Results

	Feature Learning before Phase Transitions
	Feature Probing Methodology
	Intermediate Task Features
	Feature Probing Results
	Are quiet features causal?

	Discussion
	Conclusion
	Task formulation
	Experimental Methodology
	Generating Samples
	Estimating Scaling Laws (Additional Details)
	Training Feature Probes
	Transformer Architecture and Residual Stream
	Probe Training Procedure
	Training Configuration
	Probe Selection

