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ABSTRACT

We present a novel framework for using knowledge of data symmetries to sharpen
bounds in causal partial identification (PI). The causal effect of the treatment X
on outcome Y is generally not identifiable from observational data alone if their
common causes, also known as confounders, are unobserved. PI entails estimating
bounds on such treatment effects by solving a constrained optimization problem
that encodes different assumptions imposed on data generation. PI has use in
many application domains where such bounds are sufficient to inform policy de-
cisions, even if the treatment effect itself is not identifiable. We show that knowl-
edge of symmetries in data generation—formalized as invariance under transfor-
mation groups—provides additional constraints that tighten these bounds. We
operationalize this insight through two approaches: (i) adding explicit invariance
error constraints to existing PI methods, and (ii) applying symmetry-preserving
data augmentation (DA) as a pre-processing step. Under a linear Gaussian model,
we show that the later yields bounds that provably valid (containing the true causal
effect), sharper (smaller identified sets), and more robust (lower worst-case error).
The key mechanism being that randomized symmetry transformations introduce
exogenous variation in X that cannot be attributed to confounding, thereby reduc-
ing ambiguity in the identified set. Experiments on synthetic and real data validate
our approach. More broadly, our findings establish known data symmetries—
ubiquitously employed in DA for variance reduction—can be repurposed as a
principled tool for causal inference when point-identification is impossible.

1 INTRODUCTION

The problem of regression in machine learning aims to fit a model to observational (X,Y ) data that
predicts outcome Y from treatment X . Improving the generalization of such predictors to unlabeled
samples of X often requires regularization techniques like data augmentation (DA) (Vapnik, 1998;
Shorten & Khoshgoftaar, 2019; Lyle et al., 2020). However, such predictive models are generally
not causal: the statistical relationship between X and Y may be driven by unobserved common
causes, i.e. confounders, rather than the true influence of X on Y . The gold standard for eliminating
confounding is direct intervention, i.e. explicit randomization of X during data generation (Peters
et al., 2017; Pearl, 2009). Since these are often inaccessible, a common workaround is to correct for
confounding via auxiliary variable (Zhang et al., 2023). However, these too may be insufficient to
recover the causal effect (Kilbertus et al., 2020), or scarce in many applications (Akbar et al., 2025).

In such cases, identifying the true causal effect is not possible from observational data alone. Partial
identification (PI) offers a principled alternative by computing bounds guaranteed to contain the true
effect (Padh et al., 2023)—often sufficient for decision-making even without point-identification..
These bounds are obtained by solving an optimization problem whose constraints encode assump-
tions about how the data were generated. The informativeness of the bounds depends entirely on the
strength and structure of these constraints.

This paper introduces known data symmetries—formalized as invariance under transformations of
X—as a new source of constraints for PI. Such symmetries are ubiquitous in scientific and causal
modeling, ranging from geometric stabilities in physical systems (Bronstein et al., 2021; Satorras
et al., 2022) to semantic invariance in natural language (Veitch et al., 2021a) and permutation in-

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

ξ

Y

X

f

(a) Original SEM

ξ

Y

X

f

(b) do(X)

ξ

Y

X

G

GXf

(c) SEM post DA

Figure 1: Graphs of respective SEMs. (a ) The original SEM from Eq. (1) with confounded (X,Y ).
(b ) The original SEM post intervention on X . (c ) The original SEM post DA application.

variance in exchangeable data (Veitch et al., 2021b). We demonstrate that enforcing this structural
knowledge restricts the set of plausible causal hypotheses, effectively pruning the identified set. We
operationalize this insight in two complementary ways:

1. Explicit constraints via invariance error (Section 4.1): we propose bounding the invari-
ance error under specified transformations as an explicit constraint for improving PI.

2. Implicit constraints via DA (Section 4.2): we show the effectiveness of a simple
symmetry-preserving DA based pre-processing step before running off-the-shelf PI solvers.

The first approach gives strict improvement in PI by construction, is amenable to modern Monte
Carlo, gradient-based solvers, is not restricted to any specific hypothesis class and allows tunability
to easily handle symmetry miss-specification. The later provides a cheap tool that can be composed
with black-box PI solvers, offering guarantees under the linear Gaussian regime with well-specified
symmetries. Our methods are simple to apply, compatible with existing solvers, and re-purpose
the rather pervasive ML tool of data symmetries as a practical approach for strengthening causal
conclusions when point-identification not possible.

2 PRELIMINARIES

2.1 STATISTICAL VS. CAUSAL INFERENCE

Consider random treatment X , outcome Y taking values in X ⊆ Rm, Y ⊆ R respectively. The func-
tion f ∈ H := {h : X → Y} defines their causal relationship via a structural equation model (SEM)

Y = f(X) + ξ, E[ξ ] = 0. (1)

We want to estimate f given a dataset D := {(xi, yi)}ni=0 of n samples from the distribution PX,Y .

With the assumption X ⊥⊥ ξ, we have E[Y |X = x ] = f(x) in Eq. (1). Statistical inference entails
identifying precisely the Bayes optimal predictor E[Y |X = x ] from D by minimizing an empirical
version of the statistical risk over hypotheses h ∈ H for some proper, convex loss ℓ : R×R → R+,

Rerm(h) := E[ℓ(Y, h(X)) ]. (2)

Then, for a sufficiently rich hypothesis class, the minimizer herm gives an unbiased estimation of f .

However, the residual ξ in Eq. (1) may generally be correlated with X , i.e., E[ξ |X ] ̸= 0, so that
the conditional E[Y |X = x ] now gives a biased estimate of f(x) (Pearl, 2009; Peters et al., 2017).
This correlation arises due to unobserved common causes of X and Y , known as confounders. We
say that X and Y are confounded and refer to the resulting bias as the confounding bias (Pearl,
2009). Causal inference entails adjusting for this bias to identify f , or at the very least account for
it by finding bounds on f should identification not be possible. Both approaches are outlined below.

2.2 INTERVENTION FOR CAUSAL EFFECT IDENTIFICATION

We can make X and the residual ξ uncorrelated via an intervention do(X := X ′) that explicitly sets
X to some independently sampled X ′ in Eq. (1) during data generation. The induced distribution,
referred to as the interventional distribution, is represented by Pdo(X:=X′)

X,Y . We use the shorthand

2
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notation do(X) for an intervention where X ′ ∼ PX , under which the objective from Eq. (2) now
defines the causal risk (Kania & Wit, 2023; Vankadara et al., 2022; Janzing & Schölkopf, 2018b) as

Rdo(X)
erm (h) := Edo(X)[ℓ(Y, h(X)) ]. (3)

The target estimand of Eq. (3) is the average treatment effect (ATE) Edo(X:=x)[Y |X = x ] which
equals f(x) for the SEM under consideration in Eq. (1). Minimizers of Eq. (3) therefore give an
unbiased estimation of f . To better capture the estimation error for a candidate hypothesis h ∈ H,
we use the causal excess risk (Vankadara et al., 2022) by removing irreducible noise from Eq. (3) as

Edo(X)(h) := Rdo(X)
erm (h)−Rdo(X)

erm (f).

Since interventions are often inaccessible for computing the risk Eq. (3), estimating f usually relies
on access to the full joint distribution P of (X,Y, ξ) via back-door adjustment (Xu & Gretton, 2022)

hP
adj(x) := Eξ[E[Y |X = x, ξ ] ], (X,Y, ξ) ∼ P.

2.3 PARTIAL IDENTIFICATION AND SENSITIVITY ANALYSIS

For unobserved noise ξ, identification of f is generally not possible from PX,Y alone. Nevertheless,
given assumptions on the data generating process in Eq. (1), we can do partial identification (PI)
(Padh et al., 2023) of f by considering all the joint distributions Q consistent with said assumptions,

Qpi

(
PX,Y

)
:=
{
Q ∈ Cpi

∣∣∣QX,Y = PX,Y

}
,

where the constraint set Cpi encodes our assumptions. If correctly specified, P ∈ Cpi and the follow-
ing set Hpi of candidate hypotheses contains the true solution f , or the interval Hpi(x) holds f(x),

Hpi :=
{
hQ
adj

∣∣∣Q ∈ Qpi

}
, Hpi(x) :=

{
hQ
adj(x)

∣∣∣Q ∈ Qpi

}
,

where Qpi is shorthand for Qpi

(
PX,Y

)
. Computing the interval Hpi(x) at x is often more practical

than characterizing the set Hpi, since it amounts to solving two constrained optimization problems as

Hpi(x) =
[
minQ∈Qpi h

Q
adj(x), maxQ∈Qpi h

Q
adj(x)

]
. (4)

In either case, we want the identified sets to (i) contain the true solution, (ii) be as small as possible.

The constraint set may also be parameterized as Cpi(Γ) to conduct sensitivity analyses (Frauen et al.,
2024) by varying parameters Γ to see how Hpi, Hpi(x) evolve as assumptions are relaxed/tightened.

Lastly, since we are now discussing hypothesis sets, we define the two appropriate evaluation metrics

Edo(X)
approx(Qpi) := min

Q∈Qpi

Edo(X)
(
hQ
adj

)
, E

do(X)
worst (Qpi) := max

Q∈Qpi

Edo(X)
(
hQ
adj

)
.

The approximation error E
do(X)
approx(Qpi) measures how far the target f is from Hpi (Brown & Ali,

2024), and the worst-case excess risk E
do(X)
worst (Qpi) upper bounds the performance of the identified

set Hpi relative to the target f . Similarly, Hpi(x) is evaluated using E
do(x)
approx(Qpi) and E

do(x)
worst (Qpi).

Choice of constraints. The nature and construction of Cpi often depends on domain knowledge.
Popular approaches involve bounding the spurious correlation between X,Y , including the sensi-
tivity model by Rosenbaum (2002) which parameterizes the strength of unmeasured confounding
through odds ratios, its generalization of the Marginal Sensitivity Model (MSM) by Tan (2006)
that does the same using propensity scores and the partial R-squared approach by Cinelli & Hazlett
(2020) bounds the proportion of variance explained by unobserved confounders. More recently, Fan
et al. (2024); Guo et al. (2022) formulated the PI problem as robust optimization (RO) over Qpi

constructed as a total variation ball around the observational distribution PX,Y , and Meresht et al.
(2022) similarly uses Wasserstein constraints. An equivalent approach to modeling the confounding
is to instead model the random function fξ(·) := f(·)+ ξ itself, also known as the response function
(Padh et al., 2023). Hu et al. (2021) modeled these using generative adversarial networks (GANs)
to then match PX,Y in distribution. Most of these methods can also leverage auxiliary variables
in addition to X,Y for imposing constraints in the form of conditional independences to sharpen
bounds. Of note is the instrumental variable (IV) based PI by Balke & Pearl (1997) for when ξ arbi-
trarily influences Y instead of the additive model in Eq. (1). Modern neural-network based variants
for continuous, high-dimensional treatments and/or IVs are explored by Schweisthal et al. (2025);
Kilbertus et al. (2020); Hu et al. (2021); Padh et al. (2023); Meresht et al. (2022); Gunsilius (2020).
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2.4 DATA SYMMETRIES AND INVARIANCE

For finite samples, the technique of data augmentation (DA) is used to reduce estimation variance
(Lyle et al., 2020; Chen et al., 2020) in statistical inference. This is achieved by applying random
transformations G ∼ PG to the data, generating multiple transformed samples (Gxi, yi) from each
original sample (xi, yi) ∈ D, thereby increasing variability in the data for statistical risk evaluation,

Rda+erm(h) := E[ℓ(Y, h(GX)) ]. (5)

In this work we restrict ourselves to DA with respect to which f is invariant (Lyle et al., 2020; Chen
et al., 2020). The action of a group G is a mapping α : X × G → X compatible with the group
operation. Writing gx := α(x, g) as shorthand, we say that f is invariant under G (or G-invariant) if

f(gx) = f(x), ∀ (g,x) ∈ G × X .

Group G has a (unique) normalized Haar measure, PG the corresponding distribution defined over it.

Of course one needs to have prior knowledge about the symmetries of f to construct such a DA.
We argue that the popularity of this modeling assumption in the DA and invariance literature (Lyle
et al., 2020; Chen et al., 2020) is precisely because such symmetries are already established in many
application domains. For example, when classifying images of cats and dogs we already know that
whatever the true labeling function may be, it would certainly be invariant to rotations on the images.
G would then represent the random rotation angle, whereas Gx would be the rotated image x.

While DA is canonically used to mitigate finite-sample estimation variance, our focus is primarily on
the infinite-sample setting, and we present Eq. (5) and subsequent theoretical results in that context.
Nonetheless, increasing sample size via DA also bears on our work, a point we shall briefly discuss.
Section 4.2 also makes the following assumption which characterizes many standard DA operations.

Assumption 1 (unbiased group action). The group action G ∼ PG is identity-centered, meaning

E[Gx ] = x, ∀ x ∈ X .

Lemma 1 (added exogenous variation with DA). Under Assumption 1, G inflates the data variance,

∆ := ΣGX −ΣX ≽ 0, equality iff GX = X a.s.

Proof. See Appendix A.5 for the proof.

3 CAUSAL IMPLICATIONS OF DATA SYMMETRIES

Crucially, the random group action G from Lemma 1 introduces additional exogenous variation in
X that is independent of other system variables. Consequently, Akbar et al. (2025) showed that for a
G-invariant target function f , the transformation GX simulates a soft intervention on X—perturbing
X to weaken the confounding association X ↔ ξ while preserving the causal mechanism X → Y .
To formalize how this improves point estimation of f , Akbar et al. (2025) employs the following
linear version of Eq. (1), which also serves as the basis for our subsequent PI analysis in Section 4.2.

Assumption 2 (a linear, Gaussian SEM). The SEM Eq. (1) is centered, joint Gaussian with f ∈ Rm,

Y = f⊤X + ξ.

In this setting, the causal estimation error (excess risk) under a squared loss takes the following form:

Edo(X)(h) =
∥∥h− f

∥∥2
ΣX

, Edo(x)(h) =
(
h⊤x− f⊤x

)2
, (6)

where we overload the notation do(x) (as opposed to do(X)) to meant the hard intervention
do(X := x), i.e. fixing X to a constant x during data generation. Similar formulations have been
used to measure causal error (Vankadara et al., 2022; Kania & Wit, 2023; Akbar et al., 2025) or
quantify confounding strength (Janzing, 2019; Janzing & Schölkopf, 2018a;b). (Akbar et al., 2025)
established the following result, which directly bears on our work:
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Proposition 1 (estimation with DA (Akbar et al. (2025) lifted)). For G-inv. f , Assumptions 1 and 2,

0 ≤ κ

1 + κ
· ∥Π∆(herm − f)∥2ΣX︸ ︷︷ ︸

estimation error within range(∆)

≤ Edo(X)(herm)− Edo(X)(hda+erm),

≤ ∥Π∆(herm − f)∥2ΣX
, eq. iff

DA orthogonal
to confounding︷ ︸︸ ︷
∆ ⊥ ΣX,ξ,

where κ := λ+
min

(
Σ−1

X ∆
)
< ∞ represents the lowest positive eigenvalue of the product Σ−1

X ∆.

Proof. See Appendix A.3, cf. (Akbar et al., 2025, Thm. 3) for the proof.

Essentially, for G-invariant f , DA dominates ERM on causal estimation—performing strictly better
iff it aligns with the confounding within X , but never worse. Note that in Proposition 1, for the
“large DA” regime, which we define as κ → ∞, the lower-bound approaches the upper-bound,
which is simply the sq.-norm of the projection Π∆(·) of estimation bias (herm−f) onto range(∆).
This confirms that identification is generally not possible in this setting. Therefore the principled
approach is to undertake PI of f instead of the point-estimation approach by Akbar et al. (2025).

This motivates our current work, where we leverage knowledge of symmetries in data generation to
improve partial identification and/ or sensitivity analysis of f , as discussed in the following section.

4 SYMMETRY-CONSTRAINED PARTIAL IDENTIFICATION

Our objective is to leverage symmetry knowledge to restrict the identified sets Hpi and Hpi(x). We
give two strategies to operationalize this: (i) integrating an explicit invariance error constraint into
the optimization, and (ii) inducing implicit regularization through data augmentation pre-processing.

4.1 EXPLICIT CONSTRAINT WITH INVARIANCE ERROR

We start off by considering the most obvious approach to incorporate symmetry knowledge into PI—
add an explicit invariance error constraint to any baseline PI method defined by a constraint set Cpi,

Einv(h) := E
[
∥h(X)− h(GX)∥2

]
,

Qinv+pi(PX,Y ) :=
{
Q ∈ Cpi

∣∣∣ QX,Y = PX,Y , Einv

(
hQ
adj

)
≤ ϵ

}
.

Remark 1 (sharper, robust bounds with invariance error). By construction, subset inclusion holds:

Hinv+pi ⊆ Hpi, Hinv+pi(x) ⊆ Hpi(x).

Consequently, this guarantees that the volume of the identified set and the corresponding worst-
case excess risk does not increase. Note that due to this same set inclusion, the approximation
error generally cannot decrease, and may even potentially increase if Cpi does not contain the true
distribution P. For ϵ = 0, these metrics are equal to “large DA” regime results in Sections 3 and 4.2.

Nevertheless, whenever the baseline PI constraints Cpi are valid and Einv(f) ≤ ϵ holds, Qinv+pi

guarantees validity. Furthermore, the parameter ϵ enables sensitivity analysis, allowing us to inspect
how the bounds evolve as we vary the assumed invariance error in our choice of transformations G.
Of course we can similarly use other formulations for Einv, such as ones stated in Yang et al. (2019),
or restrict ourselves to a hypothesis class that follows our symmetry by design (Cohen & Welling,
2016). However, the later may be restrictive in terms of compatibility with standard PI methods.

While our experiments discuss settings where Eq. (4) for Hinv+pi(x) can be solved via convex pro-
gramming, we emphasize that this explicit constraint formulation is fully compatible with modern
deep learning-based PI. Since the functional Einv is differentiable and amenable to Monte Carlo
evaluation, it can be readily incorporated as a regularizer in augmented Lagrangian and/or gradient-
based solvers (Padh et al., 2023; Kilbertus et al., 2020; Meresht et al., 2022; Hu et al., 2021).

Despite this compatibility, incorporating the invariance error constraint still requires modifying the
solver logic or objective function. This imposes an implementation burden and precludes the use of
specialized or “black-box” PI software where the internal optimization is fixed. This limitation mo-
tivates our second approach—a simple data pre-processing strategy that implicitly impose symmetry

5
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constraints by simply feeding augmented data into standard off-the-shelf PI methods. Furthermore,
when modeling complex, high-dimensional data, enforcing non-convex invariance constraints dur-
ing optimization is often more expensive and notoriously unstable (Schweisthal et al., 2025; Padh
et al., 2023) as opposed to a simple data pre-processing step.

4.2 IMPLICIT CONSTRAINT WITH DA PRE-PROCESSING

We draw inspiration from IV methods, where “strong” instruments—those inducing significant ex-
ogenous variation in X—are known to yield sharper identification bounds compared to weak instru-
ments (Kilbertus et al., 2020; Padh et al., 2023). This motivates our central inquiry in this section:

Can the synthetic exogenous variation introduced by DA similarly sharpen PI?

As with Akbar et al. (2025), which we extend now to the PI setting, the fundamental mechanism for
PI sharpening is Lemma 1. Our main insight into why DA aids PI is summarized as follows:

(i) Statistical Efficiency: Most straightforwardly, DA grows effective data size, quelling sampling
variation and finite-sample errors; key sources of uncertainty in PI (Imbens & Manski, 2004).

(ii) Sharper Bounds: DA adds variation in X that is explicitly exogenous, and therefore cannot
be attributed to confounding. This reduces ambiguity in PI, which leads to sharper bounds.

(iii) Robust Bounds: By perturbing spurious features, DA reduces confounding bias, centering and
contracting the PI bounds around the true solution. This directly minimizes the worst-case error.

(iv) Valid Bounds: Crucially, G-invariance of f guarantees valid bounds with DA if Cpi is valid.

We elaborate these via analysis of the linear model from Assumption 2. But first we explicitly define
the composition Qda+pi of DA and PI, as well as the specific PI model that we use for our analysis,

Qda+pi

(
PX,Y

)
:= Qpi

(
PGX,Y

)
.

Assumption 3 (a bounded confounding sensitivity model). Consider the following constraint set.

Cpi(Γ) :=
{

Q = NN (0, ·)
∣∣∣∣ Var(E[ξ |X ])

Var(ξ)
≤ Γ, Var(ξ) ≤ Γ0

}
, Γ := [Γ0,Γ]

⊤,

where confounding strength Γ ≥ 0 determines our assumption on the variation in ξ explained by X .

Assumption 3 adopts the widely used partial R-squared sensitivity model Cinelli & Hazlett (2019),
itself a generalization of the classic Rosenbaum (2002). While we employ this model in our analyses,
we do not necessarily restrict ourselves to it—under the linear Gaussian setting of Assumption 2,
several families of PI and sensitivity models reduce to ellipsoidal constraints equivalent to the form:

Lemma 2 (characterizing the identified set in a linear, Gaussian case). Under Assumptions 2 and 3,

Hpi =
{
h
∣∣∣ ∥∥h− herm

∥∥2
ΣX

≤ r(Γ)
2
}
,

where the ellipsoid radius r(Γ) ≥ 0 depends on the choice of constraint parameters. Furthermore,

Hpi(x) =
[

h⊤
ermx− r(Γ) · ∥x∥Σ−1

X
, h⊤

ermx+ r(Γ) · ∥x∥Σ−1
X

]
.

Proof. See Appendix A.5 for the proof.

Our results thus carry broader implications for PI and sensitivity analysis, as we discuss in Section 7.

4.2.1 BETTER BOUNDS WITH DATA AUGMENTATION

First and foremost, we investigate if the post-DA bounds are, in some way, better than the baseline
PI bounds. That is, if this exercise is useful at all. We present two results to support this claim.

Proposition 2 (sharper bounds with DA). For Assumptions 1 to 3, Lebesgue measure (volume) |·|,

|Hda+pi|
|Hpi|

=

√
detΣX

detΣGX

< 1,
|Hda+pi(x)|
|Hpi(x)|

=
∥x∥Σ−1

GX

∥x∥Σ−1
X

≤ 1, equality iff x ⊥ ∆.

Proof. See Appendix A.4 for the proof.

6
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Proposition 2 states that the hypothesis set Hda+pi is strictly smaller than the baseline Hpi. The
same holds true for the intervals Hda+pi(x) vs. Hpi(x), unless the query point x is orthogonal to
the variation induced by DA 1, in which case the size of the interval remains the same. Importantly,
Proposition 2 shows that this increase in “sharpness” is a direct consequence of the added variation
from of DA in Lemma 1. And because this variation is exogenous and independent of ξ, our hypoth-
esis/assumption about the strength of confounding Γ in the system should remain the same. This
combination of increased data variation, but same confounding assumptions is what reduces ambi-
guity in PI, resulting in the sharper bounds of Proposition 2. Lastly, in the “large DA” regime, the
ellipsoid Hda+pi collapses onto null(∆), and the interval width |Hda+pi(x)| becomes

∥∥Π⊥
∆x
∥∥2
Σ−1

X

.
Meaning, the DA removes all but the uncertainty that it cannot “see” within its range(∆).

Although smaller identified sets/ intervals are in general desirable, size alone may not be the most
appropriate measure of “goodness” of the identified set. The next result is based on worst-case error.

Theorem 1 (robust bounds with DA). For G-inv. f , Assumptions 1 to 3, κ := λmax

(
ΣXΣ−1

GX

)
≤ 1,

E
do(X)
worst (Qpi) =

(
∥herm − f∥ΣX

+ r(Γ)

)2

,

(i), (ii)
≥

(
∥hda+erm − f∥ΣX︸ ︷︷ ︸

lower estimation error

+
√
κ · r(Γ)︸ ︷︷ ︸

sharper bounds

)2
(ii)
≥ E

do(X)
worst (Qda+pi).

Equality iff (i) DA adds low variance κ = 1, and (ii) DA orthogonal to confounding ∆ ⊥ ΣX,ξ. Also,

Ex

[
E

do(x)
worst (Qpi)

]
> ∥hda+erm − f∥2ΣX︸ ︷︷ ︸

lower estimation error

+ ν · r(Γ)2︸ ︷︷ ︸
sharper bounds

+ s = Ex

[
E

do(x)
worst (Qda+pi)

]
,

where ν := tr
(
ΣXΣ−1

GX

)
< tr

(
ΣXΣ−1

X

)
= m, queries x ∼ NN (0,ΣX) and some slack s ≥ 0.

Proof. See Appendix A.1 for the proof.

Theorem 1 shows that DA dominates PI on worst-case error through two mechanisms: (i) From
Proposition 1, confounding aligned DA causes the PI centroid herm to drift closer to f , bringing the
bounds with it, thereby reducing worst-case error. (ii) Independently, from Proposition 2, the bounds
themselves shrink, pushing the worst-case point closer still to f . Given that the worst-case error
bounds how bad the performance of any one hypothesis in the identified set may be, application of
a DA pre-processing to PI therefore makes subsequent decision making more robust and reliable.
Theorem 1 also gives a lower bound on this improvement via the factor κ, which in the “large DA”
regime approaches 0 when ∆ has full span on Rm, but is 1 otherwise. In our linear setting of
Assumption 2, the former implies a trivial f , and so the last inequality in Theorem 1 more clearly
shows the independent, and strictly positive (average) effect ν of sharper bounds for individual
queries x ∼ PX . Which in the “large DA” regime shrinks to ν → dim(null(∆)) =: k, reducing by
a factor (m − k)/m < 1, and directly improving (average) worst-case error for a random query x.

4.2.2 VALID BOUNDS WITH DATA AUGMENTATION

Finally, we discuss perhaps the most important property in PI—bound validity. We address this as:

Theorem 2 (valid bounds with DA). For any G-invariant f , it holds under Assumptions 1 to 3 that

Edo(X)
approx(Qda+pi) ≤ Edo(X)

approx(Qpi), equality iff P ∈ Qpi, or ∆ ⊥ ΣX,ξ.

Proof. See Appendix A.2 for the proof.

Meaning the identified set Hda+pi is no farther from f compared to the original set Hpi, and is
strictly closer to f so long as the DA induced variation aligns with confounding. Of course it
follows that when Qpi contains the true joint distribution P, then f ∈ Hpi and so we should also have
f ∈ Hda+pi. Instead of such a simple set inclusion criteria, we keep the more general approximation
error framing of Theorem 2 because we also position DA as a tool for improved sensitivity analysis

1Intuitively, this would be like rotating an image x of a centered circle —the rotation leaves x unchanged.
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where the constraint set may not necessarily be valid for some values of Γ. Theorem 2 is then
reassures that with G-invariant f , DA at the very least should not cause Hpi to drift away from f .

Immediately following from Theorem 2, when P ∈ Qpi, we also get f⊤x ∈ Hda+pi(x),Hpi(x).
It is difficult, however, to show a similar result as Theorem 1 for the point-wise evaluation of
E

do(x)
approx(Qda+pi) vs. E

do(x)
approx(Qpi) when P /∈ Qpi, as the approximation error non-trivially de-

pends on the alignment of unknown confounding ΣX,ξ with the query x, and both can be arbitrary.

5 RELATED WORK

PI and sensitivity analysis. We give an account of related PI and sensitivity analysis literature in
Section 2.3. Our work is largely orthogonal but complementary to this: we introduce a new source of
constraints—symmetry knowledge—that is compatible and composes with existing PI frameworks.

Symmetry and invariance in causal inference. Invariance is fundamental to causality: causal
mechanisms yield predictions invariant to interventions (Peters et al., 2016). Methods enforce such
invariances using auxiliary variables for identification (Peters et al., 2016; Heinze-Deml et al., 2018;
Arjovsky et al., 2019; Dance & Bloem-Reddy, 2024; Kilbertus et al., 2020; Singh et al., 2019; Zhang
et al., 2023) or robust prediction (Rothenhäusler et al., 2021; Krueger et al., 2021; Christiansen et al.,
2022). Akbar et al. (2025) leverage symmetry knowledge for robust prediction; whereas we address
the orthogonal, but more principled problem of PI when point identification is infeasible.

Counterfactual DA. The literature on counterfactual DA has been the main focus of causal anal-
ysis of DA. These methods achieve robust predictors by synthesizing counterfactual examples (Ilse
et al., 2021; Yuan et al., 2024; Feder et al., 2023; Pitis et al., 2022; Armengol Urpı́ et al., 2024;
Mahajan et al., 2021; Aloui et al., 2023), but require restrictive assumptions: full SEMs (Yuan et al.,
2024; Feder et al., 2023), specific auxiliary variables (Ilse et al., 2021; Feder et al., 2023; Mahajan
et al., 2021; Aloui et al., 2023), or complete causal graphs (Pitis et al., 2022; Armengol Urpı́ et al.,
2024). We, like Akbar et al. (2025), require a more accessible symmetry knowledge about the data.

6 EXPERIMENTS

We validate our frameworks in finite samples. We fix the augmented sample size to match the origi-
nal to show that bound sharpening stems from symmetry constraints rather than variance reduction.

6.1 SIMULATION EXPERIMENT

x

gx

g

f

f⊤x

x1

x
2

Figure 2: A cartoon visual-
ization of the linear simulation
setup. The augmentation gener-
ates gx by randomly translating
x along the level-sets (contours)
defined by the causal parameter
f , using additive noise sampled
from the null-space of f .

We follow Akbar et al. (2025) to instantiate a simulation for
the linear Gaussian SEM from Assumption 2. To do this, we
first sample the SEM parameters—standard normal matrix T ∈
Rm×m, and vectors f , e ∈ Rm, keeping them fixed throughout
the experiment. Then sample standard normal exogenous vari-
ables (U,NX , NY ) and pass them through the following model
to get observable (X,Y ) confounded by the unobserved U as:

X := T⊤U + 0.1 ·NX , Y := f⊤X + e⊤U + 0.1 ·NY .

Next, we construct a DA G such that f respects G-invariance. As
with Akbar et al. (2025), we do this by first taking the SVD of f ,

f = [u U0]

[
σ 01×(m−1)

0(m−1)×1 0(m−1)×(m−1)

] [
v⊤

V ⊤
0

]
.

The matrix V0 represents the orthonormal basis of null(f). We
take k of these rows to construct A ∈ Rk×m which defines G:

GX := X + a ·A⊤G, G ∼ NN (0k, Ik).

Therefore, by construction we have G-invariance and therefore
f⊤X = f⊤GX . Figure 2 provides an intuitive visualization
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Figure 3: Data augmentation consistently sharpens partial identification bounds in a linear simula-
tion. Across query points aligned with principal components (PC1, PC2) and a radial sweep, DA+PI
(red) yields narrower intervals, lower worst-case excess risk (Eworst), and predictions closer to the
true average treatment effect (ATE, black dash) compared to baseline PI (blue).

of such a transformation. While this construction technically utilizes the ground truth f , we treat
access to A as representing prior domain knowledge about the functional symmetries, noting that
this information alone is insufficient to identify f due to the unobserved confounding e⊤U .

Taking m = 32, k = 31, we generate n = 2048 samples for (X,Y,G) with the DA std parameter
a specified as 4. For ERM we use a closed form linear OLS solution. And for PI we use the
partial R-squared sensitivity model from Assumption 3 for a range of query points x0,x1 with
the sensitivity parameter set as Γ = Γ0 = 29, and ϵ = 2−3 for the invariance error constraint.

To visualize the results, we chose x := t · u1 and x := t · u2 where u1, u2 are the first and
second principal components of the data. We then sweep t over ±3 standard-deviations, computing
intervals Hpi(x),Hda+pi(x) via convex programming (separately for the upper and lower bounds).
The results are shown in Fig. 3 (left, right). Fig. 3 (center) also shows a radial sweep over θ ∈ [0, 2π]
to generate queries x := σ0 · sin(θ) · u0 + σ1 · cos(θ) · u1.

6.2 OPTICAL DEVICE EXPERIMENT

We utilize the benchmark dataset provided by Janzing & Schölkopf (2018b), consisting of 3 × 3
pixel images X displayed on a laptop screen which generate voltage readings Y across a photo-
diode. The system involves a physically instantiated hidden confounder U that controls the intensity
of two LEDs; the first affects the webcam capturing X , while the second influences the photo-
diode measuring Y . We derive the ground-truth causal predictor f by regressing Y on the joint
features (ϕ(X), U), where ϕ(X) denotes polynomial features of X . We select the polynomial
degree d ∈ {1, · · · , 5} that best explains the data (degree 2 in our case) and subsequently remove
the learned component corresponding to U to recover f . Our choice of DA on X includes additive
Gaussian noise G ∼ NN (0,ΣX/10), random vertical/horizontal flips and 900 rotations for DA.
We then compute the features ϕ(GX) to be used with PI, setting Γ = Γ0 = 102 for the partial
R-squared model from Assumption 3, and ϵ = 2−3 for the invariance error constraint on a datasets
of n = 1000 samples. Figure 4 shows that DA+PI sharpens bounds over the PI baseline. The
visualization approach in the same as in Section 6.1.
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Figure 4: Our method sharpens causal bounds on the real-world Optical Device dataset. Even with
complex, non-linear relationships, applying outcome-invariant DA (red) substantially narrows the
partial identification bounds compared to the baseline (blue).

7 LIMITATIONS, ASSUMPTIONS AND FUTURE WORK

Symmetry knowledge. Our approach hinges on the untestable assumption that the target f is
G-invariant for the chosen symmetry transformation. While this does require prior knowledge, our
framework also allows to handle symmetry miss-specification in the explicit invariance error con-
straint from Section 4.1 via the ϵ parameter. Additionally, we remind the readers that untestable
assumptions are fundamental for making any causal conclusions from observational data with unob-
served confounding (Pearl, 2009), as is the norm in partial identification. This also includes access to
auxiliary variables since the conditional independences that they represent are also merely untestable
assumptions. Furthermore, Akbar et al. (2025) argues that a symmetry-based knowledge assump-
tion is actually quite practical given its precedence in the DA and invariance literature (Chen et al.,
2020; Lyle et al., 2020; Shao et al., 2022; Fawzi & Frossard, 2015; Dubois et al., 2021; Petrache &
Trivedi, 2023; Montasser et al., 2024; Romero & Lohit, 2022; Zhu et al., 2021; Wong et al., 2016).

Additional covariates. Many works in PI and sensitivity analysis leverage access to additional
auxiliary variables, such as instrumental variables (IVs) and observable confounders or back-doors
(Kilbertus et al., 2020; Padh et al., 2023). Even though we do not explicitly model these to keep our
analysis simple and tractable, we argue that our symmetry transformation framing is still compatible
with them—for example, applying DA on X does not invalidate an IV that enters into X .

Additional partial identification approaches. Many sensitivity and PI models can be reduced to
the constraints in Assumption 3. These include, of course, the partial R-squared model, Rosenbaum
(2002), MSM (under a mild bounded marginal ratio assumption), as well as DRO, Wasserstein, total-
variation approaches. While a rigorous analysis is left for future work, it is important to specify that
our results here are more general than just the partial R-squared model.

8 CONCLUSION

We show that causal symmetries sharpen partial identification bounds by restricting the hypothesis
space. We operationalize this via explicit invariance constraints and implicit data augmentation.
Through construction and linear analysis, respectively, we prove these methods yield valid, strictly
tighter, and more robust bounds. Empirically validated and broadly compatible, our framework
establishes symmetry as a powerful resource within the tool-belt for causal partial identification.
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A PROOFS

A.1 PROOF OF THEOREM 1—ROBUST BOUNDS WITH DA

Theorem 1 (robust bounds with DA). For G-inv. f , Assumptions 1 to 3, κ := λmax

(
ΣXΣ−1

GX

)
≤ 1,

E
do(X)
worst (Qpi) =

(
∥herm − f∥ΣX

+ r(Γ)

)2

,

(i), (ii)
≥

(
∥hda+erm − f∥ΣX︸ ︷︷ ︸

lower estimation error

+
√
κ · r(Γ)︸ ︷︷ ︸

sharper bounds

)2
(ii)
≥ E

do(X)
worst (Qda+pi).

Equality iff (i) DA adds low variance κ = 1, and (ii) DA orthogonal to confounding ∆ ⊥ ΣX,ξ. Also,

Ex

[
E

do(x)
worst (Qpi)

]
> ∥hda+erm − f∥2ΣX︸ ︷︷ ︸

lower estimation error

+ ν · r(Γ)2︸ ︷︷ ︸
sharper bounds

+ s = Ex

[
E

do(x)
worst (Qda+pi)

]
,

where ν := tr
(
ΣXΣ−1

GX

)
< tr

(
ΣXΣ−1

X

)
= m, queries x ∼ NN (0,ΣX) and some slack s ≥ 0.

Proof. We show the two inequalities below in the respective sections.

Population effect. Lemma 2, characterizes the identified sets Hpi, Hda+pi as ellipsoids:

Hpi =
{
h
∣∣∣∥h− herm∥2ΣX

≤ r(Γ)
2
}
, Hda+pi =

{
h
∣∣∣∥h− hda+erm∥2ΣGX

≤ r(Γ)
2
}
.

Now, from the definition of worst-case excess error in Section 2.3 it follows

E
do(X)
worst (Qpi) = maxQ∈Qpi

Edo(X)
(
h
Q
adj

)
,

= maxh∈Hpi E
do(X)(h), (Re-parameterizing in terms of Hpi.)

= maxh∈Hpi
∥h− f∥2ΣX

,

=
(∥∥herm − f

∥∥
ΣX

+ r(Γ)
)2

, (Lemma 3)

where r(Γ) is some constant entirely determined by Γ. Now, we do a similar exercise with Qda+pi,

E
do(X)
worst (Qda+pi)

= maxQ∈Qda+pi
Edo(X)

(
h
Q
adj

)
,

= maxh∈Hda+pi
Edo(X)(h), (Re-parameterizing in terms of Hda+pi.)

= maxh∈Hda+pi
∥h− f∥2ΣX

,

(⋆)

≤
(
∥hda+erm − f∥ΣX

+ r(Γ) ·
√
λmax

(
ΣXΣ−1

GX

))2

,

(Lemma 3, = iff (hda+erm − f) ∥ vmax

(
ΣXΣ−1

GX

)
.)

(†)
≤
(∥∥hda+erm − f

∥∥
ΣX

+ r(Γ)
)2

, (Lemma 1, λmax

(
ΣXΣ−1

GX

)
≤ 1.)

(‡)
≤
(∥∥herm − f

∥∥
ΣX

+ r(Γ)
)2

= E
do(X)
worst (Qpi). (Proposition 1, = iff ∆ ⊥ ΣX,ξ.)

Condition for equality. The bound involves three inequalities: (⋆) the geometric bound from
Lemma 3, (†) the inflated variance implication from Lemma 1, and (‡) the estimation bound from
Proposition 1. Of these, (†) is immediate, so we investigate (⋆), (‡) in isolation with λmax = 1. Now,
assuming further that the condition ∆ ⊥ ΣX,ξ is satisfied for (‡), it follows from Proposition 1 that

hda+erm = herm ⇐⇒ ∆ ⊥ ΣX,ξ.
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So we go ahead and substitute hda+erm with herm in (⋆). From Lemma 3, equality holds iff the
bias vector (hda+erm − f), now (herm − f), is a dominant eigenvector of ΣXΣ−1

GX . Because
(herm−f) = Σ−1

X ΣX,ξ (OLS closed-form), and ΣGX = ΣX +∆ (Lemma 1), we follow the steps
of Propositions 1 and 2 to do a change of basis by jointly diagonalizing ΣX ,∆ (Lemma 7) to show

ΣXΣ−1
GX(herm − f) = ΣX(ΣX +∆)−1

(
Σ−1

X ΣX,ξ

)
= (herm − f), ⇐⇒ ∆ ⊥ ΣX,ξ.

The bias (herm − f) is an eigenvector of ΣXΣ−1
GX with eigenvalue λmax = 1. Therefore, equal-

ity holds for both (⋆) and (‡) iff ∆ ⊥ ΣX,ξ and the residual improvement is solely from radius
contraction λmax < 1. Conditions for (⋆), (†), (‡) form conditions (i), (ii) in the statement.

(Average) individual effect. Define J(Q) := Ex

[
E

do(x)
worst (Q)

]
for queries x ∼ NN (0,ΣX). From

Lemma 2, the worst-case risk at a query point x is (bias + radius) squared:

E
do(x)
worst (Qpi) =

( ∣∣(herm − f)⊤x
∣∣+ r(Γ)∥x∥Σ−1

X

)2
.

Expanding the square, we decompose the total expected risk for DA into three terms:

J(Qda+pi) = Ex

[
∥hda+erm − f∥2x

]
︸ ︷︷ ︸

(a) estimation error

+ r(Γ)
2Ex

[
∥x∥2Σ−1

GX

]
︸ ︷︷ ︸

(b) average radius

,

+ 2r(Γ)Ex

[∣∣(hda+erm − f)⊤x
∣∣∥x∥Σ−1

GX

]
︸ ︷︷ ︸

(c) interaction of (a), (b)

.

We analyze the reduction J(Qpi)− J(Qda+pi) term by term:

a) Estimation error: DA+ERM dominates ERM from Proposition 1, equality iff ∆ ⊥ ΣX,ξ

b) Average radius: DA+PI strictly dominates PI from Proposition 2, as x ̸⊥ ∆ almost surely.
Also, expand ∥x∥2Σ−1

GX
into a trace term, and then use its cyclic permutation invariance gets

Ex

[
∥x∥2Σ−1

GX

]
= tr

(
Σ−1

GXΣX

)
< tr

(
Σ−1

X ΣX

)
= m.

c) Interaction term: Strictly lower for any non-trivial DA ∆ ̸= 0 from Lemma 5.

Concluding that:

J(Qda+pi) < J(Qpi) when ∆ ̸= 0.
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A.2 PROOF OF THEOREM 2—VALID BOUNDS WITH DA

Theorem 2 (valid bounds with DA). For any G-invariant f , it holds under Assumptions 1 to 3 that

Edo(X)
approx(Qda+pi) ≤ Edo(X)

approx(Qpi), equality iff P ∈ Qpi, or ∆ ⊥ ΣX,ξ.

Proof. From Lemma 2, we can characterize the identified sets Hpi, Hda+pi as ellipsoids of the form

Hpi =
{
h
∣∣∣∥h− herm∥2ΣX

≤ r(Γ)
2
}
, Hda+pi =

{
h
∣∣∣∥h− hda+erm∥2ΣGX

≤ r(Γ)
2
}
.

First consider P /∈ Qpi. Now, from the definition of approximation error in Section 2.3 it follows

Edo(X)
approx(Qpi) = minQ∈Qpi

Edo(X)
(
h
Q
adj

)
,

= minh∈Hpi
Edo(X)(h), (Re-parameterizing in terms of Hpi.)

= minh∈Hpi∥h− f∥2ΣX
,

=
(∥∥herm − f

∥∥
ΣX

− r(Γ)
)2

, (Lemma 4)

where r(Γ) is some constant entirely determined by Γ. Now, we do a similar exercise with Qda+pi,

Edo(X)
approx(Qda+pi)

= minQ∈Qda+pi
Edo(X)

(
h
Q
adj

)
,

= minh∈Hda+pi
Edo(X)(h), (Re-parameterizing in terms of Hda+pi.)

= minh∈Hda+pi
∥h− f∥2ΣX

,

(♡)

≤
(
1− r(Γ)

∥hda+erm − f∥ΣGX

)2

∥hda+erm − f∥2ΣX
,

(Lemma 4, = iff (hda+erm − f) ∥ v
(
ΣXΣ−1

GX

)
.)

=
(∥∥hda+erm − f

∥∥
ΣGX

− r(Γ)
)2 ∥hda+erm − f∥2ΣX

∥hda+erm − f∥2ΣGX

,

(♠)

≤
(∥∥herm − f

∥∥
ΣX

− r(Γ)
)2

= Edo(X)
approx(Qpi), (Similar to Proposition 1, = iff ∆ ⊥ ΣX,ξ.)

where the last inequality (‡) follows from a similar approach as used in Proposition 1 to show that

∥hda+erm − f∥2ΣX
≤ ∥hda+erm − f∥2ΣGX

≤ ∥herm − f∥2ΣX
,

which holds with equality if and only if ∆ ⊥ ΣX,ξ. The case for P ∈ Qpi is trivial from Lemma 4.

Condition for equality. The two types of inequalities that comprise the given approximation error
bound are Proposition 1-type estimation bias related (♠), and the ellipsoidal geometry inequality
(♡) from Lemma 4. We can proceed similar to the corresponding section in Theorem 1 to show that:

∆ ⊥ ΣX,ξ ⇐⇒ (hda+erm − f) ∥ vmax

(
ΣXΣ−1

GX

)
.

Since condition of (♡) requires alignment of (hda+erm − f) with any eigenvector v
(
ΣXΣ−1

GX

)
,

therefore vmax suffices. Consequently, equality holds for both (♡) and (♠) iff ∆ ⊥ ΣX,ξ.
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A.3 PROOF OF PROPOSITION 1—ESTIMATION WITH DA (AKBAR ET AL. (2025) LIFTED)

Proposition 1 (estimation with DA (Akbar et al. (2025) lifted)). For G-inv. f , Assumptions 1 and 2,

0 ≤ κ

1 + κ
· ∥Π∆(herm − f)∥2ΣX︸ ︷︷ ︸

estimation error within range(∆)

≤ Edo(X)(herm)− Edo(X)(hda+erm),

≤ ∥Π∆(herm − f)∥2ΣX
, eq. iff

DA orthogonal
to confounding︷ ︸︸ ︷
∆ ⊥ ΣX,ξ,

where κ := λ+
min

(
Σ−1

X ∆
)
< ∞ represents the lowest positive eigenvalue of the product Σ−1

X ∆.

Proof. We start by first investigating the post-DA confounding vector E
[
(GX)ξ⊤

]
= ΣGX,ξ as

ΣGX,ξ = E
[
(GX)ξ⊤

]
= EX,ξ

[
EG[GX | X, ξ ]ξ⊤

]
(Law of total expectation.)

= EX,ξ

[
EG[GX | X ]ξ⊤

]
(G exogenous =⇒ G ⊥⊥ ξ | X .)

= EX,ξ

[
Xξ⊤

]
= ΣX,ξ. (As E[GX |X ] = X from Assumption 1.)

Now define c := ΣX,ξ = ΣGX,ξ for brevity. The estimation error in Eq. (6) for the baseline ERM
and DA+ERM is governed by the projection of confounding c onto the respective data manifolds as:

Edo(X)(herm) =
∥∥Σ−1

X c
∥∥2
ΣX

= c⊤Σ−1
X c,

Edo(X)(hda+erm) =
∥∥Σ−1

GXc
∥∥2
ΣX

= c⊤Σ−1
GXΣXΣ−1

GXc

Using ΣX = ΣGX −∆ and the Resolvent Identity Σ−1
X −Σ−1

GX = Σ−1
GX∆Σ−1

X , we get:

Edo(X)(hda+erm) = c⊤Σ−1
GX(ΣGX −∆)Σ−1

GXc

= c⊤Σ−1
GXc− c⊤

(
Σ−1

GX∆Σ−1
GX

)
c

=
(
c⊤Σ−1

X c− c⊤Σ−1
GX∆Σ−1

X c
)
− c⊤

(
Σ−1

GX∆Σ−1
GX

)
c

= Edo(X)(herm)− c⊤
(
Σ−1

GX∆Σ−1
X

)
c− c⊤

(
Σ−1

GX∆Σ−1
GX

)
c,

= Edo(X)(herm)

−
0 ≤ first-order reduction︷ ︸︸ ︷

c⊤Σ−1
X

(
ΣXΣ−1

GX∆
)
Σ−1

X c

− c⊤Σ−1
X

(
ΣXΣ−1

GX∆Σ−1
GXΣX

)
Σ−1

X c︸ ︷︷ ︸
0 ≤ second-order reduction

.

Both reduction terms are quadratic forms of the PSD matrix ∆ and are therefore non-negative.

Define δ as their sum. Lemma 6 lower-bounds the first-order term, and by extension lower-bounds δ:

0 ≤ κ

1 + κ
· ∥Π∆(herm − f)∥2ΣX

≤ first order term
(▲)

≤ δ.

Trace the same steps as Lemma 6 to bound δ from above via the simultaneous basis from Lemma 7
(ΣX = S⊤S, ∆ = S⊤DS). Taking z := SΣ−1

X c and eigenvalues Dii of Σ−1
X ∆, we can show

δ =
∑
i

z2i ·
( < 1︷ ︸︸ ︷

Dii

1 +Dii︸ ︷︷ ︸
1st order

+
Dii

(1 +Dii)2︸ ︷︷ ︸
2nd order

)
(▽)

≤
∑

i:Dii>0

1 · z2i = ∥Π∆(herm − f)∥2ΣX
.

Condition for equality. Equality holds for (▲) iff ∆ ⊥ ΣX,ξ, as otherwise the second-order term
is strictly positive. Equality also holds for (▽) iff ∆ ⊥ ΣX,ξ, because that entails zi = 0 whenever
Dii > 0 so that the sums on both sides go to 0.
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A.4 PROOF OF PROPOSITION 2—SHARPER BOUNDS WITH DA

Proposition 2 (sharper bounds with DA). For Assumptions 1 to 3, Lebesgue measure (volume) |·|,

|Hda+pi|
|Hpi|

=

√
detΣX

detΣGX

< 1,
|Hda+pi(x)|
|Hpi(x)|

=
∥x∥Σ−1

GX

∥x∥Σ−1
X

≤ 1, equality iff x ⊥ ∆.

Proof. We compare the geometric properties of the identified sets as characterized by Lemma 2.

Ellipsoid volume (global contraction). Given that the volume of a Σ-ellipsoid ∝ (detΣ)
−1/2, it

immediately follows from Lemmas 1 and 2, and the monotonicity of determinant for SPD matrices:

ΣX ≼ ΣGX =⇒ det(ΣX) < det(ΣGX),

=⇒ det(ΣGX)−1/2 < det(ΣX)−1/2 =⇒ |Hda+pi| < |Hpi|.

Interval width (point-wise contraction). From Lemma 2, the width of the interval Hpi(x) is
simply 2r(Γ) ·∥x∥Σ−1

X
. It then immediately follows from Lemma 1 and definition of the PSD order:

ΣX ≼ ΣGX =⇒ Σ−1
GX ≼ Σ−1

X ,

=⇒ x⊤Σ−1
GXx ≤ x⊤Σ−1

X x =⇒ |Hda+pi(x)| ≤ |Hpi(x)|.

Condition for equality. The interval width is strictly smaller for Hda+pi(x) compared to Hpi(x)
unless the query point x lies in the null space of the difference ∆ := ΣGX −ΣX . From Lemma 7,

Σ−1
GX = (ΣX +∆)

−1
=
(
S⊤S + S⊤DS

)−1
= S−1(I +D)

−1
S−⊤.

When we analyze the ratio of squared norms using the basis z := S−⊤x, it simplifies to:

∥x∥2Σ−1
GX

∥x∥2Σ−1
X

=
z⊤(I +D)−1z

z⊤z
=

∑
i z

2
i (1 +Dii)

−1∑
i z

2
i

.

Since D is non-negative, the term (1 +Dii)
−1

< 1 whenever Dii > 0. Therefore, the ratio is
strictly less than 1 unless z is supported only on indices where Dii = 0. This requires z⊤Dz = 0,
which transforms back to the condition that x must lie in the null-space of ∆ (i.e., x ⊥ ∆).

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

A.5 MISCELLANEOUS SUPPORTING LEMMAS

Lemma 1 (added exogenous variation with DA). Under Assumption 1, G inflates the data variance,

∆ := ΣGX −ΣX ≽ 0, equality iff GX = X a.s.

Proof. Represent Z := GX . Now, by applying the Law of Total Covariance conditioning on X ,

ΣGX = E[Cov(GX |X) ] + Cov(E[GX |X ]). (7)

By Assumption 1 (unbiased group action) we have E[GX |X ] = X , and the second term reduces to

Cov(E[GX |X ]) = Cov(X) = ΣX . (8)

The first term represents the exogenous variation injected by the group action. Let ∆ =
E[Cov(GX |X) ]. Since covariance matrices are PSD by definition, we have ∆ ≽ 0.

Condition for equality. The inequality holds with equality (ΣGX = ΣX ) iff the injected noise
matrix ∆ = 0. Since Cov(GX |X) ≽ 0 almost surely, its expectation is zero if and only if
Cov(GX |X) = 0 almost surely. This implies GX is a deterministic function of X . Given the
unbiased assumption E[GX |X ] = X , this forces GX = X almost surely (i.e., G acts as identity
over support of X). Therefore, for any non-trivial augmentation, the inequality ∆ ≽ 0 is strict.
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Lemma 2 (characterizing the identified set in a linear, Gaussian case). Under Assumptions 2 and 3,

Hpi =
{
h
∣∣∣ ∥∥h− herm

∥∥2
ΣX

≤ r(Γ)
2
}
,

where the ellipsoid radius r(Γ) ≥ 0 depends on the choice of constraint parameters. Furthermore,

Hpi(x) =
[

h⊤
ermx− r(Γ) · ∥x∥Σ−1

X
, h⊤

ermx+ r(Γ) · ∥x∥Σ−1
X

]
.

Proof. Compute the population covariance

Cov(X,Y ) = Cov(X,f⊤X + ξ) = ΣXf +ΣX,ξ,

so the (naı̈ve) ERM estimand satisfies

herm = Σ−1
X Cov(X,Y ) = f +Σ−1

XXΣX,ξ.

Let b := herm − f = Σ−1
XXΣXξ. By the partial-R2 constraint in Assumption 3

R2
ξ|X =

Σ⊤
X,ξΣ

−1
X ΣX,ξ

σ2
ξ

≤ Γ,

we have
Σ⊤

XξΣ
−1
XXΣXξ ≤ σ2

ξΓ.

Substituting ΣXξ = ΣXXb = ΣXX(herm − f) yields

(herm − f)⊤ΣXX(herm − f) ≤ σ2
ξΓ,

which is equivalent to
∥f − herm∥2ΣXX

≤ σ2
ξΓ ≤ Γ0Γ.

Thus the identified set for f is the stated ellipsoid with radius r(Γ)2 = Γ0Γ. The centred Gaussian
assumption guarantees the linear projection interpretation used above is exact.

Lastly, since the identified set is an ellipsoid, maximizing/minimizing a linear functional f⊤x is just
moving along its principal axis in the direction of x, giving us the bounds for Hpi(x).
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Lemma 3 (upper bound on distance of a point to farthest point on ellipsoid). Take ellipsoid O ⊂ Rn

O =
{
x
∣∣∣(x− x0)

⊤
Σ0(x− x0) ≤ r20

}
,

with radius r0, centered at x0 and shape defined by the SPD matrix Σ0 ≻ 0. For some arbitrary
point y ∈ Rn, denote its distance from the farthest point on O as weighted by an SPD Σ ≻ 0 with

Dmax
Σ (y,O) := max

x∈O
∥y − x∥Σ.

This distance is upper bounded as follows, with vmax as the eigenvector corresponding to λmax.

Dmax
Σ (y,O) ≤ ∥y − x0∥Σ + r0 ·

√
λmax

(
ΣΣ−1

0

)
,

equality iff y − x0 ∥ vmax

(
ΣΣ−1

0

)
.

Proof. By triangle inequality

∥y − x∥Σ ≤ ∥y − x0∥Σ + ∥x0 − x∥Σ.
Now, simply maximizing both sides over x ∈ O,

max
x∈O

∥y − x∥Σ ≤ max
x∈O

(∥y − x0∥Σ + ∥x0 − x∥Σ) = ∥y − x0∥Σ +max
x∈O

∥x0 − x∥Σ.

The last term maxx∈O∥x0 − x∥Σ is simply the radius of the ellipsoid in the Σ–norm, which is

equal to r0 ·
√
·λmax

(
ΣΣ−1

0

)
. The result follows.

Condition for equality. The triangle inequality holds with equality iff (y − x0) and (x − x0)
are collinear. The second term is maximized when (x − x0) aligns with the dominant eigenvector
vmax

(
ΣΣ−1

0

)
(the generalized principal axis). Therefore, the total bound is tight iff (y − x0) is

itself an eigenvector corresponding to λmax(ΣΣ−1
0 ), i.e. (y − x0) ∥ vmax

(
ΣΣ−1

0

)
.
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Lemma 4 (upper bound on distance of a point to an ellipsoid). Take the following ellipsoid O ⊂ Rn

O =
{
x
∣∣∣(x− x0)

⊤
Σ0(x− x0) ≤ r20

}
,

with radius r0, centered at x0 and shape defined by the SPD matrix Σ0 ≻ 0. For some arbitrary
point y ∈ Rn, denote its distance from O as weighted by an SPD Σ ≻ 0 with the following notation

Dmin
Σ (y,O) := min

x∈O
∥y − x∥Σ.

This distance is upper bounded by the following closed-form, with v(·) as any arbitrary eigenvector.

Dmin
Σ (y,O) ≤


0, y ∈ O,(
1− r0

∥y − x0∥Σ0

)
∥y − x0∥Σ, y /∈ O,

equality iff y ∈ O, or y − x0 ∥ v
(
ΣΣ−1

0

)
.

Proof. The result for y ∈ O case is immediate. To show the bound for y /∈ O, consider the ray

x(r) := x0 + r · (y − x0), r ∈ [0, 1],

going from the ellipsoid center x0 through y. This ray intersects with the ellipsoid boundary at

r∗ =
r0

∥y − x0∥Σ0

∈ (0, 1),

due to O being a sphere under a Σ0 weighted norm. The point x∗ := x(r∗) lies on the boundary.

⇒ y − x∗ = (1− r∗) · (y − x0).

Since the closest point along an arbitrary ray is never closer than the true minimum, we have

Dmin
Σ (y,O) = min

x∈O
∥y − x∥Σ,

≤ ∥y − x∗∥Σ,
= (1− r∗) · ∥y − x0∥Σ,

=

(
1− r0

∥y − x0∥Σ0

)
∥y − x0∥Σ.

Condition for equality. The condition for y ∈ O case is trivial. For y /∈ O, the minimum
distance from y to the ellipsoid occurs at the boundary intersection of the ray x(r) iff the gradient
of the objective Σ(y−x) is parallel to the gradient of the constraint Σ0(x−x0) at the intersection
point. Since (x− x0) is proportional to (y − x0) along the ray, this optimality condition requires:

Σ(y − x0) ∝ Σ0(y − x0) ⇐⇒ (y − x0) ∝ Σ−1Σ0(y − x0).

Thus, the ray bound is exact if and only if (y − x0) is an (any) eigenvector of Σ−1Σ0.
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Lemma 5 (centroid-radius interaction bound via coupling). For x ∼ NN
(
0,Σ0

)
, consider two con-

stant vectors b1, b2 ∈ Rm (representing centroid displacements) and two symmetric positive definite
matrices Σ1,Σ2 ≻ 0 (representing respective radius metrics). Define the interaction integral:

J(b,Σ) := Ex

[
|b⊤x| ·

√
x⊤Σx

]
.

If (b2,Σ2) has a strictly shorter “whitened” centroid and a strictly narrower radius (PSD-wise), i.e.,

1. Centroid Contraction: ∥b2∥Σ0
< ∥b1∥Σ0

,

2. Radius Contraction: Σ2 ≺ Σ1,

then the interaction term strictly decreases:

J(b2,Σ2) < J(b1,Σ1).

Proof. To evaluate the integral, we transform it into spherically symmetric coordinates (whitening).

Whitening. We can express the data vector x as a linear transformation of a standard normal vector
z ∼ NN (0, Im) such that x = Σ

1/2
0 z. Substituting this into the centroid and radius terms:

Centroid: |b⊤x| = |b⊤Σ1/2
0 z| = |(Σ1/2

0 b)⊤z| = |b̃⊤z|,

Radius:
√
x⊤Σx =

√
z⊤Σ

1/2
0 ΣΣ

1/2
0 z =

√
z⊤Σ̃z,

where b̃ := Σ
1/2
0 b is the whitened centroid, and Σ̃ := Σ

1/2
0 ΣΣ

1/2
0 is the whitened radius metric.

Rotational symmetry (coupling). The expectation is now over the standard normal variable z:

J = Ez

[
|b̃⊤z| ·

√
z⊤Σ̃z

]
.

Since the distribution of z is spherically symmetric (invariant to rotations), the distribution of the dot
product b̃⊤z depends only on the length of b̃. We can conceptually rotate the coordinate system for
each scenario such that b̃ aligns with the first basis vector e1. In this rotated frame, |b̃⊤z| = ∥b̃∥·|z1|.
Crucially, note that ∥b̃∥ = ∥Σ1/2

0 b∥2 =
√

b⊤Σ0b = ∥b∥Σ0
. Thus:

J(b,Σ) = ∥b∥Σ0
· Ez

[
|z1| ·

√
z⊤Σ̃z

]
.

Comparison. We now compare J1 = J(b1,Σ1) and J2 = J(b2,Σ2).

J2 = ∥b2∥Σ0
· Ez

[
|z1| ·

√
z⊤Σ̃2z

]
< ∥b1∥Σ0

· Ez

[
|z1| ·

√
z⊤Σ̃2z

]
(by centroid contraction)

< ∥b1∥Σ0
· Ez

[
|z1| ·

√
z⊤Σ̃1z

]
(by radius contraction)

= J1.

The second inequality holds because Σ2 ≺ Σ1 implies Σ̃2 ≺ Σ̃1, so z⊤Σ̃2z < z⊤Σ̃1z for all
z ̸= 0. Since |z1| is non-negative and not always zero, the expectation strictly decreases.
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Lemma 6 (sandwich bounds for SPD-PSD weighted norms). For n × n matrices A ≻ 0, B ≽ 0,
denote the pseudo-inverse as B†, and ΠB := B†B projects onto range(B). Then, for any x ∈ Rn,

κ

1 + κ︸ ︷︷ ︸
shrinkage factor ≤1

·∥ΠBx∥2A ≤ x⊤A(A+B)
−1

Bx ≤ ∥ΠBx∥2A,

for bounded minimum positive eigenvalue κ := λ+
min

(
A−1B

)
< ∞. Equality holds for upper

bound iff x ⊥ B, and lower bound iff ΠBx is entirely in eigen-space of A−1B corresponding to κ.

Proof. From Lemma 7, we have A = S⊤S and B = S⊤DS for invertible S and diagonal D ≽ 0.
Note that D are eigenvalues of A−1B by cyclic permutation invariance (i.e., λ(AB) = λ(BA)).

Define the change of basis z := Sx. Then x = S−1z, and

x⊤A(A+B)−1Bx = x⊤S⊤S(S⊤S + S⊤DS)−1S⊤DSx

= x⊤S⊤S(S⊤(I +D)S)−1S⊤DSx

= x⊤S⊤SS−1(I +D)−1S−⊤S⊤DSx

= x⊤S⊤(I +D)−1DSx

= z⊤(I +D)−1Dz

=
∑
i

Dii

1 +Dii
z2i .

Similarly, for the projected norm, noting that ΠB = S−1D†DS and ∥x∥2A = ∥Sx∥22:

∥ΠBx∥2A =
∥∥S(S−1D†DS

)
x
∥∥2
2
=
∥∥D†Dz

∥∥2
2
=

∑
i:Dii>0

z2i .

Upper bound. Since Dii

1+Dii
< 1 for all Dii > 0, the following inequality is strict for any zi ̸= 0.

x⊤A(A+B)−1Bx =
∑
i

Dii

1 +Dii
z2i ≤

∑
i

z2i = ∥ΠBx∥2A.

And equality holds iff zi = 0 for all active indices, which implies ΠBx = 0 (i.e., x ⊥ B).

Lower Bound. The function f(d) = d
1+d is monotonically increasing for d ≥ 0. Restricting our

attention to the support of the vector (indices where Dii > 0), we define κ = min{Dii : Dii > 0}.
It follows that for every active index, Dii

1+Dii
≥ κ

1+κ . Summing over the support:∑
i:Dii>0

Dii

1 +Dii
z2i ≥

∑
i:Dii>0

κ

1 + κ
z2i =

κ

1 + κ
∥ΠBx∥2A.

For the inequality to become an equality, we require Dii

1+Dii
= κ

1+κ for every index i where zi ̸= 0.
This implies Dii = κ for all contributing dimensions. Geometrically, this means the vector x (after
projection) must align only with the directions associated with the minimum eigenvalue κ.
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Lemma 7 (SPD, PSD joint denationalization via congruence Akbar et al. (2025)). For any n × n
matrices A ≻ 0, B ≽ 0, there exists an n× n invertible S and non-negative diagonal D such that

A = S⊤S, B = S⊤DS.

Proof. See (Akbar et al., 2025, Lem. 2), cf. (Horn & Johnson, 1985, Thm. 7.6.4, p. 465).

USE OF LARGE LANGUAGE MODELS
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