

000 001 SYMMETRY-CONSTRAINED 002 CAUSAL PARTIAL IDENTIFICATION 003 004

005 **Anonymous authors**
006 Paper under double-blind review
007
008
009

010 ABSTRACT 011

012 We present a novel framework for using knowledge of data symmetries to sharpen
013 bounds in causal *partial identification (PI)*. The causal effect of the treatment X
014 on outcome Y is generally not identifiable from observational data alone if their
015 common causes, also known as confounders, are unobserved. PI entails estimating
016 bounds on such treatment effects by solving a constrained optimization problem
017 that encodes different assumptions imposed on data generation. PI has use in
018 many application domains where such bounds are sufficient to inform policy de-
019 cisions, even if the treatment effect itself is not identifiable. We show that knowl-
020 edge of symmetries in data generation—formalized as invariance under transfor-
021 mation groups—provides additional constraints that tighten these bounds. We
022 operationalize this insight through two approaches: (i) adding explicit invariance
023 error constraints to existing PI methods, and (ii) applying symmetry-preserving
024 *data augmentation (DA)* as a pre-processing step. Under a linear Gaussian model,
025 we show that the later yields bounds that provably valid (containing the true causal
026 effect), sharper (smaller identified sets), and more robust (lower worst-case error).
027 The key mechanism being that randomized symmetry transformations introduce
028 exogenous variation in X that cannot be attributed to confounding, thereby reduc-
029 ing ambiguity in the identified set. Experiments on synthetic and real data validate
030 our approach. More broadly, our findings establish known data symmetries—
031 ubiquitously employed in DA for variance reduction—can be repurposed as a
032 principled tool for causal inference when point-identification is impossible.
033
034

035 1 INTRODUCTION 036

037 The problem of regression in machine learning aims to fit a model to observational (X, Y) data that
038 predicts outcome Y from treatment X . Improving the generalization of such predictors to unlabeled
039 samples of X often requires regularization techniques like *data augmentation (DA)* (Vapnik, 1998;
040 Shorten & Khoshgoftaar, 2019; Lyle et al., 2020). However, such predictive models are generally
041 not causal: the statistical relationship between X and Y may be driven by unobserved common
042 causes, i.e. confounders, rather than the true influence of X on Y . The gold standard for eliminating
043 confounding is direct intervention, i.e. explicit randomization of X during data generation (Peters
044 et al., 2017; Pearl, 2009). Since these are often inaccessible, a common workaround is to correct for
045 confounding via auxiliary variable (Zhang et al., 2023). However, these too may be insufficient to
046 recover the causal effect (Kilbertus et al., 2020), or scarce in many applications (Akbar et al., 2025).
047

048 In such cases, identifying the true causal effect is not possible from observational data alone. *Partial*
049 *identification (PI)* offers a principled alternative by computing bounds guaranteed to contain the true
050 effect (Padh et al., 2023)—often sufficient for decision-making even without point-identification..
051 These bounds are obtained by solving an optimization problem whose constraints encode assump-
052 tions about how the data were generated. The informativeness of the bounds depends entirely on the
053 strength and structure of these constraints.

054 This paper introduces known data symmetries—formalized as invariance under transformations of
055 X —as a new source of constraints for PI. Such symmetries are ubiquitous in scientific and causal
056 modeling, ranging from geometric stabilities in physical systems (Bronstein et al., 2021; Satorras
057 et al., 2022) to semantic invariance in natural language (Veitch et al., 2021a) and permutation in-

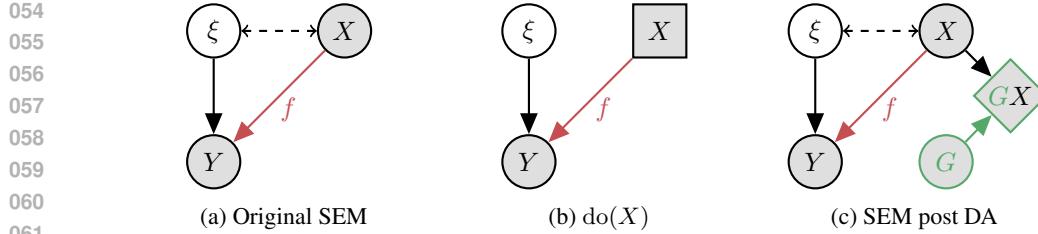


Figure 1: Graphs of respective SEMs. (a) The original SEM from Eq. (1) with confounded (X, Y) . (b) The original SEM post intervention on X . (c) The original SEM post DA application.

variance in exchangeable data (Veitch et al., 2021b). We demonstrate that enforcing this structural knowledge restricts the set of plausible causal hypotheses, effectively pruning the identified set. We operationalize this insight in two complementary ways:

1. **Explicit constraints via invariance error (Section 4.1):** we propose bounding the invariance error under specified transformations as an explicit constraint for improving PI.
2. **Implicit constraints via DA (Section 4.2):** we show the effectiveness of a simple symmetry-preserving DA based pre-processing step before running off-the-shelf PI solvers.

The first approach gives strict improvement in PI by construction, is amenable to modern Monte Carlo, gradient-based solvers, is not restricted to any specific hypothesis class and allows tunability to easily handle symmetry miss-specification. The later provides a cheap tool that can be composed with black-box PI solvers, offering guarantees under the linear Gaussian regime with well-specified symmetries. Our methods are simple to apply, compatible with existing solvers, and re-purpose the rather pervasive ML tool of data symmetries as a practical approach for strengthening causal conclusions when point-identification not possible.

2 PRELIMINARIES

2.1 STATISTICAL VS. CAUSAL INFERENCE

Consider random treatment X , outcome Y taking values in $\mathcal{X} \subseteq \mathbb{R}^m$, $\mathcal{Y} \subseteq \mathbb{R}$ respectively. The function $f \in \mathcal{H} := \{h : \mathcal{X} \rightarrow \mathcal{Y}\}$ defines their causal relationship via a *structural equation model (SEM)*

$$Y = f(X) + \xi, \quad \mathbb{E}[\xi] = 0. \quad (1)$$

We want to estimate f given a dataset $\mathcal{D} := \{(\mathbf{x}_i, y_i)\}_{i=0}^n$ of n samples from the distribution $\mathbb{P}_{X,Y}$.

With the assumption $X \perp\!\!\!\perp \xi$, we have $\mathbb{E}[Y | X = \mathbf{x}] = f(\mathbf{x})$ in Eq. (1). *Statistical inference* entails identifying precisely the Bayes optimal predictor $\mathbb{E}[Y | X = \mathbf{x}]$ from \mathcal{D} by minimizing an empirical version of the *statistical risk* over hypotheses $h \in \mathcal{H}$ for some proper, convex loss $\ell : \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}_+$,

$$R_{\text{erm}}(h) := \mathbb{E}[\ell(Y, h(X))]. \quad (2)$$

Then, for a sufficiently rich hypothesis class, the minimizer h_{erm} gives an unbiased estimation of f .

However, the residual ξ in Eq. (1) may generally be correlated with X , i.e., $\mathbb{E}[\xi | X] \neq 0$, so that the conditional $\mathbb{E}[Y | X = \mathbf{x}]$ now gives a biased estimate of $f(\mathbf{x})$ (Pearl, 2009; Peters et al., 2017). This correlation arises due to unobserved common causes of X and Y , known as *confounders*. We say that X and Y are confounded and refer to the resulting bias as the *confounding bias* (Pearl, 2009). *Causal inference* entails adjusting for this bias to identify f , or at the very least account for it by finding bounds on f should identification not be possible. Both approaches are outlined below.

2.2 INTERVENTION FOR CAUSAL EFFECT IDENTIFICATION

We can make X and the residual ξ uncorrelated via an *intervention* $\text{do}(X := X')$ that explicitly sets X to some independently sampled X' in Eq. (1) during data generation. The induced distribution, referred to as the *interventional distribution*, is represented by $\mathbb{P}_{X,Y}^{\text{do}(X := X')}$. We use the shorthand

108 notation $\text{do}(X)$ for an intervention where $X' \sim \mathbb{P}_X$, under which the objective from Eq. (2) now
 109 defines the *causal risk* (Kania & Wit, 2023; Vankadara et al., 2022; Janzing & Schölkopf, 2018b) as
 110

$$R_{\text{erm}}^{\text{do}(X)}(h) := \mathbb{E}^{\text{do}(X)}[\ell(Y, h(X))]. \quad (3)$$

112 The target estimand of Eq. (3) is the *average treatment effect (ATE)* $\mathbb{E}^{\text{do}(X:=\mathbf{x})}[Y | X = \mathbf{x}]$ which
 113 equals $f(\mathbf{x})$ for the SEM under consideration in Eq. (1). Minimizers of Eq. (3) therefore give an
 114 unbiased estimation of f . To better capture the *estimation error* for a candidate hypothesis $h \in \mathcal{H}$,
 115 we use the *causal excess risk* (Vankadara et al., 2022) by removing irreducible noise from Eq. (3) as
 116

$$E^{\text{do}(X)}(h) := R_{\text{erm}}^{\text{do}(X)}(h) - R_{\text{erm}}^{\text{do}(X)}(f).$$

117 Since interventions are often inaccessible for computing the risk Eq. (3), estimating f usually relies
 118 on access to the full joint distribution \mathbb{P} of (X, Y, ξ) via *back-door adjustment* (Xu & Gretton, 2022)

$$h_{\text{adj}}^{\mathbb{P}}(\mathbf{x}) := \mathbb{E}_{\xi}[\mathbb{E}[Y | X = \mathbf{x}, \xi]], \quad (X, Y, \xi) \sim \mathbb{P}.$$

121 2.3 PARTIAL IDENTIFICATION AND SENSITIVITY ANALYSIS

123 For unobserved noise ξ , identification of f is generally not possible from $\mathbb{P}_{X,Y}$ alone. Nevertheless,
 124 given assumptions on the data generating process in Eq. (1), we can do *partial identification (PI)*
 125 (Padh et al., 2023) of f by considering all the joint distributions \mathbb{Q} consistent with said assumptions,

$$\mathcal{Q}_{\text{pi}}(\mathbb{P}_{X,Y}) := \left\{ \mathbb{Q} \in \mathcal{C}_{\text{pi}} \mid \mathbb{Q}_{X,Y} = \mathbb{P}_{X,Y} \right\},$$

126 where the constraint set \mathcal{C}_{pi} encodes our assumptions. If correctly specified, $\mathbb{P} \in \mathcal{C}_{\text{pi}}$ and the follow-
 127 ing set \mathcal{H}_{pi} of candidate hypotheses contains the true solution f , or the interval $\mathcal{H}_{\text{pi}}(\mathbf{x})$ holds $f(\mathbf{x})$,

$$\mathcal{H}_{\text{pi}} := \left\{ h_{\text{adj}}^{\mathbb{Q}} \mid \mathbb{Q} \in \mathcal{Q}_{\text{pi}} \right\}, \quad \mathcal{H}_{\text{pi}}(\mathbf{x}) := \left\{ h_{\text{adj}}^{\mathbb{Q}}(\mathbf{x}) \mid \mathbb{Q} \in \mathcal{Q}_{\text{pi}} \right\},$$

128 where \mathcal{Q}_{pi} is shorthand for $\mathcal{Q}_{\text{pi}}(\mathbb{P}_{X,Y})$. Computing the interval $\mathcal{H}_{\text{pi}}(\mathbf{x})$ at \mathbf{x} is often more practical
 129 than characterizing the set \mathcal{H}_{pi} , since it amounts to solving two constrained optimization problems as

$$\mathcal{H}_{\text{pi}}(\mathbf{x}) = \left[\min_{\mathbb{Q} \in \mathcal{Q}_{\text{pi}}} h_{\text{adj}}^{\mathbb{Q}}(\mathbf{x}), \max_{\mathbb{Q} \in \mathcal{Q}_{\text{pi}}} h_{\text{adj}}^{\mathbb{Q}}(\mathbf{x}) \right]. \quad (4)$$

130 In either case, we want the identified sets to (i) contain the true solution, (ii) be as small as possible.
 131

132 The constraint set may also be parameterized as $\mathcal{C}_{\text{pi}}(\boldsymbol{\Gamma})$ to conduct *sensitivity analyses* (Frauen et al.,
 133 2024) by varying parameters $\boldsymbol{\Gamma}$ to see how \mathcal{H}_{pi} , $\mathcal{H}_{\text{pi}}(\mathbf{x})$ evolve as assumptions are relaxed/tightened.

134 Lastly, since we are now discussing hypothesis sets, we define the two appropriate evaluation metrics

$$E_{\text{approx}}^{\text{do}(X)}(\mathcal{Q}_{\text{pi}}) := \min_{\mathbb{Q} \in \mathcal{Q}_{\text{pi}}} E^{\text{do}(X)}\left(h_{\text{adj}}^{\mathbb{Q}}\right), \quad E_{\text{worst}}^{\text{do}(X)}(\mathcal{Q}_{\text{pi}}) := \max_{\mathbb{Q} \in \mathcal{Q}_{\text{pi}}} E^{\text{do}(X)}\left(h_{\text{adj}}^{\mathbb{Q}}\right).$$

135 The *approximation error* $E_{\text{approx}}^{\text{do}(X)}(\mathcal{Q}_{\text{pi}})$ measures how far the target f is from \mathcal{H}_{pi} (Brown & Ali,
 136 2024), and the *worst-case excess risk* $E_{\text{worst}}^{\text{do}(X)}(\mathcal{Q}_{\text{pi}})$ upper bounds the performance of the identified
 137 set \mathcal{H}_{pi} relative to the target f . Similarly, $\mathcal{H}_{\text{pi}}(\mathbf{x})$ is evaluated using $E_{\text{approx}}^{\text{do}(\mathbf{x})}(\mathcal{Q}_{\text{pi}})$ and $E_{\text{worst}}^{\text{do}(\mathbf{x})}(\mathcal{Q}_{\text{pi}})$.
 138

139 **Choice of constraints.** The nature and construction of \mathcal{C}_{pi} often depends on domain knowledge.
 140 Popular approaches involve bounding the spurious correlation between X, Y , including the sensitivity
 141 model by Rosenbaum (2002) which parameterizes the strength of unmeasured confounding
 142 through odds ratios, its generalization of the Marginal Sensitivity Model (MSM) by Tan (2006)
 143 that does the same using propensity scores and the partial R-squared approach by Cinelli & Hazlett
 144 (2020) bounds the proportion of variance explained by unobserved confounders. More recently, Fan
 145 et al. (2024); Guo et al. (2022) formulated the PI problem as *robust optimization (RO)* over \mathcal{Q}_{pi}
 146 constructed as a total variation ball around the observational distribution $\mathbb{P}_{X,Y}$, and Meresht et al.
 147 (2022) similarly uses Wasserstein constraints. An equivalent approach to modeling the confounding
 148 is to instead model the random function $f_{\xi}(\cdot) := f(\cdot) + \xi$ itself, also known as the *response function*
 149 (Padh et al., 2023). Hu et al. (2021) modeled these using generative adversarial networks (GANs)
 150 to then match $\mathbb{P}_{X,Y}$ in distribution. Most of these methods can also leverage auxiliary variables
 151 in addition to X, Y for imposing constraints in the form of conditional independences to sharpen
 152 bounds. Of note is the instrumental variable (IV) based PI by Balke & Pearl (1997) for when ξ arbit-
 153 rarily influences Y instead of the additive model in Eq. (1). Modern neural-network based variants
 154 for continuous, high-dimensional treatments and/or IVs are explored by Schweisthal et al. (2025);
 155 Kilbertus et al. (2020); Hu et al. (2021); Padh et al. (2023); Meresht et al. (2022); Gunsilius (2020).
 156

162 2.4 DATA SYMMETRIES AND INVARIANCE
163

164 For finite samples, the technique of *data augmentation* (DA) is used to reduce estimation variance
165 (Lyle et al., 2020; Chen et al., 2020) in statistical inference. This is achieved by applying random
166 transformations $G \sim \mathbb{P}_G$ to the data, generating multiple transformed samples $(G\mathbf{x}_i, y_i)$ from each
167 original sample $(\mathbf{x}_i, y_i) \in \mathcal{D}$, thereby increasing variability in the data for statistical risk evaluation,

$$168 \quad R_{\text{da+erm}}(h) := \mathbb{E}[\ell(Y, h(GX))]. \quad (5)$$

170 In this work we restrict ourselves to DA with respect to which f is invariant (Lyle et al., 2020; Chen
171 et al., 2020). The action of a group \mathcal{G} is a mapping $\alpha : \mathcal{X} \times \mathcal{G} \rightarrow \mathcal{X}$ compatible with the group
172 operation. Writing $\mathbf{g}\mathbf{x} := \alpha(\mathbf{x}, \mathbf{g})$ as shorthand, we say that f is *invariant* under \mathcal{G} (or \mathcal{G} -*invariant*) if

$$173 \quad f(\mathbf{g}\mathbf{x}) = f(\mathbf{x}), \quad \forall (\mathbf{g}, \mathbf{x}) \in \mathcal{G} \times \mathcal{X}.$$

175 Group \mathcal{G} has a (unique) normalized Haar measure, \mathbb{P}_G the corresponding distribution defined over it.

176 Of course one needs to have prior knowledge about the symmetries of f to construct such a DA.
177 We argue that the popularity of this modeling assumption in the DA and invariance literature (Lyle
178 et al., 2020; Chen et al., 2020) is precisely because such symmetries are already established in many
179 application domains. For example, when classifying images of cats and dogs we already know that
180 whatever the true labeling function may be, it would certainly be invariant to rotations on the images.
181 G would then represent the random rotation angle, whereas $G\mathbf{x}$ would be the rotated image \mathbf{x} .

182 While DA is canonically used to mitigate finite-sample estimation variance, our focus is primarily on
183 the infinite-sample setting, and we present Eq. (5) and subsequent theoretical results in that context.
184 Nonetheless, increasing sample size via DA also bears on our work, a point we shall briefly discuss.
185 Section 4.2 also makes the following assumption which characterizes many standard DA operations.

186 **Assumption 1** (unbiased group action). The group action $G \sim \mathbb{P}_G$ is identity-centered, meaning

$$188 \quad \mathbb{E}[G\mathbf{x}] = \mathbf{x}, \quad \forall \mathbf{x} \in \mathcal{X}.$$

190 **Lemma 1** (added exogenous variation with DA). *Under Assumption 1, G inflates the data variance,*

$$192 \quad \Delta := \Sigma_{GX} - \Sigma_X \succcurlyeq \mathbf{0}, \quad \text{equality iff } GX = X \text{ a.s.}$$

193 *Proof.* See Appendix A.5 for the proof. □

196 3 CAUSAL IMPLICATIONS OF DATA SYMMETRIES
197

198 Crucially, the random group action G from Lemma 1 introduces additional *exogenous* variation in
199 X that is independent of other system variables. Consequently, Akbar et al. (2025) showed that for a
200 \mathcal{G} -invariant target function f , the transformation GX simulates a *soft* intervention on X —perturbing
201 X to weaken the confounding association $X \leftrightarrow \xi$ while preserving the causal mechanism $X \rightarrow Y$.
202 To formalize how this improves point estimation of f , Akbar et al. (2025) employs the following
203 linear version of Eq. (1), which also serves as the basis for our subsequent PI analysis in Section 4.2.

204 **Assumption 2** (a linear, Gaussian SEM). The SEM Eq. (1) is centered, joint Gaussian with $\mathbf{f} \in \mathbb{R}^m$,

$$206 \quad Y = \mathbf{f}^\top \mathbf{X} + \xi.$$

208 In this setting, the causal estimation error (excess risk) under a squared loss takes the following form:

$$210 \quad E^{\text{do}(X)}(\mathbf{h}) = \|\mathbf{h} - \mathbf{f}\|_{\Sigma_X}^2, \quad E^{\text{do}(\mathbf{x})}(\mathbf{h}) = (\mathbf{h}^\top \mathbf{x} - \mathbf{f}^\top \mathbf{x})^2, \quad (6)$$

212 where we overload the notation $\text{do}(\mathbf{x})$ (as opposed to $\text{do}(X)$) to meant the *hard* intervention
213 $\text{do}(X := \mathbf{x})$, i.e. fixing X to a constant \mathbf{x} during data generation. Similar formulations have been
214 used to measure causal error (Vankadara et al., 2022; Kania & Wit, 2023; Akbar et al., 2025) or
215 quantify confounding strength (Janzing, 2019; Janzing & Schölkopf, 2018a;b). (Akbar et al., 2025)
established the following result, which directly bears on our work:

216 **Proposition 1** (estimation with DA (Akbar et al. (2025) lifted)). *For \mathcal{G} -inv. \mathbf{f} , Assumptions 1 and 2,*

$$218 \quad 0 \leq \frac{\kappa}{1+\kappa} \cdot \underbrace{\|\mathbf{\Pi}_{\Delta}(\mathbf{h}_{\text{erm}} - \mathbf{f})\|_{\Sigma_X}^2}_{\text{estimation error within range}(\Delta)} \leq E^{\text{do}(X)}(\mathbf{h}_{\text{erm}}) - E^{\text{do}(X)}(\mathbf{h}_{\text{da+erm}}), \quad \text{DA orthogonal to confounding}$$

$$220 \quad \leq \|\mathbf{\Pi}_{\Delta}(\mathbf{h}_{\text{erm}} - \mathbf{f})\|_{\Sigma_X}^2, \quad \text{eq. iff} \quad \overbrace{\Delta \perp \Sigma_{X,\xi}}^{\Delta \perp \Sigma_{X,\xi}},$$

222 where $\kappa := \lambda_{\min}^+(\Sigma_X^{-1}\Delta) < \infty$ represents the lowest positive eigenvalue of the product $\Sigma_X^{-1}\Delta$.

223 *Proof.* See Appendix A.3, cf. (Akbar et al., 2025, Thm. 3) for the proof. \square

225 Essentially, for \mathcal{G} -invariant \mathbf{f} , DA *dominates* ERM on causal estimation—performing strictly better
 226 iff it aligns with the confounding within X , but never worse. Note that in Proposition 1, for the
 227 “large DA” regime, which we define as $\kappa \rightarrow \infty$, the lower-bound approaches the upper-bound,
 228 which is simply the sq.-norm of the *projection* $\mathbf{\Pi}_{\Delta}(\cdot)$ of estimation bias $(\mathbf{h}_{\text{erm}} - \mathbf{f})$ onto $\text{range}(\Delta)$.
 229 This confirms that identification is generally not possible in this setting. Therefore the principled
 230 approach is to undertake PI of \mathbf{f} instead of the point-estimation approach by Akbar et al. (2025).

231 This motivates our current work, where we leverage knowledge of symmetries in data generation to
 232 improve partial identification and/ or sensitivity analysis of f , as discussed in the following section.

234 4 SYMMETRY-CONSTRAINED PARTIAL IDENTIFICATION

236 Our objective is to leverage symmetry knowledge to restrict the identified sets \mathcal{H}_{pi} and $\mathcal{H}_{\text{pi}}(\mathbf{x})$. We
 237 give two strategies to operationalize this: (i) integrating an explicit invariance error constraint into
 238 the optimization, and (ii) inducing implicit regularization through data augmentation pre-processing.

240 4.1 EXPLICIT CONSTRAINT WITH INVARIANCE ERROR

242 We start off by considering the most obvious approach to incorporate symmetry knowledge into PI—
 243 add an explicit invariance error constraint to any baseline PI method defined by a constraint set \mathcal{C}_{pi} ,

$$245 \quad E_{\text{inv}}(h) := \mathbb{E} \left[\|h(X) - h(GX)\|^2 \right],$$

$$246 \quad \mathcal{Q}_{\text{inv+pi}}(\mathbb{P}_{X,Y}) := \left\{ \mathbb{Q} \in \mathcal{C}_{\text{pi}} \mid \mathbb{Q}_{X,Y} = \mathbb{P}_{X,Y}, \quad E_{\text{inv}}(h_{\text{adj}}^{\mathbb{Q}}) \leq \epsilon \right\}.$$

248 **Remark 1** (sharper, robust bounds with invariance error). By construction, subset inclusion holds:

$$250 \quad \mathcal{H}_{\text{inv+pi}} \subseteq \mathcal{H}_{\text{pi}}, \quad \mathcal{H}_{\text{inv+pi}}(\mathbf{x}) \subseteq \mathcal{H}_{\text{pi}}(\mathbf{x}).$$

251 Consequently, this guarantees that the volume of the identified set and the corresponding worst-
 252 case excess risk does not increase. Note that due to this same set inclusion, the approximation
 253 error generally cannot decrease, and may even potentially increase if \mathcal{C}_{pi} does not contain the true
 254 distribution \mathbb{P} . For $\epsilon = 0$, these metrics are equal to “large DA” regime results in Sections 3 and 4.2.

256 Nevertheless, whenever the baseline PI constraints \mathcal{C}_{pi} are valid and $E_{\text{inv}}(f) \leq \epsilon$ holds, $\mathcal{Q}_{\text{inv+pi}}$
 257 guarantees validity. Furthermore, the parameter ϵ enables sensitivity analysis, allowing us to inspect
 258 how the bounds evolve as we vary the assumed invariance error in our choice of transformations G .
 259 Of course we can similarly use other formulations for E_{inv} , such as ones stated in Yang et al. (2019),
 260 or restrict ourselves to a hypothesis class that follows our symmetry by design (Cohen & Welling,
 261 2016). However, the later may be restrictive in terms of compatibility with standard PI methods.

262 While our experiments discuss settings where Eq. (4) for $\mathcal{H}_{\text{inv+pi}}(\mathbf{x})$ can be solved via convex pro-
 263 gramming, we emphasize that this explicit constraint formulation is fully compatible with modern
 264 deep learning-based PI. Since the functional E_{inv} is differentiable and amenable to Monte Carlo
 265 evaluation, it can be readily incorporated as a regularizer in augmented Lagrangian and/or gradient-
 266 based solvers (Padh et al., 2023; Kilbertus et al., 2020; Meresht et al., 2022; Hu et al., 2021).

267 Despite this compatibility, incorporating the invariance error constraint still requires modifying the
 268 solver logic or objective function. This imposes an implementation burden and precludes the use of
 269 specialized or “black-box” PI software where the internal optimization is fixed. This limitation mo-
 270 tivates our second approach—a simple data pre-processing strategy that implicitly impose symmetry

270 constraints by simply feeding augmented data into standard off-the-shelf PI methods. Furthermore,
 271 when modeling complex, high-dimensional data, enforcing non-convex invariance constraints dur-
 272 ing optimization is often more expensive and notoriously unstable (Schweisthal et al., 2025; Padh
 273 et al., 2023) as opposed to a simple data pre-processing step.
 274

275 4.2 IMPLICIT CONSTRAINT WITH DA PRE-PROCESSING

277 We draw inspiration from IV methods, where “strong” instruments—those inducing significant ex-
 278ogenous variation in X —are known to yield sharper identification bounds compared to weak instru-
 279 ments (Kilbertus et al., 2020; Padh et al., 2023). This motivates our central inquiry in this section:

280 *Can the synthetic exogenous variation introduced by DA similarly sharpen PI?*

282 As with Akbar et al. (2025), which we extend now to the PI setting, the fundamental mechanism for
 283 PI sharpening is Lemma 1. Our main insight into why DA aids PI is summarized as follows:

- 284 (i) **Statistical Efficiency:** Most straightforwardly, DA grows effective data size, quelling sampling
 285 variation and finite-sample errors; key sources of uncertainty in PI (Imbens & Manski, 2004).
- 286 (ii) **Sharper Bounds:** DA adds variation in X that is explicitly exogenous, and therefore cannot
 287 be attributed to confounding. This reduces ambiguity in PI, which leads to sharper bounds.
- 288 (iii) **Robust Bounds:** By perturbing spurious features, DA reduces confounding bias, centering and
 289 contracting the PI bounds around the true solution. This directly minimizes the worst-case error.
- 290 (iv) **Valid Bounds:** Crucially, \mathcal{G} -invariance of f guarantees valid bounds with DA if \mathcal{C}_{pi} is valid.

292 We elaborate these via analysis of the linear model from Assumption 2. But first we explicitly define
 293 the composition $\mathcal{Q}_{\text{da+pi}}$ of DA and PI, as well as the specific PI model that we use for our analysis,

$$294 \mathcal{Q}_{\text{da+pi}}(\mathbb{P}_{X,Y}) := \mathcal{Q}_{\text{pi}}(\mathbb{P}_{GX,Y}).$$

295 **Assumption 3** (a bounded confounding sensitivity model). Consider the following constraint set.

$$297 \mathcal{C}_{\text{pi}}(\Gamma) := \left\{ \mathbb{Q} = \mathcal{N}(\mathbf{0}, \cdot) \mid \frac{\text{Var}(\mathbb{E}[\xi | X])}{\text{Var}(\xi)} \leq \Gamma, \quad \text{Var}(\xi) \leq \Gamma_0 \right\}, \quad \Gamma := [\Gamma_0, \Gamma]^{\top},$$

299 where *confounding strength* $\Gamma \geq 0$ determines our assumption on the variation in ξ explained by X .

300 Assumption 3 adopts the widely used partial R-squared sensitivity model Cinelli & Hazlett (2019),
 301 itself a generalization of the classic Rosenbaum (2002). While we employ this model in our analyses,
 302 we do not necessarily restrict ourselves to it—under the linear Gaussian setting of Assumption 2,
 303 several families of PI and sensitivity models reduce to ellipsoidal constraints equivalent to the form:

304 **Lemma 2** (characterizing the identified set in a linear, Gaussian case). *Under Assumptions 2 and 3,*

$$306 \mathcal{H}_{\text{pi}} = \left\{ \mathbf{h} \mid \|\mathbf{h} - \mathbf{h}_{\text{erm}}\|_{\Sigma_X}^2 \leq r(\Gamma)^2 \right\},$$

308 where the ellipsoid radius $r(\Gamma) \geq 0$ depends on the choice of constraint parameters. Furthermore,

$$310 \mathcal{H}_{\text{pi}}(\mathbf{x}) = \left[\mathbf{h}_{\text{erm}}^{\top} \mathbf{x} - r(\Gamma) \cdot \|\mathbf{x}\|_{\Sigma_X^{-1}}, \quad \mathbf{h}_{\text{erm}}^{\top} \mathbf{x} + r(\Gamma) \cdot \|\mathbf{x}\|_{\Sigma_X^{-1}} \right].$$

312 *Proof.* See Appendix A.5 for the proof. □

313 Our results thus carry broader implications for PI and sensitivity analysis, as we discuss in Section 7.

315 4.2.1 BETTER BOUNDS WITH DATA AUGMENTATION

316 First and foremost, we investigate if the post-DA bounds are, in some way, better than the baseline
 317 PI bounds. That is, if this exercise is useful at all. We present two results to support this claim.

319 **Proposition 2** (sharper bounds with DA). *For Assumptions 1 to 3, Lebesgue measure (volume) $|\cdot|$,*

$$320 \frac{|\mathcal{H}_{\text{da+pi}}|}{|\mathcal{H}_{\text{pi}}|} = \sqrt{\frac{\det \Sigma_X}{\det \Sigma_{GX}}} < 1, \quad \frac{|\mathcal{H}_{\text{da+pi}}(\mathbf{x})|}{|\mathcal{H}_{\text{pi}}(\mathbf{x})|} = \frac{\|\mathbf{x}\|_{\Sigma_{GX}^{-1}}}{\|\mathbf{x}\|_{\Sigma_X^{-1}}} \leq 1, \quad \text{equality iff} \quad \mathbf{x} \perp \Delta.$$

323 *Proof.* See Appendix A.4 for the proof. □

Proposition 2 states that the hypothesis set $\mathcal{H}_{\text{da+pi}}$ is strictly smaller than the baseline \mathcal{H}_{pi} . The same holds true for the intervals $\mathcal{H}_{\text{da+pi}}(\mathbf{x})$ vs. $\mathcal{H}_{\text{pi}}(\mathbf{x})$, unless the query point \mathbf{x} is orthogonal to the variation induced by DA¹, in which case the size of the interval remains the same. Importantly, Proposition 2 shows that this increase in “sharpness” is a direct consequence of the added variation from of DA in Lemma 1. And because this variation is exogenous and independent of ξ , our hypothesis/assumption about the strength of confounding Γ in the system should remain the same. This combination of increased data variation, but same confounding assumptions is what reduces ambiguity in PI, resulting in the sharper bounds of Proposition 2. Lastly, in the “large DA” regime, the ellipsoid $\mathcal{H}_{\text{da+pi}}$ collapses onto $\text{null}(\Delta)$, and the interval width $|\mathcal{H}_{\text{da+pi}}(\mathbf{x})|$ becomes $\|\Pi_{\Delta}^{\perp} \mathbf{x}\|_{\Sigma_{\mathbf{x}}^{-1}}^2$. Meaning, the DA removes *all but* the uncertainty that it cannot “see” within its range(Δ).

Although smaller identified sets/ intervals are in general desirable, size alone may not be the most appropriate measure of “goodness” of the identified set. The next result is based on worst-case error.

Theorem 1 (robust bounds with DA). *For \mathcal{G} -inv. \mathbf{f} , Assumptions 1 to 3, $\kappa := \lambda_{\max}(\Sigma_{\mathbf{X}} \Sigma_{GX}^{-1}) \leq 1$,*

$$\begin{aligned} E_{\text{worst}}^{\text{do}(\mathbf{X})}(\mathcal{Q}_{\text{pi}}) &= \left(\|\mathbf{h}_{\text{erm}} - \mathbf{f}\|_{\Sigma_{\mathbf{X}}} + r(\Gamma) \right)^2, \\ &\stackrel{(i), (ii)}{\geq} \left(\underbrace{\|\mathbf{h}_{\text{da+erm}} - \mathbf{f}\|_{\Sigma_{\mathbf{X}}}}_{\text{lower estimation error}} + \underbrace{\sqrt{\kappa} \cdot r(\Gamma)}_{\text{sharper bounds}} \right)^2 \stackrel{(ii)}{\geq} E_{\text{worst}}^{\text{do}(\mathbf{X})}(\mathcal{Q}_{\text{da+pi}}). \end{aligned}$$

Equality iff (i) DA adds low variance $\kappa = 1$, and (ii) DA orthogonal to confounding $\Delta \perp \Sigma_{X,\xi}$. Also,

$$\mathbb{E}_{\mathbf{x}} \left[E_{\text{worst}}^{\text{do}(\mathbf{x})}(\mathcal{Q}_{\text{pi}}) \right] > \underbrace{\|\mathbf{h}_{\text{da+erm}} - \mathbf{f}\|_{\Sigma_{\mathbf{X}}}^2}_{\text{lower estimation error}} + \underbrace{\nu \cdot r(\Gamma)^2}_{\text{sharper bounds}} + s = \mathbb{E}_{\mathbf{x}} \left[E_{\text{worst}}^{\text{do}(\mathbf{x})}(\mathcal{Q}_{\text{da+pi}}) \right],$$

where $\nu := \text{tr}(\Sigma_{\mathbf{X}} \Sigma_{GX}^{-1}) < \text{tr}(\Sigma_{\mathbf{X}} \Sigma_{\mathbf{X}}^{-1}) = m$, queries $\mathbf{x} \sim \mathcal{N}(\mathbf{0}, \Sigma_{\mathbf{X}})$ and some slack $s \geq 0$.

Proof. See Appendix A.1 for the proof. \square

Theorem 1 shows that DA dominates PI on worst-case error through two mechanisms: (i) From Proposition 1, confounding aligned DA causes the PI centroid \mathbf{h}_{erm} to drift closer to \mathbf{f} , bringing the bounds with it, thereby reducing worst-case error. (ii) Independently, from Proposition 2, the bounds themselves shrink, pushing the worst-case point closer still to \mathbf{f} . Given that the worst-case error bounds how bad the performance of any one hypothesis in the identified set may be, application of a DA pre-processing to PI therefore makes subsequent decision making more robust and reliable. Theorem 1 also gives a lower bound on this improvement via the factor κ , which in the “large DA” regime approaches 0 when Δ has full span on \mathbb{R}^m , but is 1 otherwise. In our linear setting of Assumption 2, the former implies a trivial \mathbf{f} , and so the last inequality in Theorem 1 more clearly shows the independent, and strictly positive (average) effect ν of sharper bounds for individual queries $\mathbf{x} \sim \mathbb{P}_{\mathbf{X}}$. Which in the “large DA” regime shrinks to $\nu \rightarrow \dim(\text{null}(\Delta)) =: k$, reducing by a factor $(m - k)/m < 1$, and directly improving (average) worst-case error for a random query \mathbf{x} .

4.2.2 VALID BOUNDS WITH DATA AUGMENTATION

Finally, we discuss perhaps the most important property in PI—bound validity. We address this as:

Theorem 2 (valid bounds with DA). *For any \mathcal{G} -invariant \mathbf{f} , it holds under Assumptions 1 to 3 that*

$$E_{\text{approx}}^{\text{do}(\mathbf{X})}(\mathcal{Q}_{\text{da+pi}}) \leq E_{\text{approx}}^{\text{do}(\mathbf{X})}(\mathcal{Q}_{\text{pi}}), \quad \text{equality iff} \quad \mathbb{P} \in \mathcal{Q}_{\text{pi}}, \quad \text{or} \quad \Delta \perp \Sigma_{X,\xi}.$$

Proof. See Appendix A.2 for the proof. \square

Meaning the identified set $\mathcal{H}_{\text{da+pi}}$ is no farther from \mathbf{f} compared to the original set \mathcal{H}_{pi} , and is strictly closer to \mathbf{f} so long as the DA induced variation aligns with confounding. Of course it follows that when \mathcal{Q}_{pi} contains the true joint distribution \mathbb{P} , then $\mathbf{f} \in \mathcal{H}_{\text{pi}}$ and so we should also have $\mathbf{f} \in \mathcal{H}_{\text{da+pi}}$. Instead of such a simple set inclusion criteria, we keep the more general approximation error framing of Theorem 2 because we also position DA as a tool for improved sensitivity analysis

¹Intuitively, this would be like rotating an image \mathbf{x} of a centered circle —the rotation leaves \mathbf{x} unchanged.

378 where the constraint set may not necessarily be valid for some values of Γ . Theorem 2 is then
 379 reassures that with \mathcal{G} -invariant f , DA at the very least should not cause \mathcal{H}_{pi} to drift away from f .
 380

381 Immediately following from Theorem 2, when $\mathbb{P} \in \mathcal{Q}_{\text{pi}}$, we also get $f^\top x \in \mathcal{H}_{\text{da+pi}}(\mathbf{x}), \mathcal{H}_{\text{pi}}(\mathbf{x})$.
 382 It is difficult, however, to show a similar result as Theorem 1 for the point-wise evaluation of
 383 $E_{\text{approx}}^{\text{do}(\mathbf{x})}(\mathcal{Q}_{\text{da+pi}})$ vs. $E_{\text{approx}}^{\text{do}(\mathbf{x})}(\mathcal{Q}_{\text{pi}})$ when $\mathbb{P} \notin \mathcal{Q}_{\text{pi}}$, as the approximation error non-trivially de-
 384 pends on the alignment of unknown confounding $\Sigma_{X,\xi}$ with the query \mathbf{x} , and both can be arbitrary.
 385

386 5 RELATED WORK

388 **PI and sensitivity analysis.** We give an account of related PI and sensitivity analysis literature in
 389 Section 2.3. Our work is largely orthogonal but complementary to this: we introduce a new source of
 390 constraints—symmetry knowledge—that is compatible and composes with existing PI frameworks.
 391

392 **Symmetry and invariance in causal inference.** Invariance is fundamental to causality: causal
 393 mechanisms yield predictions invariant to interventions (Peters et al., 2016). Methods enforce such
 394 invariances using auxiliary variables for identification (Peters et al., 2016; Heinze-Deml et al., 2018;
 395 Arjovsky et al., 2019; Dance & Bloem-Reddy, 2024; Kilbertus et al., 2020; Singh et al., 2019; Zhang
 396 et al., 2023) or robust prediction (Rothenhäusler et al., 2021; Krueger et al., 2021; Christiansen et al.,
 397 2022). Akbar et al. (2025) leverage symmetry knowledge for robust prediction; whereas we address
 398 the orthogonal, but more principled problem of PI when point identification is infeasible.
 399

400 **Counterfactual DA.** The literature on counterfactual DA has been the main focus of causal anal-
 401 ysis of DA. These methods achieve robust predictors by synthesizing counterfactual examples (Ilse
 402 et al., 2021; Yuan et al., 2024; Feder et al., 2023; Pitis et al., 2022; Armengol Urpí et al., 2024;
 403 Mahajan et al., 2021; Aloui et al., 2023), but require restrictive assumptions: full SEMs (Yuan et al.,
 404 2024; Feder et al., 2023), specific auxiliary variables (Ilse et al., 2021; Feder et al., 2023; Mahajan
 405 et al., 2021; Aloui et al., 2023), or complete causal graphs (Pitis et al., 2022; Armengol Urpí et al.,
 406 2024). We, like Akbar et al. (2025), require a more accessible symmetry knowledge about the data.
 407

408 6 EXPERIMENTS

409 We validate our frameworks in finite samples. We fix the augmented sample size to match the origi-
 410 nal to show that bound sharpening stems from symmetry constraints rather than variance reduction.
 411

412 6.1 SIMULATION EXPERIMENT

414 We follow Akbar et al. (2025) to instantiate a simulation for
 415 the linear Gaussian SEM from Assumption 2. To do this, we
 416 first sample the SEM parameters—standard normal matrix $\mathbf{T} \in$
 417 $\mathbb{R}^{m \times m}$, and vectors $\mathbf{f}, \mathbf{e} \in \mathbb{R}^m$, keeping them fixed throughout
 418 the experiment. Then sample standard normal exogenous vari-
 419 ables (U, N_X, N_Y) and pass them through the following model
 420 to get observable (X, Y) confounded by the unobserved U as:
 421

$$X := \mathbf{T}^\top U + 0.1 \cdot N_X, \quad Y := \mathbf{f}^\top X + \mathbf{e}^\top U + 0.1 \cdot N_Y.$$

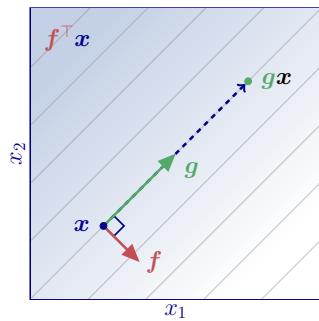
422 Next, we construct a DA G such that f respects \mathcal{G} -invariance. As
 423 with Akbar et al. (2025), we do this by first taking the SVD of f ,
 424

$$\mathbf{f} = [\mathbf{u} \quad \mathbf{U}_0] \begin{bmatrix} \sigma & \mathbf{0}_{1 \times (m-1)} \\ \mathbf{0}_{(m-1) \times 1} & \mathbf{0}_{(m-1) \times (m-1)} \end{bmatrix} \begin{bmatrix} \mathbf{v}^\top \\ \mathbf{V}_0^\top \end{bmatrix}.$$

427 The matrix \mathbf{V}_0 represents the orthonormal basis of $\text{null}(\mathbf{f})$. We
 428 take k of these rows to construct $\mathbf{A} \in \mathbb{R}^{k \times m}$ which defines G :

$$GX := X + a \cdot \mathbf{A}^\top G, \quad G \sim \mathcal{N}(\mathbf{0}_k, \mathbf{I}_k).$$

429 Therefore, by construction we have \mathcal{G} -invariance and therefore
 430 $\mathbf{f}^\top X = \mathbf{f}^\top GX$. Figure 2 provides an intuitive visualization
 431



432 Figure 2: A cartoon visual-
 433 ization of the linear simula-
 434 tion setup. The augmentation gen-
 435 erates gx by randomly translat-
 436 ing x along the level-sets (contours)
 437 defined by the causal parameter
 438 f , using additive noise sampled
 439 from the null-space of f .
 440

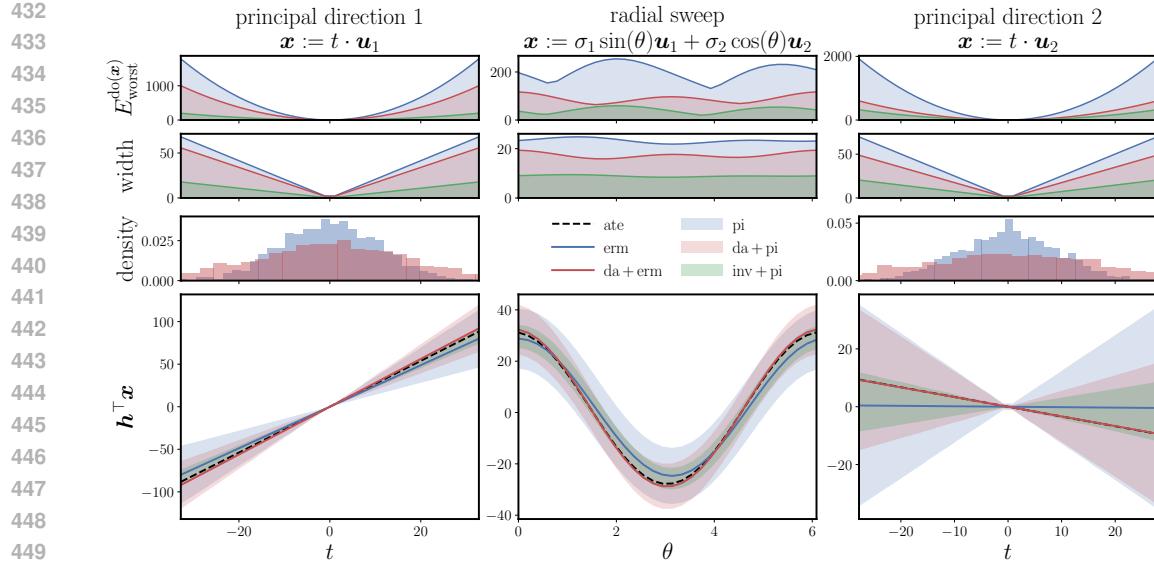


Figure 3: Data augmentation consistently sharpens partial identification bounds in a linear simulation. Across query points aligned with principal components (PC1, PC2) and a radial sweep, DA+PI (red) yields narrower intervals, lower worst-case excess risk (E_{worst}), and predictions closer to the true average treatment effect (ATE, black dash) compared to baseline PI (blue).

of such a transformation. While this construction technically utilizes the ground truth f , we treat access to A as representing prior domain knowledge about the functional symmetries, noting that this information alone is insufficient to identify f due to the unobserved confounding $e^T U$.

Taking $m = 32$, $k = 31$, we generate $n = 2048$ samples for (X, Y, G) with the DA std parameter a specified as 4. For ERM we use a closed form linear OLS solution. And for PI we use the partial R-squared sensitivity model from Assumption 3 for a range of query points x_0, x_1 with the sensitivity parameter set as $\Gamma = \Gamma_0 = 2^9$, and $\epsilon = 2^{-3}$ for the invariance error constraint.

To visualize the results, we chose $x := t \cdot u_1$ and $x := t \cdot u_2$ where u_1, u_2 are the first and second principal components of the data. We then sweep t over ± 3 standard-deviations, computing intervals $\mathcal{H}_{\text{pi}}(x), \mathcal{H}_{\text{da+pi}}(x)$ via convex programming (separately for the upper and lower bounds). The results are shown in Fig. 3 (left, right). Fig. 3 (center) also shows a radial sweep over $\theta \in [0, 2\pi]$ to generate queries $x := \sigma_0 \cdot \sin(\theta) \cdot u_0 + \sigma_1 \cdot \cos(\theta) \cdot u_1$.

6.2 OPTICAL DEVICE EXPERIMENT

We utilize the benchmark dataset provided by Janzing & Schölkopf (2018b), consisting of 3×3 pixel images X displayed on a laptop screen which generate voltage readings Y across a photodiode. The system involves a physically instantiated hidden confounder U that controls the intensity of two LEDs; the first affects the webcam capturing X , while the second influences the photodiode measuring Y . We derive the ground-truth causal predictor f by regressing Y on the joint features $(\phi(X), U)$, where $\phi(X)$ denotes polynomial features of X . We select the polynomial degree $d \in \{1, \dots, 5\}$ that best explains the data (degree 2 in our case) and subsequently remove the learned component corresponding to U to recover f . Our choice of DA on X includes additive Gaussian noise $G \sim \mathcal{N}(\mathbf{0}, \Sigma_X/10)$, random vertical/horizontal flips and 90° rotations for DA. We then compute the features $\phi(GX)$ to be used with PI, setting $\Gamma = \Gamma_0 = 10^2$ for the partial R-squared model from Assumption 3, and $\epsilon = 2^{-3}$ for the invariance error constraint on a datasets of $n = 1000$ samples. Figure 4 shows that DA+PI sharpens bounds over the PI baseline. The visualization approach is the same as in Section 6.1.

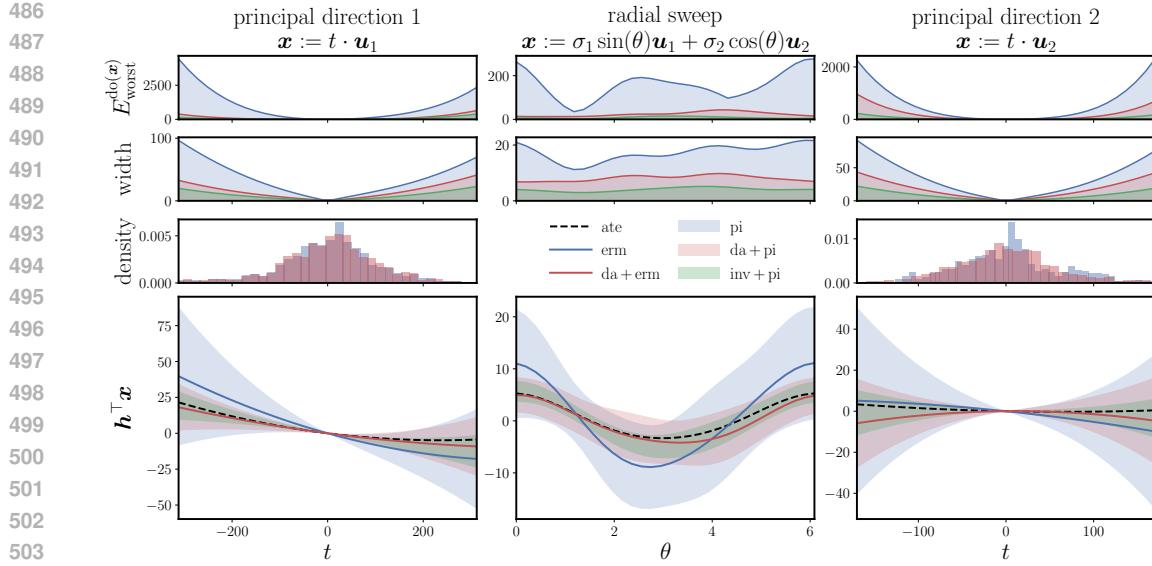


Figure 4: Our method sharpens causal bounds on the real-world Optical Device dataset. Even with complex, non-linear relationships, applying outcome-invariant DA (red) substantially narrows the partial identification bounds compared to the baseline (blue).

7 LIMITATIONS, ASSUMPTIONS AND FUTURE WORK

Symmetry knowledge. Our approach hinges on the untestable assumption that the target f is \mathcal{G} -invariant for the chosen symmetry transformation. While this does require prior knowledge, our framework also allows to handle symmetry miss-specification in the explicit invariance error constraint from Section 4.1 via the ϵ parameter. Additionally, we remind the readers that untestable assumptions are fundamental for making any causal conclusions from observational data with unobserved confounding (Pearl, 2009), as is the norm in partial identification. This also includes access to auxiliary variables since the conditional independences that they represent are also merely untestable assumptions. Furthermore, Akbar et al. (2025) argues that a symmetry-based knowledge assumption is actually quite practical given its precedence in the DA and invariance literature (Chen et al., 2020; Lyle et al., 2020; Shao et al., 2022; Fawzi & Frossard, 2015; Dubois et al., 2021; Petrache & Trivedi, 2023; Montasser et al., 2024; Romero & Lohit, 2022; Zhu et al., 2021; Wong et al., 2016).

Additional covariates. Many works in PI and sensitivity analysis leverage access to additional auxiliary variables, such as instrumental variables (IVs) and observable confounders or back-doors (Kilbertus et al., 2020; Padh et al., 2023). Even though we do not explicitly model these to keep our analysis simple and tractable, we argue that our symmetry transformation framing is still compatible with them—for example, applying DA on X does not invalidate an IV that enters into X .

Additional partial identification approaches. Many sensitivity and PI models can be reduced to the constraints in Assumption 3. These include, of course, the partial R-squared model, Rosenbaum (2002), MSM (under a mild bounded marginal ratio assumption), as well as DRO, Wasserstein, total-variation approaches. While a rigorous analysis is left for future work, it is important to specify that our results here are more general than just the partial R-squared model.

8 CONCLUSION

We show that causal symmetries sharpen partial identification bounds by restricting the hypothesis space. We operationalize this via explicit invariance constraints and implicit data augmentation. Through construction and linear analysis, respectively, we prove these methods yield valid, strictly tighter, and more robust bounds. Empirically validated and broadly compatible, our framework establishes symmetry as a powerful resource within the tool-belt for causal partial identification.

540
541
ETHICS STATEMENT542
543
544
545
546
547
548
549
550
The authors have read and adhered to the ICLR Code of Ethics. This work is primarily theoretical
and methodological, focusing on the mathematical foundations of using data augmentation for par-
tial identification. The experimental validation relies on a synthetic dataset generated for illustrative
purposes and a standard, publicly available benchmark dataset (Optical Device). No human subjects
were involved in this research, no new data was collected, and therefore, no Institutional Review
Board (IRB) approval was required. The goal of this research is to improve the rigor and reliability
of causal inference from observational data, which can lead to more robust and fair decision-making
in various applications. We do not foresee any direct negative ethical implications or societal conse-
quences stemming from this work.551
552
REPRODUCIBILITY STATEMENT553
554
555
556
557
558
559
560
We are committed to ensuring the reproducibility of our work. All theoretical claims made in this
paper are supported by detailed, step-by-step proofs, which can be found in the Appendix. The
experimental setup for both the simulation study and the real-data experiment is described in Sec-
tion 6. The complete source code to reproduce all experiments, figures, and results is included as
supplementary material with this submission. The code is commented and contains all necessary
implementation details, including hyperparameter settings and the specific data generation process
for the simulation.561
562
REFERENCES563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
Uzair Akbar, Niki Kilbertus, Hao Shen, Krikamol Muandet, and Bo Dai. An analysis of causal
effect estimation using outcome invariant data augmentation. In *Advances in Neural Information
Processing Systems*, volume 38. NeurIPS, 2025.

Ahmed Aloui, Juncheng Dong, Cat P. Le, and Vahid Tarokh. Counterfactual data augmentation with
contrastive learning, 2023. arXiv:2311.03630.

Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk minimization,
2019. arXiv:1907.02893.

Núria Armengol Urpí, Marco Bagatella, Marin Vlastelica, and Georg Martius. Causal action influ-
ence aware counterfactual data augmentation. In Ruslan Salakhutdinov, Zico Kolter, Katherine
Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp (eds.), *Proceedings
of the 41st International Conference on Machine Learning*, volume 235, pp. 1709–1729. PMLR,
2024.

Alexander Balke and Judea Pearl. Bounds on treatment effects from studies with imperfect compli-
ance. *Journal of the American Statistical Association*, 92(439):1171–1176, 1997.

Michael M. Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković. Geometric deep learn-
ing: Grids, groups, graphs, geodesics, and gauges, 2021. URL [https://arxiv.org/abs/
2104.13478](https://arxiv.org/abs/2104.13478).

Gavin Brown and Riccardo Ali. Bias/variance is not the same as approximation/estimation. *Transac-
tions on Machine Learning Research*, 2024. ISSN 2835-8856. URL [https://openreview.
net/forum?id=4TnFbv16hK](https://openreview.net/forum?id=4TnFbv16hK).

Shuxiao Chen, Edgar Dobriban, and Jane H. Lee. A group-theoretic framework for data augmenta-
tion. *Journal of Machine Learning Research*, 21(245):1–71, 2020.

Rune Christiansen, Niklas Pfister, Martin Emil Jakobsen, Nicola Gnecco, and Jonas Peters. A causal
framework for distribution generalization. *IEEE Transactions on Pattern Analysis and Machine
Intelligence*, 44(10):6614–6630, 2022. doi: 10.1109/TPAMI.2021.3094760.

Carlos Cinelli and Chad Hazlett. Making sense of sensitivity: Extending omitted variable bias.
Journal of the Royal Statistical Society Series B: Statistical Methodology, 82(1):39–67, 12 2019.
ISSN 1369-7412. doi: 10.1111/rssb.12348. URL [https://doi.org/10.1111/rssb.
12348](https://doi.org/10.1111/rssb.12348).

594 Carlos Cinelli and Chad Hazlett. Making sense of sensitivity: Extending omitted variable bias.
 595 *Journal of the Royal Statistical Society Series B: Statistical Methodology*, 82(1):39–67, 2020.
 596

597 Taco Cohen and Max Welling. Group equivariant convolutional networks. In *Proceedings of The
 598 33rd International Conference on Machine Learning*, volume 48 of *Proceedings of Machine
 599 Learning Research*, pp. 2990–2999, New York, New York, USA, 20–22 Jun 2016. PMLR.

600 Hugh Dance and Benjamin Bloem-Reddy. Causal inference with cocycles, 2024. arXiv:2405.13844.
 601

602 Y. Dubois et al. Lossy compression for lossless prediction. In *NeurIPS*, 2021.

603 Qiuling Fan, Minghao Li, and Zhengling Wang. Distributionally robust optimization approaches for
 604 causal inference with unobserved confounding. *Journal of Machine Learning Research*, 25(87):
 605 1–45, 2024.

606 A. Fawzi and P. Frossard. Manitest: Are classifiers really invariant? In *BMVC*, 2015.

607 Amir Feder, Yoav Wald, Claudia Shi, Suchi Saria, and David Blei. Data augmentations for im-
 608 proved (large) language model generalization. In A. Oh, T. Naumann, A. Globerson, K. Saenko,
 609 M. Hardt, and S. Levine (eds.), *Advances in Neural Information Processing Systems*, volume 36,
 610 pp. 70638–70653. Curran Associates, Inc., 2023.

611 Dennis Frauen, Fergus Imrie, Alicia Curth, Valentyn Melnychuk, Stefan Feuerriegel, and Mihaela
 612 van der Schaar. A neural framework for generalized causal sensitivity analysis. In *The Twelfth
 613 International Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=ikX6D1oM1c>.

614 Florian Gunsilius. A path-sampling method to partially identify causal effects in instrumental vari-
 615 able models, 2020. URL <https://arxiv.org/abs/1910.09502>.

616 Wenshuo Guo, Mingzhang Yin, Yixin Wang, and Michael Jordan. Partial identification with noisy
 617 covariates: A robust optimization approach. In *First Conference on Causal Learning and Rea-
 618 soning*, 2022. URL <https://openreview.net/forum?id=-NVBxy0TdU>.

619 Christina Heinze-Deml, Jonas Peters, and Nicolai Meinshausen. Invariant causal prediction for
 620 nonlinear models. *Journal of Causal Inference*, 6(2), 2018.

621 Roger A. Horn and Charles R. Johnson. *Matrix Analysis*. Cambridge University Press, Cambridge,
 622 1985.

623 Yaowei Hu, Yongkai Wu, Lu Zhang, and Xintao Wu. A generative adversarial framework for
 624 bounding confounded causal effects. *Proceedings of the AAAI Conference on Artificial In-
 625 telligence*, 35(13):12104–12112, May 2021. doi: 10.1609/aaai.v35i13.17437. URL <https://ojs.aaai.org/index.php/AAAI/article/view/17437>.

626 Maximilian Ilse, Jakub M. Tomczak, and Patrick Forré. Selecting data augmentation for simulating
 627 interventions. In *International Conference on Machine Learning*, pp. 4555–4562. PMLR, 2021.

628 Guido W. Imbens and Charles F. Manski. Confidence intervals for partially identified param-
 629 eters. *Econometrica*, 72(6):1845–1857, 2004. ISSN 00129682, 14680262. URL <http://www.jstor.org/stable/3598769>.

630 Dominik Janzing. Causal regularization. In *Advances in Neural Information Processing Systems*,
 631 volume 32, 2019.

632 Dominik Janzing and Bernhard Schölkopf. Detecting non-causal artifacts in multivariate linear re-
 633 gression models. In Jennifer Dy and Andreas Krause (eds.), *Proceedings of the 35th International
 634 Conference on Machine Learning*, volume 80, pp. 2245–2253. PMLR, 2018a.

635 Dominik Janzing and Bernhard Schölkopf. Detecting confounding in multivariate linear models via
 636 spectral analysis. *Journal of Causal Inference*, 6(1), 2018b.

637 Lucas Kania and Ernst Wit. Causal regularization: On the trade-off between in-sample risk and
 638 out-of-sample risk guarantees, 2023. arXiv:2205.01593.

648 Niki Kilbertus, Matt J. Kusner, and Ricardo Silva. A class of algorithms for general instrumental
 649 variable models. In *Advances in Neural Information Processing Systems*, volume 33, pp. 20108–
 650 20119, 2020.

651 David Krueger, Ethan Caballero, Joern-Henrik Jacobsen, Amy Zhang, Jonathan Binas, Dinghuai
 652 Zhang, Remi Le Priol, and Aaron Courville. Out-of-distribution generalization via risk extrapo-
 653 lation (REX). In *International Conference on Machine Learning*, pp. 5815–5826. PMLR, 2021.

654 Clare Lyle, Mark van der Wilk, Marta Kwiatkowska, Yarin Gal, and Benjamin Bloem-Reddy. On
 655 the benefits of invariance in neural networks, 2020. arXiv:2005.00178.

656 Divyat Mahajan, Shruti Tople, and Amit Sharma. Domain generalization using causal matching.
 657 In Marina Meila and Tong Zhang (eds.), *Proceedings of the 38th International Conference on*
 658 *Machine Learning*, volume 139, pp. 7313–7324. PMLR, 2021.

659 Vahid Balazadeh Meresht, Vasilis Syrgkanis, and Rahul G Krishnan. Partial identification of treat-
 660 ment effects with implicit generative models. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave,
 661 and Kyunghyun Cho (eds.), *Advances in Neural Information Processing Systems*, 2022. URL
 662 <https://openreview.net/forum?id=8cUGf9-zUnh>.

663 O. Montasser et al. Transformation-invariant learning and theoretical guarantees for ood generaliza-
 664 tion. In *NeurIPS*, 2024.

665 Kirtan Padh, Jakob Zeitler, David Watson, Matt Kusner, Ricardo Silva, and Niki Kilbertus. Stochas-
 666 tic causal programming for bounding treatment effects. In Mihaela van der Schaar, Cheng Zhang,
 667 and Dominik Janzing (eds.), *Proceedings of the Second Conference on Causal Learning and Rea-
 668 soning*, volume 213 of *Proceedings of Machine Learning Research*, pp. 142–176. PMLR, 11–14
 669 Apr 2023. URL <https://proceedings.mlr.press/v213/padh23a.html>.

670 Judea Pearl. *Causality*. Cambridge University Press, 2009.

671 Jonas Peters, Peter Bühlmann, and Nicolai Meinshausen. Causal Inference by using Invariant Pre-
 672 diction: Identification and Confidence Intervals. *Journal of the Royal Statistical Society Series B:
 673 Statistical Methodology*, 78(5):947–1012, 2016. doi: 10.1111/rssb.12167.

674 Jonas Peters, Dominik Janzing, and Bernhard Schölkopf. *Elements of causal inference: foundations
 675 and learning algorithms*. The MIT Press, 2017.

676 M. Petrache and S. Trivedi. Approximation-generalization trade-offs under (approximate) group
 677 equivariance. In *NeurIPS*, 2023.

678 Silvius Pitis, Elliot Creager, Ajay Mandlekar, and Animesh Garg. MoCoDA: Model-based counter-
 679 factual data augmentation. In *Advances in Neural Information Processing Systems*, volume 35,
 680 pp. 18143–18156, 2022.

681 D. Romero and S. Lohit. Learning partial equivariances from data. In *NeurIPS*, 2022.

682 Paul R Rosenbaum. *Observational studies*. Springer, 2002.

683 Dominik Rothenhäusler, Nicolai Meinshausen, Peter Bühlmann, and Jonas Peters. Anchor regres-
 684 sion: Heterogeneous data meet causality. *Journal of the Royal Statistical Society Series B: Statis-
 685 tical Methodology*, 83(2):215–246, 2021.

686 Victor Garcia Satorras, Emiel Hoogeboom, and Max Welling. E(n) equivariant graph neural net-
 687 works, 2022. URL <https://arxiv.org/abs/2102.09844>.

688 Jonas Schweisthal, Dennis Frauen, Maresa Schröder, Konstantin Hess, Niki Kilbertus, and Ste-
 689 fan Feuerriegel. Learning representations of instruments for partial identification of treat-
 690 ment effects. In *Forty-second International Conference on Machine Learning*, 2025. URL
 691 <https://openreview.net/forum?id=pgrJPhsk2w>.

692 H. Shao et al. A theory of pac learnability under transformation invariances. In *NeurIPS*, 2022.

693 Connor Shorten and Taghi M. Khoshgoftaar. A survey on image data augmentation for deep learn-
 694 ing. *Journal of Big Data*, 6:60, 2019.

702 Rahul Singh, Maneesh Sahani, and Arthur Gretton. Kernel instrumental variable regression. In
 703 *Advances in Neural Information Processing Systems*, volume 32, 2019.
 704

705 Zhiqiang Tan. A distributional approach for causal inference using propensity scores. *Journal
 706 of the American Statistical Association*, 101(476):1619–1637, 2006. doi: 10.1198/
 707 016214506000000023. URL <https://doi.org/10.1198/016214506000000023>.

708 Chennuru Vankadara, Luca Rendsburg, Ulrike von Luxburg, and Debarghya Ghoshdastidar. Inter-
 709 polation and regularization for causal learning. In S. Koyejo, S. Mohamed, A. Agarwal, D. Bel-
 710 grave, K. Cho, and A. Oh (eds.), *Advances in Neural Information Processing Systems*, volume 35.
 711 Curran Associates, Inc., 2022.

712 Vladimir Naumovich Vapnik. *Statistical learning theory*. Wiley, New York, 1998.

713

714 Victor Veitch, Alexander D' Amour, Steve Yadlowsky, and Jacob Eisenstein. Counterfactual invari-
 715 ance to spurious correlations in text classification. In M. Ranzato, A. Beygelzimer, Y. Dauphin,
 716 P.S. Liang, and J. Wortman Vaughan (eds.), *Advances in Neural Information Processing Systems*,
 717 volume 34, pp. 16196–16208. Curran Associates, Inc., 2021a.

718 Victor Veitch, Alexander D' Amour, Steve Yadlowsky, and Jacob Eisenstein. Counterfactual invari-
 719 ance to spurious correlations in text classification. In M. Ranzato, A. Beygelzimer, Y. Dauphin,
 720 P.S. Liang, and J. Wortman Vaughan (eds.), *Advances in Neural Information Processing Systems*,
 721 volume 34, pp. 16196–16208. Curran Associates, Inc., 2021b.

722

723 S. Wong et al. Understanding data augmentation for classification: When to warp? In *DICTA*, 2016.

724 Liyuan Xu and Arthur Gretton. A neural mean embedding approach for back-door and front-door
 725 adjustment, 2022. arXiv:2210.06610.

726

727 Fanny Yang, Zuowen Wang, and Christina Heinze-Deml. Invariance-inducing regularization using
 728 worst-case transformations suffices to boost accuracy and spatial robustness. In *Advances in
 729 Neural Information Processing Systems*, volume 32, 2019.

730 Jianhao Yuan, Francesco Pinto, Adam Davies, and Philip Torr. Not just pretty pictures: Toward
 731 interventional data augmentation using text-to-image generators. In *Forty-first International
 732 Conference on Machine Learning*, 2024. URL <https://openreview.net/forum?id=b89JtZj9gm>.

733

734 Rui Zhang, Masaaki Imaizumi, Bernhard Schölkopf, and Krikamol Muandet. Instrumental variable
 735 regression via kernel maximum moment loss. *Journal of Causal Inference*, 11(1), 2023.

736

737 S. Zhu et al. Understanding the generalization benefit of model invariance from a data perspective.
 738 In *NeurIPS*, 2021.

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

A PROOFS

A.1 PROOF OF THEOREM 1—ROBUST BOUNDS WITH DA

Theorem 1 (robust bounds with DA). *For \mathcal{G} -inv. \mathbf{f} , Assumptions 1 to 3, $\kappa := \lambda_{\max}(\Sigma_X \Sigma_{GX}^{-1}) \leq 1$,*

$$\begin{aligned} E_{\text{worst}}^{\text{do}(X)}(\mathcal{Q}_{\text{pi}}) &= \left(\|\mathbf{h}_{\text{erm}} - \mathbf{f}\|_{\Sigma_X} + r(\boldsymbol{\Gamma}) \right)^2, \\ &\stackrel{(i), (ii)}{\geq} \left(\underbrace{\|\mathbf{h}_{\text{da+erm}} - \mathbf{f}\|_{\Sigma_X}}_{\text{lower estimation error}} + \underbrace{\sqrt{\kappa} \cdot r(\boldsymbol{\Gamma})}_{\text{sharper bounds}} \right)^2 \stackrel{(ii)}{\geq} E_{\text{worst}}^{\text{do}(X)}(\mathcal{Q}_{\text{da+pi}}). \end{aligned}$$

Equality iff (i) DA adds low variance $\kappa = 1$, and (ii) DA orthogonal to confounding $\boldsymbol{\Delta} \perp \Sigma_{X,\xi}$. Also,

$$\mathbb{E}_{\mathbf{x}} \left[E_{\text{worst}}^{\text{do}(\mathbf{x})}(\mathcal{Q}_{\text{pi}}) \right] > \underbrace{\|\mathbf{h}_{\text{da+erm}} - \mathbf{f}\|_{\Sigma_X}^2}_{\text{lower estimation error}} + \underbrace{\nu \cdot r(\boldsymbol{\Gamma})^2}_{\text{sharper bounds}} + s = \mathbb{E}_{\mathbf{x}} \left[E_{\text{worst}}^{\text{do}(\mathbf{x})}(\mathcal{Q}_{\text{da+pi}}) \right],$$

where $\nu := \text{tr}(\Sigma_X \Sigma_{GX}^{-1}) < \text{tr}(\Sigma_X \Sigma_X^{-1}) = m$, queries $\mathbf{x} \sim \mathcal{N}(\mathbf{0}, \Sigma_X)$ and some slack $s \geq 0$.

Proof. We show the two inequalities below in the respective sections.

Population effect. Lemma 2, characterizes the identified sets \mathcal{H}_{pi} , $\mathcal{H}_{\text{da+pi}}$ as ellipsoids:

$$\mathcal{H}_{\text{pi}} = \left\{ \mathbf{h} \mid \|\mathbf{h} - \mathbf{h}_{\text{erm}}\|_{\Sigma_X}^2 \leq r(\boldsymbol{\Gamma})^2 \right\}, \quad \mathcal{H}_{\text{da+pi}} = \left\{ \mathbf{h} \mid \|\mathbf{h} - \mathbf{h}_{\text{da+erm}}\|_{\Sigma_{GX}}^2 \leq r(\boldsymbol{\Gamma})^2 \right\}.$$

Now, from the definition of worst-case excess error in Section 2.3 it follows

$$\begin{aligned} E_{\text{worst}}^{\text{do}(X)}(\mathcal{Q}_{\text{pi}}) &= \max_{\mathbf{Q} \in \mathcal{Q}_{\text{pi}}} E^{\text{do}(X)}\left(\mathbf{h}_{\text{adj}}^{\mathbf{Q}}\right), \\ &= \max_{\mathbf{h} \in \mathcal{H}_{\text{pi}}} E^{\text{do}(X)}(\mathbf{h}), \quad (\text{Re-parameterizing in terms of } \mathcal{H}_{\text{pi}}.) \\ &= \max_{\mathbf{h} \in \mathcal{H}_{\text{pi}}} \|\mathbf{h} - \mathbf{f}\|_{\Sigma_X}^2, \\ &= \left(\|\mathbf{h}_{\text{erm}} - \mathbf{f}\|_{\Sigma_X} + r(\boldsymbol{\Gamma}) \right)^2, \quad (\text{Lemma 3}) \end{aligned}$$

where $r(\boldsymbol{\Gamma})$ is some constant entirely determined by $\boldsymbol{\Gamma}$. Now, we do a similar exercise with $\mathcal{Q}_{\text{da+pi}}$,

$$\begin{aligned} E_{\text{worst}}^{\text{do}(X)}(\mathcal{Q}_{\text{da+pi}}) &= \max_{\mathbf{Q} \in \mathcal{Q}_{\text{da+pi}}} E^{\text{do}(X)}\left(\mathbf{h}_{\text{adj}}^{\mathbf{Q}}\right), \\ &= \max_{\mathbf{h} \in \mathcal{H}_{\text{da+pi}}} E^{\text{do}(X)}(\mathbf{h}), \quad (\text{Re-parameterizing in terms of } \mathcal{H}_{\text{da+pi}}.) \\ &= \max_{\mathbf{h} \in \mathcal{H}_{\text{da+pi}}} \|\mathbf{h} - \mathbf{f}\|_{\Sigma_X}^2, \\ &\stackrel{(*)}{\leq} \left(\|\mathbf{h}_{\text{da+erm}} - \mathbf{f}\|_{\Sigma_X} + r(\boldsymbol{\Gamma}) \cdot \sqrt{\lambda_{\max}(\Sigma_X \Sigma_{GX}^{-1})} \right)^2, \\ &\quad (\text{Lemma 3, = iff } (\mathbf{h}_{\text{da+erm}} - \mathbf{f}) \parallel \mathbf{v}_{\max}(\Sigma_X \Sigma_{GX}^{-1})). \\ &\stackrel{(\dagger)}{\leq} \left(\|\mathbf{h}_{\text{da+erm}} - \mathbf{f}\|_{\Sigma_X} + r(\boldsymbol{\Gamma}) \right)^2, \quad (\text{Lemma 1, } \lambda_{\max}(\Sigma_X \Sigma_{GX}^{-1}) \leq 1.) \\ &\stackrel{(\ddagger)}{\leq} \left(\|\mathbf{h}_{\text{erm}} - \mathbf{f}\|_{\Sigma_X} + r(\boldsymbol{\Gamma}) \right)^2 = E_{\text{worst}}^{\text{do}(X)}(\mathcal{Q}_{\text{pi}}). \quad (\text{Proposition 1, = iff } \boldsymbol{\Delta} \perp \Sigma_{X,\xi}.) \end{aligned}$$

Condition for equality. The bound involves three inequalities: (*) the geometric bound from Lemma 3, (†) the inflated variance implication from Lemma 1, and (‡) the estimation bound from Proposition 1. Of these, (†) is immediate, so we investigate (*), (‡) in isolation with $\lambda_{\max} = 1$. Now, assuming further that the condition $\boldsymbol{\Delta} \perp \Sigma_{X,\xi}$ is satisfied for (‡), it follows from Proposition 1 that

$$\mathbf{h}_{\text{da+erm}} = \mathbf{h}_{\text{erm}} \iff \boldsymbol{\Delta} \perp \Sigma_{X,\xi}.$$

810 So we go ahead and substitute $\mathbf{h}_{\text{da+erm}}$ with \mathbf{h}_{erm} in (\star) . From Lemma 3, equality holds iff the
 811 bias vector $(\mathbf{h}_{\text{da+erm}} - \mathbf{f})$, now $(\mathbf{h}_{\text{erm}} - \mathbf{f})$, is a dominant eigenvector of $\Sigma_X \Sigma_{GX}^{-1}$. Because
 812 $(\mathbf{h}_{\text{erm}} - \mathbf{f}) = \Sigma_X^{-1} \Sigma_{X,\xi}$ (OLS closed-form), and $\Sigma_{GX} = \Sigma_X + \Delta$ (Lemma 1), we follow the steps
 813 of Propositions 1 and 2 to do a change of basis by jointly diagonalizing Σ_X, Δ (Lemma 7) to show
 814

$$\Sigma_X \Sigma_{GX}^{-1} (\mathbf{h}_{\text{erm}} - \mathbf{f}) = \Sigma_X (\Sigma_X + \Delta)^{-1} (\Sigma_X^{-1} \Sigma_{X,\xi}) = (\mathbf{h}_{\text{erm}} - \mathbf{f}), \iff \Delta \perp \Sigma_{X,\xi}.$$

815 The bias $(\mathbf{h}_{\text{erm}} - \mathbf{f})$ is an eigenvector of $\Sigma_X \Sigma_{GX}^{-1}$ with eigenvalue $\lambda_{\max} = 1$. Therefore, equality
 816 holds for both (\star) and (\ddagger) iff $\Delta \perp \Sigma_{X,\xi}$ and the residual improvement is solely from radius
 817 contraction $\lambda_{\max} < 1$. Conditions for $(\star), (\ddagger), (\ddagger\ddagger)$ form conditions (i), (ii) in the statement.
 818

819 **(Average) individual effect.** Define $J(\mathcal{Q}) := \mathbb{E}_{\mathbf{x}} \left[E_{\text{worst}}^{\text{do}(\mathbf{x})}(\mathcal{Q}) \right]$ for queries $\mathbf{x} \sim \mathcal{N}(\mathbf{0}, \Sigma_X)$. From
 820 Lemma 2, the worst-case risk at a query point \mathbf{x} is (bias + radius) squared:
 821

$$E_{\text{worst}}^{\text{do}(\mathbf{x})}(\mathcal{Q}_{\text{pi}}) = \left(|(\mathbf{h}_{\text{erm}} - \mathbf{f})^\top \mathbf{x}| + r(\mathbf{\Gamma}) \|\mathbf{x}\|_{\Sigma_X^{-1}} \right)^2.$$

822 Expanding the square, we decompose the total expected risk for DA into three terms:
 823

$$\begin{aligned} J(\mathcal{Q}_{\text{da+pi}}) &= \underbrace{\mathbb{E}_{\mathbf{x}} \left[\|\mathbf{h}_{\text{da+erm}} - \mathbf{f}\|_{\mathbf{x}}^2 \right]}_{\text{(a) estimation error}} + \underbrace{r(\mathbf{\Gamma})^2 \mathbb{E}_{\mathbf{x}} \left[\|\mathbf{x}\|_{\Sigma_{GX}^{-1}}^2 \right]}_{\text{(b) average radius}}, \\ &\quad + \underbrace{2r(\mathbf{\Gamma}) \mathbb{E}_{\mathbf{x}} \left[|(\mathbf{h}_{\text{da+erm}} - \mathbf{f})^\top \mathbf{x}| \|\mathbf{x}\|_{\Sigma_{GX}^{-1}} \right]}_{\text{(c) interaction of (a), (b)}}. \end{aligned}$$

824 We analyze the reduction $J(\mathcal{Q}_{\text{pi}}) - J(\mathcal{Q}_{\text{da+pi}})$ term by term:
 825

- 826 a) **Estimation error:** DA+ERM dominates ERM from Proposition 1, equality iff $\Delta \perp \Sigma_{X,\xi}$
 827
- 828 b) **Average radius:** DA+PI *strictly* dominates PI from Proposition 2, as $\mathbf{x} \not\perp \Delta$ almost surely.
 829 Also, expand $\|\mathbf{x}\|_{\Sigma_{GX}^{-1}}^2$ into a trace term, and then use its cyclic permutation invariance gets
 830

$$\mathbb{E}_{\mathbf{x}} \left[\|\mathbf{x}\|_{\Sigma_{GX}^{-1}}^2 \right] = \text{tr}(\Sigma_{GX}^{-1} \Sigma_X) < \text{tr}(\Sigma_X^{-1} \Sigma_X) = m.$$

- 831 c) **Interaction term:** *Strictly* lower for any non-trivial DA $\Delta \neq \mathbf{0}$ from Lemma 5.
 832

833 Concluding that:
 834

$$J(\mathcal{Q}_{\text{da+pi}}) < J(\mathcal{Q}_{\text{pi}}) \quad \text{when} \quad \Delta \neq \mathbf{0}.$$

835 \square

836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863

864 A.2 PROOF OF THEOREM 2—VALID BOUNDS WITH DA
865866 **Theorem 2** (valid bounds with DA). *For any \mathcal{G} -invariant \mathbf{f} , it holds under Assumptions 1 to 3 that*

867
$$E_{\text{approx}}^{\text{do}(X)}(\mathcal{Q}_{\text{da+pi}}) \leq E_{\text{approx}}^{\text{do}(X)}(\mathcal{Q}_{\text{pi}}), \quad \text{equality iff} \quad \mathbb{P} \in \mathcal{Q}_{\text{pi}}, \quad \text{or} \quad \Delta \perp \Sigma_{X,\xi}.$$

868

869 *Proof.* From Lemma 2, we can characterize the identified sets \mathcal{H}_{pi} , $\mathcal{H}_{\text{da+pi}}$ as ellipsoids of the form
870

871
$$\mathcal{H}_{\text{pi}} = \left\{ \mathbf{h} \mid \|\mathbf{h} - \mathbf{h}_{\text{erm}}\|_{\Sigma_X}^2 \leq r(\Gamma)^2 \right\}, \quad \mathcal{H}_{\text{da+pi}} = \left\{ \mathbf{h} \mid \|\mathbf{h} - \mathbf{h}_{\text{da+erm}}\|_{\Sigma_{GX}}^2 \leq r(\Gamma)^2 \right\}.$$

872

873 First consider $\mathbb{P} \notin \mathcal{Q}_{\text{pi}}$. Now, from the definition of approximation error in Section 2.3 it follows
874

875
$$\begin{aligned} E_{\text{approx}}^{\text{do}(X)}(\mathcal{Q}_{\text{pi}}) &= \min_{\mathbb{Q} \in \mathcal{Q}_{\text{pi}}} E^{\text{do}(X)}\left(h_{\text{adj}}^{\mathbb{Q}}\right), \\ 876 &= \min_{\mathbf{h} \in \mathcal{H}_{\text{pi}}} E^{\text{do}(X)}(\mathbf{h}), \quad (\text{Re-parameterizing in terms of } \mathcal{H}_{\text{pi}}.) \\ 877 &= \min_{\mathbf{h} \in \mathcal{H}_{\text{pi}}} \|\mathbf{h} - \mathbf{f}\|_{\Sigma_X}^2, \\ 878 &= \left(\|\mathbf{h}_{\text{erm}} - \mathbf{f}\|_{\Sigma_X} - r(\Gamma) \right)^2, \quad (\text{Lemma 4}) \\ 879 & \\ 880 & \\ 881 & \\ 882 & \end{aligned}$$

883 where $r(\Gamma)$ is some constant entirely determined by Γ . Now, we do a similar exercise with $\mathcal{Q}_{\text{da+pi}}$,
884

885
$$\begin{aligned} E_{\text{approx}}^{\text{do}(X)}(\mathcal{Q}_{\text{da+pi}}) &= \min_{\mathbb{Q} \in \mathcal{Q}_{\text{da+pi}}} E^{\text{do}(X)}\left(h_{\text{adj}}^{\mathbb{Q}}\right), \\ 886 &= \min_{\mathbf{h} \in \mathcal{H}_{\text{da+pi}}} E^{\text{do}(X)}(\mathbf{h}), \quad (\text{Re-parameterizing in terms of } \mathcal{H}_{\text{da+pi}}.) \\ 887 &= \min_{\mathbf{h} \in \mathcal{H}_{\text{da+pi}}} \|\mathbf{h} - \mathbf{f}\|_{\Sigma_X}^2, \\ 888 &\stackrel{(\heartsuit)}{\leq} \left(1 - \frac{r(\Gamma)}{\|\mathbf{h}_{\text{da+erm}} - \mathbf{f}\|_{\Sigma_{GX}}} \right)^2 \|\mathbf{h}_{\text{da+erm}} - \mathbf{f}\|_{\Sigma_X}^2, \\ 889 &\quad (\text{Lemma 4, } = \text{ iff } (\mathbf{h}_{\text{da+erm}} - \mathbf{f}) \parallel \mathbf{v}(\Sigma_X \Sigma_{GX}^{-1})). \\ 890 & \\ 891 &= \left(\|\mathbf{h}_{\text{da+erm}} - \mathbf{f}\|_{\Sigma_{GX}} - r(\Gamma) \right)^2 \frac{\|\mathbf{h}_{\text{da+erm}} - \mathbf{f}\|_{\Sigma_X}^2}{\|\mathbf{h}_{\text{da+erm}} - \mathbf{f}\|_{\Sigma_{GX}}^2}, \\ 892 &\stackrel{(\clubsuit)}{\leq} \left(\|\mathbf{h}_{\text{erm}} - \mathbf{f}\|_{\Sigma_X} - r(\Gamma) \right)^2 = E_{\text{approx}}^{\text{do}(X)}(\mathcal{Q}_{\text{pi}}), \quad (\text{Similar to Proposition 1, } = \text{ iff } \Delta \perp \Sigma_{X,\xi}.) \\ 893 & \\ 894 & \\ 895 & \end{aligned}$$

896 where the last inequality (\clubsuit) follows from a similar approach as used in Proposition 1 to show that
897

898
$$\|\mathbf{h}_{\text{da+erm}} - \mathbf{f}\|_{\Sigma_X}^2 \leq \|\mathbf{h}_{\text{da+erm}} - \mathbf{f}\|_{\Sigma_{GX}}^2 \leq \|\mathbf{h}_{\text{erm}} - \mathbf{f}\|_{\Sigma_X}^2,$$

899

900 which holds with equality if and only if $\Delta \perp \Sigma_{X,\xi}$. The case for $\mathbb{P} \in \mathcal{Q}_{\text{pi}}$ is trivial from Lemma 4.
901902 **Condition for equality.** The two types of inequalities that comprise the given approximation error
903 bound are Proposition 1-type estimation bias related (\clubsuit), and the ellipsoidal geometry inequality
904 (\heartsuit) from Lemma 4. We can proceed similar to the corresponding section in Theorem 1 to show that:
905

906
$$\Delta \perp \Sigma_{X,\xi} \iff (\mathbf{h}_{\text{da+erm}} - \mathbf{f}) \parallel \mathbf{v}_{\text{max}}(\Sigma_X \Sigma_{GX}^{-1}).$$

907

908 Since condition of (\heartsuit) requires alignment of $(\mathbf{h}_{\text{da+erm}} - \mathbf{f})$ with *any* eigenvector $\mathbf{v}(\Sigma_X \Sigma_{GX}^{-1})$,
909 therefore \mathbf{v}_{max} suffices. Consequently, equality holds for both (\heartsuit) and (\clubsuit) iff $\Delta \perp \Sigma_{X,\xi}$. \square
910911
912
913
914
915
916
917

918 A.3 PROOF OF PROPOSITION 1—ESTIMATION WITH DA (AKBAR ET AL. (2025) LIFTED)
919920 **Proposition 1** (estimation with DA (Akbar et al. (2025) lifted)). *For \mathcal{G} -inv. \mathbf{f} , Assumptions 1 and 2,*

921
$$0 \leq \frac{\kappa}{1+\kappa} \cdot \underbrace{\|\Pi_{\Delta}(\mathbf{h}_{\text{erm}} - \mathbf{f})\|_{\Sigma_X}^2}_{\text{estimation error within range}(\Delta)} \leq E^{\text{do}(X)}(\mathbf{h}_{\text{erm}}) - E^{\text{do}(X)}(\mathbf{h}_{\text{da+erm}}),$$

922
$$\leq \|\Pi_{\Delta}(\mathbf{h}_{\text{erm}} - \mathbf{f})\|_{\Sigma_X}^2, \quad \text{eq. iff} \quad \underbrace{\Delta \perp \Sigma_{X,\xi}}_{\substack{\text{DA orthogonal} \\ \text{to confounding}}},$$

923

924 where $\kappa := \lambda_{\min}^+(\Sigma_X^{-1}\Delta) < \infty$ represents the lowest positive eigenvalue of the product $\Sigma_X^{-1}\Delta$.
925926 *Proof.* We start by first investigating the post-DA confounding vector $\mathbb{E}[(GX)\xi^\top] = \Sigma_{GX,\xi}$ as
927

928
$$\begin{aligned} \Sigma_{GX,\xi} &= \mathbb{E}[(GX)\xi^\top] \\ &= \mathbb{E}_{X,\xi}[\mathbb{E}_G[GX | X, \xi]\xi^\top] && \text{(Law of total expectation.)} \\ &= \mathbb{E}_{X,\xi}[\mathbb{E}_G[GX | X]\xi^\top] && (G \text{ exogenous} \implies G \perp\!\!\!\perp \xi | X.) \\ &= \mathbb{E}_{X,\xi}[X\xi^\top] = \Sigma_{X,\xi}. && \text{(As } \mathbb{E}[GX | X] = X \text{ from Assumption 1.)} \end{aligned}$$

929

930 Now define $\mathbf{c} := \Sigma_{X,\xi} = \Sigma_{GX,\xi}$ for brevity. The estimation error in Eq. (6) for the baseline ERM
931 and DA+ERM is governed by the projection of confounding \mathbf{c} onto the respective data manifolds as:
932

933
$$\begin{aligned} E^{\text{do}(X)}(\mathbf{h}_{\text{erm}}) &= \|\Sigma_X^{-1}\mathbf{c}\|_{\Sigma_X}^2 = \mathbf{c}^\top \Sigma_X^{-1}\mathbf{c}, \\ E^{\text{do}(X)}(\mathbf{h}_{\text{da+erm}}) &= \|\Sigma_{GX}^{-1}\mathbf{c}\|_{\Sigma_X}^2 = \mathbf{c}^\top \Sigma_{GX}^{-1}\Sigma_X \Sigma_{GX}^{-1}\mathbf{c} \end{aligned}$$

934

935 Using $\Sigma_X = \Sigma_{GX} - \Delta$ and the Resolvent Identity $\Sigma_X^{-1} - \Sigma_{GX}^{-1} = \Sigma_{GX}^{-1}\Delta\Sigma_X^{-1}$, we get:
936

937
$$\begin{aligned} E^{\text{do}(X)}(\mathbf{h}_{\text{da+erm}}) &= \mathbf{c}^\top \Sigma_{GX}^{-1}(\Sigma_{GX} - \Delta)\Sigma_{GX}^{-1}\mathbf{c} \\ &= \mathbf{c}^\top \Sigma_{GX}^{-1}\mathbf{c} - \mathbf{c}^\top (\Sigma_{GX}^{-1}\Delta\Sigma_{GX}^{-1})\mathbf{c} \\ &= (\mathbf{c}^\top \Sigma_X^{-1}\mathbf{c} - \mathbf{c}^\top \Sigma_{GX}^{-1}\Delta\Sigma_X^{-1}\mathbf{c}) - \mathbf{c}^\top (\Sigma_{GX}^{-1}\Delta\Sigma_{GX}^{-1})\mathbf{c} \\ &= E^{\text{do}(X)}(\mathbf{h}_{\text{erm}}) - \mathbf{c}^\top (\Sigma_{GX}^{-1}\Delta\Sigma_X^{-1})\mathbf{c} - \mathbf{c}^\top (\Sigma_{GX}^{-1}\Delta\Sigma_{GX}^{-1})\mathbf{c}, \\ &= E^{\text{do}(X)}(\mathbf{h}_{\text{erm}}) \quad \underbrace{- \mathbf{c}^\top \Sigma_X^{-1}(\Sigma_X \Sigma_{GX}^{-1}\Delta)\Sigma_X^{-1}\mathbf{c}}_{0 \leq \text{first-order reduction}} \\ &\quad \underbrace{- \mathbf{c}^\top \Sigma_X^{-1}(\Sigma_X \Sigma_{GX}^{-1}\Delta\Sigma_{GX}^{-1}\Sigma_X)\Sigma_X^{-1}\mathbf{c}}_{0 \leq \text{second-order reduction}}. \end{aligned}$$

938

939 Both reduction terms are quadratic forms of the PSD matrix Δ and are therefore non-negative.
940941 Define δ as their sum. Lemma 6 lower-bounds the first-order term, and by extension lower-bounds δ :
942

943
$$0 \leq \frac{\kappa}{1+\kappa} \cdot \|\Pi_{\Delta}(\mathbf{h}_{\text{erm}} - \mathbf{f})\|_{\Sigma_X}^2 \leq \text{first order term} \stackrel{(\Delta)}{\leq} \delta.$$

944

945 Trace the same steps as Lemma 6 to bound δ from above via the simultaneous basis from Lemma 7
946 ($\Sigma_X = \mathbf{S}^\top \mathbf{S}$, $\Delta = \mathbf{S}^\top \mathbf{D} \mathbf{S}$). Taking $\mathbf{z} := \mathbf{S} \Sigma_X^{-1} \mathbf{c}$ and eigenvalues D_{ii} of $\Sigma_X^{-1} \Delta$, we can show
947

948
$$\delta = \sum_i z_i^2 \cdot \left(\underbrace{\frac{D_{ii}}{1+D_{ii}}}_{\text{1st order}} + \underbrace{\frac{D_{ii}}{(1+D_{ii})^2}}_{\text{2nd order}} \right) \stackrel{(\nabla)}{\leq} \sum_{i:D_{ii}>0} 1 \cdot z_i^2 = \|\Pi_{\Delta}(\mathbf{h}_{\text{erm}} - \mathbf{f})\|_{\Sigma_X}^2.$$

949

950 **Condition for equality.** Equality holds for (Δ) iff $\Delta \perp \Sigma_{X,\xi}$, as otherwise the second-order term
951 is strictly positive. Equality also holds for (∇) iff $\Delta \perp \Sigma_{X,\xi}$, because that entails $z_i = 0$ whenever
952 $D_{ii} > 0$ so that the sums on both sides go to 0. \square
953

972 A.4 PROOF OF PROPOSITION 2—SHARPER BOUNDS WITH DA
973974 **Proposition 2** (sharper bounds with DA). *For Assumptions 1 to 3, Lebesgue measure (volume) $|\cdot|$,*

975
976
$$\frac{|\mathcal{H}_{\text{da+pi}}|}{|\mathcal{H}_{\text{pi}}|} = \sqrt{\frac{\det \Sigma_X}{\det \Sigma_{GX}}} < 1, \quad \frac{|\mathcal{H}_{\text{da+pi}}(\mathbf{x})|}{|\mathcal{H}_{\text{pi}}(\mathbf{x})|} = \frac{\|\mathbf{x}\|_{\Sigma_{GX}^{-1}}}{\|\mathbf{x}\|_{\Sigma_X^{-1}}} \leq 1, \quad \text{equality iff } \mathbf{x} \perp \Delta.$$

977
978

979 *Proof.* We compare the geometric properties of the identified sets as characterized by Lemma 2.
980981 **Ellipsoid volume (global contraction).** Given that the volume of a Σ -ellipsoid $\propto (\det \Sigma)^{-1/2}$, it
982 immediately follows from Lemmas 1 and 2, and the monotonicity of determinant for SPD matrices:
983

984
$$\Sigma_X \preccurlyeq \Sigma_{GX} \implies \det(\Sigma_X) < \det(\Sigma_{GX}),$$

985
$$\implies \det(\Sigma_{GX})^{-1/2} < \det(\Sigma_X)^{-1/2} \implies |\mathcal{H}_{\text{da+pi}}| < |\mathcal{H}_{\text{pi}}|.$$

986

987 **Interval width (point-wise contraction).** From Lemma 2, the width of the interval $\mathcal{H}_{\text{pi}}(\mathbf{x})$ is
988 simply $2r(\Gamma) \cdot \|\mathbf{x}\|_{\Sigma_X^{-1}}$. It then immediately follows from Lemma 1 and definition of the PSD order:
989

990
$$\Sigma_X \preccurlyeq \Sigma_{GX} \implies \Sigma_{GX}^{-1} \preccurlyeq \Sigma_X^{-1},$$

991
$$\implies \mathbf{x}^\top \Sigma_{GX}^{-1} \mathbf{x} \leq \mathbf{x}^\top \Sigma_X^{-1} \mathbf{x} \implies |\mathcal{H}_{\text{da+pi}}(\mathbf{x})| \leq |\mathcal{H}_{\text{pi}}(\mathbf{x})|.$$

992

993 **Condition for equality.** The interval width is strictly smaller for $\mathcal{H}_{\text{da+pi}}(\mathbf{x})$ compared to $\mathcal{H}_{\text{pi}}(\mathbf{x})$
994 unless the query point \mathbf{x} lies in the null space of the difference $\Delta := \Sigma_{GX} - \Sigma_X$. From Lemma 7,
995

996
$$\Sigma_{GX}^{-1} = (\Sigma_X + \Delta)^{-1} = (\mathbf{S}^\top \mathbf{S} + \mathbf{S}^\top \mathbf{D} \mathbf{S})^{-1} = \mathbf{S}^{-1} (\mathbf{I} + \mathbf{D})^{-1} \mathbf{S}^{-\top}.$$

997

998 When we analyze the ratio of squared norms using the basis $\mathbf{z} := \mathbf{S}^{-\top} \mathbf{x}$, it simplifies to:
999

1000
$$\frac{\|\mathbf{x}\|_{\Sigma_{GX}^{-1}}^2}{\|\mathbf{x}\|_{\Sigma_X^{-1}}^2} = \frac{\mathbf{z}^\top (\mathbf{I} + \mathbf{D})^{-1} \mathbf{z}}{\mathbf{z}^\top \mathbf{z}} = \frac{\sum_i z_i^2 (1 + D_{ii})^{-1}}{\sum_i z_i^2}.$$

1001

1002 Since \mathbf{D} is non-negative, the term $(1 + D_{ii})^{-1} < 1$ whenever $D_{ii} > 0$. Therefore, the ratio is
1003 strictly less than 1 unless \mathbf{z} is supported only on indices where $D_{ii} = 0$. This requires $\mathbf{z}^\top \mathbf{D} \mathbf{z} = 0$,
1004 which transforms back to the condition that \mathbf{x} must lie in the null-space of Δ (i.e., $\mathbf{x} \perp \Delta$). \square
10051006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

1026 A.5 MISCELLANEOUS SUPPORTING LEMMAS
10271028 **Lemma 1** (added exogenous variation with DA). *Under Assumption 1, G inflates the data variance,*

1029
$$\Delta := \Sigma_{GX} - \Sigma_X \succcurlyeq \mathbf{0}, \quad \text{equality iff } GX = X \text{ a.s.}$$

1030

1031 *Proof.* Represent $Z := GX$. Now, by applying the Law of Total Covariance conditioning on X ,

1032
$$\Sigma_{GX} = \mathbb{E}[\text{Cov}(GX|X)] + \text{Cov}(\mathbb{E}[GX|X]). \quad (7)$$

1033

1034 By Assumption 1 (unbiased group action) we have $\mathbb{E}[GX|X] = X$, and the second term reduces to
1035

1036
$$\text{Cov}(\mathbb{E}[GX|X]) = \text{Cov}(X) = \Sigma_X. \quad (8)$$

1037

1038 The first term represents the exogenous variation injected by the group action. Let $\Delta = \mathbb{E}[\text{Cov}(GX|X)]$. Since covariance matrices are PSD by definition, we have $\Delta \succcurlyeq \mathbf{0}$.
10391040 **Condition for equality.** The inequality holds with equality ($\Sigma_{GX} = \Sigma_X$) iff the injected noise
1041 matrix $\Delta = \mathbf{0}$. Since $\text{Cov}(GX|X) \succcurlyeq \mathbf{0}$ almost surely, its expectation is zero if and only if
1042 $\text{Cov}(GX|X) = \mathbf{0}$ almost surely. This implies GX is a deterministic function of X . Given the
1043 unbiased assumption $\mathbb{E}[GX|X] = X$, this forces $GX = X$ almost surely (i.e., G acts as identity
1044 over support of X). Therefore, for any non-trivial augmentation, the inequality $\Delta \succcurlyeq \mathbf{0}$ is strict. \square
1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080 **Lemma 2** (characterizing the identified set in a linear, Gaussian case). *Under Assumptions 2 and 3,*

$$1082 \quad \mathcal{H}_{\text{pi}} = \left\{ \mathbf{h} \mid \|\mathbf{h} - \mathbf{h}_{\text{erm}}\|_{\Sigma_X}^2 \leq r(\mathbf{\Gamma})^2 \right\},$$

1084 where the ellipsoid radius $r(\mathbf{\Gamma}) \geq 0$ depends on the choice of constraint parameters. Furthermore,

$$1086 \quad \mathcal{H}_{\text{pi}}(\mathbf{x}) = \left[\mathbf{h}_{\text{erm}}^\top \mathbf{x} - r(\mathbf{\Gamma}) \cdot \|\mathbf{x}\|_{\Sigma_X^{-1}}, \quad \mathbf{h}_{\text{erm}}^\top \mathbf{x} + r(\mathbf{\Gamma}) \cdot \|\mathbf{x}\|_{\Sigma_X^{-1}} \right].$$

1088 *Proof.* Compute the population covariance

$$1090 \quad \text{Cov}(X, Y) = \text{Cov}(X, \mathbf{f}^\top X + \xi) = \Sigma_X \mathbf{f} + \Sigma_{X,\xi},$$

1091 so the (naïve) ERM estimand satisfies

$$1093 \quad \mathbf{h}_{\text{erm}} = \Sigma_X^{-1} \text{Cov}(X, Y) = \mathbf{f} + \Sigma_{XX}^{-1} \Sigma_{X,\xi}.$$

1094 Let $\mathbf{b} := \mathbf{h}_{\text{erm}} - \mathbf{f} = \Sigma_{XX}^{-1} \Sigma_{X,\xi}$. By the partial- R^2 constraint in Assumption 3

$$1096 \quad R_{\xi|X}^2 = \frac{\Sigma_{X,\xi}^\top \Sigma_X^{-1} \Sigma_{X,\xi}}{\sigma_\xi^2} \leq \Gamma,$$

1099 we have

$$1100 \quad \Sigma_{X,\xi}^\top \Sigma_{XX}^{-1} \Sigma_{X,\xi} \leq \sigma_\xi^2 \Gamma.$$

1101 Substituting $\Sigma_{X,\xi} = \Sigma_{XX} \mathbf{b} = \Sigma_{XX}(\mathbf{h}_{\text{erm}} - \mathbf{f})$ yields

$$1103 \quad (\mathbf{h}_{\text{erm}} - \mathbf{f})^\top \Sigma_{XX} (\mathbf{h}_{\text{erm}} - \mathbf{f}) \leq \sigma_\xi^2 \Gamma,$$

1104 which is equivalent to

$$1105 \quad \|\mathbf{f} - \mathbf{h}_{\text{erm}}\|_{\Sigma_{XX}}^2 \leq \sigma_\xi^2 \Gamma \leq \Gamma_0 \Gamma.$$

1107 Thus the identified set for \mathbf{f} is the stated ellipsoid with radius $r(\mathbf{\Gamma})^2 = \Gamma_0 \Gamma$. The centred Gaussian
1108 assumption guarantees the linear projection interpretation used above is exact.

1109 Lastly, since the identified set is an ellipsoid, maximizing/minimizing a linear functional $\mathbf{f}^\top \mathbf{x}$ is just
1110 moving along its principal axis in the direction of \mathbf{x} , giving us the bounds for $\mathcal{H}_{\text{pi}}(\mathbf{x})$. \square

1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

1134 **Lemma 3** (upper bound on distance of a point to farthest point on ellipsoid). *Take ellipsoid $\mathcal{O} \subset \mathbb{R}^n$*

1135

$$1136 \quad \mathcal{O} = \left\{ \mathbf{x} \mid (\mathbf{x} - \mathbf{x}_0)^\top \Sigma_0 (\mathbf{x} - \mathbf{x}_0) \leq r_0^2 \right\},$$

1137

1138 *with radius r_0 , centered at \mathbf{x}_0 and shape defined by the SPD matrix $\Sigma_0 \succ 0$. For some arbitrary*

1139 *point $\mathbf{y} \in \mathbb{R}^n$, denote its distance from the farthest point on \mathcal{O} as weighted by an SPD $\Sigma \succ 0$ with*

1140

$$1141 \quad D_{\Sigma}^{\max}(\mathbf{y}, \mathcal{O}) := \max_{\mathbf{x} \in \mathcal{O}} \|\mathbf{y} - \mathbf{x}\|_{\Sigma}.$$

1142

1143 *This distance is upper bounded as follows, with \mathbf{v}_{\max} as the eigenvector corresponding to λ_{\max} .*

1144

$$1145 \quad D_{\Sigma}^{\max}(\mathbf{y}, \mathcal{O}) \leq \|\mathbf{y} - \mathbf{x}_0\|_{\Sigma} + r_0 \cdot \sqrt{\lambda_{\max}(\Sigma \Sigma_0^{-1})},$$

1146 *equality iff* $\mathbf{y} - \mathbf{x}_0 \parallel \mathbf{v}_{\max}(\Sigma \Sigma_0^{-1})$.

1147

1148 *Proof.* By triangle inequality

1149

$$1150 \quad \|\mathbf{y} - \mathbf{x}\|_{\Sigma} \leq \|\mathbf{y} - \mathbf{x}_0\|_{\Sigma} + \|\mathbf{x}_0 - \mathbf{x}\|_{\Sigma}.$$

1151

1152 Now, simply maximizing both sides over $\mathbf{x} \in \mathcal{O}$,

1153

$$1154 \quad \max_{\mathbf{x} \in \mathcal{O}} \|\mathbf{y} - \mathbf{x}\|_{\Sigma} \leq \max_{\mathbf{x} \in \mathcal{O}} (\|\mathbf{y} - \mathbf{x}_0\|_{\Sigma} + \|\mathbf{x}_0 - \mathbf{x}\|_{\Sigma}) = \|\mathbf{y} - \mathbf{x}_0\|_{\Sigma} + \max_{\mathbf{x} \in \mathcal{O}} \|\mathbf{x}_0 - \mathbf{x}\|_{\Sigma}.$$

1155

1156 The last term $\max_{\mathbf{x} \in \mathcal{O}} \|\mathbf{x}_0 - \mathbf{x}\|_{\Sigma}$ is simply the radius of the ellipsoid in the Σ -norm, which is

1157 equal to $r_0 \cdot \sqrt{\lambda_{\max}(\Sigma \Sigma_0^{-1})}$. The result follows.

1158

1159 **Condition for equality.** The triangle inequality holds with equality iff $(\mathbf{y} - \mathbf{x}_0)$ and $(\mathbf{x} - \mathbf{x}_0)$

1160 are collinear. The second term is maximized when $(\mathbf{x} - \mathbf{x}_0)$ aligns with the dominant eigenvector

1161 $\mathbf{v}_{\max}(\Sigma \Sigma_0^{-1})$ (the generalized principal axis). Therefore, the total bound is tight iff $(\mathbf{y} - \mathbf{x}_0)$ is

1162 itself an eigenvector corresponding to $\lambda_{\max}(\Sigma \Sigma_0^{-1})$, i.e. $(\mathbf{y} - \mathbf{x}_0) \parallel \mathbf{v}_{\max}(\Sigma \Sigma_0^{-1})$. \square

1163

1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

1188 **Lemma 4** (upper bound on distance of a point to an ellipsoid). *Take the following ellipsoid $\mathcal{O} \subset \mathbb{R}^n$*

$$1190 \quad \mathcal{O} = \left\{ \mathbf{x} \mid (\mathbf{x} - \mathbf{x}_0)^\top \Sigma_0 (\mathbf{x} - \mathbf{x}_0) \leq r_0^2 \right\},$$

1192 *with radius r_0 , centered at \mathbf{x}_0 and shape defined by the SPD matrix $\Sigma_0 \succ 0$. For some arbitrary*
 1193 *point $\mathbf{y} \in \mathbb{R}^n$, denote its distance from \mathcal{O} as weighted by an SPD $\Sigma \succ 0$ with the following notation*

$$1194 \quad D_{\Sigma}^{\min}(\mathbf{y}, \mathcal{O}) := \min_{\mathbf{x} \in \mathcal{O}} \|\mathbf{y} - \mathbf{x}\|_{\Sigma}.$$

1196 *This distance is upper bounded by the following closed-form, with $\mathbf{v}(\cdot)$ as any arbitrary eigenvector.*

$$1198 \quad D_{\Sigma}^{\min}(\mathbf{y}, \mathcal{O}) \leq \begin{cases} 0, & \mathbf{y} \in \mathcal{O}, \\ 1200 \quad \left(1 - \frac{r_0}{\|\mathbf{y} - \mathbf{x}_0\|_{\Sigma_0}}\right) \|\mathbf{y} - \mathbf{x}_0\|_{\Sigma}, & \mathbf{y} \notin \mathcal{O}, \\ 1202 \quad \text{equality iff } \mathbf{y} \in \mathcal{O}, \quad \text{or } \mathbf{y} - \mathbf{x}_0 \parallel \mathbf{v}(\Sigma \Sigma_0^{-1}). \end{cases}$$

1205 *Proof.* The result for $\mathbf{y} \in \mathcal{O}$ case is immediate. To show the bound for $\mathbf{y} \notin \mathcal{O}$, consider the ray

$$1207 \quad \mathbf{x}(r) := \mathbf{x}_0 + r \cdot (\mathbf{y} - \mathbf{x}_0), \quad r \in [0, 1],$$

1208 going from the ellipsoid center \mathbf{x}_0 through \mathbf{y} . This ray intersects with the ellipsoid boundary at

$$1210 \quad r^* = \frac{r_0}{\|\mathbf{y} - \mathbf{x}_0\|_{\Sigma_0}} \in (0, 1),$$

1212 due to \mathcal{O} being a sphere under a Σ_0 weighted norm. The point $\mathbf{x}^* := \mathbf{x}(r^*)$ lies on the boundary.

$$1214 \quad \Rightarrow \mathbf{y} - \mathbf{x}^* = (1 - r^*) \cdot (\mathbf{y} - \mathbf{x}_0).$$

1215 Since the closest point along an arbitrary ray is never closer than the true minimum, we have

$$1217 \quad D_{\Sigma}^{\min}(\mathbf{y}, \mathcal{O}) = \min_{\mathbf{x} \in \mathcal{O}} \|\mathbf{y} - \mathbf{x}\|_{\Sigma},$$

$$1218 \quad \leq \|\mathbf{y} - \mathbf{x}^*\|_{\Sigma},$$

$$1219 \quad = (1 - r^*) \cdot \|\mathbf{y} - \mathbf{x}_0\|_{\Sigma},$$

$$1221 \quad = \left(1 - \frac{r_0}{\|\mathbf{y} - \mathbf{x}_0\|_{\Sigma_0}}\right) \|\mathbf{y} - \mathbf{x}_0\|_{\Sigma}.$$

1224 **Condition for equality.** The condition for $\mathbf{y} \in \mathcal{O}$ case is trivial. For $\mathbf{y} \notin \mathcal{O}$, the minimum
 1225 distance from \mathbf{y} to the ellipsoid occurs at the boundary intersection of the ray $\mathbf{x}(r)$ iff the gradient
 1226 of the *objective* $\Sigma(\mathbf{y} - \mathbf{x})$ is parallel to the gradient of the *constraint* $\Sigma_0(\mathbf{x} - \mathbf{x}_0)$ at the intersection
 1227 point. Since $(\mathbf{x} - \mathbf{x}_0)$ is proportional to $(\mathbf{y} - \mathbf{x}_0)$ along the ray, this optimality condition requires:

$$1229 \quad \Sigma(\mathbf{y} - \mathbf{x}_0) \propto \Sigma_0(\mathbf{y} - \mathbf{x}_0) \quad \iff \quad (\mathbf{y} - \mathbf{x}_0) \propto \Sigma^{-1} \Sigma_0(\mathbf{y} - \mathbf{x}_0).$$

1231 Thus, the ray bound is exact if and only if $(\mathbf{y} - \mathbf{x}_0)$ is an (any) eigenvector of $\Sigma^{-1} \Sigma_0$. \square

1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241

1242 **Lemma 5** (centroid-radius interaction bound via coupling). *For $\mathbf{x} \sim \mathcal{N}(\mathbf{0}, \Sigma_0)$, consider two con-
1243 stant vectors $\mathbf{b}_1, \mathbf{b}_2 \in \mathbb{R}^m$ (representing **centroid displacements**) and two symmetric positive definite
1244 matrices $\Sigma_1, \Sigma_2 \succ \mathbf{0}$ (representing respective **radius metrics**). Define the interaction integral:*

$$1246 \quad J(\mathbf{b}, \Sigma) := \mathbb{E}_{\mathbf{x}} \left[|\mathbf{b}^\top \mathbf{x}| \cdot \sqrt{\mathbf{x}^\top \Sigma \mathbf{x}} \right].$$

1247 *If (\mathbf{b}_2, Σ_2) has a strictly shorter “whitened” centroid and a strictly narrower radius (PSD-wise), i.e.,*

1248 *1. **Centroid Contraction:** $\|\mathbf{b}_2\|_{\Sigma_0} < \|\mathbf{b}_1\|_{\Sigma_0}$,*
 1249 *2. **Radius Contraction:** $\Sigma_2 \prec \Sigma_1$,*

1250 *then the interaction term strictly decreases:*

$$1254 \quad J(\mathbf{b}_2, \Sigma_2) < J(\mathbf{b}_1, \Sigma_1).$$

1256 *Proof.* To evaluate the integral, we transform it into spherically symmetric coordinates (whitening).

1258 **Whitening.** We can express the data vector \mathbf{x} as a linear transformation of a standard normal vector
1259 $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_m)$ such that $\mathbf{x} = \Sigma_0^{1/2} \mathbf{z}$. Substituting this into the centroid and radius terms:

$$1261 \quad \text{Centroid: } |\mathbf{b}^\top \mathbf{x}| = |\mathbf{b}^\top \Sigma_0^{1/2} \mathbf{z}| = |(\Sigma_0^{1/2} \mathbf{b})^\top \mathbf{z}| = |\tilde{\mathbf{b}}^\top \mathbf{z}|,$$

$$1262 \quad \text{Radius: } \sqrt{\mathbf{x}^\top \Sigma \mathbf{x}} = \sqrt{\mathbf{z}^\top \Sigma_0^{1/2} \Sigma \Sigma_0^{1/2} \mathbf{z}} = \sqrt{\mathbf{z}^\top \tilde{\Sigma} \mathbf{z}},$$

1264 where $\tilde{\mathbf{b}} := \Sigma_0^{1/2} \mathbf{b}$ is the whitened centroid, and $\tilde{\Sigma} := \Sigma_0^{1/2} \Sigma \Sigma_0^{1/2}$ is the whitened radius metric.

1266 **Rotational symmetry (coupling).** The expectation is now over the standard normal variable \mathbf{z} :

$$1268 \quad J = \mathbb{E}_{\mathbf{z}} \left[|\tilde{\mathbf{b}}^\top \mathbf{z}| \cdot \sqrt{\mathbf{z}^\top \tilde{\Sigma} \mathbf{z}} \right].$$

1270 Since the distribution of \mathbf{z} is spherically symmetric (invariant to rotations), the distribution of the dot
1271 product $\tilde{\mathbf{b}}^\top \mathbf{z}$ depends only on the length of $\tilde{\mathbf{b}}$. We can conceptually rotate the coordinate system for
1272 each scenario such that $\tilde{\mathbf{b}}$ aligns with the first basis vector \mathbf{e}_1 . In this rotated frame, $|\tilde{\mathbf{b}}^\top \mathbf{z}| = \|\tilde{\mathbf{b}}\| \cdot |z_1|$.

1273 Crucially, note that $\|\tilde{\mathbf{b}}\| = \|\Sigma_0^{1/2} \mathbf{b}\|_2 = \sqrt{\mathbf{b}^\top \Sigma_0 \mathbf{b}} = \|\mathbf{b}\|_{\Sigma_0}$. Thus:

$$1275 \quad J(\mathbf{b}, \Sigma) = \|\mathbf{b}\|_{\Sigma_0} \cdot \mathbb{E}_{\mathbf{z}} \left[|z_1| \cdot \sqrt{\mathbf{z}^\top \tilde{\Sigma} \mathbf{z}} \right].$$

1278 **Comparison.** We now compare $J_1 = J(\mathbf{b}_1, \Sigma_1)$ and $J_2 = J(\mathbf{b}_2, \Sigma_2)$.

$$\begin{aligned} 1279 \quad J_2 &= \|\mathbf{b}_2\|_{\Sigma_0} \cdot \mathbb{E}_{\mathbf{z}} \left[|z_1| \cdot \sqrt{\mathbf{z}^\top \tilde{\Sigma}_2 \mathbf{z}} \right] \\ 1280 &< \|\mathbf{b}_1\|_{\Sigma_0} \cdot \mathbb{E}_{\mathbf{z}} \left[|z_1| \cdot \sqrt{\mathbf{z}^\top \tilde{\Sigma}_2 \mathbf{z}} \right] && \text{(by centroid contraction)} \\ 1281 &< \|\mathbf{b}_1\|_{\Sigma_0} \cdot \mathbb{E}_{\mathbf{z}} \left[|z_1| \cdot \sqrt{\mathbf{z}^\top \tilde{\Sigma}_1 \mathbf{z}} \right] && \text{(by radius contraction)} \\ 1282 &= J_1. \end{aligned}$$

1288 The second inequality holds because $\Sigma_2 \prec \Sigma_1$ implies $\tilde{\Sigma}_2 \prec \tilde{\Sigma}_1$, so $\mathbf{z}^\top \tilde{\Sigma}_2 \mathbf{z} < \mathbf{z}^\top \tilde{\Sigma}_1 \mathbf{z}$ for all
1289 $\mathbf{z} \neq \mathbf{0}$. Since $|z_1|$ is non-negative and not always zero, the expectation strictly decreases. \square

1290
1291
1292
1293
1294
1295

1296 **Lemma 6** (sandwich bounds for SPD-PSD weighted norms). *For $n \times n$ matrices $\mathbf{A} \succ \mathbf{0}$, $\mathbf{B} \succcurlyeq \mathbf{0}$,
1297 denote the pseudo-inverse as \mathbf{B}^\dagger , and $\Pi_{\mathbf{B}} := \mathbf{B}^\dagger \mathbf{B}$ projects onto range(\mathbf{B}). Then, for any $\mathbf{x} \in \mathbb{R}^n$,*
1298

$$1299 \quad \underbrace{\frac{\kappa}{1+\kappa}}_{\text{shrinkage factor} \leq 1} \cdot \|\Pi_{\mathbf{B}} \mathbf{x}\|_{\mathbf{A}}^2 \leq \mathbf{x}^\top \mathbf{A} (\mathbf{A} + \mathbf{B})^{-1} \mathbf{B} \mathbf{x} \leq \|\Pi_{\mathbf{B}} \mathbf{x}\|_{\mathbf{A}}^2,$$

1302 for bounded minimum positive eigenvalue $\kappa := \lambda_{\min}^+(\mathbf{A}^{-1} \mathbf{B}) < \infty$. Equality holds for upper
1303 bound iff $\mathbf{x} \perp \mathbf{B}$, and lower bound iff $\Pi_{\mathbf{B}} \mathbf{x}$ is entirely in eigen-space of $\mathbf{A}^{-1} \mathbf{B}$ corresponding to κ .
1304

1305 *Proof.* From Lemma 7, we have $\mathbf{A} = \mathbf{S}^\top \mathbf{S}$ and $\mathbf{B} = \mathbf{S}^\top \mathbf{D} \mathbf{S}$ for invertible \mathbf{S} and diagonal $\mathbf{D} \succcurlyeq \mathbf{0}$.
1306 Note that \mathbf{D} are eigenvalues of $\mathbf{A}^{-1} \mathbf{B}$ by cyclic permutation invariance (i.e., $\lambda(\mathbf{A}\mathbf{B}) = \lambda(\mathbf{B}\mathbf{A})$).
1307

1308 Define the change of basis $\mathbf{z} := \mathbf{S}\mathbf{x}$. Then $\mathbf{x} = \mathbf{S}^{-1}\mathbf{z}$, and

$$\begin{aligned} 1309 \quad \mathbf{x}^\top \mathbf{A} (\mathbf{A} + \mathbf{B})^{-1} \mathbf{B} \mathbf{x} &= \mathbf{x}^\top \mathbf{S}^\top \mathbf{S} (\mathbf{S}^\top \mathbf{S} + \mathbf{S}^\top \mathbf{D} \mathbf{S})^{-1} \mathbf{S}^\top \mathbf{D} \mathbf{S} \mathbf{x} \\ 1310 &= \mathbf{x}^\top \mathbf{S}^\top \mathbf{S} (\mathbf{S}^\top (\mathbf{I} + \mathbf{D}) \mathbf{S})^{-1} \mathbf{S}^\top \mathbf{D} \mathbf{S} \mathbf{x} \\ 1311 &= \mathbf{x}^\top \mathbf{S}^\top \mathbf{S} \mathbf{S}^{-1} (\mathbf{I} + \mathbf{D})^{-1} \mathbf{S}^{-\top} \mathbf{S}^\top \mathbf{D} \mathbf{S} \mathbf{x} \\ 1312 &= \mathbf{x}^\top \mathbf{S}^\top (\mathbf{I} + \mathbf{D})^{-1} \mathbf{D} \mathbf{S} \mathbf{x} \\ 1313 &= \mathbf{z}^\top (\mathbf{I} + \mathbf{D})^{-1} \mathbf{D} \mathbf{z} \\ 1314 &= \sum_i \frac{D_{ii}}{1+D_{ii}} z_i^2. \\ 1315 \\ 1316 \\ 1317 \\ 1318 \end{aligned}$$

1319 Similarly, for the projected norm, noting that $\Pi_{\mathbf{B}} = \mathbf{S}^{-1} \mathbf{D}^\dagger \mathbf{D} \mathbf{S}$ and $\|\mathbf{x}\|_{\mathbf{A}}^2 = \|\mathbf{S}\mathbf{x}\|_2^2$:

$$1320 \quad \|\Pi_{\mathbf{B}} \mathbf{x}\|_{\mathbf{A}}^2 = \|\mathbf{S} (\mathbf{S}^{-1} \mathbf{D}^\dagger \mathbf{D} \mathbf{S}) \mathbf{x}\|_2^2 = \|\mathbf{D}^\dagger \mathbf{D} \mathbf{z}\|_2^2 = \sum_{i:D_{ii}>0} z_i^2.$$

1323 **Upper bound.** Since $\frac{D_{ii}}{1+D_{ii}} < 1$ for all $D_{ii} > 0$, the following inequality is strict for any $z_i \neq 0$.
1324

$$1325 \quad \mathbf{x}^\top \mathbf{A} (\mathbf{A} + \mathbf{B})^{-1} \mathbf{B} \mathbf{x} = \sum_i \frac{D_{ii}}{1+D_{ii}} z_i^2 \leq \sum_i z_i^2 = \|\Pi_{\mathbf{B}} \mathbf{x}\|_{\mathbf{A}}^2.$$

1328 And equality holds iff $z_i = 0$ for *all* active indices, which implies $\Pi_{\mathbf{B}} \mathbf{x} = \mathbf{0}$ (i.e., $\mathbf{x} \perp \mathbf{B}$).
1329

1330 **Lower Bound.** The function $f(d) = \frac{d}{1+d}$ is monotonically increasing for $d \geq 0$. Restricting our
1331 attention to the support of the vector (indices where $D_{ii} > 0$), we define $\kappa = \min\{D_{ii} : D_{ii} > 0\}$.
1332 It follows that for every active index, $\frac{D_{ii}}{1+D_{ii}} \geq \frac{\kappa}{1+\kappa}$. Summing over the support:
1333

$$1334 \quad \sum_{i:D_{ii}>0} \frac{D_{ii}}{1+D_{ii}} z_i^2 \geq \sum_{i:D_{ii}>0} \frac{\kappa}{1+\kappa} z_i^2 = \frac{\kappa}{1+\kappa} \|\Pi_{\mathbf{B}} \mathbf{x}\|_{\mathbf{A}}^2.$$

1337 For the inequality to become an equality, we require $\frac{D_{ii}}{1+D_{ii}} = \frac{\kappa}{1+\kappa}$ for every index i where $z_i \neq 0$.
1338 This implies $D_{ii} = \kappa$ for all contributing dimensions. Geometrically, this means the vector \mathbf{x} (after
1339 projection) must align only with the directions associated with the minimum eigenvalue κ . \square
1340

1341
1342
1343
1344
1345
1346
1347
1348
1349

1350
 1351 **Lemma 7** (SPD, PSD joint denationalization via congruence Akbar et al. (2025)). *For any $n \times n$*
 1352 *matrices $\mathbf{A} \succ 0$, $\mathbf{B} \succcurlyeq 0$, there exists an $n \times n$ invertible \mathbf{S} and non-negative diagonal \mathbf{D} such that*

$$1353 \quad \mathbf{A} = \mathbf{S}^\top \mathbf{S}, \quad \mathbf{B} = \mathbf{S}^\top \mathbf{D} \mathbf{S}.$$

1354 *Proof.* See (Akbar et al., 2025, Lem. 2), cf. (Horn & Johnson, 1985, Thm. 7.6.4, p. 465). \square

1355 **USE OF LARGE LANGUAGE MODELS**

1356
 1357 A large language model (LLM) was utilized as a writing assistant to help refine the prose, improve
 1358 clarity, and ensure a consistent narrative tone during the preparation of this manuscript. The human
 1359 authors directed this process, take full responsibility for the final content, and are solely responsible
 1360 for all scientific contributions of this work.

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403