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ABSTRACT

We provide a first analysis for using knowledge of symmetries in data genera-
tion via data augmentation (DA) transformations for sharpening bounds on causal
effects derived from observational data. The causal effect of the treatment X on
outcome Y is generally not identifiable from observational data alone if their com-
mon causes, also known as confounders, are unobserved. Partial identification (PI)
entails estimating bounds on such treatment effects by solving a constrained opti-
mization problem that encodes different assumptions imposed on data generation.
PI has use in many application domains where such bounds are sufficient to inform
policy decisions, even if the treatment effect itself is not identifiable. To this end,
we propose that the cheap and ubuquitous tool of DA, which is otherwise used
for mitigating estimation variance, can also be repurposed for sharpening bounds
in PI. This is especially useful when the data is complex (i.e., continuous, high-
dimensional), as imposing additional constraints becomes expensive compared to
a simple pre-processing via DA.

1 INTRODUCTION

One of the classical problems in machine learning is that of regression—predicting an outcome Y
from a set of predictors X . The standard approach involves learning a model from i.i.d. samples
to generalize to new, unseen data, often employing regularization techniques like data augmentation
(DA) to improve performance Vapnik (1998); Shorten & Khoshgoftaar (2019); Lyle et al. (2020).
However, we generally cannot interpret such predictive models as causal. The statistical relationship
between X and Y may not reflect the true influence of X on Y , but could instead be driven by
unobserved common causes, or confounders. The gold standard for eliminating such confounding
bias is a direct intervention on X , where we explicitly assign its values during data generation.
However, performing interventions are often impractical or prohibitively costly Peters et al. (2017);
Pearl (2009).

When confounders are unobserved, identifying the true causal effect is notoriously difficult. While
methods like instrumental variables (IVs) can simulate interventions under specific conditional in-
dependence assumptions, valid instruments are scarce in many high-dimensional applications like
computer vision and natural language processing Singh et al. (2019); Zhang et al. (2023); Kilber-
tus et al. (2020). This scarcity has motivated a line of inquiry into repurposing standard machine
learning tools for causal inference. For instance, regularization techniques like ℓ1 and ℓ2 have been
studied not just for improving i.i.d. generalization, but also for reducing confounding bias in causal
estimates Janzing (2019); Kania & Wit (2023); Vankadara et al. (2022).

This perspective has recently been extended to data augmentation (DA), a ubiquitous regularization
method Shorten & Khoshgoftaar (2019); Lyle et al. (2020). It has been demonstrated that when
DA respects the symmetries of the outcome-generating process (i.e., is outcome-invariant), it can
be framed as a “soft” intervention Akbar et al. (2025). This interventionist view of DA allows it to
reduce confounding bias and improve the point-estimation of unidentifiable causal effects. However,
in many real-world scenarios with significant uncertainty, the causal effect is fundamentally not
point-identifiable. The goal then shifts from seeking a single best estimate to the more robust task of
partial identification (PI)—deriving rigorous bounds that are guaranteed to contain the true causal
effect. This raises a crucial question: if DA can improve point estimates of causal effects, can it also
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be leveraged to sharpen the bounds derived through partial identification? We answer this question
in the affirmative.

Our contribution. To this end, we provide a first analysis of DA for partial identification of causal
effects. Specifically, we leverage the insight that outcome-invariant DA is equivalent to a transfor-
mation intervention on the treatment variable. We demonstrate, both theoretically and empirically,
that this interventionist perspective allows DA to improve partial identification in three key ways:

• Valid Bounds: We first establish that applying outcome-invariant DA is a valid procedure.
The resulting identified set of causal functions does not move farther from the true causal
function, ensuring the integrity of the bounds (Theorem 1).

• Sharper Bounds: We show that DA strictly sharpens the bounds on the causal effect. It re-
duces the volume of the identified set of functions and tightens the point-wise identification
intervals, provided the augmentation is not trivial for the treatment queries (Proposition 1).

• More Robust Bounds: Finally, we demonstrate that the identified set becomes more ro-
bust. DA reduces the worst-case causal excess risk, meaning that even the least accurate
hypothesis within the identified set is improved, leading to more reliable and informative
bounds for decision-making (Theorem 2).

Taken together, our results position outcome-invariant DA as a simple, largely model-agnostic
pre-processing step that can be composed with many existing partial identification method to en-
hance performance.

2 PRELIMINARIES

2.1 STATISTICAL VS. CAUSAL INFERENCE
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Figure 1: Graphs of respective SEMs. (a ) The original SEM from Eq. (1) with confounded (X,Y ).
(b ) Graph obtained via intervention on X in Eq. (1). (c ) Graph for DA. (d ) Graph for transformation
intervention. Observational distributions of (GX,Y, ξ) in (c ) and (X,Y, ξ) in (d ) are identical.

Consider random treatment X , outcome Y taking values in X ⊆ Rm, Y ⊆ R respectively. The func-
tion f ∈ H := {h : X → Y} defines their causal relationship via a structural equation model (SEM)

Y = f(X) + ξ, E[ξ ] = 0. (1)

We want to estimate f given a dataset D := {(xi, yi)}ni=0 of n samples from the distribution PX,Y .

With the assumption X ⊥⊥ ξ, we have E[Y |X = x ] = f(x) in Eq. (1). Statistical inference entails
identifying precisely the Bayes optimal predictor E[Y |X = x ] from D by minimizing an empirical
version of the statistical risk over hypotheses h ∈ H for some proper, convex loss ℓ : R×R → R+,

Rerm(h) := E[ℓ(Y, h(X)) ]. (2)

Then, for a sufficiently rich hypothesis class, the minimizer herm gives an unbiased estimation of f .

However, the residual ξ in Eq. (1) may generally be correlated with X , i.e., E[ξ |X ] ̸= 0, so that
the conditional E[Y |X = x ] now gives a biased estimate of f(x) (Pearl, 2009; Peters et al., 2017).
This correlation arises due to unobserved common causes of X and Y , known as confounders. We
say that X and Y are confounded and refer to the resulting bias as the confounding bias Pearl (2009).
Causal inference entails adjusting for this bias to identify f , or at the very least account for it by
finding bounds on f should identification not be possible. Both approaches are outlined below.
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2.2 INTERVENTION AND ADJUSTMENT FOR CAUSAL EFFECT IDENTIFICATION

We can make X and the residual ξ uncorrelated via an intervention1 do(X := X ′) that explicitly sets
X to some independently sampled X ′ in Eq. (1) during data generation. The induced distribution,
referred to as the interventional distribution, is represented by Pdo(X:=X′)

X,Y . We use the shorthand
notation do(X) for an intervention where X ′ ∼ PX , under which the objective from Eq. (2) now
defines the causal risk (Kania & Wit, 2023; Vankadara et al., 2022; Janzing & Schölkopf, 2018b) as

Rdo(X)
erm (h) := Edo(X)[ℓ(Y, h(X)) ]. (3)

The target estimand of Eq. (3) is the average treatment effect (ATE) Edo(X:=x)[Y |X = x ] which
equals f(x) for the SEM under consideration in Eq. (1). Minimizers of Eq. (3) therefore give an
unbiased estimation of f . To better capture the estimation error for a candidate hypothesis h ∈ H,
we use the causal excess risk (Vankadara et al., 2022) by removing irreducible noise from Eq. (3) as

Edo(X)(h) := Rdo(X)
erm (h)−Rdo(X)

erm (f).

Since interventions are often inaccessible for computing the risk Eq. (3), estimating f usually relies
on access to the full joint distribution P of (X,Y, ξ) via back-door adjustment (Xu & Gretton, 2022)

hP
adj(x) := Eξ[E[Y |X = x, ξ ] ], (X,Y, ξ) ∼ P.

2.3 PARTIAL IDENTIFICATION AND SENSITIVITY ANALYSIS

For unobserved noise ξ, identification of f is generally not possible from PX,Y alone. Nevertheless,
given assumptions on the data generating process in Eq. (1), we can do partial identification (PI)
(Padh et al., 2023) of f by considering all the joint distributions Q consistent with said assumptions,

Qpi

(
PX,Y

)
:=
{
Q ∈ Cpi

∣∣∣QX,Y = PX,Y

}
,

where the constraint set Cpi encodes our assumptions. If correctly specified, P ∈ Cpi and the follow-
ing set Hpi of candidate hypotheses contains the true solution f , or the interval Hpi(x) holds f(x),

Hpi :=
{
hQ
adj

∣∣∣Q ∈ Qpi

}
, Hpi(x) :=

{
hQ
adj(x)

∣∣∣Q ∈ Qpi

}
,

where Qpi is shorthand for Qpi

(
PX,Y

)
. Computing the interval Hpi(x) at x is often more practical

than characterizing the set Hpi, since it amounts to solving two constrained optimization problems as

Hpi(x) =
[
minQ∈Qpi h

Q
adj(x), maxQ∈Qpi h

Q
adj(x)

]
.

In either case, we want the identified sets to (i) contain the true solution, (ii) be as small as possible.

The constraint set may also be parameterized as Cpi(Γ) to conduct sensitivity analyses (Frauen et al.,
2024) by varying parameters Γ to see how Hpi, Hpi(x) evolve as assumptions are relaxed/tightened.

Lastly, since we are now discussing hypothesis sets, we define the two appropriate evaluation metrics

Edo(X)
approx(Qpi) := min

Q∈Qpi

Edo(X)
(
hQ
adj

)
, E

do(X)
worst (Qpi) := max

Q∈Qpi

Edo(X)
(
hQ
adj

)
.

The approximation error E
do(X)
approx(Qpi) measures how far the target f is from Hpi (Brown & Ali,

2024), and the worst-case excess risk E
do(X)
worst (Qpi) upper bounds the performance of the identified

set Hpi relative to the target f . Similarly, Hpi(x) is evaluated using E
do(x)
approx(Qpi) and E

do(x)
worst (Qpi).

Choice of constraints. The nature and construction of Cpi often depends on domain knowledge.
Popular approaches involve bounding the spurious correlation between X,Y , including the sensi-
tivity model by Rosenbaum (2002) which parameterizes the strength of unmeasured confounding
through odds ratios, its generalization of the Marginal Sensitivity Model (MSM) by Tan (2006)
that does the same using propensity scores and the partial R-squared approach by Cinelli & Hazlett

1Transformation interventions swap X with a transformation GX in Eq. (1) (Dance & Bloem-Reddy, 2024).
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(2020) bounds the proportion of variance explained by unobserved confounders. More recently, Fan
et al. (2024); Guo et al. (2022) formulated the PI problem as robust optimization (RO) over Qpi

constructed as a total variation ball around the observational distribution PX,Y , and Meresht et al.
(2022) similarly uses Wasserstein constraints. An equivalent approach to modeling the confounding
is to instead model the random function fξ(·) := f(·)+ ξ itself, also known as the response function
(Padh et al., 2023). Hu et al. (2021) modeled these using generative adversarial networks (GANs)
to then match PX,Y in distribution. Most of these methods can also leverage auxiliary variables
in addition to X,Y for imposing constraints in the form of conditional independences to sharpen
bounds. Of note is the instrumental variable (IV) based PI by Balke & Pearl (1997) for when ξ arbi-
trarily influences Y instead of the additive model in Eq. (1). Modern neural-network based variants
for continuous, high-dimensional treatments and/or IVs are explored by Schweisthal et al. (2025);
Kilbertus et al. (2020); Hu et al. (2021); Padh et al. (2023); Meresht et al. (2022); Gunsilius (2020).

2.4 DATA AUGMENTATION

For finite samples, the technique of data augmentation (DA) is used to reduce estimation variance
(Lyle et al., 2020; Chen et al., 2020) in statistical inference. This is achieved by applying random
transformations G ∼ PG to the data, generating multiple transformed samples (Gxi, yi) from each
original sample (xi, yi) ∈ D, thereby increasing variability in the data for statistical risk evaluation,

Rda+erm(h) := E[ℓ(Y, h(GX)) ]. (4)
In this work we restrict ourselves to DA with respect to which f is invariant (Lyle et al., 2020; Chen
et al., 2020). The action of a group G is a mapping α : X × G → X compatible with the group
operation. Writing gx := α(x, g) as shorthand, we say that f is invariant under G (or G-invariant) if

f(gx) = f(x), ∀ (g,x) ∈ G × X .

Less formally, we say that the map gx is a valid outcome-invariant DA transformation. Let G have
a (unique) normalized Haar measure and PG be the corresponding distribution defined over it.

Of course one needs to have prior knowledge about the symmetries of f to construct such a DA.
We argue that the popularity of this modeling assumption in the DA and invariance literature (Lyle
et al., 2020; Chen et al., 2020) is precisely because such symmetries are already established in many
application domains. For example, when classifying images of cats and dogs we already know that
whatever the true labeling function may be, it would certainly be invariant to rotations on the images.
G would then represent the random rotation angle, whereas Gx would be the rotated image x.

While DA is canonically used to mitigate finite-sample estimation variance, our focus is primarily on
the infinite-sample setting, and we present Eq. (4) and subsequent theoretical results in that context.
Nonetheless, increasing sample size via DA also bears on our work, a point we shall briefly discuss.

3 INTERVENTION WITH DATA AUGMENTATION

We start by first framing data augmentation as a tool for causal inference. Assume we have access to
a valid outcome-invariant DA G ∼ PG for the SEM in Eq. (1). Now, consider an intervention on the
SEM where we substitute the treatment X with the transformation GX . With some abuse of nota-
tion, we shall represent this intervention by do(X := GX), the graph of which is shown in Fig. 1d.
Comparing the DA mechanism in Fig. 1c and the intervention do(X := GX) in Fig. 1d, we note:

Observation 1 (DA as transformation intervention). PGX,Y and Pdo(X:=GX)
X,Y are identical.

We can hence treat samples generated via DA as if they were instead generated from an intervention
do(X := GX) on X . This now allows us to re-write the post-DA statistical risk from Eq. (4) as

Rda+erm(h) = Rdo(X:=GX)
erm (h),

to emphasize that DA is equivalent to a transformation intervention on the treatment. As such, Akbar
et al. (2025) showed that when DA targets spurious features of X , it mitigates confounding bias in
point-estimation of f , even if full identification may not be possible. However, standard approach in
such a non-identifiable setting is not to point-estimate f , but to undertake partial identification of f .

This motivates our current work, where we leverage intervention properties of outcome-invariant DA
to improve partial identification and/or sensitivity analysis of f , as discussed in the next section.

4
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4 PARTIAL IDENTIFICATION WITH DATA AUGMENTATION

A
x

gx

x1

x2

f
⊤
x

Figure 2: The ground truth func-
tion f in Example 1. The
DA applied here corresponds to
randomly translating the data
samples along their level-set by
adding random noise sampled
from the null-space of f .

Our main insight for why data augmentation might help with
partial identification is summarized as:

(i) Most straightforwardly, increasing sample size via DA can
mitigate sampling variation and finite sample errors, a key
source of uncertainty in PI (Imbens & Manski, 2004).

(ii) DA adds variation in X beyond Y , reducing ambigu-
ity in PI, which leads to sharper bounds.

(iii) When spurious features of X are perturbed by the DA, it
reduces sensitivity to confounding resulting in more robust
and informative bounds in sensitivity analysis.

(iv) Most importantly, outcome-invariance of DA guarantees
valid bounds whenever Cpi is valid.

We elaborate these via analysis of a simple, linear example. But
first we explicitly define the composition of DA and PI as the set

Qda+pi

(
PX,Y

)
:= Qpi

(
PGX,Y

)
= Qpi

(
Pdo(X:=GX)
X,Y

)
.

Example 1 (a linear Gaussian DA example). For σ > 0, non-zero A,T ∈ R∗×m and f , ϵ ∈ Rm in
the following SEM, such that G,U,NX , NY are conformable, centered Gaussian random vectors

X = T⊤U + σNX , Y = f⊤X + ϵ⊤U + σNY , GX := X +A⊤G,

with range
(
A⊤) ⊆ null

(
f⊤) so that GX is a valid outcome invariant DA transformation of X

parameterized by G. Such a DA can be viewed as translating X along its level-set as shown in Fig. 2
and represents our prior knowledge about the symmetries of f for the purposes of this example.
Finally, to recover the form Eq. (1), we simply set

ξ := Y − f⊤X.

Now, the task is to improve partial identification of f over the standard baseline using DA. For
covariance ΣX in Example 1, the causal excess risk used in our evaluation metrics takes the form

Edo(X)(h) = ∥h− f∥2ΣX
, Edo(x)(h) = ∥h− f∥2xx⊤ . (5)

Prior works also use similar formulations to measure causal estimation error (Vankadara et al., 2022;
Kania & Wit, 2023; Akbar et al., 2025) or capture some notion of strength of confounding (Janzing,
2019; Janzing & Schölkopf, 2018a;b). The rest of this work uses the following constraint set for PI.
Assumption 1 (a bounded confounding sensitivity model). Take the constraint set Cpi(Γ) such that

Cpi(Γ) :=
{
Q = NN (0, ·)

∣∣∣∣ Var(E[ξ |X ])

Var(ξ)
≤ Γ, Var(ξ) ≤ Γ0

}
, Γ := [Γ0,Γ]

⊤

where confounding strength Γ ≥ 0 determines our assumption on the variation in ξ explained by X .

Assumption 1 adopts the widely used partial R-squared sensitivity model (Cinelli & Hazlett, 2019),
itself a generalization of the classic Rosenbaum (2002). While we employ this model in our analyses,
we do not restrict ourselves to it: under the linear Gaussian setting of Example 1, several other
families of partial identification and sensitivity models yield equivalent constraints. Our results thus
carry broader implications for PI and sensitivity analysis, as we further discuss in Section 7.

4.1 VALID BOUNDS WITH DATA AUGMENTATION

First and foremost, we want to determine if the post-DA bounds are valid. This leads us to the result:

Theorem 1 (Valid bounds with DA). In Example 1, under Assumption 1, for some slack s ≥ 0,

Edo(X)
approx(Qda+pi)+ s ≤ Edo(X)

approx(Qpi), equality iff P ∈ Qpi, or E[GX |G ] ⊥a.s. E[X |ξ ].

5
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Proof. See Appendix A.1 for the proof.

Which is to say that the identified set Hda+pi is no farther from the true solution f compared to
the original set Hpi, and is strictly closer to f so long as the DA perturbes spurious features of X ,
which is what the last equality-iff condition signifies. Of course it follows that when Qpi contains
the true joint distribution P, then f ∈ Hpi and so we should also have f ∈ Hda+pi. Instead of such
a simple set inclusion criteria, we keep the more general approximation error framing of Theorem 1
because we also position DA as a tool for improved sensitivity analysis where the constraint set may
not necessarily be valid for some values of Γ. Theorem 1 is then reassuring that under outcome
invariance, DA at the very least should not cause Hpi to drift away form the true solution.

It immediately follows from Theorem 1 that when P ∈ Qpi, we will also have f⊤x ∈
Hda+pi(x),Hpi(x). It is difficult, however, to show a similar general result as Theorem 1 for
the point-wise evaluation of Edo(x)

approx(Qda+pi) vs. Edo(x)
approx(Qpi) when P /∈ Qpi. In this case the be-

havior of approximation error also depends on the alignment of unknown confounding parameters
with our query vector x, and both can be arbitrary. Nevertheless, we explore point-wise evaluation
in our experiments.

4.2 BETTER BOUNDS WITH DATA AUGMENTATION

Now that we have established that DA yields valid PI bounds, next we see if the resulting bounds can
be, in some way, better than the baseline PI bounds. We present two results to support this claim.

Proposition 1 (Sharper bounds with DA). In Example 1, under Assumption 1, it holds that

|Hda+pi| < |Hpi|, |Hda+pi(x)| ≤ |Hpi(x)|, equality iff x ⊥a.s. E[GX |G ]

where |·| denotes the Lebesgue measure (volume).

Proof. See Appendix A.3 for the proof.

Proposition 1 states that the hypothesis set Hda+pi is strictly smaller than the baseline Hpi. The
same holds true for the intervals Hda+pi(x) vs. Hpi(x), unless the query point x is orthogonal to
the features that DA perturbs2, in which case the size of the interval remains the same.

Although smaller identified sets/ intervals are in general desirable, size alone may not be the most
appropriate measure of “goodness” of the identified set. We base the next result on worst-case ex-
cess risk.

Theorem 2 (Robust, informative bounds with DA). In Example 1, with Assumption 1, slack s ≥ 0,

E
do(X)
worst (Qda+pi) + s ≤ E

do(X)
worst (Qpi), equality iff E[GX |G ] ⊥a.s. E[X |ξ ],

Proof. See Appendix A.2 for the proof.

The Theorem 2 essentially states that when DA perturbes spurious features of the treatment, the
identified set performs strictly better in terms of worst-case excess risk. Of course when spurious
features are not perturbed, we are guaranteed to perform no worse than baseline PI. The worst case
excess risk essentially bounds how bad the performance of any one hypothesis in the identified set
may be, making our decision more robust and reliable.

5 RELATED WORK

Our work connects two distinct but related lines of research: the vast literature on partial identifi-
cation and sensitivity analysis for unobserved confounding, and the emerging field of causal data
augmentation. We position our contribution as a simple, powerful tool that complements the former
while offering a more practical alternative to the latter.

Partial Identification and Sensitivity Analysis. When causal effects are not point-identifiable
due to unobserved confounders, partial identification (PI) is the standard framework for deriving

2Intuitively, this would be like rotating an image of a centered circle.
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bounds on the true effect. The primary challenge in PI lies in specifying a credible set of assump-
tions, encoded in the constraint set Qpi, to define the space of possible data-generating processes.
A rich body of work has proposed various methods for this. Classic approaches focus on sensitivity
parameters that bound the influence of confounders, such as through odds ratios (Rosenbaum, 2002),
propensity scores (Tan, 2006), or the proportion of unexplained variance (partial R-squared) (Cinelli
& Hazlett, 2020). More recent work has framed PI as a robust optimization problem, constructing
Qpi as a total variation or Wasserstein ball around the observed data distribution (Fan et al., 2024;
Guo et al., 2022; Meresht et al., 2022). An alternative is to directly model the response function
itself, for instance using GANs (Hu et al., 2021; Padh et al., 2023). Many of these methods can be
further refined by incorporating auxiliary variables, such as instrumental variables (IVs), to tighten
the resulting bounds (Balke & Pearl, 1997; Schweisthal et al., 2025; Kilbertus et al., 2020; Gunsilius,
2020). Our work is orthogonal and complementary to all of these approaches. We do not propose
a new method for constructing Qpi; rather, we introduce outcome-invariant DA as a simple data
pre-processing step that can be applied in conjunction with many existing PI framework to sharpen
its resulting bounds and improve robustness.

Counterfactual Data Augmentation. The causal analysis of DA has primarily been explored
through the lens of counterfactual data augmentation (Ilse et al., 2021; Yuan et al., 2024; Feder
et al., 2023; Pitis et al., 2022; Armengol Urpı́ et al., 2024; Mahajan et al., 2021; Aloui et al., 2023).
These methods typically aim to improve a model’s robustness to treatment interventions by syn-
thesizing counterfactual training examples. However, they often rely on strong structural assump-
tions that limit their practical applicability, such as requiring access to the full structural equation
model (SEM) (Yuan et al., 2024; Feder et al., 2023), specific auxiliary variables (Ilse et al., 2021;
Feder et al., 2023; Mahajan et al., 2021; Aloui et al., 2023), or the complete causal graph (Pitis
et al., 2022; Armengol Urpı́ et al., 2024). In contrast, our approach requires only the weaker, more
practical assumption of outcome-invariance, which is often informed by prior domain knowledge
about symmetries. A similar approach was undertaken by Akbar et al. (2025) for the task of point-
estimation of causal effects even though identification itself if not possible with outcome-invariance
alone. We therefore provide a more principled approach in this setting by instead focusing on partial-
identification and sensitivity analysis.

6 EXPERIMENTS
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Figure 3: Data augmentation consistently sharpens partial identification bounds in a linear simula-
tion. Across query points aligned with principal components (PC1, PC2) and a radial sweep, DA+PI
(red) yields narrower intervals, lower worst-case excess risk (Eworst), and predictions closer to the
true average treatment effect (ATE, black dash) compared to baseline PI (blue).
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We began by presenting theoretical results in the infinite-sample setting to emphasize that simple
pre-processing with data augmentation sharpens bounds in partial identification. In this section, we
turn to the finite-sample regime and empirically evaluate the effectiveness of DA in PI. Importantly,
we do not use DA for its conventional purpose of augmenting data to improve estimation variance,
even though as mentioned Section 4 that is an important source of uncertainty in PI. This is because
the use-case of DA for this is self-evident. Rather, we focus on the much more interesting setting
where we fix the number of samples in the augmented dataset to match that of the original dataset
throughout all experiments.

6.1 SIMULATION EXPERIMENT

For the finite sample results of the linear Gaussian SEM from Example 1, by taking m = 32, k = 31
(dimension of G), σ = 0.1 and fixing τ⊤ = 0, we sample a f , ϵ and T ∈ Rm×m from a standard
normal distribution and then keep it fixed throughout the experiment. We construct a A := V0 with
k rows as orthonormal basis of null(f), such that the SVD of f is

f = [u U0]

[
σ 01×(m−1)

0(m−1)×1 0(m−1)×(m−1)

] [
v⊤

V ⊤
0

]
.

Although this construction of A relies on direct knowledge of f (which is unavailable in practice),
we include it here purely for illustrative purposes. We treat access to A as our prior knowledge
about the symmetries of f , noting that this information alone is insufficient to recover f .

We then generate n = 2048 samples of (X,Y ). For ERM we use a closed form linear OLS solution.
And for PI we use the partial R-squared sensitivity model from Assumption 1 for a range of query
points x0,x1 with the sensitivity parameter set as Γ = Γ0 = 20.

To visualize the results, we chose x0 := t · u0 and x1 := t · u1 where u0, u1 are the first and
second principal components of the data. We then sweep t over ±3 standard-deviations, computing
intervals Hpi(x),Hda+pi(x) via convex programming (separately for the upper and lower bounds).
The results are shown in Fig. 3 (left, center). Fig. 3 (right) also shows a radial sweep over θ ∈ [0, 2π]
to generate queries x(θ) = σ0 · sin(θ) · u0 + σ1 · cos(θ) · u1.

6.2 OPTICAL DEVICE EXPERIMENT
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Figure 4: Our method sharpens causal bounds on the real-world Optical Device dataset. Even with
complex, non-linear relationships, applying outcome-invariant DA (red) substantially narrows the
partial identification bounds compared to the baseline (blue).
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The dataset from Janzing & Schölkopf (2018b) consists of 3 × 3 pixel images X displayed on a
laptop screen that cause voltage readings Y across a photo-diode. A hidden confounder U controls
two LEDs; one affects the webcam capturing X , the other affects the photo-diode measuring Y .
The ground-truth predictor f is computed by first regressing Y on (ϕ(X), U), where ϕ(X) are
polynomial features of X with degree d ∈ {1, · · · , 5} that best explains the data (degree 2 in our
case). The component corresponding to U is then removed to recover f . Our choice of DA on
X includes additive Gaussian noise G ∼ NN (0,ΣX/10), random vertical/horizontal flips and 900

rotations for DA. We then compute the features ϕ(GX) to be used with PI, setting Γ = Γ0 = 10
for the partial R-squared model from Assumption 1 on a datasets of n = 1000 samples. Figure 4
shows that DA+PI sharpens bounds over the PI baseline. The visualization approach in the same as
in Section 6.1.

7 LIMITATIONS, ASSUMPTIONS AND FUTURE WORK

Outcome invariance. Our approach hinges on the untestable assumption that the chosen data aug-
mentations are outcome-invariant. While this requires prior knowledge, our framework has a benign
failure mode: a valid outcome-invariant DA is guaranteed not to worsen the baseline PI bounds,
even if it fails to target spurious features. Additionally, we would like to remind the readers that
untestable domain knowledge is fundamentally unavoidable for making any causal conclusion from
observational data Pearl (2009), as is the norm in partial identificaiton. This also includes access to
auxiliary variables since the conditional independences that they represent are also merely untestable
assumptions. Furthermore, we argue that our assumptions on DA are actually quite practical given
that a symmetry-based DA model has precedence in the DA and invariance literature (Chen et al.,
2020; Lyle et al., 2020; Shao et al., 2022; Fawzi & Frossard, 2015; Dubois et al., 2021; Petrache &
Trivedi, 2023; Montasser et al., 2024; Romero & Lohit, 2022; Zhu et al., 2021; Wong et al., 2016).

Additional covariates. Many works in partial identification and sensitivity analysis leverage ac-
cess to additional auxiliary variables, such as instrumental variables (IVs) and observable con-
founders or back-doors Kilbertus et al. (2020); Padh et al. (2023). Even though we do not explicitly
model these to keep our analysis simple and tractable, we argue that out DA framing is still compat-
ible with them–for example, applying DA on X does not invalidate an IV that enters into X .

Additional partial identification approaches. Many sensitivity and partial identificaiton models
can be reduced to the constraints in Assumption 1. These include, of course, the partial R-squared
model, Rosenbaum, MSM (under a mild bounded marginal ratio assumption), as well as DRO,
Wasserstein, total-variation approaches. While a rigorous analysis is left for future work, it is im-
portant to specify that our resents here are more general than just the partial R-squared model.

8 CONCLUSION

In this work, we investigate the use of data augmentation (DA) for sharpening bounds in the partial
identification (PI) of causal effects from observational data with unobserved confounding. While
prior work has shown that outcome-invariant DA can mitigate confounding bias in point-estimation,
full identification is often not possible. Here, we extend this line of reasoning to the more general
setting of PI. We establish that outcome-invariant DA can be framed as a transformation interven-
tion on the treatment variable. This perspective allows us to leverage DA not just for mitigating
estimation variance, but as a tool to implicitly impose additional valid constraints on the PI problem.

Our theoretical analysis in a linear Gaussian setting demonstrates that composing PI with DA yields
bounds that are provably valid, sharper in terms of interval width and hypothesis set volume, and
more robust by offering lower worst-case excess risk. This provides a computationally inexpensive
and readily available method for practitioners to strengthen causal inferences, especially in settings
with complex, high-dimensional data where specifying other constraints can be difficult. Ultimately,
this work solidifies the role of data augmentation as a versatile tool for causal inference, extending
its utility from reducing bias in causal effect estimation to improving the precision and reliability of
bounds when effects are only partially identified.
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A PROOFS

A.1 PROOF OF THEOREM 1 – VALID BOUNDS WITH DA

Theorem 1 (Valid bounds with DA). In Example 1, under Assumption 1, for some slack s ≥ 0,

Edo(X)
approx(Qda+pi)+ s ≤ Edo(X)

approx(Qpi), equality iff P ∈ Qpi, or E[GX |G ] ⊥a.s. E[X |ξ ].

Proof. From Lemma 5, we can characterize the identified sets Hpi, Hda+pi as ellipsoids of the form

Hpi =
{
h
∣∣∣∥h− herm∥2ΣX

≤ r(Γ)
}
, Hda+pi =

{
h
∣∣∣∥h− hda+erm∥2ΣGX

≤ r(Γ)
}
.

First consider P /∈ Qpi. Now, from the definition of approximation error in Section 2.3 it follows

Edo(X)
approx(Qpi) = minQ∈Qpi

Edo(X)
(
h
Q
adj

)
,

= minh∈Hpi
Edo(X)(h), (Re-parameterizing in terms of Hpi.)

= minh∈Hpi∥h− f∥2ΣX
,

=
(
∥herm − f∥ΣX

−
√

r(Γ)
)2

, (Lemma 1)

where r(Γ) is some constant entirely determined by Γ. Now, we do a similar exercise with Qda+pi,

Edo(X)
approx(Qda+pi) = minQ∈Qda+pi

Edo(X)
(
h
Q
adj

)
,

= minh∈Hda+pi
Edo(X)(h), (Re-parameterizing in terms of Hda+pi.)

= minh∈Hda+pi
∥h− f∥2ΣX

,

=

(
1−

√
r(Γ)

∥hda+erm − f∥ΣGX

)2

∥hda+erm − f∥2ΣX
− s, (Lemma 1, ∃s ≥ 0.)

=
(
∥hda+erm − f∥ΣGX

−
√

r(Γ)
)2 ∥hda+erm − f∥2ΣX

∥hda+erm − f∥2ΣGX

− s,

≤
(
∥herm − f∥ΣX

−
√

r(Γ)
)2

− s,

where the last inequality follows from a similar approach as used in Proposition 2 and Lemma 4

∥hda+erm − f∥2ΣX
≤ ∥hda+erm − f∥2ΣGX

≤ ∥herm − f∥2ΣX
,

and equality holds iff E[GX |G ] ⊥a.s. E[X |ξ ]. The case for P ∈ Qpi is trivial from Lemma 1.
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A.2 PROOF OF THEOREM 2 – ROBUST, INFORMATIVE BOUNDS WITH DA

Theorem 2 (Robust, informative bounds with DA). In Example 1, with Assumption 1, slack s ≥ 0,

E
do(X)
worst (Qda+pi) + s ≤ E

do(X)
worst (Qpi), equality iff E[GX |G ] ⊥a.s. E[X |ξ ],

Proof. From Lemma 5, we can characterize the identified sets Hpi, Hda+pi as ellipsoids of the form

Hpi =
{
h
∣∣∣∥h− herm∥2ΣX

≤ r(Γ)
}
, Hda+pi =

{
h
∣∣∣∥h− hda+erm∥2ΣGX

≤ r(Γ)
}
.

Now, from the definition of worst-case excess error in Section 2.3 it follows

E
do(X)
worst (Qpi) = maxQ∈Qpi

Edo(X)
(
h
Q
adj

)
,

= maxh∈Hpi
Edo(X)(h), (Re-parameterizing in terms of Hpi.)

= maxh∈Hpi
∥h− f∥2ΣX

,

=
(
∥herm − f∥ΣX

+
√
r(Γ)

)2
, (Lemma 2)

where r(Γ) is some constant entirely determined by Γ. Now, we do a similar exercise with Qda+pi,

⇒ E
do(X)
worst (Qda+pi)

= maxQ∈Qda+pi
Edo(X)

(
h
Q
adj

)
,

= maxh∈Hda+pi
Edo(X)(h), (Re-parameterizing in terms of Hda+pi.)

= maxh∈Hda+pi
∥h− f∥2ΣX

,

=

(
∥hda+erm − f∥ΣX

+
√
r(Γ) · λmax

(
ΣXΣ−1

GX

))2

− s′, (Lemma 2, ∃s′ ≥ 0.)

=
(
∥hda+erm − f∥ΣX

+
√
r(Γ)

)2
− s, (∃s ≥ s′, since λmax

(
ΣXΣ−1

GX

)
≤ 1.)

≤
(
∥herm − f∥ΣX

−
√

r(Γ)
)2

− s,

where the last inequality follows from a similar approach as used in Proposition 2 and Lemma 4

∥hda+erm − f∥2ΣX
≤ ∥herm − f∥2ΣX

,

and equality holds iff E[GX |G ] ⊥a.s. E[X |ξ ].
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A.3 PROOF OF PROPOSITION 1 – SHARPER BOUNDS WITH DA

Proposition 1 (Sharper bounds with DA). In Example 1, under Assumption 1, it holds that

|Hda+pi| < |Hpi|, |Hda+pi(x)| ≤ |Hpi(x)|, equality iff x ⊥a.s. E[GX |G ]

where |·| denotes the Lebesgue measure (volume).

Proof. We provide a sketch for a simple proof.

Ellipsoid volume. The result for Hpi and Hda+pi is straightforward by noting that these are
ellipsoids from Lemma 5. Since the ellipsoids have the same radius but different shape pa-
rameters ΣX (for ) and ΣGX (for ), it follows that Hpi has bigger volume than Hda+pi since
ΣX ≤ ΣGX = ΣX +A⊤ΣGA.

Interval width. We again point to Lemma 5 to note that the width of (H)pix and (H)da+pix

is only determined by (a scalar multiple of) ∥x∥Σ−1
X

and ∥x∥Σ−1
GX

respectively. Again, since
ΣX ≤ ΣGX = ΣX + A⊤ΣGA, we have that ∥x∥Σ−1

GX
is strictly smaller than ∥x∥Σ−1

X
unless

x⊤A⊤ΣGA = 0, which from Lemma 4 is equivalent to saying that

x ⊥a.s. E[GX |G ].
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A.4 PROPOSITION — CAUSAL ESTIMATION WITH DA

Proposition 2 (causal estimation with DA+ERM). For the SEM in Example 1, the following holds:

Edo(X)(hda+erm) ≤ Edo(X)(herm), equality iff E[GX |G ] ⊥a.s. E[X |ξ ] a.s.

Proof. We have
⇒
∥∥hda+erm − f

∥∥
ΣX

=

∥∥∥∥E[(GX)(GX)
⊤
]−1

E
[
(GX)Y ⊤ ]− f

∥∥∥∥
ΣX

,

=

∥∥∥∥E[(GX)(GX)
⊤
]−1

E
[
(GX)

(
f⊤X + ξ

)⊤ ]− f

∥∥∥∥
ΣX

, (Structural eq. of Y .)

=

∥∥∥∥E[(GX)(GX)
⊤
]−1

E
[
(GX)

(
f⊤(GX) + ξ

)⊤ ]− f

∥∥∥∥
ΣX

, (Using G-invariance of f .)

=

∥∥∥∥(f + E
[
(GX)(GX)

⊤
]−1

E
[
(GX)ξ⊤

])
− f

∥∥∥∥
ΣX

,

=

∥∥∥∥E[(GX)(GX)
⊤
]−1

E
[
(GX)ξ⊤

]∥∥∥∥
ΣX

,

=

∥∥∥∥∥E
[(

X + G̃
)(

X + G̃
)⊤ ]−1

E
[(

X + G̃
)
ξ⊤
]∥∥∥∥∥

ΣX

,

(Where G̃ := E[GX |G ] = γ ·A⊤G.)

=

∥∥∥∥(E[XX⊤ ]+ E
[
G̃G̃⊤

])−1

E
[
Xξ⊤

]∥∥∥∥
ΣX

, (Using G̃ ⊥⊥ X, ξ.)

=
∥∥∥(S⊤S + S⊤DS

)−1E
[
Xξ⊤

]∥∥∥
S⊤S

, (Lemma 3.)

=
∥∥∥S−1(Im +D)

−1
S−⊤E

[
Xξ⊤

]∥∥∥
S⊤S

, (S,S⊤ invertible.)

=
∥∥∥SS−1(Im +D)

−1
S−⊤E

[
Xξ⊤

]∥∥∥, (Switch to ℓ2 norm.)

=
∥∥∥(Im +D)

−1
S−⊤E

[
Xξ⊤

]∥∥∥,
≤
∥∥S−⊤E

[
Xξ⊤

]∥∥, (6)

=
∥∥SS−1S−⊤E

[
Xξ⊤

]∥∥, (Substitute in Im = SS−1.)

=
∥∥S−1S−⊤E

[
Xξ⊤

]∥∥
S⊤S

, (Back to weighted norm.)

=
∥∥∥E[XX⊤ ]−1E

[
Xξ⊤

]∥∥∥
ΣX

, (Substitute in ΣX := E
[
XX⊤ ] = S⊤S.)

=
∥∥∥f + E

[
XX⊤ ]−1E

[
Xξ⊤

]
− f

∥∥∥
ΣX

, (Add and subtract f .)

=
∥∥∥E[XX⊤ ]−1(E[XX⊤ ]f + E

[
Xξ⊤

])
− f

∥∥∥
ΣX

, (Use Im = E
[
XX⊤ ]−1E

[
XX⊤ ].)

=
∥∥∥E[XX⊤ ]−1E

[
X
(
f⊤X + ξ

)⊤ ]− f
∥∥∥
ΣX

, (Linearity of expectation.)

=
∥∥∥E[XX⊤ ]−1E

[
XY ⊤ ]− f

∥∥∥
ΣX

, (Structural eq. of Y .)

= ∥herm − f∥ΣX
, (ERM closed form solution.)

where inequality Eq. (6) holds because D is non-negative diagonal. Furthermore, inequality Eq. (6)
only holds with equality iff S−⊤E

[
Xξ⊤

]
is in the kernel of D. Or equivalently, iff E

[
Xξ⊤

]
is in

the kernel of S⊤DS = Σ
G̃

, which from Lemma 4 is true iff E[GX |G ] ⊥ E[X |ξ ] a.s.
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A.5 MISCELLANEOUS SUPPORTING LEMMAS

Lemma 1 (Upper bound on distance of a point to an ellipsoid). Take the following ellipsoid O ⊂ Rn

O =
{
x
∣∣∣(x− x0)

⊤
Σ0(x− x0) ≤ r0

}
,

with radius r0, centered at x0 and shape defined by the SPD matrix Σ0 ≻ 0. For some arbitrary
point y ∈ Rn, denote its distance from O as weighted by an SPD Σ ≻ 0 with the following notation

Dmin
Σ (y,O) := min

x∈O
∥y − x∥Σ.

This distance can be upper bounded with the following closed-form, and equality holds for Σ = Σ0

Dmin
Σ (y,O) ≤


0, y ∈ O,(
1−

√
r0

∥y − x0∥Σ0

)
∥y − x0∥Σ, y /∈ O.

Proof. The result for y ∈ O case is immediate. To show the bound for y /∈ O, consider the ray

x(r) := x0 + r · (y − x0), r ∈ [0, 1],

going from the ellipsoid center x0 through y. This ray intersects with the ellipsoid boundary at

r∗ =

√
r0

∥y − x0∥Σ0

∈ (0, 1),

due to O being a sphere under a Σ0 weighted norm. The point x∗ := x(r∗) lies on the boundary.

⇒ y − x∗ = (1− r∗) · (y − x0).

Since the closest point along an arbitrary ray is never closer than the true minimum, we have

Dmin
Σ (y,O) = min

x∈O
∥y − x∥Σ,

≤ ∥y − x∗∥Σ,
= (1− r∗) · ∥y − x0∥Σ,

=

(
1−

√
r0

∥y − x0∥Σ0

)
∥y − x0∥Σ.

Lemma 2 (Upper bound on distance of a point to farthest point on ellipsoid). Take ellipsoid O ⊂ Rn

O =
{
x
∣∣∣(x− x0)

⊤
Σ0(x− x0) ≤ r0

}
,

with radius r0, centered at x0 and shape defined by the SPD matrix Σ0 ≻ 0. For some arbitrary
point y ∈ Rn, denote its distance from the farthest point on O as weighted by an SPD Σ ≻ 0 with

Dmax
Σ (y,O) := max

x∈O
∥y − x∥Σ.

This distance can be upper bounded with the following closed-form, and equality holds for Σ = Σ0,

Dmax
Σ (y,O) ≤ ∥y − x0∥Σ +

√
r0 · λmax

(
ΣΣ−1

0

)
Proof. By triangle inequality

∥y − x∥Σ ≤ ∥y − x0∥Σ + ∥x0 − x∥Σ.
Now, simply maximizing both sides over x ∈ O,

max
x∈O

∥y − x∥Σ ≤ max
x∈O

(∥y − x0∥Σ + ∥x0 − x∥Σ) = ∥y − x0∥Σ +max
x∈O

∥x0 − x∥Σ.

The last term maxx∈O∥x0 − x∥Σ is simply the radius of the ellipsoid in the Σ–norm, which is equal

to
√
r0 · λmax

(
ΣΣ−1

0

)
where λmax

(
ΣΣ−1

0

)
is the maximum eigenvalue of the product ΣΣ−1

0 .
Hence, the result follows for Σ ̸= Σ0. For the case Σ = Σ0, the ellipsoid just becomes a sphere
and equality holds.
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Lemma 3 (SPD and PSD simultaneous denationalization via congruence). For any n× n matrices
A ≻ 0, B ≽ 0, there exists an invertible S ∈ Rn×n and non-negative diagonal D ∈ Rn×n such that

A = S⊤S, B = S⊤DS.

Proof. This is similar to Theorem 7.6.4 in (Horn & Johnson, 1985, p. 465) for two SPD matrices.
We proceed similarly; Since A is SPD, it admits a unique SPD square root A1/2. Define

C := A−1/2BA−1/2,

which is SPD. By the spectral theorem, there exists an orthogonal matrix U such that

C = U⊤DU,

where D is diagonal with non-negative entries (the eigenvalues of C). Set

S := UA1/2.

Then

S⊤S = A1/2U⊤UA1/2 = A1/2IA1/2 = A,

and

S⊤DS = A1/2U⊤DUA1/2 = A1/2CA1/2 = B.

Since A1/2 and U are invertible, S is invertible, completing the proof.

Lemma 4 (Gaussian conditional orthogonality lemma). Let X,Y, Z ∈ Rn be zero-mean jointly
Gaussian random vectors with covariance matrices ΣX = E[XX⊤], ΣZ = E[ZZ⊤], and cross-
covariance ΣY,Z = E[Y Z⊤]. Define the conditional expectation

E[Y | Z] :=
(
E
[
ZZ⊤ ]−1E

[
ZY ⊤ ])⊤Z = ΣY,ZΣ

−1
Z Z.

Then the following are equivalent:

X ⊥ E[Y | Z] = 0 a.s. ⇐⇒ ΣXΣY,Z = 0.

Proof. Since X,Y, Z are jointly Gaussian, E[Y | Z] = MZ with M := ΣY,ZΣ
−1
Z . The scalar

random variable

S := X⊤E[Y | Z] = X⊤MZ

is Gaussian with mean zero. Hence,

S = 0 a.s. ⇐⇒ Var(S) = 0.

Compute the variance:

Var(S) = E
[
S2
]
= E

[
(X⊤MZ)2

]
= E

[
Z⊤M⊤XX⊤MZ

]
.

Using independence and zero-mean assumptions,

Var(S) = tr
(
M⊤ΣXMΣZ

)
.

Since covariance matrices are positive semidefinite, Var(S) = 0 iff

Σ
1/2
X MΣ

1/2
Z = 0 =⇒ ΣXMΣZ = 0.

Substituting M = ΣY,ZΣ
−1
Z gives

ΣXΣY,Z = 0,

completing the proof.
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Lemma 5 (Characterizing the identified set in a linear, Gaussian case). In Example 1, Assumption 1,

Hpi =
{
h
∣∣∣(h− herm)

⊤
ΣX(h− herm) ≤ r(Γ)

}
,

where the ellipsoid radius r(Γ) ≥ 0 depends on the choice of constraint parameters. Furthermore,

Hpi(x) =
[
h⊤
ermx−

√
r(Γ)∥x∥Σ−1

X
, h⊤

ermx+
√

r(Γ)∥x∥Σ−1
X

]
.

Proof. Compute the population covariance

Cov(X,Y ) = Cov(X,f⊤X + ξ) = ΣXf +ΣX,ξ,

so the (naı̈ve) ERM estimand satisfies

herm = Σ−1
X Cov(X,Y ) = f +Σ−1

XXΣX,ξ.

Let b := herm − f = Σ−1
XXΣXξ. By the partial-R2 constraint in Assumption 1

R2
ξ|X =

Σ⊤
X,ξΣ

−1
X ΣX,ξ

σ2
ξ

≤ Γ,

we have
Σ⊤

XξΣ
−1
XXΣXξ ≤ σ2

ξΓ.

Substituting ΣXξ = ΣXXb = ΣXX(herm − f) yields

(herm − f)⊤ΣXX(herm − f) ≤ σ2
ξΓ,

which is equivalent to

(f − herm)
⊤ΣXX(f − herm) ≤ σ2

ξΓ ≤ Γ0Γ.

Thus the identified set for f is the stated ellipsoid with radius r(Γ) = Γ0Γ. The centred Gaussian
assumption guarantees the linear projection interpretation used above is exact.

Lastly, since the identified set is an ellipsoid, maximizing/minimizing a linear functional f⊤x is just
moving along its principal axis in the direction of x, giving us the bounds for Hpi(x).

USE OF LARGE LANGUAGE MODELS

A large language model (LLM) was utilized as a writing assistant to help refine the prose, improve
clarity, and ensure a consistent narrative tone during the preparation of this manuscript. The human
authors directed this process, take full responsibility for the final content, and are solely responsible
for all scientific contributions of this work.
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