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ABSTRACT

A central challenge in machine learning is discovering meaningful representations
of high-dimensional data, commonly referred to as representation learning. How-
ever, many existing methods lack a theoretical foundation, leading to unreliable
representations and limited inferential capabilities. In approaches where certain
uniqueness of representation is guaranteed, such as nonlinear Independent Com-
ponent Analysis, variables are typically assumed to be continuous. While recent
work has extended identifiability to binarized observed variables, no principled
method has been developed for scenarios involving discrete latent variables. In
this paper, we show how identifiability can be achieved when both latent and ob-
served variables are discrete. We propose general identification conditions that do
not depend on specific data distributional assumptions or parametric model forms.
We further show how multi-domain information can be leveraged in this context
to relax the constraints. The effectiveness of our approach is validated through
experiments on both simulated and real-world datasets.

1 INTRODUCTION

Learning effective representations without supervision has always been critical to the performance
of downstream deep learning tasks. In recent years, numerous advanced methods for representation
learning have emerged, ranging from earlier models like Variational Autoencoders (VAEs) and Gen-
erative Adversarial Networks (GANs) to more recent innovations such as Diffusion Models Kingma
(2013); Goodfellow et al. (2014); Sohl-Dickstein et al. (2015); Ho et al. (2020). These well-known
unsupervised methods aim at learning an accurate posterior distribution over a lower-dimensional
unobserved variable. It is hoped that by aligning observed distributions with the predicted ones, the
learned posterior will correspond to the underlying distribution of statistically independent sources
of variation. However, few of them have theoretical guarantees in terms of the learned representa-
tions, without which the results can be unreliable Arora et al. (2017); Dai & Wipf (2019). Given
this limitation, recent developments in the field have focused on establishing the reliability of the
learned representations by ensuring that they capture the true explanatory factors behind the ob-
served data—a concept known as identifiability. With identifiability, we can guarantee that in the
large sample limit, the probabilistic model learns a unique representation corresponding to the true
latent factors. Identifiability is therefore crucial in representation learning, as it provides reliable
interpretability, supports accurate inference, and enhances the usefulness of the learned representa-
tions for downstream tasks.

Among the representation learning methods that guarantee the identifiability of models, most fo-
cus on the linear setting. Well-known methods include Independent Component Analysis (ICA)
Hyvärinen & Oja (2000), Factor Analysis (FA) Spearman (1904), dictionary coding Olshausen &
Field (1997), and latent class models Goodman (1974). For instance, in ICA, the observed data is
considered a mixture of independent, unobserved components, and the goal is to ”demix” these ob-
servations to recover the latent variables, up to some ambiguity (please refer to Appendix A.1.1 for
more details). Recent advancements have extended ICA to nonlinear settings, where deep neural net-
works are employed to approximate the nonlinear mixing process. Notable examples include iVAE
(Identifiable Variational Autoencoders) and Invariant Causal Representation Learning Hyvärinen &
Morioka (2019); Khemakhem et al. (2020); Schölkopf et al. (2021). Identifiability in nonparametric
settings poses a significant challenge, as nonlinear transformations can obscure the original sources
of variability. For instance, when variables are continuous, it is well-known that the model be-
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comes severely unidentifiable if the observations are independent and identically distributed (i.i.d.)
Hyvärinen & Pajunen (1999). To address this issue, additional constraints are typically required to
ensure identifiability. One widely adopted approach is to leverage multi-domain information. Here,
“multi-domain” refers to distinct scenarios or conditions under which the distributions of variables
differ. This means that with the inclusion of domain information, represented by a fully observed
random variable u (e.g., temporal or contextual information), we assume that each latent variable
is statistically dependent on u. Importantly, the mixing function that maps the latent variables to
the observed variables remains fixed across domains. With additional assumptions, such as suffi-
cient variability in the domain information, model identifiability can be achieved in these settings.
Khemakhem et al. (2020); Hyvärinen & Morioka (2019; 2016)

However, such method is only limited to continuous variables. There have been several recent works
that extend ICA to cases where the observed variables are discretized from latent continuous factors,
such as in binary ICA Hyvärinen & Hoyer (2001). However, none of these provides any guarantees
when both the latent and observed variables are discrete.

The inability to handle discrete latent variables poses significant challenges, especially in real-world
applications. In practice, many scenarios feature only discrete variables, with latent variables
considered to be discrete based on prior knowledge. For example, in disease diagnosis, physicians
often make initial judgments about potential diseases based on a patient’s symptoms. Here,
“whether the patient has a disease” and “whether she exhibits symptoms” can be viewed as discrete
latent and observed variables, respectively, both taking values of True/False. In Figure 1, the patient
may have conditions like Gastritis, Asthma, or Anemia, represented as latent binary variables that
are causally connected to symptoms, also modeled as binary variables (X1, X2, X3, X4) in the
figure. The goal is then to properly infer the unknown diseases from the observed symptoms.
Other real-world examples of discrete-to-discrete model structures include topic modeling , where
words in a document are generated from a distribution over discrete topics, with each document
represented as a mixture of topics and each topic as a distribution over a finite vocabulary Blei
et al. (2003); Goodman (1974); Pritchard et al. (2000); Collins & Lanza (2010). Another example
is survey data, where responses to questions (e.g., agree/disagree levels) are discrete, and the
underlying latent traits (such as personality or attitudes) are also modeled as discrete variables.
This approach is commonly used when researchers believe the population consists of distinct,
unobserved subgroups that explain the differences in survey responses, as seen in methods like
Latent Class Analysis (LCA) Lazarsfeld & Henry (1968); Collins & Lanza (2010).

In this paper, we provide concrete identifiability guarantees for cases where both observed and latent
variables are discrete. We derive identifiability results under various settings. First, we demonstrate
that identifiability is readily achievable under the nonlinear ICA framework, which assumes an in-
vertible mapping between the observed and latent variables. Next, we extend this framework to
accommodate arbitrary mappings and establish sufficient conditions for identifiability in these more
general settings. In each case, we show how incorporating multi-domain information can signifi-
cantly relax the constraints on model parameters. Finally, we empirically validate our theoretical
results using simulated data and demonstrate their practical applicability on multiple real-world
datasets.

Figure 1: Modeling Binary Latent Diseases and Observed Symptoms
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2 PROBLEM STATEMENT

Different from the continuous setting, where the goal is often to recover the values of latent variables
and the functional relations between latent and observed variables—relying on strong structural as-
sumptions such as the invertible mixing function and the smoothness of probability density functions
(pdfs)—the goal in discrete settings typically focuses on identifying relations at the distributional
level, emphasizing the recovery of relevant distributions through discrete probability mass functions
(pmfs) rather than the specific values of the latent variables, which can be flexibly assigned. This
distinction is well-established in models such as LCA and finite mixture models Lazarsfeld & Henry
(1968); McLachlan & Peel (2000).

In this paper, the observed variables X are modeled as a mixture of conditional distributions based
on the possible values of the latent variables Z. For K independent domains where the random
variable u takes values uk, with k ∈ {1, · · · ,K}, we assume that the latent variables are dependent
on u. Similar to the continuous case, we assume that the marginal distributions P (Z | u) vary across
domains, while the generating mechanism P (X | Z) remains fixed across all domains. Our primary
goal is to identify both P (X | Z) and P (Z | u).
In line with Latent Class Models (LCM) Goodman (1974); McCutcheon (1987); Vermunt & Magid-
son (2002), we aim to establish state-level identifiability (Definition 1). Inspired by nonlinear ICA,
we adapt the use of domain information to address the identifiability problem in a more general
setting. Without loss of generality, we consider both the observed and latent variables to be binary,
as categorical variables can be transformed into binary form using appropriate encoding techniques.
The specific model settings and necessary assumptions are presented as follows.

MODEL SETTING

• Given K independent domains, indexed by uk, k ∈ {1, · · · ,K}, we define N binary
observed variables, X = {X1, · · · , XN}, in each domain, with distribution denoted
as:P (X = x | u),x ∈ {0, 1}N .

• At the latent level, we introduce D binary latent variables, Z = {Z1, · · · , ZD}, with a joint
distribution given by:P (Z = z | u), z ∈ {0, 1}D.

• The observed variables X are generated from the latent variables Z with P (X | u) =∑2D

l=1 P (X | Z = zl)P (Z = zl | u).
Assumption 1. We assume that the variables satisfy the following conditions:

1. The effects of Z on each observed variable Xi for i ∈ {1, · · · , N} are conditionally inde-
pendent, such that P (X | Z) =

∏N
i=1 P (Xi | Z).

2. For each Xi ∈ X, the conditional distributions P (Xi | Z) are the same across all domains,
i.e., they are independent of the domain variable u.

3. There exists a mapping S : RN → Rm such that rank(P (S(X) | u)) = 2D for any do-
main. For simplicity, in the following, we assume the subspace corresponds to the original
variable space, with the number of variables still denoted as N .

Definition 1 (State-Level Identifiability). Let X be a random variable with a discrete set of possible
states {s1, s2, . . . , sk} and an associated probability distribution P (X = si) = pi for i = 1, . . . , k,
where pi ≥ 0 and

∑k
i=1 pi = 1. The random variable X is said to have state-level identifiability

if its distribution is identifiable up to a permutation of its states. Formally, this means there exists a
permutation σ ∈ Sk such that:

PY = {pσ(1), pσ(2), . . . , pσ(k)},
where σ is an element of the symmetric group Sk, representing all possible permutations of
{1, 2, . . . , k}.

Based on Assumption 1, we can rewrite the distributions over X in each domain as the mixture of
the conditional probabilities of individual Xi ∈ X, as given by the following equation:

P (X | u) =
2D∑
l=1

N∏
i=1

P (Xi | Z = zl)P (Z = zl | u) (1)
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In this paper we aim to provide identifiability conditions on the attributes as follows.

• The conditional distributions P (Xi | Z), i ∈ {1, · · · , N}.

• The conditional distributions P (Z | u).
• The marginal distributions P (Zj | u), j ∈ {1, · · · , D}, when the latent variables are fur-

ther assumed to be mutually independent.

3 IDENTIFIABILITY WITH ONE-TO-ONE MAPPING

With continuous variables, an invertible mapping from the latent space to the observed space is often
assumed, where the change-of-variables rule can be used to recover distributional relationships be-
tween the latent and observed variables and establish identifiability. In this section, we demonstrate
that under invertible mapping condition, identifiability established in the continuous case holds in
the discrete case.

Assumption 2. In each domain, for every value x of the observed variables X, there exists a unique
corresponding value z of the latent variables Z, such that P (X = x | u) = P (Z = z | u) ̸= 0, and
vice versa.

Lemma 1. Under the invertibility assumption, the number of discrete variables D must equal to the
number of observed variables N .

Under Assumption 2, Lemma 1 can be easily derived. Given this lemma, for simplicity, we replace
all instances of N with D in this section. Since X = f(Z), where f : {0, 1}D → {0, 1}D is an
invertible mapping, the distributions over the states of X and Z are also mapped one-to-one. We
now present the identifiability results for P (Xi | Z) and P (Z | u).
Theorem 1. Given Assumptions 1 and 2, let d ∈ {1, . . . , 2D} denote a state of X and Z, such that
P (X = xd | u) = P (Z = zd | u). Define xi,d as the value of Xi in xd, i.e., xi,d ∈ {0, 1}. Then,
for any i ∈ {1, . . . , D} and xi ∈ {0, 1}, we have:

P (Xi = xi | Z = zd) =

{
1 if xi = xi,d,

0 otherwise.

3.1 WITH FURTHER INDEPENDENCE CONDITION

In addition to the one-to-one mapping, it is common in representation learning to assume that the
latent factors are mutually independent within each domain, which facilitates the recovery of the
latent variables’ properties Schölkopf et al. (2021); Hyvärinen & Morioka (2019); Ouyang & Xu
(2022). In the discrete case, we demonstrate that by imposing similar assumptions as in 3, we can
also further identify the marginal distributions of the latent variables.

Assumption 3. P (Z | u) =
∏D

j=1 P (Zj | u).
Lemma 2. Under Assumptions 1, 2 and 3, we have

P (X | u) =
N∏
i=1

P (Xi | Z)
D∏

j=1

P (Zj | u)

=

D∏
j=1

P (Zj | u).

(2)

Then, for any j ∈ {1, · · · , D}, P (Zj | u) is identifiable.

Proof. Easily we can derive Theorem 2 from Equation 1 under the assumptions. After taking log on
both sides of Equation 2, we have a set of linear equations for unknown parameters P (Zj | u), j ∈
{1, · · · , D}. The linear equations have unique solutions if and only if 2D−1 ≥ D, which holds for
all D ≥ 1. We then prove the unique solution for the marginal distribution of Zj ,∀j ∈ {1, · · · , D}
in each domain.
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In conclusion, when the mapping between X and Z is invertible, identifiability naturally holds
for discrete variables without requiring additional constraints on the latent variables (or observed
variables) or the number of domains. Specifically, we can straightforwardly establish the iden-
tifiability of P (Xi | Z), i ∈ {1, · · · , N} and P (Z | u). Furthermore, if we impose the in-
dependence assumption on the latent variables, we can also identify the marginal probabilities
P (Zj | u), j ∈ {1, · · · , D}.

4 IDENTIFIABILITY WITH FLEXIBLE MAPPING

In this section, we aim to relax the constraint of having an invertible mapping between X and Z.
While such a constraint is beneficial for ensuring identifiability, as shown in the previous section,
it is often impractical in real-world scenarios. In practice, the distributions of X and Z may not
align, and their support sizes may differ significantly. To address this, we present identifiability
results under the more flexible assumption that the mapping between observed and latent variables
can be arbitrary. A formal definition of this flexible mapping is provided in Appendix A.2. We
establish sufficient conditions for both local and strict identifiability and demonstrate how multi-
domain information can help alleviate constraints on model parameters.

4.1 LOCAL IDENTIFIABILITY

Definition 2. Rothenberg (1971)[Local Identifiability] A parametric model M(θ), where θ ∈ Θ, is
locally identifiable at θ0 ∈ Θ if:

∃ ϵ > 0 such that M(θ) = M(θ0) =⇒ θ = θ0, ∀θ ∈ Bϵ(θ0) ∩Θ,

where Bϵ(θ0) = {θ ∈ Θ : ∥θ − θ0∥ < ϵ} is the open ball of radius ϵ around θ0.

We begin with sufficient conditions for local identifiability, which we define in Definition 2. Lo-
cal identifiability has been widely studied in representation learning, especially in the context of
nonlinear ICA Buchholz et al. (2022); Hyvarinen & Morioka (2017); Hyvärinen & Morioka (2019).

Local identifiability is essential for many real-world problems, where exploring the entire parameter
space is often impractical or unnecessary. For instance, in fMRI data analysis, where nonlinear
ICA is often employed to disentangle brain signals, the focus is typically on identifying activity in
specific brain regions rather than modeling the entire brain’s activity. In such cases, the ability to
make accurate predictions around the estimated parameters is more important than achieving strict
identifiability across the entire model.

For clarity, we introduce additional notations of free parameters based on Equation 1. Let αl,k =
P (Z = zl | u = uk), where l ∈ {1, . . . , 2D − 1}, represent the free parameters used to characterize
the distributions of the latent variables, and let βi,l = P (Xi = 0 | Z = zl), where l ∈ {1, . . . , 2D}
represent the conditional probabilities of the observed variables. We then compute the partial deriva-
tives of P (X | u) with respect to these free parameters, which leads to the construction of the
following Jacobian matrix. J here has (2N − 1) ·K rows and 2D ·N + (2D − 1) ·K columns, i.e.,

J = (Jα(1,1)
,Jα(2,1)

, · · · ,Jα(2D−1,1)
, · · · ,Jα(2D−1,K)

,Jβ(1,1)
, · · · ,Jβ(N,2D)

)

where Jαl,k
=

∂P (X | u)
∂αl,k

=

N∏
i=1

P (Xi | Z = zl)−
N∏
i=1

P (Xi | Z = z2D )

Jβi,l
=

∂P (X | u)
∂βi,l

= (−1)Xi

N∏
p=1,p̸=i

P (Xp | Z = zl)P (Z = zl | u).

(3)

Assumption 4. We make the following assumptions:

1. 2NK ≥ 2DN + 2DK.

2. The free parameters
{
α(1,1), · · · , α(2D−1,K), β(1,1), · · · , β(N,2D)

}
are all positive.

We then have the following theorem:
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Theorem 2. Given Assumptions 1 and 4, for any {i, j}, P (Xi | Z) and P (Zj | u) are locally
identifiable if and only if the corresponding Jacobian matrix J in Equation 3 has full column rank.

The local identifiability result relies on the nonsingularity of the Fisher information matrix, which
characterizes the curvature of the likelihood function of P (X | u). This nonsingularity is ensured
by the full column rank condition of the Jacobian J defined here. Moreover, we observe that multi-
domain information plays a critical role in Assumption 4, serving as an essential component of the
sufficient conditions for ensuring identifiability. Specifically, with sufficient domain information,
identifiability can be guaranteed as long as the number of observed variables exceeds the number of
latent variables.

4.1.1 WITH FURTHER INDEPENDENCE CONDITION

If we further assume that the latent variables are conditionally independent in each domain, we can
rewrite the relation between P (X | u) and P (Z | u) in Equation 4 as:

P (X | u) =
2D∑
l=1

N∏
i=1

P (Xi | Z = zl)

D∏
j=1

P (Zj = zlj | u). (4)

Here zl is a D-dimensional vector, and zlj ∈ zl. Like above, we denote the free parameters in the
equations as γj,k = P (Zj = 0 | u = uk), and βi,l = P (Xi = 0 | Z = zl), where j ∈ {1, · · · , D},
i ∈ {1, · · · , N}, k ∈ {1, · · · ,K}, and l ∈

{
1, · · · , 2D

}
.

We then define the associated Jacobian JInd as

JInd = (Jγ(1,1)
,Jγ(2,1)

, · · · ,Jγ(D,1)
, · · · ,Jγ(D,K)

,Jβ(1,1)
, · · · ,Jβ(N,2D)

),

where Jγj,k
=

∂P (X | u)
∂γj,k

=

2D∑
l=1

(−1)zlj
N∏
i=1

P (Xi | Z = zl)

D∏
q=1,q ̸=j

P (Zq = zlq | u),

Jβi,l
=

∂P (X | u)
∂βi,l

= (−1)Xi

N∏
p=1,p̸=i

P (Xp | Z = zl)

D∏
j=1

P (Zl = zlj | u).

(5)

The Jacobian JInd here has (2N − 1) ·K rows and 2D ·N +D ·K columns.

Under the following assumptions, we derive the necessary and sufficient conditions for local identi-
fiability, assuming independence of the latent variables in Theorem 3.
Assumption 5. We make the following assumptions:

1. K(2N − 1) ≥ 2D ·N +KD

2. The free parameters
{
γ(1,1), · · · , γ(D,K), β(1,1), · · · , β(N,2D)

}
are all positive.

Theorem 3. Under the Assumptions 1, 3 and 5, for any {i, j}, P (Xi | Z) and P (Zj | u) are locally
identifiable if and only if the corresponding Jacobian matrix JInd has full column rank

The underlying idea behind this theorem is similar to that of Theorem 2.

In this section, we have established the necessary and sufficient conditions for local identifiability,
ensuring that the model exhibits distinct local behavior around the ground truth. Additionally, we
demonstrated how multi-domain information can relax these conditions, as shown in Assumption 4
and 5, compared to the scenario with only a single domain (K=1).

4.2 STRICT IDENTIFIABILITY

Although local identifiability is often sufficient in many cases, complex applications may require
guarantees of strict identifiability, where the model’s parameters can be uniquely determined by the
observed distributions P (X | u) across domains.

Ensuring strict identifiability is particularly challenging in the discrete case with flexible mappings,
where we can not simply align observed and latent variable distributions and recover their functional
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relations, as is often done in nonlinear ICA models with continuous variables. However, regardless
of the mapping structure between observed and latent variables, the relation between observed distri-
butions and the products of conditional distributions P (X | Z) and marginal distributions P (Z | u)
always holds in every domain as shown in Equation 1. Fortunately, with assumptions on the inde-
pendent generating processes of X in Assumption 1, the problem can be simplified and reformulated
into an N-way array decomposition problem.

In this section, we demonstrate that under this reformulation, strict identifiability of model param-
eters can be established in a highly general setting, without requiring specific structure or distribu-
tional assumptions. Furthermore, we empirically show that when latent variables are independent,
the required number of observed variables and domains can be significantly reduced.

We begin by illustrating how this problem can be reformulated as a multilinear decomposition of
N-way arrays as shown in Lemma 3.

Definition 3 (Conditional probability matrix). For any Xi ∈ X, its corresponding conditional
distribution given the latent variables Z can be represented as a 2× 2D matrix Ai. The l-th column
of this matrix contains the vector of conditional probabilities P (Xi = 0 | Z = zl) and P (Xi = 1 |
Z = zl), where l ∈

{
1, . . . , 2D

}
.

Definition 4 (Joint probability matrix). Similarly, we can form the joint probabilities of Z in different
domains as a K × 2D matrix B, with k-th row denoting the joint probabilities over the 2D states of
Z in domain k.

Lemma 3. Based on the Definitions 3 and 4, Equation 1 can be rewritten as:

P (X | u) =
2D∑
l=1

(⊗N
i=1A

i
(·,l))⊗̃B(·,l), (6)

where ⊗ denotes the outer product of vectors and ⊗̃ denotes the outer product between a tensor and
a vector, and Ai

(·,l), B(·,l) denote the l-th column of matrices Ai, B . The term P (X | u) here is
reshaped as a tensor of size (2, 2, . . . , 2︸ ︷︷ ︸

2N times

,K).

Theorem 4. Under Assumption 1, if N ≥ 2D,K ≥ 2D+1 − N , for any i ∈ {1, · · · , N} and
k ∈ {1, · · · ,K}, P (Xi | Z) and P (Z | u) are identifiable.

Similarly, if we further assume that the latent factors are mutually independent within each domain,
we can also recover the marginal distribution of each latent variable, provided that the distributions
of the latent variables Zi and Zj are distinct in every domain..

Assumption 6. For ∀i, j, k, P (Zi = 0 | u) ̸= P (Zj = 0 | u)
Theorem 5. Under Assumptions 1, 3, and 6, if N ≥ 2D,K ≥ 2D+1 −N , for any j ∈ {1, · · · , D},
P (Zj | u) is also identifiable.

In conclusion, the model is strictly identifiable under simple conditions on the model parameters,
regardless of the specific mapping structures between the observed and latent variables. Multi-
domain information plays a crucial role in relaxing these constraints, making identifiability more
achievable in practical settings. Specifically, when there is only a single domain, the condition
N ≥ 2D+1 − 1 must be satisfied to ensure identifiability. However, with sufficient multi-domain
information, this requirement is significantly relaxed to N ≥ 2D, demonstrating how the availability
of multiple domains can reduce the burden of parameter constraints and enhance the applicability of
the model.

Moreover, when the latent variables are independent, we demonstrate empirically in the following
section that the number of required domains K outlined in Theorem 5 can be further greatly relaxed.

5 EXPERIMENTS

In this section we empirically demonstrate the validity of our identifiability results by testing them
on both simulated and real-world datasets.
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5.1 SIMULATION RESULTS

We first validate our identifiability results under flexible mappings using simulated binary datasets
with multiple domains. For clarity and illustration purposes, we present the cases where the latent
variables are assumed to be independent, enabling us to also test the accuracy of their marginal
distributions.

Data We begin by simulating the free parameters for the data. For each variable, we ensure that
the sum of probabilities across each domain equals 1. Specifically, given the number of observed
variables N , the number of domains K, and the number of latent variables D, we first generate the
matrix of free parameters for the marginal distributions P (Zj | u), where Zj ∈ Z, with a total size
of (D,K). Additionally, we generate the matrix of free parameters for the conditional distributions
P (Xi | Z), where Xi ∈ X, with a total size of (N, 2D). Using these parameters, we then compute
the distributions of the observed variables in each domain, according to P (Z | u) and P (X | Z),
following the model described above.

Evaluation In our experiments, we use the Kullback-Leibler (KL) divergence Kullback
& Leibler (1951) to measure the difference between the estimated and true distribu-
tions. For the latent variables in domain k, the KL divergence is defined as KLZ|u =
1
D

∑D
j=1

(
P es
jk log

(
P es

jk

P tr
jk

)
+ (1− P es

jk) log
(

1−P es
jk

1−P tr
jk

))
, where P es

jk and P tr
jk denote the esti-

mated and true probabilities P (Zj = 0 | u). For the probabilities of observed
variables given latent configuration Z, the KL divergence is calculated as KLX|Z =

1
2DN

∑2D

l=1

∑N
i=1

(
P es
il log

(
P es

il

P tr
il

)
+ (1− P es

il ) log
(

1−P es
il

1−P tr
il

))
, where P es

il and P tr
il represent the es-

timated and true probabilities P (Xi = 0 | Z = zl).

5.1.1 LOCAL IDENTIFIABILITY

We first demonstrate local identifiability results using simulated datasets. We test various scenarios
with different number of latent variables D, observed variables N and domains K. Starting from
the ground truth, we introduce small perturbations and run 100 experiments per case with different
initializations to avoid numerical errors. We then collect the results with the highest likelihood and
compute the KL divergence between these and the ground truth.

Results Here we present the results for KLX|Z and KLZ|u for the case where D is 3, N rang-
ing from 3 to 5, and K ranging from 1 to 6. This showcases the empirical minimum number of
observed variables required as the number of domains changes. For improved visualization, the
KL divergence values presented here are scaled by a factor of e3. Entries with values less than 0.1
are highlighted in both tables, indicating cases where empirical identifiability holds. In comparison
with the theoretical results, in Table 1 and 2, entries corresponding to the minimum required number
of theoretically required domains in Theorem 3 for a given N are underlined. We can see that the
theoretical results closely align with the empirical evidence where both P (Xi | Z) and P (Zj | u),
with i ∈ {1, · · · , N}, j ∈ {1, · · · , D}, are locally identifiable.

K/N 3 4 5
1 0.1818 0.1852 8.849e-02
2 0.3042 6.936e-02 4.863e-03
3 0.1490 5.504e-03 1.425e-06
4 0.1256 4.509e-06 3.697e-07
5 7.078e-02 2.047e-06 9.625e-08
6 8.058e-02 3.034e-07 1.920e-08

Table 1: Local Identifiability: KLX|Z with
D = 3

K/N 3 4 5
1 0.2711 8.778e-02 0.4623
2 0.2805 0.1578 1.148e-02
3 7.662e-02 3.168e-03 1.425e-06
4 0.1997 1.812e-05 4.670e-07
5 6.023e-02 1.235e-05 1.562e-07
6 9.576e-02 3.429e-07 9.969e-08

Table 2: Local Identifiability: KLZ|u with
D = 3
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K/N 4 5 6 7 8
4 0.4744 2 0.6101 2 0.1122 1 0.6550 1 0.2274

- 5 4.001e-03 3 1.217e-02 3 4.503e-04 2 1.191e-04 2 1.153e-04

Table 3: Strict Identifiability: KLZ|u with D = 3

K/N 4 5 6 7 8
4 0.7752 2 0.4711 2 0.2379 1 1.124 1 0.2024

- 5 4.404e-04 3 1.349e-02 3 1.783e-04 2 2.325e-05 2 1.627e-04

Table 4: Strict Identifiability: KLX|Z with D = 3

5.1.2 STRICT IDENTIFIABILITY

To verify our results on strict identifiability, we randomly initialize the starting points and calculate
the KL divergence between the final estimated distributions and the true distributions. For each
unique combination of {D,N,K}, we reinitialize the starting points 100 times and select the one
that maximizes the likelihood. The KL divergence KLX|Z and KLZ|u, when D = 3, are sum-
marized in Tables 3 and 4. For simplicity, we present the minimum number of required domains
K for the distributions to be identifiable for each N , as shaded in the Tables. When N = 2 or
N = 3, more than 20 domains were required for parameter identification, so we consider these
cases unidentifiable and omit them from the results.

Results The simulation results validate the sufficiency of the domain requirements outlined in
Theorem 4. Moreover, under the assumption of mutual independence among latent variables within
each domain, we empirically show that the required number of domains is significantly relaxed
compared to the conditions specified in Theorem 5. For example, with 3 latent variables and 7 or 8
observed variables, only 2 domains are necessary to identify the unobserved distributions as shown
in Table 3 and 4. These findings strongly support the benefit of leveraging multiple domains, as they
can substantially reduce the overall data requirements for strict identifiability.

5.2 REAL WORLD DATA

5.2.1 DATA

We apply our method to two real-world datasets to demonstrate its applicability, assuming that the
latent variables are independent in a given domain. The first dataset, Big Five, is a psychological
dataset collected through an online personality test Howard & Howard (2010). The dataset consists
of 50 discrete variables and approximately 20,000 data points. Each of the Big Five personality
dimensions—Openness, Conscientiousness, Extraversion, Agreeableness, and Neuroticism (O-C-
E-A-N)—is measured using 10 indicators. For illustration, we select 2 observed variables from each
dimension and divide them into 2 categories, resulting in a total of 10 observed binary variables. We
test several potential values of D, ultimately selecting 5 latent variables with the highest likelihood.
Using age and gender as domain-defining variables, we divide the dataset into 9 domains.

The second dataset, NASDAQ-listed stocks, contains year-to-date (YTD) gain information for 8
different NASDAQ stocks from 2003 to 2023 Mooney. Although the data are inherently continuous,
we binarize the time series based on median values over two-year intervals. We treat each interval
as a separate domain, resulting in 11 domains. We find out that the model achieves the highest
likelihood with 6 latent variables.

5.2.2 EVALUATION

After obtaining the estimated distributions, we evaluate the effect of Zj on Xi for any pair of latent
and observed variables (Zj , Xi). Specifically, we test the significance of the difference between
P (Xi = 0 | Zj = 0, Z̃) and P (Xi = 0 | Zj = 1, Z̃), averaging over the possible values of
Z̃, which represents the other latent variables. This approach allows us to isolate the effect of Zj

9
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on Xi, ensuring that the observed differences on Xi’s conditional distribution is due to Zj while
accounting for the influence of other latent factors.

Figures 2 and 3 illustrate this relationship, showing edges between Zj and Xi when the difference
is statistically significant.

5.2.3 RESULTS

For the Big Five dataset, shown in Figure 2, we observe that the observed variables measuring
similar personality traits are often influenced by the same latent variables. For instance, N1 and
N2, which assess Neuroticism, are both significantly influenced by Z3. Similarly, A1 and A2,
which measure Agreeableness, are primarily influenced by Z1. Notably, since the observed vari-
ables for each trait are selected to reflect opposite aspects of the trait—one positive and the other
negative—this is mirrored in the estimated effects from their shared latent variable. Specifically, one
variable tends to receive a positive influence, while the other receives a negative influence from the
same latent factor. This pattern is consistent with the findings reported in Dong et al. (2023).

For the NASDAQ-listed stocks dataset, shown in Figure 3, we similarly observe that stocks within
the same sub-sector tend to be influenced by the same latent variables. For example, AMZN, INTC,
and MSFT, all technology stocks, are significantly influenced by both Z2 and Z3. To further support
this observation, we calculated the correlation between P (Z2 = 0) and the returns of the NASDAQ-
100 technology sector over the years, based on the methodology from Nasdaq, which resulted in
a p-value of 0.0355. This reveals a strong relationship, indicating that over the past 20 years, the
distributions of Z2 reflect the growth and performance of the technology sector.

Figure 2: Big Five Figure 3: NASDAQ Stocks

6 DISCUSSION

To provide a clearer picture, we summarize the conditions for our main identifiability results as
follows.

1. One-to-one mapping + Assumption 1,2: strict identifiability on P (Xi | Z) and P (Z | u)
2. One-to-one mapping + Assumption 1,2,3: strict identifiability on P (Xi | Z) and P (Zj | u)
3. Flexible mapping + Assumption 1,4: local identifiability on P (Xi | Z) and P (Z | u)
4. Flexible mapping + Assumption 1,3,5: local identifiability on P (Xi | Z) and P (Zj | u)
5. Flexible mapping + Assumption 1: strict identifiability on P (Xi | Z) and P (Z | u)
6. Flexible mapping + Assumption 1,3,6: strict identifiability on P (Xi | Z) and P (Zj | u)

One potential worry is that whether domain information is widely obtainable in real-world sce-
narios. In practice, however, domain distinctions can be often derived from various sources, such
as labels across populations, experimental conditions, time periods, geographic regions, or demo-
graphic groups (e.g., age, gender, or socioeconomic status). These distinctions are integral to many
datasets, making the theorem highly adaptable to a wide range of practical applications.

10
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A APPENDIX

A.1 BACKGROUND KNOWLEDGE

Here we provide additional information on nonlinear ICA and latent class models, which are closely
related to the topic in this paper.

A.1.1 ICA

ICA has been widely explored in the past decades, due to its ability in recovering the latent
distributions and their structure connected to observed variables. ICA under linearity assumptions
was first studies, which assumes that the latent variables {s1, ..., sd} are transformed through an
unknown mixing matrix A to the observed data {x1, ..., xn} = As. Linear ICA is able to recover
the mixing matrix A and the s up to permutation and scaling, with the assumptions that s are
independent and there is no more than one source following Gaussian distributions.
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Nonlinear ICA generalizes the above results by considering the invertible mapping x = f(s). How-
ever, it is shown that there is always a transformation such that z = g(x) has a uniform distribution
with independent zi ∈ z. It seems that the latent factors are not identifiable given the nonlinear
structure. However, it is then discovered that identifiability can be established if there is a nonsta-
tionary temporal structure of the observed data, or the independent components. It is then general-
ized into the identifiability given just auxiliary variables that can modulates the latent components.
In their setting, the components are dependent on the auxiliary variable but independent of each
other, where p(s | u) =

∏
i pi(si | u). The auxiliary variable here can be widely defined, such as

the index, class label, or domain knowledge. The theory shows that the f and s are identifiable up
to component-wise invertible transformations under some regularity constraints. Domain informa-
tion is then widely used in various ICA identification tasks, with which we can separate the static
parts from the changing parts and recover them. However, there are very few ICA research done on
discrete variables. One reason is that, in the discrete case, some classical assumptions underlying
ICA can be violated. For example, most ICA assumes smooth probability dense functions and are
second-order differentiable. This obviously does not hold in the discrete case. Also, most of the
ICA methods aim at recovering the values of latent variables, but for discrete variables we are only
interested in recovering the distributions since the values of discrete variables do not make much
sense. In conclusion, for discrete variables we must establish different principles for identifiability.

A.1.2 LATENT CLASS MODELS

Latent class (LC) modeling was initially introduced by Lazarsfeld and Henry in 1968, especially
designed for formulating latent attitudinal variables from dichotomous survey items. Different from
factor analysis which tries to tackle mixture problems on continuous latent variables, LC models
assume that the latent variables are categorical. Our argument in this paper borrows ideas from
the recent developments in the identifiability of cognitive diagnosis models (CDMs). In CDM, each
latent category corresponds to a distinct vector z = (z1, · · · , zD) ∈ D = {0, 1}D, where z1, · · · , zD
are all binary. The vector z denotes a unique latent profile with zj = 1 implying the mastery of
the subject on the k−th latent attribute and zj = 0 implying the deficiency of it. The number of
latent classes is denoted as C = 2D and the latent class membership as c ∈

{
0, · · · , 2D − 1

}
.

The response is denoted as X = (X1, · · · , XN ), and the latent class membership probabilities are
summarized as η = P (Z = c), the conditional probabilities θjxjc = P (Xj = xj | c) for getting
response value xj in item j. Without loss of generosity, in this paper we treat the variables as binary
(ref here). It also assumes that conditional on the latent class variables, the manifest variables are
mutually independent, i.e. P (Xi, Xj | Z) = P (Xi | Z)P (Xj | Z),∀i ̸= j. Then the probability

mass function for X can be written as P (X = x | η,Θ) =
∑2D−1

c=0 ηc
∏N

j=1 θjxjc. Both the
local and strict identifiability has then been proved regarding this model. For local identifiability,
it sets the constraint that 2N ≥ 2D(N + 1) as the necessary condition. For strict identifiability, it
furthermore imposes strong structure assumptions between the observed and latent variables, where
each observed variable must have at least two pure children for the recovery of the distribution of
latent variables.

A.2 FLEXIBLE MAPPING

Here we give the definition of flexible mapping based on Hyvarinen & Morioka (2017); Khemakhem
et al. (2020).

Definition 5. A flexible mapping refers to a nonlinear function f , which describes the relationship
between a set of latent variables Z and observed variables X, without the stringent assumptions of
linearity, invertibility, or smoothness.

Mathematically, a flexible mapping can be written as:

X = f(Z; θ)

where:

• X ∈ RN is the vector of observed variables.

• Z ∈ RD is the vector of latent variables.

13
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• f is a potentially highly nonlinear function parameterized by θ, which could represent the
parameters of a neural network or another flexible functional form.

A.3 PROOFS

A.3.1 PROOF OF THEOREM 1

Proof. Given P (X = xd | u) = P (Z = zd | u) ̸= 0 for d ∈
{
1, · · · , 2D

}
, and xd ={

xd
1, · · · , xd

N

}
, we have

P (X = xd | u) =
N∏
i=1

P (Xi = xi | Z)P (Z = zd | u)

⇔
N∏
i=1

P (Xi = xd
i | Z = zd) = 1

(7)

P (Xi = xd
i | Z = zd) = 1 follows easily, the other possible values Xi may take therefore has

probability 0. We can then get the result as shown in Theorem 1.

A.3.2 PROOF OF THEOREM 2

Proof. Following the proof in Ouyang & Xu (2022), we define the likelihood function as

l(X;α,β, k) =
∏
x∈Ω

P (X = x | u)

where Ω = {0, 1}N , α = {αlk}l=2D−1,k=K
l=1,k=1 , and β = {βil}i=N,l=2D

i=1,l=1 . We then denote the set of
all parameters as

η = {α,β}.
The corresponding Fisher information matrix can be written as

E

[(
∂ log l

∂η

)(
∂ log l

∂η

)T
]

= E

(∑
x∈Ω

I{X = x}∂P (X=x)
∂η

P (X = x)

)(∑
x∈Ω

I{X = x}∂P (X=x)
∂η

P (X = x)

)T


=
∑
x∈Ω

1

P (X = x)

(
∂P (X = x)

∂η

)(
∂P (X = x)

∂η

)T

= JT


1

P (X=x1)
0 . . . 0

0 1
P (X=x2)

. . . 0
...

...
. . .

...
0 0 . . . 1

P (X=xs)

J.

According to Theorem 1 of Rothenberg (1971), the free parameters in a model are locally identifiable
if and only if the Fisher information matrix is non-singular. Given that the Fisher information matrix
is non-singular if and only if J has full column rank as the equation shows, we learn that the free
parameters α and β are locally identifiable if and only if J has full column rank, with the number
of equations (rows) more than the number of free parameters (columns).

A.3.3 PROOF OF THEOREM 3

Similar to the above proof, except for the free parameters in this case are λ = {γ,β}. We then get
the corresponding conditions for local identifiability,
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A.3.4 PROOF OF THEOREM 4

With P (X | u) expressed in Lemma 3, the original problem is then transformed into the multilinear
decomposition problem. According to Theorem 3 in Sidiropoulos & Bro (2000), A1, · · · , AN , B
can be uniquely solved up to permutation and scaling of columns, if the conditions in 4 holds.
Provided that the sum of each column in A1, · · · , AN is 1 in our case, the scales for the matrices are
fixed. Then the state-level identifiability of P (Xi | Z), i ∈ {1, · · · , N} and P (Z | u) are ensured.

A.3.5 PROOF OF THEOREM 5

Proof. Under Assumption 6, we arrange the probabilities P (Z = z | u) in ascending order, where
z ∈ {0, 1}D represents the possible states of the latent variables. Assume without loss of generality
that P (Zj = 0 | u) ≤ P (Zj = 1 | u). We relabel the latent variables Z1, Z2, . . . , ZD such that Zi

represents the latent variable with the i-th smallest value of P (Zi = 0 | u) across all variables.

With this ordering, we can express the ratio of the minimum to the maximum probability over the
latent space as:

minP (Z)

maxP (Z)
=

P (Z1 = 0 | u)
P (ZD = 0 | u)

.

By exploiting this ordered structure and the fact that the latent variables are independent, we can
systematically identify the marginal distributions P (Zj | u) for all j, up to the state level. This
identification is based on the relative ordering of the probabilities and ensures that we can recover
the marginal distributions of all independent latent variables.

A.4 EXPERIMENTAL DETAILS

When dealing with the Big Five and NASDAQ-listed stocks datasets, we attach distinct domains
to samples and discard the domains with sample size less than 20. We then randomly initialize free
parameters and fit the model by maximum likelihood.

A.4.1 ADDITIONAL RESULTS

We present additional results on simulated datasets on different values of latent variables, which
further validate both local and strict identifiability. For local identifiability, entries with values less
than 0.1, indicating empirical identifiability, are shaded. Additionally, for each D and N , we un-
derline the entries corresponding to the minimum number of theoretically required domains. These
results demonstrate strong empirical alignment with our theoretical conclusions. For strict identifi-
ability, we observe that when the latent variables are independent, the number of required domains
decreases significantly.

K/N 2 3 4 5
1 0.2638 0.1663 0.2484 0.1596
2 0.2818 0.2758 0.1575 0.1019
3 0.2252 0.2504 0.1249 4.193e-02
4 0.2505 0.1664 6.708e-02 6.421e-03
5 0.2215 0.2210 4.984e-02 3.830e-03
6 0.1855 9.428e-02 2.703e-02 5.291e-06

Table 5: Local Identifiability: KLX|Z with D = 4
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K/N 2 3 4 5
1 0.4583 0.8722 0.1796 3.786e-06
2 0.4217 0.4589 7.671e-07 1.404e-07
3 0.3227 0.0371 2.097e-06 5.839e-07
4 0.1430 7.567e-04 2.917e-04 4.056e-08
5 0.2266 5.462e-08 1.235e-06 1.050e-06
6 0.1180 2.099e-06 1.080e-06 1.981e-06

Table 6: Local Identifiability: KLZ|u with D = 2

K/N 2 3 4
100 10.27 3 23.44 2 0.1345

- - - 4 8.146e-05 3 3.934e-05

Table 7: Strict Identifiability: KLZ|u with D = 2

K/N 2 3 4
100 22.17 3 4.703 2 3.321e-02

- - - 4 6.307e-06 3 3.465e-05

Table 8: Strict Identifiability: KLX|Z with D = 2

K/N 2 3 4 5
1 0.5665 2.741e-02 0.2620 0.2308
2 0.4457 0.5006 0.1363 6.695e-02
3 0.3679 0.2747 0.1796 4.338e-02
4 0.3575 0.3372 0.1131 5.667e-03
5 0.2182 0.3333 8.595e-02 1.059e-02
6 0.3416 0.2213 6.732e-02 1.583e-05

Table 9: Local Identifiability: KLZ|u with D = 4

K/N 2 3 4 5
1 0.3674 0.2450 0.2570 1.384e-06
2 0.3039 0.0745 3.898e-07 1.007e-07
3 0.1311 9.323e-04 3.109e-06 8.951e-08
4 0.1151 5.063e-05 2.705e-05 7.027e-08
5 0.3204 5.566e-08 1.545e-07 1.047e-06
6 0.0218 1.428e-06 1.048e-06 2.315e-06

Table 10: Local Identifiability: KLX|Z with D = 2

K/N 6 10
6 1.606 3 0.7397

- 7 5.647e-04 4 1.452e-05

Table 11: Strict Identifiability: KLZ|u with D = 4
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