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Abstract

This work is devoted to a comprehensive analysis of topological data analysis for
time series classification. Previous works have significant shortcomings, such as
lack of large-scale benchmarking or missing state-of-the-art methods. In this work,
we propose TOTOPO for extracting topological descriptors from different types of
persistence diagrams. The results suggest that TOTOPO significantly outperforms
existing baselines in terms of accuracy. TOTOPO is also competitive with the
state-of-the-art, being the best on 20% of univariate and 40% of multivariate time
series datasets. This work validates the hypothesis that TDA-based approaches are
robust to small perturbations in data and are useful for cases where periodicity and
shape help discriminate between classes.

1 Introduction

Working with time-series data is a perennial challenge in science. In medicine, classification of
electrocardiogram allows detecting anomalies associated with different illnesses, [11]. In ornithology,
scientists can classify audio signals of recorded bird sounds for species recognition, [16]. These are,
however, cases of univariate time series. The multivariate case remains specially difficult, as it is
seen on the established benchmark in the time-series community by [3]. Compared to univariate
time-series, methods for multivariate data remain uncommon. Similarly, their performance is often
underwhelming.

Entries, such as [13], [7], [1], [19], validate the significance of topological data analysis (TDA) for
time series data analysis. TDA is a set of statistical methods aimed to analyse complex datasets.
It relies on ideas from topology and computational geometry, [6]. Especially useful in the case of
high-dimensional, complex datasets, as it allows to identify structure and shape. This makes TDA
robust to small perturbations in data, [4]. Similarly, TDA can extract seasonality and periodicity, [14],
[5]. Authors have found success with TDA for a wide array of applications ranging from marketing
data, [18], to cryptocurrencies, [17]. This highlights one of its benefits. It does not require particular
assumptions on the data. These characteristics make TDA-based models interesting to address the
classification of time series.

Innovation This work features several innovations compared to other works, such as [10], [20],
[24], [15], [23]. Firstly, we compare our approach not only with baseline models, such as 1-Nearest
Neighbour Euclidean or Dynamic Time Wrapping models. Rather than that, we also compare
TOTOPO with other TDA-based approaches. These techniques are either widely discussed in the
literature or are current state-of-the-art models for time series classification. Secondly, common
approaches for application of TDA to time series usually rely on creating point clouds from time
series data using sliding windows. Our approach, on the other hand, additionally includes direct
persistence diagrams. They enable us to enrich the model with additional relevant features. Finally,
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we combine models based on different TDA descriptors as an ensemble. This allows us to enrich
TOTOPO even further. With this, we make it more flexible for different types of signals.

Approach In general, our proposed approach consists of four steps. First, we create Persistence
Diagrams from time series. We do this both directly and using sliding windows. Second, we calculate
TDA inputs from the PDs. Third, we train base learners on these TDA inputs as well as the original
time series. Finally, we generate an ensemble of base learners.

2 Topological ideas behind

To create the topological inputs, first, we extract persistence diagrams from the original signals in
two ways. We do a direct extraction. Also, we do a transformation of the time series with a sliding
window. [4] described how to do a direct extraction of persistence diagrams from signals. Such
persistence diagrams contain information about extreme points and thus shape of time series. Our
work is the first in the time-series classification literature to use summaries from these diagrams.
Further, we transform time series into point clouds using sliding windows embedding and extract
PDs from them using Ripser [22]. This is akin to the works of [20] and [15].

3 TOTOPO

In order to include TDA into machine learning pipeline, we create TDA Inputs, which summarize
relevant information from PDs. In this work, three main sets of TDA Inputs are calculated: Betti
series, 𝐿2-norms series and TDA Summaries.

Feature extraction For each Persistence Diagram (𝑃𝐷), we calculate features separately for the
set of 0-dim and 1-dim persistent holes. We describe the following five features. First, the number of
holes of each dimension 𝑑. It is the number of points in the 𝑃𝐷𝑑, we define them as 𝑁𝑑. Second,
the maximal lifetime of holes of each dimension. Lifetime is the difference between death and
birth, max𝑑 = max𝑧𝑖∈𝑃𝐷𝑑

(𝑑𝑖 − 𝑏𝑖). Third, the number of "relevant" holes of each dimension.
This is the number of points with a lifetime higher or equal than 𝑟𝑎𝑡𝑖𝑜 * max𝑑. 𝑟𝑎𝑡𝑖𝑜 ∈ (0, 1) is
the parameter describing the strength of relevancy. Fourth, the average lifetime of holes of each
dimension 𝑚𝑒𝑎𝑛𝑑 = 1

𝑁𝑑

∑︀𝑁𝑑

𝑖=0(𝑑𝑖 − 𝑏𝑖). Fifth, the sum of lifetimes of all holes of each dimension

𝑠𝑢𝑚𝑑 =
∑︀𝑁𝑑

𝑖=0(𝑑𝑖 − 𝑏𝑖). Since direct PDs contain only 0-dimensional holes, we extract only one set
of five features from them. Overall, TDA Summaries is a set of 15 numerical values. They summarize
information from persistence diagrams.

Betti series Another topological input that we use is Betti series, [23]. For each dimension, Betti
series is a sequence of Betti numbers 𝐵1, 𝐵2, . . . , 𝐵𝑘. 𝑘 is an arbitrary number. In our case, it is set
to 100. Each Betti number shows how many persistent holes are "alive" at a particular radius. Thus,
Betti series is a sequence of Betti numbers for each radius.

L2 norms [10] and [9] discuss the advantages of 𝐿2-norms for time series analysis. They serve as
an inspiration for this work. Firstly, we extract point clouds 𝑃 from each time series, using sliding
windows of size 𝑑. Further, we apply a larger sliding window of size 𝑊 to vectors from 𝑃 . It creates
a series of small point clouds of size 𝑑 × 𝑊 . Then for each of these point clouds, we calculate
the persistence diagrams and persistence landscapes. Finally, we extract a series of 𝐿2 norms from

consequent persistence landscapes. We can define it as ‖𝜆‖2 =

(︂∑︀∞
𝑘=1 ‖𝜆𝑘‖22

)︂1/2

. Here, 𝜆𝑘 are

lines in a persistence landscape.

Base learner We summarize the architecture of the base learner in Figure 2. The architecture
can process multi-channel input signals or features. It contains three convolutional blocks, global
averaging, and fully connected layer with SoftMax activation in the end. As an activation function,
we use LeakyReLu. Also, we consider dropout for training at the end of two blocks out of three, to
avoid overfitting. Further, we train the base learners on four sets of inputs: TS — original time series,
Betti series, 𝐿2-norms, and TDA Summaries.
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Ensembling The approaches of [3] and [12] inspire our ensemble. When we train the base learners,
we save their training losses for each dataset. Then we weight the predictions of each model by its rank
among other models. We sum all weighted predictions to obtain the final one. The final prediction is
thus the class with a maximal weighted probability. We outline the ensemble in Algorithm 1.

Algorithm 1 Ensemble

𝑡𝑟𝑎𝑖𝑛_𝑙𝑜𝑠𝑠𝑒𝑠 = train losses of each model
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 = predictions of each model
𝑚𝑜𝑑𝑒𝑙_𝑛𝑎𝑚𝑒𝑠 = {𝑡𝑠, 𝐵𝑒𝑡𝑡𝑖, 𝑇𝐷𝐴𝐹𝑒𝑎𝑡𝑠, 𝐿2𝑛𝑜𝑟𝑚𝑠}
𝑛𝑢𝑚𝑏𝑒𝑟_𝑚𝑜𝑑𝑒𝑙𝑠 = 𝑘
𝑖𝑛𝑝𝑢𝑡𝑠 = {ts, Betti, TDAFeats, L2norms}
Sort ascending 𝑡𝑟𝑎𝑖𝑛_𝑙𝑜𝑠𝑠𝑒𝑠→𝑚𝑜𝑑𝑒𝑙𝑠_𝑠𝑜𝑟𝑡𝑒𝑑
Assign votes: 𝑘, 𝑘 − 1, . . . , 1 to best, second best, . . ., worst models.
𝑣𝑜𝑡𝑒𝑠 = {𝑚𝑜𝑑𝑒𝑙𝑠_𝑠𝑜𝑟𝑡𝑒𝑑1 : 𝑘, 𝑚𝑜𝑑𝑒𝑙𝑠_𝑠𝑜𝑟𝑡𝑒𝑑2 : 𝑘 − 1, . . . , 𝑚𝑜𝑑𝑒𝑙𝑠_𝑠𝑜𝑟𝑡𝑒𝑑𝑖 : 1}
𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑒𝑑_𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 = 0
for 𝑘𝑒𝑦, 𝑣𝑜𝑡𝑒 in 𝑣𝑜𝑡𝑒𝑠 do

𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑒𝑑_𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛+ = 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠{𝑘𝑒𝑦} × 𝑣𝑜𝑡𝑒
end for
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝑐𝑙𝑎𝑠𝑠𝑒𝑠 = {𝑎𝑟𝑔𝑚𝑎𝑥(𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑒𝑑_𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑖) for i in range(𝑁)}
return 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝑐𝑙𝑎𝑠𝑠𝑒𝑠

4 Discussion of results

We compare TOTOPO against four techniques widely used in the time series community and other
TDA-based time series classifiers. From [3], we consider 78 datasets for the comparison. To evaluate
the overall performance of algorithms, we use the critical difference (CD) diagram. We present it
in Figure 1. TOTOPO is the third best classifier in the 78 datasets. It is statistically similar to the
state-of-the-art method BOSS. TOTOPO beats BOSS on 44% of the datasets.
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Figure 1: CD diagram with black horizontal lines showing statistically similar classifiers.

Multivariate time series Multivariate time series methods have less entries in the literature than
their univariate counterparts. Most methods work either for univariate or for multivariate time series.
This is true for the state of the art models for univariate data, such as HIVE-COTE. TOTOPO has an
outstanding characteristic. For multivariate time series, TOTOPO belongs to the state-of-the-art in
terms of performance. For this evaluation, we use the datasets available in [2]. We can see the results
in a comparison against two baselines and a novel SOTA deep-learning architecture by Franceschi,
[8]. Table 1 presents the average ranks for each model. Lower values are better. Our model is the
second best performer in the comparison.

Table 1: Multivariate models, ordered by average rank. Less is better.
Method Average Rank Method Average Rank

Franceschi 1.79 1-NN DTW 2.58
TOTOPO 2.5 1-NN Euclidean 3.11

Best results We want to highlight the dataset 4-channel ERing. The data is related to Human
Activity Recognition. On this dataset, our approach significantly outperforms all other methods. It
has an accuracy of 94.4% as opposed to an average accuracy of 13.3% in the comparison. Similarly,
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Figure 3: Comparison of different algorithms’
performances for different noise levels

TOTOPO excels on the univariate datasets of type DEVICE. We show in Table 2 the improvement
over Dynamic Time Warping. Our approach outperforms all methods. This is the case for both
baselines and state-of-the-art, HIVE-COTE and BOSS, on five out of six datasets. Time series from
this source type correspond to different devices’ electricity consumption. These time series have
regions of periodic behaviour. We assume that TDA makes use of this characteristic.

Limitations TOTOPO underperforms with datasets containing similar classes. This is the case,
for example, for the OliveOil dataset. The differences between classes among the time series are
extremely small. Our explanation is that TDA is invariant to constant shifts and small perturbations
in data. It requires larger differences in the classes to generate different homologies.

Table 2: Accuracy improvement over DTW across classifiers. Results in %. More is better.

Seversky Wu 30 Pereira Umeda HC BOSS TOTOPO
Type Dataset

D
E

V
IC

E

LargeKitchenAppliances -6,93 -46,14 2,94 -9,33 6.93 -2.94 9.33
SmallKitchenAppliances -21,06 -50,94 -8,26 -21,33 21.06 8.26 21.33
ScreenType -19,2 -6,4 -6,67 -23,2 19.2 6.67 23.2
RefrigerationDevices -9,33 -10,67 -3,47 -14,13 9.33 3.47 14.13
ElectricDevices -16,82 N/A -19,71 -16,29 16.82 19.71 16.29
Computers -6 -20 -5,59 -12,8 6 5.6 12.8

Noise robustness exploration We want to understand the robustness of TOTOPO. For this, we
apply three noise levels to the signals. For each noise level we use a targeted Signal to Noise Ration
(SNR). We express it in decibels: 10dB, 15dB and 20dB. For each time series 𝑋 , we conver SNR
into a linear one. We follow the suggestions in [21]. For the comparison, we plot average accuracies
for each noise level on Figure 3. On the 𝑥-axis, we show noise levels. "0" corresponds to the original
time series. "1" is equivalent to an SNR of 20dB, "2" for 15dB and "3" for 10dB. For small noise
levels, TOTOPO outperforms all other models. Its accuracy deteriorates less. Overall, this suggests
that TDA is indeed robust to noise, especially in case of small changes.

5 Outlook

We aim to improve the base learner classifiers in future works. This includes the hyperparameter
tuning for each of the datasets. There is also space to optimize the architecture. Additionally, we
seek to evaluate the addition of non-topological descriptors into the model. With this, we want to
overcome the methodological problems of TOTOPO described in section 4. These can be features
to account for constant shifts in data. We can also use other common descriptors for time series
data, i.e., autocorrelation, Fourier coefficients, etc. Moreover, we aim to create and evaluate new
topological descriptors. They will allow us to improve TOTOPO even further.
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