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ABSTRACT

Various deep learning pipelines have been proposed for 3D Bone Shape Recon-
struction from Biplanar X-rays. Although these methods individually report ex-
cellent results, we do not know how these architecture pipelines compare against
each other since they are reported on different anatomy, datasets, and cohort dis-
tribution. We benchmark these disparate architectures on equal footing on three
different anatomies using public datasets. We describe various benchmarking
tasks to simulate real-world clinical scenarios including reconstruction of frac-
tured bones, bones with implants, robustness to population shift, and estimate
clinical parameters. We provide an open-source implementation of SOTA ar-
chitectures, dataset pipelines, and extraction of clinical parameters. Comparing
the encoder-decoder architectures with baseline retrieval models, we find that the
encoder-decoder methods are able to learn from data and are much better than
retrieval baselines. However, the best methods have limited difference on perfor-
mance, but the domain shift plays an important role in deteriorating the perfor-
mance of these methods.

1 INTRODUCTION

X-ray is the most common and widely used imaging modality for orthopedics, trauma, and dentistry
as it has low radiation, low cost, and is portable. X-ray scanner projects 3D information of the
target body into a plane, resulting in a 2D image. This 2D representation is not ideal and sometimes
not enough for visualizing the 3D structure that can be important in diagnosis, prognosis, surgery
planning and navigation, and medical education. CT scan captures X-ray-like images from several
angles covering 360 degrees and reconstructs a single volumetric image, providing detailed 3D
structural information of the target anatomy. However, CT scan has relatively high radiation, is
costly, and is not even available in many rural health centers across the globe. Hence, there has been a
longstanding interest in the scientific community to develop methods that can reconstruct 3D images
or structures of interest from few to single X-ray images of various human bones (Hindmarsh, 1973;
Suh, 1974; Shiode et al., 2021), teeth (Song et al., 2021), and anatomies of other species (Henzler
et al., 2018).

From the early days of the stereo-correspondence point-based approach (Brown et al., 1976; Pearcy,
1985), several methods have been proposed for 3D reconstruction from biplanar radiographs: non-
stereo-corresponding point-based, contour-based, statistical shape model (SSM) based, parametric,
and hybrid methods (Hosseinian & Arefi, 2015). These methods face challenges in extracting hand-
crafted features (landmarks or contours), using deformation priors and atlas, or building SSMs (Mit-
ton et al., 2000; Benameur et al., 2003; Karade & Ravi, 2015; Aubert et al., 2019). Recently, several
deep learning-based approaches show promise in providing more accurate results with faster com-
putation time (Melissa et al., 2021). Although methods combining deep learning and anatomical
priors via atlas or features such as landmarks or contours are starting to emerge (Chênes & Schmid,
2021; Bayat et al., 2022; Van Houtte et al., 2022), most of the existing deep-learning-based methods
predominantly predict shape or image directly using an encoder-decoder-based neural network ar-
chitecture (Bayat et al., 2020; Kasten et al., 2020; Nakao et al., 2021; Shiode et al., 2021; Almeida
et al., 2021).
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Although deep learning based 2D-3D reconstruction from biplanar X-ray is an active research topic
with several different models proposed (Bayat et al., 2020; Kasten et al., 2020; Nakao et al., 2021;
Shiode et al., 2021; Almeida et al., 2021), we still do not know which methods are the best ones
for what contexts. We observe four main challenges that need to be addressed for better progress
in this field: i) Lack of a platform that brings together publicly available dispersed datasets of dif-
ferent anatomies in different standards to a common standard; this makes it difficult for researchers
developing new methods to evaluate their methods in a common benchmark. ii) Lack of repro-
ducible works due to the use of private datasets, incomplete description of hyperparameters, and
closed source code. iii) Lack of a comprehensive evaluation required to assess the potential of clin-
ical translation: evaluation on single anatomy which is different for different papers; aggregated
results without providing insight on the model’s performance across different types of data such as
pathology, type of structure (such as different vertebra type), number of samples of each type, image
resolution, etc. iv) Limited effort towards identifying and optimizing clinical parameters that are
of interest: most methods use metrics such as Dice Score or Hausdroff’s Distance for measuring
reconstruction accuracy, but very limited study on how these metrics actually impact the clinical
parameters and decision making. For instance, it is not clear at all if the dice score of 0.8 instead of
0.9 would bring any difference to an actual clinical application where the method is applied.

In this work, we bring together four dispersed and different multi-center publicly available datasets
into a common standard, and benchmark various recently proposed encoder-decoder architectures
on this dataset. We evaluate the methods across different anatomy, analyze results across multiple
metrics segregated by various factors of variation that are of clinical interest, and assess their ability
to estimate important clinical parameters.

Procedure ReferenceÑ

Previous Approaches
UNet Transvert TL-Embedding Encoder-Decoder

Kasten et al. Bayat et al. Shiode et al. Chen & Fang
Anatomy of Interest Knee Vertebra Wrist Vertebra
Input views AP & LAT AP & LAT PA AP & LAT
Input DRR Res(mm) 1.0 1.5 0.4 1.5
Input Size 1282 642 500 ˆ 625 642

Training Samples 188 „10k 147 90
Test Samples 20 „2k 26 10
Test Sample Res(mm) 1.0 1.0-3.0 0.625,1.25 1.5
Supervised Loss weighted-CE L1 CE L2
Adversarial Loss ✗ ✓ ✗ ✗
Reprojection Loss ✓ ✗ ✗ ✗
AP/LAT View-Fusion Input-level Feature-level AP view only Feature-level
Data Augmentation ˘5˝ ˘30˝ ˘90˝

Surface Error(mm)
ë avg 1.075 - 1.709 ✗ 1.05 - 1.45 ✗
ë max ✗ 5.11 ✗ ✗
Dice Score 84.8 - 94.5 ✗ ✗ ✗
ëavg. across classes 90.7 95.5 ✗ 74.0

Table 1: Ingredients and hyper-parameters used for biplanar x-ray to 3D Bone shape Reconstruc-
tion used in prior works: We see that the original works were validated on disparate dataset
size, resolution, dataset cohort, different bone anatomies for different papers etc. resulting in
non-comparable reported performance. Many of these disparate architectures report good surface
reconstruction(ă 2mm average surface reconstruction error)

Contributions Provide comprehensive and standardized framework for datasets access, pre-
processing, baseline comparison, and a set of metrics: we provide an open-source implementation
for accessing four different publicly available datasets, bring them into a common standard and pre-
processing pipeline, provide reference implementation of SOTA architecture, analysis scripts for
extracting clinically relevant parameters from reconstructed bone shape.

Benchmark Encoder-Decoder based Architectures: we benchmark encoder-decoder based end-to-
end architectures which were proposed specifically for x-ray to 3D bone shape reconstruction,
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namely Kasten et al. (2020); Bayat et al. (2020); Shiode et al. (2021), on three anatomies (ver-
tebra, hip and knee) using public datasets.

Provide major anatomical and pathological categories for disaggregated reporting of the results,
and highlight the limitations of the commonly followed approach of reporting aggregated results:
specifically, we report disaggregated results on vertebra sub-types (cervical, thoracic and lumbar),
vertebra sub-structure (vertebral body, vertebral arch and transverse processes).

Robustness to Domain shifts We describe various benchmarking tasks to perform an external vali-
dation of the baselines in a realistic clinical context such as when the x-ray contains fractured bones
or implants, or when the model is evaluated on an entirely different population cohort.

2 RELATED WORK

Recent studies have highlighted the issues in deep learning research with too many architectures
without a clear understanding of which one is better or disguising speculation as explanations (Lip-
ton & Steinhardt, 2019), lack of reproducibility (Bouthillier et al., 2019), a gap in improvements
in benchmarks vs actual applications such as in clinical translations (Varoquaux & Cheplygina,
2022). These studies have different scopes, such as the broad scope of machine learning in general
but focusing on reproducibility (Bouthillier et al., 2019) or field-specific contexts such as in health
care covering broad issues (Varoquaux & Cheplygina, 2022). Such recent works covering a broad
field provide guidelines and emphasize important topics that need attention from the scientific com-
munity. Nevertheless, specific applications can have peculiar needs and issues that require further
investigation and attention. For example, the COVID-19 pandemic led to a very large number of
papers on deep learning-based COVID-19 detection in a short period of time, but almost all these
methods were clinically not useful and had study design flaws and bias (Roberts et al., 2021; Hasan
et al., 2022). In this work, we focus on the task of 3D reconstruction of human bones and joints
from a pair of 2D X-ray images.

3 FOUR DATASETS FROM THREE DIFFERENT BONES

Digitally Reconstructed Radiographs (DRRs) as input images The machine learning (ML) task
being studied in this work can be described as when given a human subject’s pair of Anterio-
Posterior (AP) and Lateral X-ray images of a target bone, reconstructing the 3D structure of the
target bone. For an ideal training and evaluation of a model for this task, ground truth 3D structure
would be the expert manual segmentation from a CT scan of the patient whose AP and lateral images
are taken as input by the model. However, to our knowledge, there are no publicly available paired
images of real X-ray scans and CT scans of the same patients. Since most methods construct AP
and lateral Digitally Reconstructed Radiographs (DRRs) from CT scan image and use it as input to
the model for training and evaluation, we use the same approach in this work. In this work, input to
all ML models are DRRs generated from 3D scans using Siddon-Jacobs Raytracing Algorithm (Wu,
2010).

DRRs from CT scans We create two datasets for which input DRR images are generated from
CT scans, placing the CT volume midway between the simulated x-ray source and the image plane
which is separated by a source-to-image distance of 200cm. In order to get cleaner delineation of
bones with fewer attenuation from soft tissues, only those voxels whose Hounsfield Unit(HU) ą 0
are taken into consideration to calculate ray attenuation.

DRRs from ground truth segmentation masks: In addition to input DRRs generated from CT
scans which are closer to real x-ray scans, we create two additional datasets where DRRs are gen-
erated from segmentation masks, named DRRfromMask. These DRRfromMask provide simpler
projections of the target 3D shape, which is useful to study how different models perform when the
reconstruction task is simpler without any confounding non-bone structures in the input images.
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3.1 VERSE2019-SPINE-DRR

VerSe2019 (Sekuboyina et al., 2021) contains 160 CT scans with two types of annotations: manual
segmentation of individual vertebra, and the centroid location provided as metadata. The vertebra
with foreign materials such as cement and screws do not have manual annotations, which when
removed results in 1722 vertebra from the 160 CT scans.

VerSe2019-Spine-DRR Train-Val-Test Split The 160 CT scans are randomly divided into four
groups of 40 images each. In a standard, 4-fold cross-validation setup, this would result in four
different groups of 120 scans for training and 40 scans for validation. However, we use four groups
of 40 CT scans for the test. For internal validation, the 120 scans are further split into 110 training
and the remaining 10 for hyperparameter tuning and early stopping. Since the input to the model
is an individual vertebra instead of the whole CT scan, the vertebra in all the images that contain
foreign materials is excluded during training and testing by using the metadata provided in the
VerSe2019 dataset.

For training, there are on average 1451 vertebra from the four groups of 110 images in the training
set, and in the test set, there are 271 vertebra from the four groups of 40 CT scans.

3.2 VERSE2019-SPINE-DRRFROMMASK

This dataset is exactly the same as VerSe2019-Spine-DRR described in the previous section but with
one difference: the DRR images are generated from the ground truth segmentation masks instead of
the CT scan images.

3.3 CTPELVIC1K-DRR

CTPelvic1k (Liu et al., 2021) consists of 1106 pelvic CT scans with manual segmentation of left and
right pelvic bones, sacrum, and vertebra near the sacrum. The dataset has seven subsets (number of
scans in parenthesis): Adbomen(35), Colonog (714), Msd-T10 (155), Kits (44), Cervix (41), Clinic
(103), and Clinic-metal (14). Clinic consists of scans with fractured bones, and Clinic-metal has
images having foreign bodies such as implants, screws, and rods. Msd-T10 was unusable as it had
highly anisotropic voxels which resulted in unrealistic and pixelated DRR.

CTPelvic1k-DRR Train-Val-Test Split The largest subset Colonog containing 714 images is ran-
domly split into 80:20, resulting in training and a validation set of 535 and 179 images respectively.
There was an uneven number of vertebra segmented, hence we changed the vertebra segmentation
into the background label. Similarly, the pelvic bone and sacrum labels were merged to produce a
binary mask for the hip excluding the vertebra. The other subsets are used as test images and to
assess various models’ robustness to domain shift.

3.4 OAI-ZIB-KNEE-DRRFROMMASK

This dataset consists of 507 knee MRI images with manual segmentation, where the manual seg-
mentation is provided by Ambellan et al. (2019) for the 507 MRIs selected from a larger database
(Peterfy et al., 2008).

OAI-ZIB-Knee-DRRfromMask Train-Val-Test Split The total of 507 images is split into 380
training and 179 validation images.

4 ENCODER-DECODER AND BASELINE MODELS

Encoder-Decoder-based architecture is the most popular deep neural network used by state-of-the-
art X-ray to 3D reconstruction methods. We implement and evaluate four state-of-the-art architec-
tures that use different approaches, and use different datasets for evaluating their respective model’s
performance: Kasten et al. (2020), Bayat et al. (2020), Shiode et al. (2021) and Chen & Fang
(2019). These architectures introduce inductive bias in different ways that can be characterized by:
i) whether input orthogonality is respected, and ii) at what stage of the encoder-decoder pipeline the
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two input views are fused. Kasten et al. (2020) fuses the two views at the input stage respecting
the orthogonality of the inputs to obtain a 3D-like input allowing the use of popular off-the-shelf
3D-to-3D Encoder-Decoder architectures such as U-Net. Bayat et al. (2020), on the other hand,
fuses the two views at a later stage where the encoder has generated high-level features. Chen &
Fang (2019) applies the Encoder-Decoder framework fusing the two views by concatenating the
low-dimensional 1-D embedding vector. Shiode et al. (2021) uses an auto-encoder (T-Network) to
learn the distribution of the 3D segmentation in a low-dimensional manifold (Girdhar et al., 2016)
and then projects the X-ray into the same learned manifold, using a separate 2D image encoder (L-
Network). At test-time, the L-Network and the decoder part of the T-Network are used to obtain 3D
reconstruction from a single X-ray.

Comparison to Retrieval-based Baselines Tatarchenko et al. (2019); Liao et al. (2021) show that
simple image classification and retrieval-based baselines outperformed CNN architectures on object
reconstruction task in certain scenarios. In order to evaluate how much the encoder architecture help
in X-ray to 3D reconstruction task, we implement two baseline methods: Nearest Neighbors and
Oracle.

Nearest Neighbour: For a given pair of input X-ray images, it returns the 3D segmentation from
the training set of the sample which has the most similar X-ray pair image to the input pair. The
similarity is measured as the average sum of the squared differences between corresponding X-ray
views.

Oracle Following Henzler et al. (2018), for a given input pair of X-ray images, we use its 3D ground
truth shape and return the closest shape in the training set. Although this is impractical for inference
in a realistic setting where the ground truth of the input X-ray pair is unknown, it is useful in an
evaluation setup where the ground truth of the test set is known and provides an upper threshold on
how well retrieval-based methods may work.

5 EXPERIMENTAL SETUP

5.1 PREPROCESSING

The CT-Segmentation pair is cropped to the Region-of-Interest by using a ground-truth bones seg-
mentation bounding box. They are then resampled to the 1mm3 voxel dimension. The obtained
volume is padded to the nearest power of 2 (1283 for vertebra and 2563 for hip bones) and oriented
to common LPS orientation. The intensity values of generated DRR are scaled to lie within the
range [0,1].

5.2 HYPERPARAMETERS

We manually tune the architectural hyperparameters (number of layers, kernel size, number of fea-
ture maps, etc.) taking reference from prior work as the starting point. We use Adam Optimizer with
an initial learning rate of 2e-3 (chosen from grid search). We keep the exponential moving average
of the validation score(valMA) and terminate training if valMA does not improve within the last
20 epochs or within 100 epochs, whichever is the earliest. A dropout rate of 0.1 is chosen for all
convolutional layers to prevent overfitting, and PReLU activation is used.

5.3 IMPLEMENTATION DETAILS

For most of the replicated methods, we adhere to the same architectural details as in the original
work, except when modifications resulted in improvement. For example, Kasten et al. (2020) uses
regular UNet whereas we use Residual UNet(Zhang et al., 2018) improving performance. Similarly,
we use combined Dice and Cross-Entropy loss for training all the models resulting in faster conver-
gence. For Bayat et al. (2020), we added additional residual blocks (6 instead of 4) keeping other
details intact. For Shiode et al. (2021), exact architectural details were not reported in the original
work forcing us to use reasonable choices taking the 11 GB GPU memory budget available.
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Figure 1: From Left to Right: i) and ii) Biplanar X-ray images iii) Ground truth 3D Bone Shape
iv,v.vi and vii) reconstructed bone shape from the baseline encoder-decoder architectures, viii and
ix) reconstructed bone shape from the retrieval-based baselines.

5.4 EVALUATION METRICS

We report Dice Metric, Hausdorff Distance(95th percentile), Average Surface Distance(ASD), and
Normalized Surface Distance(NSD). These metrics measure shape overlap, maximum and average
distance between two surfaces and variability tolerant surface similarity.

Although image metrics such as Dice and HD provide measures on how well the reconstruction is
done, it does not necessarily provide a measure for whether it is satisfactory for clinical decision
making or not. Estimating clinically meaningful parameters from the predicted reconstruction and
comparing it with ground truth clinical parameters can provide a more direct measure for clinicians.
For instance, Lerchl et al. (2022) use segmented spine to obtain a musculoskeletal model to estimate
forces acting on the vertebra, and use it to identify vertebra landmarks.

Keeping the evaluation of an exhaustive list of clinical parameters for all the anatomy as future
work, here we estimate the following two important clinical parameters for pelvic region, Intercristal
Distance(ID) and Transverse Diameter of Pelvic Inlet(TDUP), to highlight the importance of such
experiments.

6 RESULTS

6.1 BASELINE RESULTS ON FOUR DATASETS

Table 2 presents the performance of four deep learning models and two retrieval baseline models
on four different datasets, resulting on 24 different models that are evaluated using four different
metrics. The results show that encoder-decoder models perform better when DRRs are generated
from masks rather than from CT scan images. DRRfromMask datasets incorporate only the shape
variability and removes the surrounding tissue structure and scanner artifacts. Such simplication
seems to aid the networks to reconstruct 3D shapes. Among the two DRRfromMask datasets, the
performance of the models are much better in knee dataset compared to the spine dataset despite
the fact that the spine dataset has larger number of training set. Spine has more complex and fine
detailed structures compared to knee. Thus, more complex and variable anatomy seems to be more
difficult to accurately predict compare to simpler ones.

Although the top two models, implemented from Kasten et al. (2020) and Bayat et al. (2020) provide
very close results for a simpler task (when using DRRfromMask datasets), the performances on more
challenging dataset seems to favor Kasten et al. (2020) whose improvement over Bayat et al. (2020)
grows by a substantial margin going from vertebra to hip.

6.2 DISAGGREGATED RESULTS ON VERSE2019-SPINE-DRR

Table 3 reports results of various models on Verse2019-Spine-DRR for test images grouped using
different classification approaches: vertebra type, compression fracture type, and compression frac-
ture severity. It is interesting to see that despite the fact that Wedge and Concave vertebra, or Mild
and Moderate fractures have smaller number of samples (approx. 1000 vs 100), their performance is
similar or even better than the normal vertebra. However, the Crush and Severe fractures have much
lower performance. The crush fracture results in variation in texture and severe fracture has larger
change in appearance compared to other fractures. Such a distinct variation might have played an
important role together with their numbers being very low, around 30.
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Dataset (#train/#test) (vol size) Method Reference #Param Dice(%)Ò HD95(mm)Ó ASD(mm)Ó NSD@1mmÒ

VerSe19-Spine-DRR

Kasten et al. 1.20M 84.08 ˘ 0.23 3.86 ˘ 0.25 1.03 ˘ 0.05 0.74 ˘ 0.02

Bayat et al. 1.91M 83.15 ˘ 0.42 3.68 ˘ 0.19 1.11 ˘ 0.02 0.72 ˘ 0.01

Shiode et al. 1.70M 77.99 ˘ 0.16 5.43 ˘ 0.90 1.76 ˘ 0.18 0.61 ˘ 0.01

(1451/271) Chen & Fang 1.60M 75.66 ˘ 1.11 5.96 ˘ 0.25 1.66 ˘ 0.13 0.54 ˘ 0.01

128 X 128 X 128 Nearest Neighbor N/A 69.95 ˘ 1.31 6.91 ˘ 0.83 2.19 ˘ 0.30 0.49 ˘ 0.02

Oracle N/A 79.15 ˘ 0.67 4.33 ˘ 0.19 1.44 ˘ 0.05 0.64 ˘ 0.01

CTPelvic1K-DRR

Kasten et al. 2.97M 82.52 7.66 2.13 0.53
Bayat et al. 2.95M 75.94 10.17 2.45 0.34
Shiode et al. 9.64M 52.86 29.69 3.70 0.13

(535/179) Chen & Fang 4.25M 71.40 11.42 2.97 0.28
256 X 256 X 256 Nearest Neighbor N/A 57.37 13.00 4.39 0.27

Oracle N/A 64.62 10.60 3.57 0.32

OAI-ZIB-Knee-DRRfromMask

Kasten et al. 1.20M 97.73 ˘ 0.04 1.18 ˘ 0.02 0.41 ˘ 0.00 0.973 ˘ 0.00

Bayat et al. 1.91M 97.56 ˘ 0.03 1.24 ˘ 0.01 0.44 ˘ 0.00 0.968 ˘ 0.00

Shiode et al. 1.70M 94.21˘ 0.04 2.63˘ 0.01 0.87˘ 0.00 0.753˘ 0.00

(380/179) Chen & Fang 1.60M 93.68 ˘ 0.18 2.95 ˘ 0.07 1.03 ˘ 0.03 0.728 ˘ 0.01

128 X 128 X 128 Nearest Neighbor N/A 88.96 ˘ 0.15 4.88 ˘ 0.04 1.80 ˘ 0.02 0.509 ˘ 0.01

Oracle N/A 89.23 ˘ 0.14 4.76 ˘ 0.06 1.76 ˘ 0.02 0.520 ˘ 0.01

VerSe19-Spine-DRRfromMask

Kasten et al. 1.20M 87.83 ˘ 0.22 2.67 ˘ 0.20 0.77 ˘ 0.04 0.82 ˘ 0.02

Bayat et al. 1.91M 88.20 ˘ 0.13 2.44 ˘ 0.12 0.73 ˘ 0.04 0.83 ˘ 0.01

Shiode et al. 1.70M 84.25 ˘ 0.25 3.17 ˘ 0.17 1.06 ˘ 0.07 0.74 ˘ 0.01

(1471/271) Chen & Fang 1.60M 83.32 ˘ 0.21 3.91 ˘ 0.29 1.01 ˘ 0.04 0.69 ˘ 0.02

128 X 128 X 128 Nearest Neighbor N/A 77.66 ˘ 0.78 4.67 ˘ 0.22 1.52 ˘ 0.07 0.62 ˘ 0.01

Oracle N/A 79.15 ˘ 0.67 4.33 ˘ 0.19 1.44 ˘ 0.05 0.64 ˘ 0.01

Table 2: Evaluation of four encoder-decoder models and two retrieval baseline methods on four
different datasets using four different evaluation metrics. The models perform better on DRRs gen-
erated from mask compared to the ones generated from CT scans. Similarly, the models seem to
have higher accuracy when the anatomy is simpler (example: knee vs vertebra).

6.3 DOMAIN ADAPTATION AND GENERALIZATION ABILITY ON CTPELVIC1K-DRR

Medical images come with different types of domain shifts. Table 4 shows the results of model
predictions on various groups of test images which have specific types of domain shift compared to
the training set of Colgone used from CTPelvic1K-DRR. The trained models here are the same as in
the baseline models, but the test sets are now different. The different subgroups in Table 4 represent
different types of domain shifts. Clinic subset of CTPelvic1K contains images with hip fracture;
Clinic-metal contains images with foreign implants such as cements, bone implants, screws, and
rods; and the remaining subgroups come from different anatomy or geographic locations with dif-
ferent scanners. We observe that there is substantial decrease in performance for all the new subsets.

6.4 CLINICAL PARAMETERS

We extract two clinically relevant parameters from the reconstructed pelvic bones, namely Inter-
cristal Diameter (ID) and Transverse Diameter of Pelvic Inlet (TDUP). Abnormal Intercristal Diam-
eter is known to be associated with increased risk of breast cancer and ovarian cancer(Barker et al.,
2012). Also, TDUP has been shown to correlate with incidence of female pelvic floor dysfunction
(FPFD)Siccardi & Bordoni (2019).

As shown in Table 6.4 the error sensitivity of these two parameters have disparate difference with
the generic overlap- and surface-error based scores. .

7 DISCUSSION AND CONCLUSION

Lack of publicly available source codes, evaluation on partially open public datasets, and lack of
using a common datasets and anatomy for comparing across different 2D-3D reconstruction of bones
from X-ray image pairs have made it difficult to assess the existing state-of-the-art models. We
have evaluated four state-of-the-art encoder-decoder architectures on four different datasets created
from three publicly available datasets of different anatomies. Since the ultimate aim of 2D-3D
reconstruction from a pair of X-ray is to be useful for various clinical applications, we presented
some important metrics and experimental setups that are important before the models can be used in
clinical settings. We see that the domain shift can dramatically reduce the performance of models.
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ArchÓ Dice(%)Ò HD95(mm)Ó ASD(mm)Ó
TypeÑ Cervical Thoracic Lumbar Cervical Thoracic Lumbar Cervical Thoracic Lumbar
CountÑ 177 618 393 177 618 393 177 618 393
Kasten 75.49 84.71 85.96 4.55 3.52 4.20 1.25 0.97 1.02
Bayat 73.79 83.89 85.14 4.58 3.34 3.86 1.36 1.05 1.11
Shiode 66.99 78.84 80.74 8.08 4.77 4.75 2.40 1.59 1.58
Chen 65.00 76.33 78.80 6.42 5.71 6.08 1.87 1.62 1.59
NN 56.60 68.17 73.31 8.67 7.17 6.43 2.50 2.26 2.08

Oracle 70.80 79.10 80.15 4.40 4.12 4.59 1.56 1.37 1.50
ArchÓ Dice(%)Ò HD95(mm)Ó ASD(mm)Ó
TypeÑ Normal Wedge Concave Crush Normal Wedge Concave Crush Normal Wedge Concave Crush
CountÑ 997 71 95 25 997 71 95 25 997 71 95 25
Kasten 84.16 84.86 84.82 75.92 3.79 3.85 4.16 6.18 1.00 1.04 1.04 1.74
Bayat 83.17 83.94 84.46 76.31 3.63 3.60 3.62 5.33 1.09 1.11 1.08 1.69
Shiode 78.16 79.10 79.14 70.87 5.10 4.57 4.77 6.79 1.67 1.64 1.58 2.26
Chen 75.51 77.67 77.63 69.43 5.95 5.29 5.86 7.55 1.65 1.58 1.58 2.24
NN 70.29 68.50 71.49 64.31 6.84 7.28 6.66 7.11 2.15 2.36 2.27 2.35

Oracle 79.57 78.29 79.07 72.35 4.26 4.62 4.52 5.04 1.40 1.51 1.56 1.84
ArchÓ Dice(%)Ò HD95(mm)Ó ASD(mm)Ó
TypeÑ Normal Mild Moderate Severe Normal Mild Moderate Severe Normal Mild Moderate Severe
CountÑ 997 96 61 34 997 96 61 34 997 96 61 34
Kasten 84.16 85.67 84.08 77.21 3.79 3.80 4.46 5.81 1.00 0.97 1.17 1.52
Bayat 83.17 85.22 82.94 77.98 3.63 3.39 4.10 4.86 1.09 1.04 1.24 1.43
Shiode 78.16 80.39 77.88 71.80 5.10 4.40 5.09 6.43 1.67 1.54 1.75 2.06
Chen 75.51 78.57 76.85 70.29 5.95 5.40 5.98 7.17 1.65 1.57 1.65 2.04
NN 70.29 71.36 71.85 62.17 6.84 6.81 6.56 7.62 2.15 2.20 2.12 2.57

Oracle 79.57 80.57 78.69 71.42 4.26 4.07 4.75 5.56 1.40 1.43 1.63 1.89
ArchÓ Dice(%)Ò HD95(mm)Ó ASD(mm)Ó
PartÑ Overall Body Arch Process Overall Body Arch Process Overall Body Process
Kasten 84.08 86.40 42.88 51.09 3.86 2.99 4.35 13.33 1.03 0.95 4.47
Bayat 83.15 86.14 51.43 52.36 3.68 2.90 4.58 11.88 1.11 0.97 3.91
Shiode 77.99 83.78 38.67 34.73 5.43 3.33 4.61 15.67 1.76 1.15 5.46
Chen 75.66 81.55 31.46 40.67 5.96 3.81 5.53 15.05 1.66 1.34 5.64

Table 3: Disaggregated metrics on VerSe19-Spine-DRR: Average performance of various models
on different groups of images classified using three different types of categories. Three types of
vertebra, for types of compression fractures and four severity levels. Crush type and Severe fractures
have much lower performance compared to others but they have only slightly less number of training
samples compared to Wedge and Concave or Mild and Moderate.

Although we have covered major architectures, the natural extension of this work will cover more
architectures such as transformer based and registration based methods. Similarly, we demonstrated
the evaluation of the models on two clinical parameters of hip anatomy. However, there are sev-
eral clinical parameters for different anatomies on which the models can be evaluated. Moreover,
prospective studies where the the impact of model’s reconstruction on clinical decision making such
as therapy planning could be simulated to study the actual efficacy of these models compared to the
CT scan. Finally, we evaluated the method using DRRs instead of realistic X-rays. Although it is
difficult to get paired X-rays and CT scans, some works use GANs to translate DRRs into realistic
X-rays and then assess the reconstruction ability of the models. However, this evaluation then is
dependent on GAN model’s ability to produce realistic images. Thus, in future, studies that incor-
porate paired images such as from patients who first undergo X-ray as first line of check up then
followed by CT scans for more detailed checkups would be valuable. These will be explored in
future work.
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CTPelvic1k-DRR Method Obtained Metrics Reduction in performance against CTPelvic1K-DRR
Sub-Dataset Reference Dice(%)Ò HD95(mm)Ó ASD(mm)Ó NSD@1mmÒ Dice(%)Ò HD95(mm)Ó ASD(mm)Ó NSD@1mmÒ

CLINIC

Kasten et al. 77.02˘5.85 12.45˘12.90 3.07˘2.25 0.44˘0.07 5.50 4.79 0.94 0.09
Bayat et al. 64.00˘8.22 13.20˘4.37 3.82˘1.22 0.24˘0.06 11.95 3.03 1.37 0.1
Shiode et al. 11.79˘2.61 59.08˘3.68 20.33˘2.20 0.04˘0.01 0.81 3.28 1.91 0.01
Chen & Fang 62.48˘9.64 13.77˘ 5.61 4.01˘1.91 0.23˘0.05 8.92 2.35 1.04 0.05
Nearest Neighbor 52.53˘8.53 14.89˘4.42 4.90˘1.45 0.25˘0.05 4.84 1.89 0.51 0.02
Oracle 58.61˘6.54 13.39˘4.04 4.37˘1.12 0.29˘0.04 6.01 2.79 0.8 0.03

CLINIC-METAL

Kasten et al. 69.53˘9.33 29.94˘25.30 7.36˘8.06 0.36˘0.08 14.55 27.08 6.33 0.37
Bayat et al. 65.68˘7.42 12.88˘2.80 3.72˘1.09 0.24˘0.05 10.26 2.71 1.27 0.1
Shiode et al. 15.38˘6.16 56.98˘6.67 17.22˘3.93 0.04˘0.02 2.78 5.38 5.02 0.01
Chen & Fang 48.13˘15.17 23.03˘13.70 6.34˘4.03 0.15˘0.05 23.27 11.61 3.37 0.13
Nearest Neighbor 41.60˘10.80 20.86˘7.46 7.43˘3.15 0.19˘0.04 15.77 7.86 3.04 0.08
Oracle 60.45˘9.94 12.96˘5.88 4.45˘2.09 0.28˘0.06 4.17 2.36 0.88 3.04

ABDOMEN

Kasten et al. 71.52˘12.28 26.82˘21.71 5.92˘4.85 0.36˘0.10 11 -19.16 -3.79 0.17
Bayat et al. 69.33˘8.43 14.02˘6.94 3.38˘1.46 0.27˘0.06 6.61 3.85 0.93 0.07
Shiode et al. 12.87˘1.56 61.48˘3.94 20.82˘1.76 0.04˘0.01 0.27 0.88 1.42 0.01
Chen & Fang 65.02˘8.93 14.64˘4.82 3.34˘1.33 0.23˘0.05 6.38 3.22 0.37 0.05
Nearest Neighbor 56.68˘9.00 13.31˘3.82 4.24˘1.13 0.26˘0.05 0.69 0.31 0.15 0.01
Oracle 62.94˘5.95 11.23˘2.85 3.56˘0.65 0.30˘0.04 1.68 0.63 0.01 0.02

CERVIX

Kasten et al. 80.00˘6.76 12.04˘16.01 3.16˘4.90 0.48˘0.08 2.52 4.38 1.03 0.05
Bayat et al. 74.36˘5.39 10.72˘3.16 2.50˘0.79 0.32˘0.06 1.58 0.55 0.05 0.02
Shiode et al. 13.28˘3.19 62.62˘3.80 21.99˘1.65 0.04˘0.01 0.68 0.26 0.25 0.01
Chen & Fang 70.54˘5.59 12.13˘4.57 2.92˘1.13 0.27˘0.04 0.86 0.71 0.05 0.01
Nearest Neighbor 56.28˘5.29 13.77˘3.19 4.69˘0.69 0.27˘0.04 1.91 0.77 0.3 0
Oracle 63.06˘3.58 11.15˘2.78 3.68˘0.85 0.32˘0.03 1.56 0.55 0.11 0

KITS19

Kasten et al. 64.63˘8.37 31.82˘20.29 7.48˘7.03 0.30˘0.04 17.89 24.16 5.35 0.23
Bayat et al. 64.41˘12.95 21.48˘20.82 5.41˘5.33 0.24˘0.07 11.53 11.31 2.96 0.1
Shiode et al. 12.90˘1.56 61.13˘4.33 22.63˘2.82 0.04˘0.01 0.3 1.23 0.23 0.01
Chen & Fang 48.32˘19.66 26.71˘15.30 8.45˘6.48 0.17˘0.07 23.08 25.29 5.48 0.11
Nearest Neighbor 51.90˘19.82 20.40˘19.09 7.87˘9.31 0.24˘0.09 5.47 7.4 3.48 0.03
Oracle 55.20˘14.91 18.31˘12.11 5.97˘3.92 0.27˘0.07 9.42 7.71 2.4 0.05

Table 4: New test subsets with different types of domain shifts in CTPelvic1K. With domain shift,
there is substantial decrease in the performance.

Method Anatomy Clinical Parameters
ID Error(mm) TDUP Error(mm)

Kasten Hip 0.50˘2.01 3.59˘11.62
Bayat 0.76˘2.11 5.62˘11.96
Shiode 24.15˘5.34 10.35˘12.66
Chen 0.92˘3.34 8.61˘12.84

Table 5: Clinical Parameters extracted from 3D Reconstructed Pelvic bone Shape: Intercristal Dis-
tance(ID) and Transverse Diameter of Pelvic Inlet(TDUP). ID Error(TDUP Error) represents the
difference of ID(TDUP) of the predicted bones shape with that of the ground truth bone shape. We
find that different clinical parameters vary in their sensitivity to global reconstruction error as shown
by difference in absolute error for the two clinical parameters.
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Gaël Varoquaux and Veronika Cheplygina. Machine learning for medical imaging: methodological
failures and recommendations for the future. NPJ digital medicine, 5(1):1–8, 2022. 3

J. Wu. Itk-based implementation of two-projection 2d/3d registration method with an application in
patient setup for external beam radiotherapy. The Insight Journal, 12 2010. doi: 10.54294/6f280b.
3

Zhengxin Zhang, Qingjie Liu, and Yunhong Wang. Road extraction by deep residual u-net. IEEE
Geoscience and Remote Sensing Letters, 15(5):749–753, 2018. 5

11


	Introduction
	Related Work
	Four Datasets from Three Different Bones
	VerSe2019-Spine-DRR
	Verse2019-Spine-DRRfromMask
	CTPelvic1k-DRR
	OAI-ZIB-Knee-DRRfromMask

	Encoder-Decoder and Baseline Models
	Experimental Setup
	Preprocessing
	Hyperparameters
	Implementation Details
	Evaluation Metrics

	Results
	Baseline Results on Four Datasets
	Disaggregated results on Verse2019-Spine-DRR
	Domain Adaptation and Generalization Ability on CTPelvic1K-DRR
	Clinical Parameters

	Discussion and Conclusion

