
Occluded Person Re-identification via Saliency-Guided Patch Transfer

Lei Tan1*, Jiaer Xia1*, Wenfeng Liu1, Pingyang Dai1, Yongjian Wu2, Liujuan Cao1†

1Key Laboratory of Multimedia Trusted Perception and Efficient Computing,
Ministry of Education of China, Xiamen University, China.

2Tencent Youtu Lab, China.
{tanlei, xiajiaer, wenfengliu}@stu.xmu.edu.cn, {pydai, caoliujuan}@xmu.edu.cn, littlekenwu@tencent.com

Abstract

While generic person re-identification has made remarkable
improvement in recent years, these methods are designed
under the assumption that the entire body of the person is
available. This assumption brings about a significant perfor-
mance degradation when suffering from occlusion caused
by various obstacles in real-world applications. To address
this issue, data-driven strategies have emerged to enhance
the model’s robustness to occlusion. Following the random
erasing paradigm, these strategies typically employ randomly
generated noise to supersede randomly selected image re-
gions to simulate obstacles. However, the random strategy
is not sensitive to location and content, meaning they can-
not mimic real-world occlusion cases in application scenar-
ios. To overcome this limitation and fully exploit the real
scene information in datasets, this paper proposes a more
intuitive and effective data-driven strategy named Saliency-
Guided Patch Transfer (SPT). Combined with the vision
transformer, SPT divides person instances and background
obstacles using salient patch selection. By transferring person
instances to different background obstacles, SPT can easily
generate photo-realistic occluded samples. Furthermore, we
propose an occlusion-aware Intersection over Union (OIoU)
with mask-rolling to filter the more suitable combination and
a class-ignoring strategy to achieve more stable processing.
Extensive experimental evaluations conducted on occluded
and holistic person re-identification benchmarks demonstrate
that SPT provides a significant performance gain among dif-
ferent ViT-based ReID algorithms on occluded ReID.

Introduction
Person re-identification (ReID) aims to match individuals
across non-overlapping camera views, and it has extensive
applications in security and surveillance systems. In recent
years, impressive advances have been made in this area,
spanning academia and industry (Ye et al. 2021; Fu et al.
2022; Zhang and Wang 2023; Tan et al. 2023). However,
most generic person re-identification methods operate under
the assumption that the entire body of a person is visible,
which has motivated researchers to explore methods that can
effectively integrate information from all body parts (Sun
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Figure 1: Examples of Saliency-Guided Patch Transfer on
Occluded-Duke. Here, we show two types of occluded sam-
ples: occlusion caused by obstacles and occlusion caused
by the person. Owing to its sensitivity to content and lo-
cation, SPT can effectively enhance the robustness of ViT
algorithms in occluded person re-identification.

et al. 2018; Zhu et al. 2020). Despite this, the assumption
of a fully visible body often neglects the presence of oc-
clusions, which are common in practical applications. In-
evitable occlusions caused by different obstacles in real ap-
plication scenarios make the generic ReID methods suffer
significant performance degradation. Consequently, there is
a growing need to explore occluded person re-identification
to address the corresponding issue.

To fulfill the demand for occlusion cases, both model-
driven (Qian et al. 2018; Tan et al. 2022; Wang et al. 2022a)
and data-driven (Huang et al. 2018; Chen et al. 2021; Wang
et al. 2022b) strategies have emerged. The model-driven ap-
proach places particular emphasis on the alignment strat-
egy, utilizing body cues provided by additional networks or
weakly supervised modules to achieve high performance in
occluded ReID. However, the limited availability of occlu-
sion data has prevented these modules from fully unleashing
their potential. Meanwhile, data-driven strategies (Huang
et al. 2018; Chen et al. 2021; Wang et al. 2022b) have made
progress in occluded ReID by constructing images with oc-
clusion to enhance the network’s robustness. Following the
random erasing paradigm (Zhong et al. 2020), these strate-
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gies typically adopt randomly generated or hand-selected
noises to serve as obstacles that obscure randomly selected
image regions. While these random-based strategies facili-
tate the learning of an occlusion-aware feature representa-
tion, their lack of sensitivity to content and location makes
it difficult for them to imitate real occlusion cases in appli-
cation scenarios.

In this paper, we aim to explore a more intuitive and re-
alistic data-driven strategy to meet the demand for occlu-
sion cases. However, achieving such a strategy presents two
main challenges. The first challenge is how to construct the
content of obstacles, while the second challenge is where to
place these obstacles in fresh samples. Erasing-based strate-
gies have typically addressed both challenges through ran-
dom strategies but have shown limited improvement in real-
world applications as previously discussed. With regard to
the first challenge, it is worth noting that the ReID dataset
already contains numerous real-world occlusion cases such
as cars or trees. As shown in Fig 1, if we can isolate these oc-
clusion cases from the original image, we can easily transfer
them to other person instances. Furthermore, the new sam-
ple will not be subject to domain gap issues since the obsta-
cles are sourced from the original training set. Additionally,
dividing person instances and occlusions from the images
can provide extra knowledge to locate the person instances,
thereby facilitating the resolution of the second challenge.

To tackle the challenges of constructing content and plac-
ing obstacles in fresh samples, we propose the Saliency-
Guided Patch Transfer (SPT), which uses a transformer
structure that has shown impressive performance in handling
occlusion cases (Naseer et al. 2021; He et al. 2022). The SPT
is an online model that can be integrated into networks. It
starts with a Salient Patch Selection (SPS) module that di-
vides image samples into two subsets: an identity set and an
occlusion set. Drawing inspiration from dynamic networks
(Rao et al. 2021; Meng et al. 2022), we use a decision matrix
to evaluate patch weights in an end-to-end manner. Once we
obtain the identity and occlusion sets, the second challenge
is to effectively use these subsets to generate fresh samples.
While a random combination strategy may seem reasonable,
it can result in poor alignment and produce unsatisfactory
results. To overcome this challenge, we use an Occlusion-
Aware Intersection over Union (OIoU) with a mask rolling
strategy to select the most suitable identity-occlusion pairs
during each batch. The OIoU encourages SPS to select a
candidate sample that can provide efficient occlusion and
has a similar scale to the target sample. Furthermore, since
SPT uses a hard mask, it is only sufficient to retain the most
important parts of the background, while some identity fea-
tures (partial body or significant background) remain in the
residual patches. Roughly utilizing the general training loss
will consider residual information as negative parts and lead
to sub-optimal results. To deal with this nuisance, we utilize
a class ignoring training strategy for more stable training.

We summarize the main contributions as follows:
• We introduce the Saliency-Guided Patch Transfer (SPT)

for occluded person re-identification, which is a fresh on-
line data-driven strategy with more realistic content and
more specific location.

• To better exploit the power of SPT, we introduce an
Occlusion-Aware IoU with mask rolling to filter the most
suitable identity-occlusion combinations and a class-
ignoring strategy for more stable training.

• We incorporate SPT into the ViT-based algorithms and
show their significant performance improvement on oc-
cluded person re-identification benchmarks.

Related Works
With the revolution of deep learning, computer vision is
dominated by deep learning strategies (Wu et al. 2021;
Zhang et al. 2023; Chen et al. 2023; Peng et al. 2021).
The mainstream approaches to solving the occluded ReID
can be divided into the model-driven method and the data-
driven method. Model-driven approaches focus on develop-
ing alignment strategies to avoid misalignment between oc-
cluded samples. Zhuo et al. (Zhuo et al. 2018) firstly in-
troduce an extra occluded/non-occluded binary classifica-
tion task to distinguish the occluded images from holistic
ones, while Miao et al. (Miao et al. 2019) propose the Pose-
Guided Feature Alignment (PGFA) method that utilizes fine-
grid pose landmarks to separate visible part information
from occlusion noise. Wang et al. (Wang et al. 2020) ad-
dress occlusion by using high-order relations and a human-
topology graph to pass information from visible to invisi-
ble nodes, thereby alleviating the influence of obstacles. Li
et al. (Li et al. 2021) initially utilize the transformer struc-
ture and use prototypes to disentangle the fine-grid body
part without the help of an extra network in order to achieve
satisfying performance. Meanwhile, data-driven approaches
have also advanced occluded ReID by analyzing occlusion
cases and proposing data augmentation methods. Huang et
al. (Huang et al. 2018) propose adversarially occluded sam-
ples for data augmentation, while Chen et al. (Chen et al.
2021) combined a prior guided hand-crafted occlusion aug-
mentation scheme with an attention mechanism to capture
visible body parts precisely. Wang et al. (Wang et al. 2022b)
further improves the pipeline by proposing the feature eras-
ing and diffusion network, reaching a satisfying perfor-
mance. However, most of the previous data-driven meth-
ods follow the trend of random erasing (Zhong et al. 2020),
which ignores the discrepancy in both content and location
between the generated and real occlusion images. There-
fore, in this work, we attempt to bridge the discrepancy with
SPT and address the occlusion issue through the data-driven
method in a more realistic way.

Approach
Overall Framework
As the obstacles generated by erasing-based data-driven
methods (Zhong et al. 2020; Huang et al. 2018; Chen et al.
2021; Wang et al. 2022b) exhibit significant differences in
both content and location when compared to real-world oc-
clusion cases, we propose the Saliency-Guided Patch Trans-
fer (SPT) method to address this issue by fully leveraging
real scenarios present in the datasets to generate occlusion
samples. The framework of SPT consists of two phases, as
illustrated in Figure 2. The first phase involves salient patch
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Figure 2: The framework of proposed Saliency-Guided Patch Transfer (SPT). SPT initiates with the Salient Patches Selection
(SPS) module, which aims to provide the salient patch mask and segregate the entire image in a batch into two sets, namely
Identity Set and Occlusion Set, by utilizing a decision matrix. These two sets are then recombined with a specific probability,
guided by OIoU, to generate high-quality samples for training the final model. Herein, the symbol c denotes the class token.

selection (SPS), which draws inspiration from dynamic net-
works (Rao et al. 2021; Meng et al. 2022) to select the most
discriminative patches to activate throughout the network.
During this phase, the SPS divides patches into two sub-
sets, namely the identity set containing the target person in-
stances, and the occlusion set consisting of obstacles such as
non-identity persons, cars, and so on. In the second phase,
the two subsets are reorganized with a certain probability p
during training. Salient patches from the target sample in the
identity set are then transferred to occlusion patches under
the Occlusion-Aware Intersection over Union (OIoU) with a
mask rolling strategy to simulate occlusions.

Salient Patch Selection
The primary challenge in transferring occlusion from one
image to another is to distinguish between person instances
and background occlusions. This enables us to manipulate
the instances and synthesize various occlusion scenarios ef-
fectively. Drawing inspiration from dynamic networks (Rao
et al. 2021; Meng et al. 2022) that can spontaneously se-
lect salient patches, we incorporate a salient patch selection
module (SPS) into our network. This module encourages the
network to remove background patches while preserving the
most important patches. It should be noted that SPS operates
solely on the training set, eliminating the need to accommo-
date new data, and thereby improving its efficiency.

The salient patch selection module (SPS) is primarily
composed of a decision matrix that employs token repre-

sentations to generate the final choice via a fully connected
layer. It is widely acknowledged within ViT-based structures
that token representations from deeper blocks possess a su-
perior ability to estimate their own value (Meng et al. 2022),
while the same is challenging for shallow blocks. As a result,
during SPS training, we conducted two times of inferences
for one-step optimization, as input patches should be de-
termined by the deeper blocks to ensure effective decision-
making by the module.

Formally, for a ViT with L blocks, in the first inference,
given the input to the lth block without the class token as zl,
the patch mask M is given as:

M = σ(W pConcat(z0, z1, z2, . . . , zL)). (1)

Herein, σ refers to the sigmoid function and W p denotes the
decision matrix which aims to determine the salient patches.
For the second inference, we aim to remove most of the
noise background. With the patch mask M , input image and
class token zcls after patchify layer will be shown as:

Z0 = [zcls0 ;M ⊙ z0]. (2)

Occlusion-Aware IoU
After constructing the identity and occlusion sets, the most
intuitive generation strategy is to randomly select one iden-
tity sample and one occlusion sample to combine. Although
this strategy is simple and efficient, it inevitably causes sev-
eral bad cases in which the person may go beyond the scope.
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Figure 3: The motivation for Mask Rolling strategy (MR).
’S’ refers to the rolling stride. The MR aims to select com-
binations with similar person scales for better quality. There-
fore, MR horizontally rolls the input instance mask with
stride = 1 and calculates the maximum OIoU with the can-
didate instance mask. To illustrate, we present an example
where two candidates show the same OIoU result. It is ap-
parent that the bottom candidate, which is more similar in
scale to the target, yields a larger maximum OIoU result af-
ter mask rolling.

Intersection over Union (IoU) is the most popular metric
for comparing the similarity between two arbitrary shapes in
various computer vision tasks. Therefore, we attempt to in-
troduce the Intersection over Union (IoU) in this part. Gen-
erally, given two arbitrary shapes from the identity set as
input instance mask Mi from input sample Ii and candidate
instance mask Mj from candidate sample Ij , the IoU can
be attained by:

IoU(Mi,Mj) =
Mi ∩Mj

Mi ∪Mj
. (3)

The Intersection over Union (IoU) is commonly used and
its application can help in avoiding bad cases in SPT. How-
ever, using the standard IoU to guide the combination of the
identity set and occlusion set has several drawbacks. Firstly,
the original IoU treats the input sample and candidate sam-
ples equally. Given similar IoU results, it would be prefer-
able for an input sample Ii to select a candidate sample Ij
with a smaller area to fabricate a better-occluded sample.
Secondly, the original IoU is not sensitive to differences in
scale. Generally, selecting a candidate sample Ij with a sim-
ilar scale to input sample Ii can avoid mismatch and large-
scale differences in person instances and obstacles.

Hence, we propose an Occlusion-Aware IoU (OIoU) to
overcome the above drawback and select the most suit-
able combinations. Firstly, we use the Mj instead of the
Mi ∪Mj in the denominator in IoU as:

OIoU(Mi,Mj) =
Mi ∩Mj

Mj
. (4)

Compared to the standard IoU, such a replacement only con-
siders the relationship between the Mi ∩Mj and Mj . In this
way, we can avoid the SPT selecting a large Mj which can-
not bring efficient occlusion on the target sample.

With respect to the second limitation, it is apparent that
instances with similar scales can yield significantly higher
OIoU results if they are well-aligned, whereas those with
substantial differences in scale cannot. To address this, we
propose a rolling strategy (MR) in the OIoU calculation to
differentiate between samples with significant scale differ-
ences. Specifically, as illustrated in Fig 3, the top and bottom
candidates show the same OIoU result as the target sam-
ple. However, if we horizontally roll the Mi with a small
stride and consider the maximum OIoU result between the
rolled Mi and its candidates, the bottom candidate, which
has a similar scale, demonstrates stronger competitiveness
than the upper one.

With OIOU, the SPT processing for the sample Mi can be
formulated as:

Zi
0 = [zcls0 ;Mj ⊙ zi0 + (1−Mj)⊙ zj0; ],

with OIoU(Mi,Mj) ≥ α1

and Max(OIoU(Roll(Mi),Mj)) ≥ α2,

(5)

herein, the α1 and α2 denote the lower bound to control the
candidate selection.

Loss Function and Optimization
As shown in Figure 2, the SPT processing contains two
phases of training. For the Salient Patch Selection (SPS)
module, we aim to encourage the network to weigh the im-
portance of each patch. Inspired by the AdaViT(Meng et al.
2022), we utilize an extra budget loss to control the usage of
the patches for each batch as:

Lbudget =
1

D

D∑
d=1

Md
i − β, (6)

where D refers to the number of image patches. Md
i ∈ (0, 1)

refers to the decision result of dth patch in an input instance
mask Mi. The β denotes the usage budgets in terms of the
percentage patches to reserve.

By combining the budget loss Lbudget with the widely
used softmax loss Lsps

cls and triplet loss Lsps
tri , we train the

SPS end-to-end by minimizing the Lsps:

Lsps = Lsps
cls + Lsps

tri + Lbudget. (7)

Except for the training for SPS, we just employ the soft-
max loss Lcls and triplet loss Ltri to train the final model
as:

L = Lcls + Ltri. (8)

Here, It is worth noting that the target and candidate sam-
ples typically usually belong to distinct identities. Due to the
limited budget we use, it is only sufficient to retain the im-
portant parts of the background samples, while some iden-
tity features still remain in the residual parts. When these
parts are padded into the foreground samples, they can act as
strong noise. Therefore, if the labels of background samples
are not ignored, these residues will be considered negative
samples, causing the network to ignore the valuable infor-
mation within them. As a result, this information will also
be neglected in the original samples, rendering them unable
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to effectively represent. Therefore, during the calculation of
Lcls and Ltri, we have ignored the class of the candidate
sample. More specifically, for the target sample xi with la-
bel i and the candidate sample xj with lable j, the softmax
loss Lcls for newly xi is given as:

Lcls(xi) = −log
esi cos(θi)∑N

n=1,n ̸=j e
sn cos(θn)

,

with sn =
∥∥WT

n

∥∥ ∥xn∥ , θn = ⟨xi,Wn⟩ ,
(9)

where the Wn refers to the nth line of the classification ma-
trix W , which can also be considered as the prototype for the
nth class. The N refers to the number of classes. Similarly,
the Ltri for newly xi can be calculated as:

Ltri(xi) = (∥xi − xpos∥2 − ∥xi − xneg∥2 +m),

with label(xneg) ̸= j.
(10)

Here, ∥·∥2 indicate the Euclidean distance, the xpos and xneg

refer to the hardest positive and negative sample of xi, and
m refers to the extra margin.

Experiment
Datasets and Experimental Setting
Occluded-Duke (Miao et al. 2019) is a large-scale dataset
for occluded person re-identification. The training set con-
sists of 15,618 images of 702 persons. The query set consists
of 2,210 images of 519 persons and the gallery set consists
of 17,661 images of 1,110 persons. Occluded-REID (Zhuo
et al. 2018) consists of 2000 images from 200 persons cap-
tured by mobile cameras. Each person in this dataset has
5 whole-body images and 5 occluded person images. Ow-
ing to its limited scale, previous works (Gao et al. 2020)
only consider the Occluded-REID as the testing set. There-
fore, in this paper, we inherit this setting and employ the
Market-1501 (Zheng et al. 2015) as training set. Market-
1501 (Zheng et al. 2015) is a holistic ReID dataset cap-
tured from 6 cameras. It includes 12,936 training images of
751 persons as the training set, 3,368 images of 750 per-
sons as the query, and 19,732 images of 750 persons as the
gallery. DukeMTMC-reID (Zheng, Zheng, and Yang 2017)
contains 36,441 images of 1,812 persons captured by eight
cameras, in which 16,522 images of 702 identities are used
as the training set, 2,228 images and 16,522 images of 702
persons that do not appear in the training set are used as the
query and gallery respectively.

Evaluation Protocol. To verify comparison with other
methods, we adopt the Cumulative Matching Characteris-
tic (CMC) and mean Average Precision (mAP) as evaluation
metrics and follow the evaluation settings provided by exist-
ing occluded methods (Wang et al. 2020; Gao et al. 2020).

Implementation details. The vanilla ViT model pre-
trained on the ImageNet(Deng et al. 2009) is selected as the
baseline method. Meanwhile, we also conduct experiments
on the state-of-the-art ViT-based occluded ReID method
DPM (Tan et al. 2022). We resize all input images to 256×
128 and employ commonly used data augmentation tech-
niques, including horizontal flipping, padding, and random

Setting R-1 R-5 R-10 mAP
ViT-Base
Baseline 60.7 77.0 82.5 53.0
Baseline + SPT (Random) 65.3 80.4 85.4 55.8
Baseline + SPT (OIoU) 66.6 81.6 86.7 56.5
Baseline + SPT (OIoU + MR) 68.6 82.8 87.5 57.4

Table 1: Ablation study of SPT on Occluded-Duke. MR
refers to the mask rolling strategy.

Setting R-1 R-10 R-20 mAP
ViT-Base (β = 0.3)
ViT-SPT (p = 0.1, β = 0.3) 67.1 81.4 86.3 56.5
ViT-SPT (p = 0.2, β = 0.3) 68.6 82.8 87.5 57.4
ViT-SPT (p = 0.3, β = 0.3) 67.3 82.0 86.8 56.4
ViT-Base (p = 0.2)
ViT-SPT (p = 0.2, β = 0.2) 65.0 80.8 85.9 55.5
ViT-SPT (p = 0.2, β = 0.3) 68.6 82.5 87.5 57.4
ViT-SPT (p = 0.2, β = 0.4) 64.1 79.6 84.6 53.8

Table 2: Performance on Occluded-Duke under different
hyper-parameter settings.

cropping. During the training phase, we train the SPS in the
first 50 epochs and then freeze the SPS to train the network
for 120 epochs. Each mini-batch with 64 images, including
16 identities and 4 images per identity. We employ the SGD
optimizer and initialize the learning rate as 0.008 with co-
sine learning rate decay. We set β as 0.3 and 0.5 when train-
ing for occluded-Duke and occluded-ReID, respectively. For
controlling the minimized OIoU, we set α1 as 0.5. Regard-
ing α2, we set it as 0.1 and apply a ranking strategy during
each batch. Specifically, only the OIoU of the sample af-
ter mask rolling in the top 10% will be considered the final
candidate for a specific target sample. All experiments are
implemented using PyTorch on a single Nvidia 3090 Ti.

Ablation Study
In this subsection, we construct different SPT variants to
show the quantitative improvement of each design and show
all the results in Table 1. Compared to the vanilla ViT model,
adding the SPT by randomly combining two samples from
the identity set and occluded set can provide a significant
performance. It is natural to ask why the SPT can make
sense under a random combination strategy. We deem that
it benefits from the patchify strategy in the vision trans-
former, which largely decreases the image size. Under this
condition, even if we employ a random selection strategy,
the target and candidate samples can still show competitive
IoU. Of course, with the guidance of OIoU, the SPT pro-
cessing becomes more stable and controllable. After adding
the OIoU, the performance has increased in both rank-1 ac-
curacy and mAP as 1.3% and 0.7%. Furthermore, the per-
formance gains extra 2.0% and 0.9% via the mask rolling
strategy which demonstrates that the scale and shape also
matter in the SPT processing.
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Method ViT-Base ViT-SPT w/ IOU w/o class ignore

Rank-1 60.7 68.6 64.8 65.2

mAP 53.0 57.4 54.3 54.4

Table 3: Performance on Occluded-Duke under different set-
tings.

Discriminative Evaluations
Comparison between different settings. As shown in Ta-
ble 3, we compare the performance between using IoU
and OIoU under the same setting. While using IoU outper-
forms vanilla ViT, its results are significantly lower than us-
ing OIoU. This discrepancy can be attributed to the pursuit
of high IoU values, which tends to encourage the selection
of similar candidate samples to the target. On the contrary,
OIoU prefers to select candidates with a small area, which
largely simplifies the construction of efficient occluded con-
ditions, leading to a larger improvement in performance.
Also, we show the necessity of using the class ignoring in
the training phase. As we mentioned before, without class
ignoring, the residual information will be ignored and lead
to sub-optimal results. Quantitatively, compared to the gen-
eral training strategy, adding class ignoring has improved the
performance by 3.4% in rank-1 and 3.0% in mAP.

Impact of the hyper-parameters p and β. We introduce
a parameter p in SPT to determine whether a given sample
should be processed. The results of our experiments, shown
in Table 2, indicate that the peak performance is achieved
when p is set to 0.2. Generally, increasing p may lead to
more occlusion cases in the dataset, which can significantly
alter the distribution of the original data. Moreover, we also
discuss the hyper-parameter β, which controls the budget of
SPS in Eq. 6. Setting a small value of β can help to identify
the most discriminative patches in the identity set, but this
may also increase the residuals in the occluded set. Con-

Occluded-Duke Occluded-REID
Method R-1 mAP R-1 mAP
Part Bilinear 36.9 - - -
PCB 42.6 33.7 41.3 38.9
FD-GAN 40.8 - - -
ISP 62.8 52.3 - -
TransReID†* 66.4 59.2 - -
DSR 40.8 30.4 72.8 62.8
PGFA 51.4 37.3 - -
PVPM+Aug - - 70.4 61.2
HOReID 55.1 43.8 80.3 70.2
OAMN 62.6 46.1 - -
Part-Label 62.2 46.3 81.0 71.0
PAT* 64.5 53.6 81.6 72.1
FED* 68.1 56.4 86.3 79.3
ViT* 60.7 53.0 81.2 76.7
ViT-SPT* 68.6 57.4 86.8 81.3
DPM†* 71.4 61.8 85.5 79.7
DPM-SPT†* 74.7 63.0 87.8 81.1

Table 4: Comparison with previous state-of-the-art methods
on Occluded-Duke and Occluded-REID. The symbol ∗ de-
notes the methods that employ the transformer structure. The
symbol † represents methods that employ a small stride in a
sliding-window setting.

versely, a large value of β can decrease the residuals in the
occluded set, but it may also increase the noise in the iden-
tity set. Our experiments in Table 2 demonstrate that setting
β to 0.3 achieves the best overall performance.

Impact of the hyperparameters α1 and α2. In Eq. 5,
we set two hyper-parameters α1 and α2 to guide the selec-
tion of SPS. Therefore, we conduct empirical experiments
to measure the performance of the model under different
hyper-parameters settings and show the result in Figure 4.
The performance linearly increases when α1 is less than
0.5. After that, continuing to increase α1, the performance
will decrease. It denotes that OIoU is a suitable means to
select the proper candidate sample and could improve the
effectiveness of SPS. Due to the patchify processing in ViT
largely compressed the image size, even under a random
selection, the identity-occlusion pairs can show a compet-
itive IoU. Therefore, we can observe that the performance
becomes stable when α1 is less than 0.4. For α2, we use a
ranking strategy. As shown in Figure 4, the best performance
is achieved when we rank the OIoU after mask rolling and
select the top 10% samples as candidates.

Visualization Analysis. To gain a deeper understanding
of SPT, we visualize the target and candidate samples, as
well as the output of SPT, according to the geometric rela-
tionship between the image and its corresponding patches.
As illustrated in Figure 5, it sheds light on how SPT is ca-
pable of transferring real-world occlusion scenarios, such as
trees, signs, and non-identical individuals, from person to
person. This transfer enriches the occluded sample in the
dataset and emphasizes the importance of occlusion train-
ing. Additionally, as all obstacles stem from the same sce-
narios captured by the same cameras, the generated samples
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Market-1501 DukeMTMC-reID
Method R-1 mAP R-1 mAP
FD-GAN 90.5 77.7 80.0 64.5
PCB 92.3 71.4 81.8 66.1
ISP 95.3 88.6 89.6 80.0
CDNet 95.1 86.0 88.6 76.8
TransReID†* 95.2 88.9 90.7 82.0
DSR 83.6 64.3 - -
Ad-Occluded 86.5 70.4 79.2 62.1
FPR 95.4 86.6 88.6 78.4
PGFA 91.2 76.8 82.6 65.5
HOReID 94.2 84.9 86.9 75.6
OAMN 93.2 79.8 86.3 72.6
PAT∗ 95.4 88.0 88.8 78.2
FED∗ 95.0 86.3 89.4 78.0
ViT∗ 94.3 86.8 88.7 79.3
ViT-SPT* 94.5 86.2 89.4 79.1
DPM†∗ 95.5 89.7 91.0 82.6
DPM-SPT†∗ 95.5 89.4 91.1 82.4

Table 5: Comparison with state-of-the-art methods on
Market-1501 and DukeMTMC-reID. The symbol ∗ denotes
the methods that employ the transformer structure. The
symbol † represents methods that employ a small stride in
sliding-window setting.

exhibit minimal domain gap with the training/testing sets.

Comparison with State-of-the-art Methods
In this section, we compare the ViT-SPT with previously
generic/occluded ReID methods in both occluded and holis-
tic ReID datasets. As the vanilla ViT is not designed to ad-
dress occluded ReID tasks, we also evaluate the SPT using
the occluded ReID method DPM (Tan et al. 2022) to show-
case its universality under different model settings.

Results on Occluded Datasets In Table 4, we evaluate the
SPT-enhanced ViT and DPM models with previous state-of-
the-art holistic (Sun et al. 2018; Suh et al. 2018; Ge et al.
2018; Zhu et al. 2020; He et al. 2021) and occluded (He et al.
2018; Huang et al. 2018; He et al. 2019; Miao et al. 2019;
Gao et al. 2020; Wang et al. 2020; Chen et al. 2021; Yang
et al. 2021; Wu et al. 2021; Wang et al. 2022b; Tan et al.
2022) ReID methods on the occluded-Duke and occluded-
ReID. We observe that simply combining the SPT with the
vanilla ViT model yields competitive performance on both
occluded-Duke and occluded-ReID datasets. In contrast to
FED (Wang et al. 2022b), which also employs a data-driven
strategy, ViT-SPT achieves higher performance without any
modification to the model. Since the vanilla ViT model is not
intended to solve occluded ReID problems, we further com-
bine SPT with DPM to evaluate its performance. Although
DPM shows a powerful performance on both occluded-Duke
and occluded-ReID datasets, adding SPT also unleashes its
potential. Specifically, in occluded-Duke, the performance
after adding the SPT increases 3.3% and 1.2% in Rank-1
accuracy and mAP. While in the occluded-ReID, the per-
formance increases 2.3% in Rank-1 accuracy and 1.4% in

Target 𝑴𝒊

Candidate 𝑴𝒋

Result

Figure 5: Examples of SPT on Occluded-Duke by re-
sampling the corresponding patches from the image.

mAP. This suggests that SPT is a generalized approach that
can easily plug in the ViT-based ReID algorithms to bolster
its ability to occluded cases.

Results on Holistic Datasets While SPT aims to bolster
robustness in occluded cases, it is deemed unacceptable for
SPT to impair performance under holistic conditions. To this
end, we evaluate the performance of ViT-SPT and DPM-
SPT on the holistic datasets and compare them with other
holistic (Ge et al. 2018; Sun et al. 2018; Zhu et al. 2020;
Li, Wu, and Zheng 2021; He et al. 2021) and occluded (He
et al. 2018; Huang et al. 2018; He et al. 2019; Miao et al.
2019; Wang et al. 2020; Chen et al. 2021; Wu et al. 2021;
Wang et al. 2022b; Tan et al. 2022) approaches in Table 5.
From Table 5, it can be observed that compared to the vanilla
ViT and DPM, the addition of SPT does not significantly
compromise their performance in the holistic conditions.
Since holistic ReID datasets rarely include occluded cases
and SPT mainly focuses on constructing occluded samples,
it exhibits limited ability to improve the performance in the
holistic testing scenario. Nonetheless, SPT can be consid-
ered an effective data-driven strategy that can greatly im-
prove model robustness against occlusions without degrada-
tion in holistic conditions.

Conclusion
In this paper, we propose a novel data-driven method,
named Saliency-Guided Patch Transfer (SPT), which lever-
ages real-world scenes in the training set to achieve control-
lable occlusion construction. SPT divides the sample after
patchify into an identity set and an occlusion set through
salient patch selection. By recombining these two subsets,
SPT can effectively exploit scene information from the
dataset and produce high-quality occluded samples. Fur-
thermore, an occlusion-aware Intersection over Union (IoU)
with mask rolling and a class-ignoring training strategy is
proposed to control SPT’s process, ensuring stable and ef-
fective patch transfer. Consequently, SPT can be seamlessly
integrated into ViT-based algorithms, resulting in significant
performance improvements in occluded ReID.
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