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ABSTRACT

So far, expensive finetuning beyond the pretraining sequence length has been a
prerequisite to effectively extend the context of language models (LM). In this
work, we break this key bottleneck by Dropping the Positional Embeddings of
LMs after training (DroPE). Our simple method is motivated by three key the-
oretical and empirical observations. First, positional embeddings serve a crucial
role during pretraining, providing an important inductive bias that significantly
facilitates convergence. Second, over-reliance on this explicit positional informa-
tion is also precisely what prevents test-time generalization to sequences of unseen
length. Third, positional embeddings are not an inherent requirement of effective
language modeling and can be safely removed after pretraining following a short
recalibration phase. Empirically, DroPE yields seamless zero-shot context exten-
sion without any long-context finetuning, quickly adapting pretrained LMs without
compromising their capabilities in the original training context. Our findings hold
across different models and dataset sizes, far outperforming previous specialized
architectures and established rotary positional embedding scaling methods.

1 INTRODUCTION
Transformers established themselves as

the predominant architecture for training 100% 1 DC\/ \
foundation models at unprecedented scale 75% - 18

in language and beyond (Brown et al.,

Accuracy (%)

2020; Team et al., 2023; Jumper et al., 50% A I8

2021; Dosovitskiy et al., 2020). The defin- 3

ing feature of transformers is abandoning 25% 1 RoPE + YaRN i

explicit architectural biases such as convo- 0% { —* DroPE !

lutions and recurrences in favor of highly T T 5 T
general self-attention layers (Vaswani 0 1k PAS 3k
et al., 2017), while injecting positional Distance to needle (tokens)

information about the sequence through
positional embeddings (PE) and causal
masking. However, despite significant
efforts to scale attention to long sequences
on modern hardware (Dao et al., 2022;
Liu et al., 2023a; Liu & Abbeel, 2023), this powerful layer is inherently bottlenecked by quadratic
token-token interactions, which makes pretraining at long sequence lengths computationally
intractable at scale. As a result, enabling models to use contexts beyond their pretraining length
without additional long-context fine-tuning (“zero-shot context extension”) has emerged as a central
challenge for the next generation of foundation models (Press et al., 2021; Chi et al., 2023).

Figure 1: DroPE generalizes zero-shot to long se-
quences. Needle-in-a-haystack retrieval accuracy on
sequences at 2x the original context length with no
long context training (zero-shot context extension).

When inference sequence lengths exceed the pretraining context, the performance of modern
transformer-based LMs degrades sharply. This is directly caused by their use of explicit PEs
such as the ubiquitous rotary positional embeddings (RoPE) (Su et al., 2024), which become
out-of-distribution at unseen sequence lengths. To address this issue, careful scaling techniques

*This work was conducted during an internship at Sakana Al.
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Figure 2: DroPE matches RoPE’s in-context perplexity. We compare three training recipes: (1) a
ROPE transformer trained for 16K steps (16B tokens), (2) a NoPE transformer trained for 16K steps,
and (c) a DroPE transformer obtained by training the 14K-step RoPE checkpoint for 2K additional
steps. The DroPE recipe matches the RoPE loss within 2K steps and achieves lower final perplexity
than the NoPE-from-scratch baseline under the same budget.

that adapt RoPE frequencies on longer sequences were introduced (Chen et al., 2023; bloc97, 2023;
Peng et al., 2023; Ding et al., 2024). However, despite their popularity, these methods still rely on an
expensive, long-context finetuning phase to meaningfully use tokens beyond the original sequence
length, failing to generalize out of the box (Lu et al., 2024a). Beyond RoPE transformers, alternative
architectures and positional embedding schemes have shown early promise in reducing costs by
attenuating the underlying quadratic burden Choromanski et al. (2020); Wang et al. (2020); Xiong
et al. (2021); Zaheer et al. (2020) or maintaining better out-of-context generalization (Kazemnejad
et al., 2023; Yang et al., 2025b; Puvvada et al., 2025). Yet, these parallel efforts are still far from
challenging established pipelines, introducing notable performance and stability trade-offs that
prevent wide adoption.

In this work, we challenge the conventional role of RoPE in language modeling, and propose to
overcome this inherent trade-off by Dropping the Positional Embeddings (DroPE) of LMs after
pretraining. Our method is based on three key theoretical and empirical observations. First, explicit
positional embeddings significantly facilitate pretraining convergence by baking in an important
inductive bias that is difficult to recover from data alone. Second, over-reliance on positional
embeddings is precisely what prevents test-time generalization to sequences of unseen length,
with RoPE-based context extension methods focusing on recent tokens to retain perplexity. Third,
explicit PE is not an inherent requirement for effective language modeling and can be removed after
pretraining, following a short recalibration phase at the original context length.

Empirically, DroPE models generalize zero-shot to sequences far beyond their training context,
marking a sharp contrast to traditional positional scaling techniques. Moreover, we show that
adapting RoPE models with DroPE does not compromise their original in-context capabilities,
preserving both perplexity and downstream task performance. Our findings hold across LMs with
different architectures pretrained with up to hundreds of billions of tokens, establishing a new
standard for developing robust and scalable long-context transformers.

Contributions. In summary, our main contributions are as follows:

(1) In Section 3, we provide empirical and theoretical analysis of the role of positional embed-
dings in LM training, showing their importance in significantly accelerating convergence.

(2) In Section 4, we discuss why RoPE-scaling methods fail to reliably attend across far-away
tokens when evaluated zero-shot on long sequences, showing that these approaches in-
evitably shift attention weights, hindering the model’s test-time behavior.

(3) In Section 5, we introduce DroPE, a new method that challenges the conventional role of
positional embeddings in transformers, motivated by our empirical and theoretical analyses
of its role as a transient but critical training inductive bias.

(4) We demonstrate that DroPE enables zero-shot generalization of pretrained RoPE trans-
formers far beyond their original sequence length, without any long-context finetuning.
DroPE can be incorporated at no extra cost into established training pipelines, and can be
used to inexpensively empower arbitrary pretrained LLMs in the wild.
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We share our full code with this submission to facilitate future work and extensions toward devel-
oping foundation models capable of handling orders-of-magnitude longer contexts.

2 PRELIMINARIES

Self-attention. Let hgl), ey hg,f) € R? be the representations fed into the [-th multi-head attention
block. Queries g;, keys k;, and values v; are then computed by projecting the inputs h; via linear
layers Wq, Wk, and Wy,. The attention operation then computes 7' x T" matrices of attention
scores s;; and weights a;; between all pairs of sequence positions, and reweighs value vectors:
T
Sij = \/Z—qu kj, Oéij = softmax(sil, ceey Sii)j7 Z; = Z aijvj, (])
J<i

where dj; is the head dimension. A multi-head attention block computes multiple attention outputs

zgl), ce zl(H), concatenates them, and projects to the model dimension: o; = Wo [z(l) z(H)}.

Language and positional embeddings. State-of-the-art autoregressive transformer LMs use
information about sequence positions provided both implicitly via causal masking of the attention
scores', and explicitly with positional embeddings (PEs). In particular, the modern literature has
settled on the Rotary PE (RoPE) scheme (Su et al., 2024), providing relative positional information
to each attention head by rotating ¢; and k; in 2D chunks before the inner product in Equation 1:

Sij = ﬁ(Riqi)T(Rjkj) = ﬁq;Rj_ikj, R = block-diag (R(w1), ..., R(wg, 2)). (2)
Here, each R(w,,) € R2%2 is a planar rotation of angle w,, = p—2(m—1)/dx acting on the
(2m, 2m + 1) subspace of ¢; and k;. The base b is commonly taken to be 10%.

Context extension for RoPE. Given the rapidly growing costs of self-attention, adapting LMs
for longer sequences than those seen during training has been a longstanding open problem. To
this end, prior context-extension methods introduce targeted rescaling of the RoPE frequencies in
Equation 2 to avoid incurring unseen rotations for new sequence positions. Formally, let the training
and inference context lengths be Clyain < Chest, and define the extension factor s = Chest/Chrain-
Context extension methods such as PI (Chen et al., 2023), RoPE-NTK (bloc97, 2023), and the

popular YaRN (Peng et al., 2023) define new RoPE frequencies w,,, = ymwn, with scaling factors:

2m
yi=2, AT = (1)3=2 0 and 40BN = (1= k)t + K, 3)
where k., € [0, 1] interpolates between 0 and 1 as the base frequency w,,, grows (see Appendix A).
These methods, referred to as RoPE scaling, still require additional finetuning on long sequences,
and don’t generalize to long-context downstream tasks out of the box (Lu et al., 2024b).

NoPE transformers. In a parallel line of work, there have been efforts to train transformers without
positional embeddings, commonly referred to as NoPE architectures Haviv et al. (2022); Kazem-
nejad et al. (2023) to avoid the need for rescaling RoPE frequencies. While NoPE was shown to
be a viable LM architecture, it has failed to gain traction due to degraded performance (Haviv et al.,
2022; Yang et al., 2025b). For an in-depth introduction to the above concepts, see Appendix A.

3 EXPLICIT POSITIONAL EMBEDDINGS ARE BENEFICIAL FOR TRAINING

While NoPE transformers were shown to be expressive enough for effective sequence model-
ing (Haviv et al., 2022; Kazemnejad et al., 2023), we find that they consistently underperform
state-of-the-art RoPE architectures throughout our experiments. As illustrated in Figure 3, NoPE
transformers maintain visibly worse perplexity throughout training. These empirical results are
consistent with past literature (Haviv et al., 2022; Yang et al., 2025b), yet the reasons why positional
embeddings are key for effective language model training have never been fully understood.

From a purely mechanistic perspective, even without explicit positional embeddings, NoPE
transformers can exploit the causal mask to encode positional information, maintaining the same
expressivity as their RoPE counterparts (Haviv et al., 2022; Kazemnejad et al., 2023). Specifically,

"Note the softmax in Equation 1 is taken on the first 5 tokens, implementing a causal mask.



Published as a conference paper at ICLR 2026

Kazemnejad et al. (2023) prove that the first attention layer in a NoPE transformer can perfectly
reconstruct sequence positions, and subsequent layers can emulate the effects of relative or absolute
positional embeddings. As detailed in Section 3.1, rather than looking at theoretical expressivity,
we investigate this empirical performance discrepancy from a fraining perspective, providing
theoretical analysis of the positional bias of NoPE transformers during optimization. The theoretical
and empirical analysis in this section can be summarized in the following observation.

Observation 1. Positional information and attention non-uniformity, which are crucial for
sequence modeling, develop at a bounded rate in NoPE transformers. In contrast, explicit PE
methods, such as RoPE, provide a strong bias from the outset and facilitate fast propagation of
positional information, resulting in faster training.

At a high level, our analysis focuses on the rate at which NoPE and RoPE transformers can de-
velop positional bias in their self-attention heads, which captures their non-uniformity. We quantify
attention positional bias as a linear functional on the attention map:

Definition 3.1 (Attention positional bias). Given centered positional weights ¢;; € R with
> j<i Cij = 0, the positional bias of the attention weights «;; is

1 T
AC(OZ) = TZZcijozij.

i=1 j<i

Attention heads with a strong positional bias would maximize the average value of A across input
sequences. For example, a “diagonal” attention head, focusing mass on the current token, is exactly
the maximizer of A°, with ¢;; having 1s on the diagonal and — L5 otherwise.

To validate the theory behind Observation 1,
we empirically compare the gradients of the - RoOPE
attention positional bias functional in atten- 4.21 —— NOPE
tion heads of RoPE and NoPE transformers.
Specifically, we measure the average gradient _j 3-97
norm at initialization in the direction of two 2'
common language modeling patterns: diagonal 3.6
attention heads, placing mass on the current

token, and off-diagonal heads, capturing 3.31
immediate previous token context. As illus-

trated in Figure 4, the gradient magnitudes of 0K 2K 4K 6K 8K 10K 12K 14K 16K
NoPE transformers are far lower than those Step

of RoPE transformers, with the gap between
the two growing in deeper layers. This reflects Figure 3: RoPE outperforms NoPE. Training
NoPE’s scalability challenges and difficulty in loss curves for a RoPE and NoPE transformers
recovering positional information, which we on 16B fineweb tokens. RoPE outperforms NoPE
theoretically analyze in the next section. throughout training.

3.1 THEORETICAL ANALYSIS

We detail our findings, summarized in Observation 1, with a series of formal results, bounding the
rate at which positional bias can develop early in training. We provide full proofs and an extended
analysis of these results in Appendix B. Throughout this section, we study the sensitivity of the
attention positional bias A to the transformer’s parameters and interpret || VoA°|| as bounding the
rate at which non-uniform attention patterns can emerge during training.

Warm-up: NoPE transformers break on constant sequences. Before moving to the main
theoretical result, we consider a motivating example that illustrates NoPE transformers’ training
difficulties. Because attention forms a convex combination of value vectors, an attention head
applied to a sequence of identical tokens x; = --- = xzp produces identical outputs at every
position. Moreover, since normalization layers, MLP blocks, and residual connections act pointwise
on tokens, this uniformity propagates through the network. In a NoPE transformer, this means
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Figure 4: RoPE transformers have higher positional bias gradients at initialization. We com-
pare the average norm of A° across layers, for RoPE and NoPE transformers. In 4a we plot the
gradient norms of positional bias towards a diagonal head, and in 4b, we take bias towards previous
token attention, off-diagonal head. In both cases, the gradient norm is consistently higher for RoPE
across layers, meaning that RoPE heads can learn these patterns faster.

the attention logits are constant over all j < 4, hence the post-softmax attention probabilities are
uniform. Consequently, the model cannot induce any positional preference and A° = 0 for any
positional weights c.

Proposition 3.2. Let M be a NoPE transformer. If the input sequence x = (x1,...,xT) is
comprised of identical tokens x1 = - -- = xr, then (1) all attention heads are uniform: o;; = %,
(2) query and key gradients vanish: OL/0Wq = 0L/OW = 0, (3) for all heads and any
positional weights A° = 0, VoA°® = 0, and (4) the output is constant: M(z); = - - = M(z) 7.

The explicit positional information injected into attention heads in RoPE transformers circumvents
this issue. Enabling non-zero A° gradients even on constant sequences.

Proposition 3.3. For a non-trivial RoPE attention head, even if the input sequence is constant,
there are positional weights c, for which A° > 0, and |V A®|| > 0.

NoPE transformers propagate embedding uniformity. At initialization, the entries of the
embedding matrix are drawn i.i.d. from a distribution with a fixed small variance (commonly,
02 = 0.02). Therefore, the token embeddings are close to uniform at the beginning of training. The
next theorem shows that for NoPE transformers, this uniformity persists throughout the network,
and bounds the attention positional bias A° and its gradients.

Theorem 3.4. Define the he prefix-spread of the hidden states at layer [ as

A;Ll) = max HEE” — hg»l)H, where Bgl) 2= 1Zhgl)

1< <i<T 1 =
i<t

For NoPE transformers, there exists € > 0 and constants C1, Co, and C3 such that if the initial
embeddings Ag) < ¢, then for all layers | < L:

AV <Cie, A <Ce,  [omsowg)|, |0A /oW < Cae,

with high probability over the initialization distribution. The constants only depend on the num-
ber of layers and heads, and not on the sequence length.

The main idea in the proof of Theorem 3.4 is that uniformity in the embeddings causes uniformity
in the attention maps, so ;; ~ 1/i. Uniform mixing of tokens cannot increase the prefix spread;
thus, uniformity persists throughout the network. This result explains the discrepancy between
RoPE and NoPE transformers illustrated in Figure 4.
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Figure 5: YaRN crops effective retrieval context. We compare RoPE’s and YaRN’s perplexity
and NIAH performance at up-to 2x the original context length against a baseline that crops the
input sequence to the training context length. Both YaRN and the cropped baseline can maintain
perplexity on sequences exceeding the training context length, but are unable to retrieve information
placed far away from the query.

In summary, we demonstrate that while NoPE attention can learn positional bias, attention non-
uniformity develops slowly early in training due to bounded A® gradients at initialization.

4 ROPE PREVENTS EFFECTIVE ZERO-SHOT CONTEXT EXTENSION

State-of-the-art RoPE scaling methods fail to effectively

generalize to sequences longer than those seen in training 5 Lo PI

without additional long-context finetuning. While YaRN G 091 —~ sg:E’NTK /
and other popular frequency scaling techniques do avoid ‘5 0.8

perplexity degradation on long-context sequence (bloc97, £

2023; Peng et al., 2023), they exhibit sharp performance §

drops on downstream tasks whenever important infor- 0.6

mation is present deep in the sequence, beyond the =051

training context (Lu et al., 2024b; Liu et al., 2023b). We 104 107 102 107!  10°
empirically demonstrate this phenomenon, comparing wm (original RoPE frequency)

the perplexity and needle-in-a-haystack (NIAH) (Kam-
radt, 2023; Hsieh et al., 2024) performance of a RoPE
transformer scaled with YaRN and to a cropped context
baseline. As illustrated in Figure 5, YaRN’s zero-shot
behavior closely matches that of simply cropping the sequence length to the pretraining context,
maintaining constant perplexity but ignoring information present outside the cropped window.

Figure 6: RoPE frequency scaling under
PI, NTK-aware scaling (RoPE-NTK),
and YaRN, with scaling factor s = 2.

The cause of this limitation lies in the way context extension methods scale different RoPE
frequencies. As detailed in Section 2, elaborated on in Appendix A, and illustrated in Figure 6, the
scaling factors of PI (Chen et al., 2023), RoPE-NTK (bloc97, 2023), and YaRN (Peng et al., 2023)
have a strong effect on low frequencies. In Section 4.1, we discuss why this scaling leads to the
observed failures, yielding our second observation.

Observation 2. RoPE-scaling methods must compress low frequencies to keep positional phases
in-distribution. This, in turn, shifts semantic attention heads at large relative distances, causing
the observed failures on downstream tasks, preventing zero-shot context extension.

4.1 WHY EXTRAPOLATION FAILURE IS INEVITABLE

Effect of RoPE scaling. RoPE scaling methods modify the frequencies at inference time to evaluate
sequences that are longer than those seen during pretraining. In each (2m,2m+1) subspace, the
ROPE phase at relative distance A is ¢, (A) = w A, so scaling the frequency to w], = Vwm, is
equivalent to using a phase ¢/ (A) = YwnA. As illustrated in Figure 6, most scaling methods

m
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Figure 8: RoPE scaling shifts semantic attention mass. Attention weights of the last token (query)
with tokens from a retrieval target (keys) in a semantic head evaluated on a NIAH probe. Since the
head uses low frequencies and the relative distance is non-trivial, the impact of YaRN is substantial,
shifting attention mass between tokens.

leave high frequencies nearly unchanged (v, = 1) but all of them compress the low frequencies
(vm =~ 1/s). As demonstrated both theoretically and empirically in Barbero et al. (2024), high RoPE
frequencies are primarily used by positional heads, with attention patterns based on relative token
positions (e.g., diagonal or previous-token heads), whereas low frequencies are predominantly used
by semantic heads that attend based on query/key content. Consequently, positional heads are largely
unaffected by scaling, but semantic attention is shifted. Moreover, the effect on low-frequency
dominated semantic heads is exacerbated for distant tokens, since the relative phase ¢,,(A) is larger,
and thus the 1/s scaling factor has a greater effect. In other words, scaling warps low-frequency
phases, shifting long-range attention in precisely the subspaces most used for semantic matching.

RoPE YaRN

In Figure 7 and Figure 8, we illustrate this be-
havior in practice. We start by selecting a posi-
tional attention head in a pretrained QWEN2.5-
0.5B model by examining its average atten-
tion positional bias (Definition 3.1) across lay-
ers. In Figure 7, we show the average atten-
tion weights in this positional head under YaRN
scaling with s = 2. Because high frequencies,

. . 0 2 4 6 8 10 12 14 2 4 6 8 10 12 14
which are least affected by YaRN, dominate po- Key position Key position
sitional heads, the average attention profiles are
similar. In Figure 8, we then contrast this be-
havior with that of a semantic head for a long
needle-in-a-haystack sequence, plotting the average attention of the last token (query) with tokens
around the needle (keys). YaRN’s aggressive scaling of low frequencies substantially shifts attention
mass across tokens, reflecting the impact of frequency compression at longer ranges.

Query position

Figure 7: RoPE scaling preserves average at-
tention in positional heads.

Why this is inevitable. In a standard RoPE setup, low-frequency phases never make a full cycle
over the original context length: ¢y, (Cirain) = Wi Cirain < 27 for small w,,. E.g. for a standard
ROPE base b = 10%, a transformer with head dimension dr = 64, will have at least five low fre-
quencies for which ¢, (Cirain) < 27, even at a training context of Clain = 32,000. If we leave
wy, unchanged at an extended length Ciest > Clrain, the new maximal relative phase ¢y, (Chest) 18
pushed outside the training regime and becomes out of distribution for the head. Therefore, to con-
strain phases to remain in range, any scaling method must choose 7, < % = %, which becomes
increasingly small as the extension factor s grows. In other words, when applying a RoPE trans-
former to sequences longer than those seen in training, any post-hoc scaling method must compress
the low frequencies. But this compression, in turn, shifts attention weights at long relative distances.

5 DROPE: DROPPING POSITIONAL EMBEDDINGS AFTER PRETRAINING

Taken together, Observations 1 and 2 imply that providing explicit positional information with PE
is a key component for effective LM training, but is also a fundamental barrier to long-context
generalization. This raises a natural question: is it possible to harness the inductive bias from
positional embeddings exclusively during pretraining? We answer in the affirmative. In this
section, we empirically show that it is possible to drop all positional embeddings from a pretrained
transformer and quickly recover the model’s in-context capabilities with a short recalibration
phase. Most notably, this simple new procedure (DroPE) unlocks strong zero-shot long context
generalization to unseen sequence lengths, far beyond highly-tuned RoPE extensions and prior
alternative architectures.
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Figure 9: DroPE matches base model in-context performance. Comparison of base SMOLLM
with SMOLLM-DROPE on standard LM benchmarks, using three recalibration recipes.

Observation 3. Positional embeddings can be removed after pretraining, allowing LMs to
generalize zero-shot to unseen sequence lengths without compromising their in-context perfor-
mance after short recalibration on a fraction of the training tokens at the original context size.

5.1 LARGE-SCALE EMPIRICAL EVALUATION

We extensively validate DroPE with two different LMs and dataset scales, showing it outperforms
prior approaches both as a zero cost integration into pretraining recipes and as an inexpensive way
to adapt any LM in the wild already pretrained on hundreds of billions of tokens. For all experiments
in this paper, we provide full implementation details of each evaluated architecture and optimization
phase, including comprehensive hyperparameter lists in Appendix C.

Integrating DroPE at no extra cost. For our first set of experiments, we train from scratch
different LMs with half a billion parameters on 16B fineweb tokens (Penedo et al., 2024), over twice
the chinchilla-optimal rate (Hoffmann et al., 2022). We repeat this recipe for ROPE and NoPE trans-
formers, as well as an RNoPE-SWA model Yang et al. (2025b), an alternative architecture specif-
ically aimed at long-context capabilities. We implement DroPE by taking the 14B tokens RoPE
transformer checkpoint, removing positional embeddings from every layer, and resuming training
for the final 2B tokens. Despite only recalibrating at the very end of training, at no extra cost, DroPE
matches the final in-context validation perplexity of RoPE trained on the full 16B tokens, showing
a clear edge over the NoPE baseline trained without positional embedding all the way (Figure 2).

To evaluate the long-context generaliza- Table 1: Zero-shot NIAH at 2 training context. Re-
tion of each method, we select three tasks  sults are reported as a success rate over 500 trials.
from the RULER benchmark (Hsieh et al., Multi- Mult- Muli-
2024): (1) multi-query: retrieve needles Method Query Key  Value
for several listed keys, (2) multi-key:

. . ROPE transformer 0.0 0.0 0.0
retrieve the geedle for one specified key,  RoPE transformer + PI 0.0 0.0 0.0
and (3) multi-value: retrieve all needles ROPE transformer + ROPE-NTK ~ 21.1 19.4 16.5
for one key with a single query. For the  RoPE transformer + YaRN 17.8 0.5 14.6
base RoPE transformer, we consider three ALIBi transformer 5.2 0.0 1.1
context extension strategies: PI (Chen  NoPE transformer 9.2 36.2 21.4
et al., 2023), NTK-RoPE (bloc97, 2023), RNOPE-SWA transformer 5.2 25.6 20.6
and the popular YaRN (Peng et al., 2023) DroPE transformer 28.0 416 233

described in Section 2 and Appendix A.
For our DroPE and NoPE transformers, we follow Wang et al. (2024) and scale the softmax
temperature at test time; we report the exact scaling scheme in Appendix C. ‘In Table 1, we
report the success rate on each task at 2x the training context length. Our DroPE transformer
substantially outperforms all of our baselines in each setting. While RoPE-NTK and YaRN also
yield improvements to the original RoPE transformer, they consistently trail DroPE, as most
evident on the multi-key task. In contrast, specialized architectures such as RNoPE-SWA (Yang
et al., 2025b), ALiBi (Press et al., 2021), and NoPE Kazemnejad et al. (2023) underperform on
multi-query tasks, which are the logic-intensive setting where strong base models excel. We believe
these results provide compelling evidence toward validating DroPE’s potential to be integrated as a
standard component in the training pipeline of future generations of LMs.
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Table 2: DroPE outperforms RoPE-scaling methods on long context-tasks. We evaluate
SMOLLM-DROPE and the base SMOLLM model, extended with different RoPE scaling methods,
on four long context language modeling tasks from Bai et al. (2023) and needle-in-a-haystack.

Method MultiFieldQA MuSiQue GovReport LCC NIAH \ Avg.
SMOLLM 4.03 0.4 4.48 5.99 0.0 2.98
SMOLLM + PI 13.68 2.45 5.67 11.52 0.0 6.66
SMOLLM + RoPE-NTK 18.87 4.89 23.71 8.26 29.84 | 17.11
SMOLLM + YaRN 20.78 4.77 15.03 10.87  48.25 | 19.94
SMOLLM-DROPE 29.33 7.93 21.87 18.56 74.92 ‘ 30.52

Extending the context of LMs in the wild with DroPE. For our second set of experiments, we
directly apply DroPE to a recent language model from the SMOLLM family (Allal et al., 2024)
that was pretrained on over 600B tokens. We perform DroPE’s recalibration for this model with
continued pretraining using the same context length, data, and hyperparameters as reported by Allal
et al. (2024). We consider three different recalibration budgets of 30, 60, and 120 billion tokens,
adjusting the learning rate schedule accordingly. In order to support training at a high learning rate
as perscribed by Allal et al. (2024), after applying DroPE we add QKNorm (Henry et al., 2020).
We note that this addition not change the capacity of the our model, as analyzed in Appendix D.

We start by analyzing how quickly SMOLLM-DROPE can recover SMOLLM'’s in-context perfor-
mance on six different LM reasoning benchmarks (Clark et al., 2018; Zellers et al., 2019; Mihaylov
et al., 2018; Bisk et al., 2020; Sakaguchi et al., 2021). As shown in Figures 9 and 10 as well as
Table 6, our shortest training schedule almost matches SMOLLM on every task while our longest
schedule even manages to exceed its original performance. Furthermore, inspecting our model at
every checkpoint throughout training, we find that DroPE quickly recovers over 95% of SMOLLM’s
performance after less than 5B tokens, representing a minuscule 0.8% of SMOLLM:s original budget.

We then evaluate SMOLLM-DROPE’s zero-shot length 54
generalization on four different tasks from Long-
Bench (Bai et al., 2023), a challenging benchmark even
for closed-source LMs, including knowledge-extraction
problems longer than 80 times SMOLLM’s pretraining
context (2048 tokens). We compare our method with the
base SMOLLM and three RoPE extensions: PI, RoPE-
NTK, and YaRN. As shown in Table 2, despite a signif-
icant difficulty spike compared to our prior evaluations,

u
N

%4
o

Avg. evalution score
B B
o ©

IS
S

30B token recipe | === 120B token recipe

DroPE still displays a clear edge over prior approaches, = 608 token recipe | - Original model

. . J
improving the base SMOLLM’s average score by over “%B 208 40B  60B 80B 1008 1208
10 times. These gains are far beyond all prior zero-shot Training tokens (B)

RoPE extensions currently used across modern LMs. Ad-  Figyre 10: SMOLLM-DROPE recali-
ditionally, we evaluated SMOLLM-DROPE or needle-in-  pration. We compare three recipes, us-
a-haystack tasks of size up to 8x SMOLLM’s original ing 30B, 60B, and 120B training tokens.
context length.

Table 3: DroPE outperforms RoPE-scaling methods on long needle-in-a-haystack tasks.

Method 2x original context 4Xx original context 8 original context
SMOLLM + RoPE-NTK 29.84 14.37 7.19
SMOLLM + YaRN 48.25 25.62 12.18
SMOLLM + LongRoPE2 44.20 26.20 16.45
SMOLLM-DROPE 74.92 55.00 52.20

Overall, our comprehensive in-context and out-of-context results provide a clear demonstration of
a new, efficient, and effective long-context adaptation, which we believe can have concrete im-
plications for reducing training costs and tackling the canonical context scalability challenges of
transformers.
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Table 4: Length generalization results on larger models. We evaluate DroPE on SMOLLM-1.7B
and LLAMA2-7B, and compare it against different RoPE scaling methods, on long context language
modeling tasks from Bai et al. (2023).

Model Method MultiFieldQA  MuSiQue GovReport \ Avg.
Base 4.12 0.50 470 311
RoPE-NTK 27.58 3.37 24.65 18.53
SMOLLM-1.7B v rN 27.60 3.90 17.19 16.23
DroPE 3218 7.53 2477 | 2149
Base 17.26 10.43 32.41 20.03
ROPE-NTK 2181 10.91 3291 21.88
LLAMA2-7B YaRN 23.13 7.65 26.65 19.14
DroPE 25.90 12.88 3947 | 26.08

Scaling to larger models. To test DroPE’s ability to scale to larger LMs in the wild we additionally
apply DroPE to SMOLLM-1.7B (Allal et al., 2024) and LLAMA2-7B (Touvron et al., 2023). For
both of these models, we perform recalibration on 20B tokens. For SMOLLM-1.7B, this repre-
sents 2% of the pretraining budget and for LLAMA2-7B the recalibration represents only 0.5% of
the pretraining budget. As demonstrated in Table 4, even with this small relative recalibration bud-
get, SMOLLM-1.7B-DROPE and LLAMA2-7B-DROPE outperform state-of-the-art RoPE-scaling
methods on long-context question-answering and summarization. For additional experimental re-
sults, including results on the entire LongBench benchmark, and a performance by query length
breakdown, see Appendix D.

6 RELATED WORK

Recent improvements to RoPE include variants based on Fourier and wavelet transforms (Hua et al.,
2025; Oka et al., 2025) and methods such as p-RoPE (Barbero et al., 2025), NRoPE-SWA (Yang
et al., 2025b), and SWAN-GPT (Puvvada et al., 2025) which occupy a middle ground between
RoPE and NoPE. Our approach represents a fundamentally different paradigm, replacing RoPE with
NOoPE at different stages of training. These directions are complementary to ours and can be used in
place of RoPE within the DroPE framework. A parallel direction seeks length generalization while
retaining a dedicated positional vector yet modifying its indexing or adaptivity (zican Dong et al.,
2024; Wu et al., 2024; Zheng et al., 2024). Another line of related works considers post-training
architectural modification, e.g., for efficient inference (Ji et al., 2025).

7 DISCUSSION AND EXTENSIONS

Our findings support a reinterpretation of positional embeddings in transformer LMs as a useful
inductive bias that is essential for efficient training (Observation 1), but inherently constrains
zero-shot context extension (Observation 2). Based on these findings, we propose DroPE, a
new method rethinking the conventional role of PEs as a temporary scaffold that can and should
be removed after serving their training-time purpose (Observation 3). We empirically validate
DroPE across different models and data scales, showing its effectiveness and potential to be
integrated as a new core component of future state-of-the-art training pipelines. Integrating DroPE
in state-of-the-art training pipelines for autoregressive or diffusion-based LMs is an interesting
direction for future work. More broadly, our work demonstrates that canonical trade-offs in LM
design can be reconciled by employing different architectural choices for training and inference,
which we hope will inspire further research toward challenging established bottlenecks in Al

ETHICS STATEMENT

DroPE aims to further advance the field of long context language modeling by removing positional
embeddings after pretraining. Our intended use is to advance robust, efficient, long-context reason-
ing in open research environments and practical systems. Our experiments use publicly available
training corpora and benchmarks. Given this, we foresee no issues regarding fairness, privacy, or
security, or any other harmful societal or ethical implications in general.
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A EXTENDED PRELIMINARIES

Attention. Throughout this section, we consider a pre-norm, decoder-only transformer with L

layers, H attention heads per layer, model dimension d = dy0qc1, and head dimension dy.
hgl), ceey h(Tl) € R? denote the representations fed into the /-th multi-head attention block. For a
head h in layer [, queries, keys, and values are computed by
ql(l,h) _ W(g,h)hg)’ kz(l,h) _ W;(z,h)hy)’ Ul(l,h) _ W‘(/l,h)hl(l), @)
The attention scores and weights are then computed by
Lh 1 LNT 5 (Lh Lh Lh Lh
Ej ) = ﬁ(qf )) kj( ), ozz(j ) = softmaux(sl(.1 ),...,sgi ))j. ()

Lh . . L . .
sg 1) are referred to as attention logits or scores and ag 1 ") are referred to as attention weights or

probabilities. Note that the softmax is taken over j < ¢, implementing a causal mask. The output of
the multi-head attention block is

Lh Lh) (Lh ! IS LH
zz( ):Zal(»j )v§ ), 0§)=Wé)[zf ),...,zg )], (6)
j<i
where [, ..., ] represents concatenation along the feature dimension. When clear from context, we

omit layer and head indices.
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Positional embeddings in transformers. The attention mechanism does not directly encode rel-
ative distances between queries and keys. Therefore, attention is invariant to prefix permutations:
for any permutation o € S, of the first p input tokens, attn(w,—1(1y, ..., To-1(p); Tp, - - -, TT)i =
attn(xy,...,xr); for every i > p. In other words, pure attention is blind to token positions. To
address this, Vaswani et al. (2017) introduced absolute positional embeddings, adding position in-
formation to the token embeddings before the first transformer block. More recently, many architec-
tures replace absolute embeddings with relative schemes that inject pairwise positional information
directly into the attention mechanism. The most widely used approach is Rotary Position Embed-
ding (RoPE) (Su et al., 2024). RoPE modifies the attention scores in Equation 5 by rotating queries
and keys before taking their inner product:

1 —
RoPE RI= . RoPE
Sij - T /Tk 4q; k] ) aij

where, R € O(d},) is a block-diagonal orthogonal matrix composed out of 2 x 2 rotation blocks:

= softmax(siOPE ... sROPE) (7

R = block-diag (R(w1), ..., R(wg, 12)), R(w) = (Z?ﬁ((fj)) —Ccs)lsf(lb(:;)) , @®)

m—1
In the standard RoPE parameterization, w,, = b2 % with b = 10,000.

Language model context extension. Generalizing to contexts longer than those seen during train-
ing is a key challenge for transformer-based language models. The key issue is that when applying
a transformer on a longer context, the attention mechanism must operate over more tokens than it
was trained to handle. This issue is exacerbated with RoPE: applying RoPE to sequences beyond the
training length introduces larger position deltas, and thus larger rotations, pushing attention logits
out of the training distribution. RoPE context-extension methods address this by rescaling the RoPE
frequencies when the inference context length exceeds the training context length. Let C},,;, be the
training context and Ciest > Chrain the target context with extension factor s = Ciest/Chrain. Such
methods define new frequencies

di

o —
Wy, = TmWm, m—la--'a77

using scaling factors v, = ~Ym(s). E.g. Position Interpolation (PI) (Chen et al., 2023), uses a
uniform scaling of

Y =% ©)
NTK-RoPE (bloc97, 2023) uses

2m
—2

m= () (10)

so that low frequencies (m = dj/2) are scaled similarly to PI and for high frequencies v, = 1.
YaRN (Peng et al., 2023) uses

0 Wm <P
SYaRN _ (1 _ Kom) L + o, Ky = 4 1 Wm > ¢ (11)
% pﬁwm < q,

with tunable p and q parameters, originally chosen as p = 1, ¢ = 32. See Figure 11 for a comparison
between these different RoPE scaling methods with s = 2, 3, and 4.

B THEORETICAL RESULTS AND PROOFS

In this section, we analyze the behavior of positional bias, or attention non-uniformity, in NoPE
transformers and RoPE transformers early in training. We provide formal statements and proofs for
all the results from Section 3, starting with Propositions 3.2 and 3.3, followed by Theorem 3.4. The
notation of this section follows that of Appendix A.

15



Published as a conference paper at ICLR 2026

104 10-3 1072 1071 10°
wm (original RoPE frequency)

Pl(s=2,3,4) ==— ROPE-NTK(s=2,3,4) YaRN (s=2, 3,4)

Figure 11: RoPE frequency scaling under PI, NTK-aware scaling (RoPE-NTK), and YaRN, with
scaling factors s = 2, 3, 4.

B.1 PROOF OF PROPOSITION 3.2

Proposition 3.2. Let M be a NoPE transformer. If the input sequence v = (x1,...,xT) is
comprised of identical tokens x1 = - - - = x, then (1) all attention heads are uniform: o;; = %, (2)
query and key gradients vanish: OL/OW g = 0L/OW = 0, (3) for all heads and any positional
weights A° = 0, VoA® = 0, and (4) the output is constant: M(x); = -+ = M(z)r.

Proof. Let x1,...,xzp be a constant input sequence, x; = --- = xp, and let M be a NoPE trans-
former, i.e. a transformer with no positional encodings and causal self attention. The order of the
proofis (4) = (1) = (2 + 3).
(4) Layer outputs, and thus model outputs, are constant. At the first layer, inputs are identical
hgl) =...= h(Ll) = h. This means that for every attention head and every 1 < j < T
v; =v = Wyh.
Therefore, the output of the attention head is
Zi = Zaijvj = Zaijv = (Zaij)v =1-v,
J<t j<i j<i
independent of 7. Concatenating heads and applying W, preserves equality across positions. Resid-
ual connections, LayerNorm, and the MLP are positionwise (the same function is applied indepen-
dently at each position), so identical inputs produce identical outputs at every position. Thus the

layer output remains constant. By repeating this argument layer-by-layer, every subsequent layer
receives identical inputs and outputs identical states, so in the end

M(x)=-=M(z)L.

(1) Uniform causal attention. Using (4), we know that for every layer 1 <[ < L
1 !
W =...=n) =
Therefore, for every attention head and every 1 < j < T
g =q:=Wgoh, kj=k:=Wgh, v;=v:=Wyh.

Thus, foreach 1 < j <4 < T, the attention scores s;; = qu‘/ v/ dj = c are constant (independent
of 7 or 7). Hence
;j = softmax(c,...,c); = 1 (j <19).
——

7 entries
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(2 + 3) Vanishing W, W gradients. Since, the inputs for every layer are constant, we know from
(1) that every attention head has «;; = 1/4, independant of W and Wi . Therefore v /OWq =
O JOW = 0. Since the attention bias A° depends on the parameters 6 only through ;; and the
loss £ depends on W and Wi only through «;;, all these gradients vanish. More formally, using
the chain rule,

OA€ _ % Z Oa; _0,

- Cij
00 <Zier 00
oL oL Oov; oL L Doy
_— Z 771 = 0’ —_— = Z 7” - O
8WQ 1<j<i<T Baij BWQ 8WK 1<j<i<T 80@- 8WK

Additionally, since the heads are uniform the attention bias is zero to begin with

Ac_l _1T1 _1T10_O
T Z Cijaij—fggzcij—fgz. —0.

1<j<i<T = Jj<t
O
Remark B.1. Note that part (4) of the proposition holds for RoPE transformers as well. Parts (1), (2)
and (3) do not. The relative rotations break attention uniformity and thus changing the magnitude

of |[Wg|| and ||Wk]|| can affect the attention weights. This is formally demonstrated in the next
section.

B.2 PROOF OF PROPOSITION 3.3

Proposition 3.3. For a non-trivial RoPE attention head, even if the input sequence is constant, there
are positional weights c, for which A° > 0, and ||V oA°|| > 0.

Proof. Letxy =---=xp=2x € R be the inputs to a RoPE attention head, and let W, Wx €
R?*d be the query and key projection parameters. Since the projection maps are shared across
tokens, the queries and keys are constant as well:

q; = WQZZ' = WQl‘ =q, kil = WKJ?i = WKJJ = k.
Set the positional bias weights to be

_ 1
Cij = aij -3

Since },; @vij = 1, we have )., ¢;; = 0 as required. The positional bias A is
1 1
c_ 2 1 _ 2 1
A= D (ol —tay) =5 (Z%‘ - ;)
i=1 j<i =1 j<i
By Cauchy-Schwarz,
2
L= (D 1) = (T a3)(X) =1 et
j<i j<i j<i j<i
with equality only when «;; = - -+ = ;. Therefore,

> ol >

Jj<i

S| =

with equality iff a;; = 1/7 is uniform. Therefore, A° > 0 unless «;; is uniform for all i. The
following lemma asserts that this is not the case

Lemma B.2. For any non-degenerate RoPE head and input embeddings x1 = - -- = xy = x, there
exists © > 1 such that s;1,...,S;; and a1, . .., Q;; are not uniform.
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The proof of Lemma B.2 is at the end of this subsection. As for V4A®, rewrite A as

1 — 1 & 1 &
c _ 2 1) _ . 1
SEEIRIDE S S Sui
=1 j<i =1 =1
so the dependence in the parameters 6 is entirely through
Fi = Z Oélzj.
Jj<i
From the definition of RoPE, we have
— sof _ 1 T pj—i
;5 = SO tmax(sil,...,s“—)j, Sij = Eq R k.
Consider scaling ¢ by a scalar A > 0: ¢ — \q. For fixed prefix ¢, define
AS'»'
o ensii
Zz()\) = Ze/\ 7, aij()\) = my Fl()‘) = Zaij()‘)z'
j<i ¢ §<i
Then 2,20 p
(2
Fi(\) = ZiV? = 108 Fi(d) = 2Ejnai00)505] —2Bjnaion[5is];
Al(2X) AL(N)

where A;()\) := log Z;()\) is the log-partition function. The second derivative of the log partition
function is the logit variance

A7)

(Zi(N))? Ziy

Zz(/ N Zi(\) — Zz/ )2 Z isg_e)\sij Zz . Si'e)‘sij
_ ZiNZiA) — (Zi(V) j<i 5y Séi(;\) = Varj o, (5i5)

therefore A} (\) = Varg, () (si.) > 0 since from Lemma B.2 s;; are not all equal and cv;;(\) > 0.

7

Thus, A%()) is strictly increasing in A. Hence, for any ¢ with non-constant logits,

d
TSRO = BV - 2(41(20) - 4100) >0,
and in particular at A = 1,
d
—F; 0.
il )‘/\:1 -

By the chain rule for ¢ — Aq,
d
dA
Thus V,F;(g) # 0 (otherwise the dot product with ¢ couldn’t be strictly positive). Finally, since
qg = Wqguz,

Fi()‘)‘)\zl =V.Fi(9)" - q.

VWQFi = quil‘T,
and with x # 0 we get | Vo F;|| > HVWQ || F; > 0. Therefore

1z
VoA° = 7 Z_; Vo F;

has strictly positive norm (a sum of nonzero matrices sharing the same nonzero right factor ™

cannot be the zero matrix unless all left factors vanish, which they don’t for 7 > 2). O
To conclude this section, we now prove Lemma B.2.

Lemma B.2. For any non-degenerate RoPE head and input embeddings x1 = - -- = xy = x, there
exists © > 1 such that s;1,...,S;; and a1, . .., are not uniform.
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Proof. RoPE acts as independent 2 x 2 rotations on disjoint coordinate pairs. Thus
M
A @ R(Awy,), M =dy/2

with pairwise distinct frequencies w,,, € (0, 27). Decompose

q:<Q1a"'7q1\/f)a k:(k17"'7kM)7 amvbm€R2>
s0 s;; = f(j — i) where

Z G R(A - ) .

¢ —sing 0 -1
R<¢>=(§?s¢ ) =1 )

u"R(¢)v=(u"v)cos¢+ (u' - Jv)sing.
Define A, := q;km and By, := an%me. Then

f(A) = Vi 2 i (A cos(Awy) + By, sin(Awyy,) ) = (Z cmemw>

Let

For any u, v € R?,

1 . _ .
_ 5 § CmezAwm + Cme AW, ,
m=1

where
A,, — 1B,

Vg
Assume f(A) is constant in A for A = 0,...,2M = di, and denote the constant value by 7%00.

Then we have
S Gt = g

m=—M

Cp =

were C_y, i= Cyp, and W, = —wyy,. Since {e= @M . e=®1 1 1 . ™M} are all distinct,
by Vandermonde’s identity this means C,,, = C,,, = 0form =1,... M, = A,, = B,, = 0 for
m=1,...,M.Now A,, = B,, = 0 means

Gm L ky and gy L Jkg,.

If k,, # 0, then {k,,, Jk,,} spans R?, forcing ¢,, = 0. Thus for every block m, either ¢,, = 0
or k,, = 0, which results in a degenerate RoPE head, contradicting the assumption. Therefore,
for ¢ > dj + 1 the attention logits s;; are not constant, and thus the attention weight «;; are not
constant.

B.3 PROOF OF THEOREM 3.4

In this section, we prove Theorem 3.4. To do so, we first need to prove a sequence of Propositions
and Lemmas. First, we restate the theorem here.

Theorem 3.4. Define the he prefix-spread of the hidden states at layer | as
o W _ 0 o _ 1 0
A}’ = max Hh —h; H where h;’ = n Zhj .

1<5<i<T —
Jj<i

For NoPE transformers, there exists € > 0 and constants Cy, Cs, and C3 such that if the initial
embeddings Agll) < g, then for all layers | < L:

AV <Cie, (A< Coe, oA 0w, oA jowic| < Cae,

with high probability over the initialization distribution. The constants only depend on the number
of layers and heads, and not on the sequence length.
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Since all weight matrices are drawn from a Gaussian distribution with a fixed variance, there exists
a constant 3, depending only on the architecture, such that with high probability the operator norms
of Wg, Wk, Wy, and W, as well as the Lipschitz constants of the MLPs and normalization layers
are all bounded by B. To see this use, e.g. Theorem 4.4.5 from Vershynin (2018) and the fact that
for a two layer MLP f, it’s Lipschitz constnat is bounded by Lip(f) < ||W1]| [|W2]| Lip(c). Let L
be the number of layers, and H be the number of attention heads per layer. For any vector sequence

a; € R% we denote by a; = % > j<i@; the prefix sum of a;. For real sequences with two indices
a;; € R we denote a; = (a;1,...,a;) € R'and a; = % > i< Gig-

Proposition B.3. Fix a row i in an attention head at the I-th layer.

< B2VHAY.

Sij — 8;

max
J<i

Proof. Notice that
_ 1 _

1 1 1
T T T
Sij = 8i = ——=q kj + = Y ——=0q; kr = ——=q (k; — k).
! Vi ngi\/@ Vdy, (ki )

Therefore, by Cauchy-Swartz

1 _
sij = Si| < —== |laall ||kj — kil] -
5] < =l ;- &

By the linearity of Wy we get ||k; — k|| = || Wi (hj — ha)|| < Wi ||hj — ha|| < [[Wi| AP <
BAS). As for ||g;|| = ||[Wqh||, recall that h; are the output of a normalization layer, and therefore
(at initialization) ||h;|| = V/d. Thus, |¢:|| < Bv/d. Putting it all together gives

/[ d

Sij — §Z' S B2 dkaELl) = Bz\/ﬁAg)

To finish the proof, take a maximum over j < 1. O

To bound the effect on the attention probabilities, we need the following Lemma.
Lemma B.4. Foranyb € R"”,

||softmax(a + b) — softmax(a)||, < [|b]|, -

Proof. A C? convex function f : R" — R satisfies ||Vf(z) —Vf(y)l, < l[lz—yl, (-
smoothness) if dT V2 f(x)d < Hal||io for all ,d € R™ (see Theorem 2.1.6 in Nesterov (2013)).
Take f(z) = log (Z?:l exi). fis C?, convex and V f(x) = softmax(z). Therefore, all we need
to show is that for all z,d € R

d" Vsoftmax(z)d = dV2f(x)d < ||d||*.

and indeed,
d" Vsoftmax(x)d = d' diag(softmax(z))d — (softmax(z) " d)?
< d' diag(softmax(z))d
< ||d||2, [|softmax ()],
= lldli% .
as required. O

Using Lemma B.4, we can bound the uniformity of «;; and the prefix spread of the head outputs.

Proposition B.5. Let u; = 11 € R". In any layer |,

o — uil|, < BAVHAY, (12)
and, )
|z — | < B3VH(AP). (13)
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Proof. To get Equation 12, let a be the constant vector (5;,...,5;) € R? and let b = s; — a. By
Lemma B .4
li — usl], = ||softmax(a + b) — softmax(a)||, < [|b],,

Now, notice that ||b]| . = max;<; |sijf.§i ,
For Equation 13 notice that,

Zi —U; = Z(aij - %) (v — v5),

Jj<i
hence
= ill < max o; = vl low = will, < BAY - BVHAD = BWVH(A).
I

O

We now bound the next layer’s spread in terms of the current one. Denote by Ag) =
max; max,<; ||z; — Z]|| the prefix spread of an attention head’s output. First, we’ll give a bound

for Ag), and then use this bound to prove the entire propagation result. Before, we need a short
lemma.

Lemma B.6. For any sequence (x;) and j < i,

& — &) < max [z, — & < max |z, — .
r<j r<i

Proof. T; —%; = %ng (@ — @;) and triangle inequality. O
Proposition B.7. For any layer 1 <1 < L,
AD <2BAY +2B3VH(AD)?.

Proof. Fix i and j <. Write z; — z; = (0; — 0;) + (2 — Uj) — (% — 0;), s0
25 = Zll < ||v; — vill + |25 — o5 + ||z — vall -
—_— Y= Y
=(a) =(b) =(c)
By Lemma B.6,
(a) = [[o; = ]l < max o, — 5] < [Wv]| A < BAP.

By Proposition B.5

(b) < B3VH (A,

As for (¢), Notice that,

zif@i:%Z(zrf@i):%Z((zﬁmﬂm*m),

therefore by the triangle inequality, Proposition B.5, and Lemma B.6,

anr o)+ = an ) < BBVH(AD)? Zmaxnvk—vzn

r<i r<i r<i

= BS\/E(AS))2 +max lve — o4 |
<1
< BWH(AM)? + BAD

To finish the proof, take the maximum over ¢ and j < 1. O

Proposition B.8 (Full Transformer block recursion). There exist constants Ay, Ay depending only
on B, and H, such that

AY < 4, A0 4 4, (A)2,
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Proof. From Proposition B.7, the single-head spread is bounded by a linear term 2BA}, plus a
quadratic term 2B3+/H. Concatenation and Wy multiply by at most ||Wo || (up to a fixed constant

depending on number of heads). Adding the residual preserves a linear contribution in Agf). The
positionwise LayerNorm/MLP, being B-Lipschitz, scales the spread by at most B. Collecting the
constants into A; and, Ao gives the desired result. O

We can now proof the full propagation result.
Theorem B.9. For any finite depth L, there exists ¢ > 0 (depending on B, L, and H) such that if
AS) < ¢ thenforalll <L,
AV < oAl < ce,
with C = C(B, L, H).

Proof. By Proposition B.8, ASH) < AlAELl) + AQ(AS))? Choose ¢ < min{1, (A;/A2)} so that
AQAEIZ) < A;. Then A;LH_U < 2A1AS). Induction yields Agj) < (2A1)l’1A§Ll) < CAS) for
| < Lwith C = (24;)F~ 1L O

This conclude the first part of the proof, regarding uniformity propagation across depth. Note that
the bounds in the proof do not depend on the number of tokens in the input sequence.

A° bound. Recall that,
T

E Q5 Cij
Jj<i

where c;; are centered positional weights, i.e. Z j<i Cij = 0. For any such ¢;; we have

T T T
1 1
A7) = 5 oD aen| = \ZZ%% = 720 2o = Dy + 303 dey
i=1 j<i i=1 j<i i=1 j<i i=1 j<i
N——
=0
1 T
< 23S oy — Hlewl < (max_lesl) 7 Zuaz il
i=1 j<i Nty ,
C

< CB*VHAY = 0(e).

Q/K gradient bounds. Let g;; = OA“/9s;;. We have
9ij = 7j(cij — ¢f),
where ¢ = Zpgi QipCip.
Lemma B.10. For every i, > j<i9ij =0, and therefor for any vectors a;

> gia; = giila; —a).

Jj<i Jj<i
Proof. First notice that

1 o 1
> g = T > aijlei — ) = TEinasleis = Epnascip]] = 0.
J<i J<i
For the second part, observe that

Zgij(aj —a;) = Zgijaj —a; Zgij = Zgijaj~

j<i j<i j<i j<i

22



Published as a conference paper at ICLR 2026

Now, from direct computation and an application of Lemma B.10, we have

OA°
i hT ; ks) L,
oy \/—Z<§g3 i) \ﬁ;;ga
OA° T
GWK \/72:: (;%ﬂh) r;;gu% 1

Let’s analyse the norm:

T
HawKH*HrZZM h)T|| < 23 ol el s |

o
< BMEA;”ZZ 19431
i=1 j<i
HA! ) T
B*F (ZD iy = Hlei = )|+ DY Hew — )
i=1 j<i i=1 j<i

< BVHA (B*VHAC + c) — 0e),
where C' = maxi<j<i<7 |¢i; — ¢'| < max;<j<;<r |¢i;|. An analogous result holds for Wy,
- g i ]_fz' h;
o5 - HrZng f;];igj el
<BVHAY Y gl

1<j<i<T
B A(l) -
\F (ZZ aig = 5)(cij = ')|+ZZ%|C¢J‘—C§“|)
i=1 5<i =1 i<

< B@Agp (B>VHAC+ c) = 0(e).

This concludes the proof of Theorem 3.4.

C EXPERIMENTAL DETAILS

C.1 TRAINING

DroPE from a RoPE transformer trained from scratch. For the first part of our experi-
mental evaluation, we train a small RoPE transformer with almost half a billion parameters on
FineWeb (Penedo et al., 2024) for over 16B tokens with a sequence length of 1024. We note this
is well over 2 times the chinchilla optimal number of tokens from Hoffmann et al. (2022). We use
a QWEN2 (Yang et al., 2024) tokenizer and follow the specifications (number of layers/hidden di-
mensions) from the 0.5B model from the same family. We implemented all our baselines on top of
this architecture, pretraining them for the same large number of tokens. We use the AdamW opti-
mizer Loshchilov & Hutter (2017) with a small warmup phase of 520 steps, a batch size of 1024, a
peak learning rate of 3.0 x 10™%, and a cosine decay thereafter. For DroPE we followed a similar
optimization setup, but only training for 2B total tokens using a shorter warmup of 70 steps and a
slightly larger learning rate of 1.0 x 10~ to compensate for the shorter training budget. We provide
a full list of hyperparameters and training specifications for this setting in the left column of Table 5.

DroPE from a pretrained SMOLLM . For the second part of our experimental evaluation, we use
a SMOLLM (Allal et al., 2024) with around 362 million parameters already extensively pretrained
on the SmolLLM corpus (Ben Allal et al., 2024) for over 600B tokens with a sequence length of 2048
— almost 100 times the chinchilla optimal number. This model used a GPT2 (Radford et al., 2019)
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Pretraining and DroPE Hyperparameter ROPE transformer SMOLLM
Model architectures

Model parameters 494M 362M
Model parameters w/o embeddings 358M 315M
Hidden size 896 960
Hidden MLP size 4864 2560
Hidden activation SiLU SiLU
Number of hidden layers 24 32
Number of attention heads 14 15
Number of key—value heads 2 5
Head dimension 64 64
Attention bias false false
Attention dropout 0.0 0.0
Initializer range 0.02 0.02
ROPE 6 1,000,000 10,000
Tied word embeddings true true
Output router logits true true
Computation dtype bfloat16 bfloat16
Tokenizer QWEN2 GPT2
Pretraining setup

Optimizer AdamW AdamW
Learning rate 3.0x107* 3x1073
Weight decay 0.1 0.1

Adam parameters (31, B2, €)
Learning rate scheduler

0.9, 0.95,1x107%)

Cosine decay

0.9, 0.95,1x107%)

Cosine decay

Warmup steps 520 N/A
Maximum sequence length 1024 2048
Global train batch size (sequences) 1024 512
Tokens per training step 1,048,576 1,048,576
Total tokens 16.8B 600B
Dataset fineweb smollm-corpus
DroPE setup

QK-norm False True
Optimizer AdamW AdamW
Learning rate 1.0 x 1073 1.0 x 1073
Weight decay 0.1 0.1

Adam parameters (31, B2, €)
Learning rate scheduler

(0.9,0.95,1x107%)

Cosine decay

(0.9,0.95,1x107%)

Cosine decay

Warmup steps 70 490
Maximum sequence length 1024 2048

Global train batch size (sequences) 1024 512

Tokens per training step 1,048,576 1,048,576

Total tokens 2.10B 31.46B/62.9B/125.8B
Dataset fineweb fineweb-edu

Table 5: Architectures, optimization, and other training setup hyperparameters for pretraining our
ROPE transformer, SMOLLM, and our two new DroPE phases.

tokenizer and its architecture was designed to be similar to models of the LLAMA?2 family (Touvron
etal., 2023). While not all training details have been disclosed, Allal et al. (2024) explicitly mentions
using the AdamW optimizer Loshchilov & Hutter (2017), a batch size of 512, a peak learning rate of
3.0 x 1073, and a cosine decay thereafter. For DroPE we again tried to follow a similar optimization
setup, across our different 30B/60B/120B training regimes, introducing a short warmup of 490 steps
and a slightly lower learning rate of 1.0 x 10~3 as we found their reported 3.0 x 1072 led to
instabilities from the small batch size. Given the more extended training period, we used a simple
QKNorm (Henry et al., 2020) after dropping the positional embeddings, which we found beneficial
to mitigate sporadic instabilities from large gradients. We note that preliminary experiments showed
that normalizing only the queries led to even faster learning and also successfully stabilized long
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training. We believe further exploration of this new Q-norm method could be an exciting direction
for future work to train transformers without positional embeddings at even larger scales. We provide
a full list of hyperparameters and training specifications for this setting in the right column of Table 5.

C.2 EVALUATION

Needle-in-a-haystack. We evaluate long-context retrieval using the needle-in-a-haystack (NIAH)
setup, which places a short “needle” inside a long distractor “haystack.” Following prior work (Kam-
radt, 2023), our haystack is a random excerpt from Paul Graham’s essays, and each needle is a
seven-digit “magic number” paired with a short key/descriptor. We study three variants:

* (Standard NIAH) We insert a single needle and prompt the model to retrieve it.

* Multi-Query NIAH: We insert multiple (key, value) pairs and prompt the model
to return as many values as possible for a given list of keys. For ex-
ample: The special magic numbers for whispering-workhorse and
elite-butterfly mentioned in the provided text are:.

* (Multi-Key NIAH) We insert multiple (key, value) pairs but query for a single key,
e.g., The special magic number for elite-butterfly mentioned in
the provided text is:

* (Multi-Value NIAH) We associate multiple values with one key and ask for all of
them without pointing to specific positions, e.g., What are all the special
magic numbers for cloistered-colonization mentioned in the
provided text?

Inserted needles and example targets are formatted in natural language, e.g., One of the
special magic numbers for whispering-workhorse is: 1019173 and One
of the special magic numbers for elite-butterfly is: 4132801. For
the standard NIAH variant, we report the average success rate over all possible needle depths. For
the multiple needles NIAH variants, we always insert four (key, value) needle pairs, placed at ran-
dom sequence locations. Unless otherwise noted, we use greedy decoding (logit temperature = 0)
for reproducibility.

Long-context evaluations. We use standard implementations of PI, RoPE-NTK, and YaRN. For
tasks that require a fixed maximum context length (e.g., NIAH at 2x the training context), we set
the extension factor s manually. For settings that require reasoning across multiple context lengths
and extended generations, we employ a dynamic scaling schedule that adjusts v as a function of the
generation length as detailed in Peng et al. (2023).

For DroPE, we follow Wang et al. (2024) and apply softmax temperature scaling when evaluating
on longer sequences. In practice, we tune a single scalar logit scale (equivalently, the inverse temper-
ature) on a held-out set at the target length. Analogous to (Peng et al., 2023), we fit this coefficient
by minimizing perplexity to obtain the optimal scaling. For the DroPE model trained from scratch,
the best-performing scale is

B* =14 0.4121n(s),

and for SMOLLM-DROPE the optimal scale is
B* =14 0.1031n(s),

Where s = Chest /Chrain is the context extension factor. Unless otherwise specified, all other decod-
ing settings are held fixed across lengths.

Language modeling benchmarks. We evaluate SMOLLM and SMOLLM-DROPE on six stan-
dard multiple-choice benchmarks using the LIGHTEVAL harness (Habib et al., 2023): ARC-E/C:
grade-school science QA split into Easy and Challenge sets, the latter defined by questions that
defeat simple IR and co-occurrence baselines (Clark et al., 2018); HellaSwag: adversarially fil-
tered commonsense sentence completion that is easy for humans but challenging for LMs (Zellers
et al., 2019); OpenBookQA: combining a small “open book™ of science facts with broad common-
sense to answer 6K questions (Mihaylov et al., 2018); PIQA: two-choice physical commonsense
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Table 6: DroPE matches base model in-context performance. Comparison of the pretrained
SMOLLM model with SMOLLM-DROPE evaluated on variety of LM benchmarks.

Model ARC-E ARC-C HellaSwag OpenBookQA PIQA Winogrande Avg.
SmolLM 65.6 36.0 53.8 37.2 72.0 53.7 53.1
SmolLM-DroPE 67.3 37.6 53.9 38.0 71.5 52.3 53.4

Table 7: Validation perplexity for a 500M-parameter transformer trained on 16B tokens, when drop-
ping positional encodings at different stages of pretraining.

DroPE @ 0K (NoPE) DroPE @ 8K DroPE @ 14K DroPE @ 16K (RoPE)

Validation perplexity 23.77 22.42 21.73 21.72

reasoning (Bisk et al., 2020); and WinoGrande: a large-scale, adversarial Winograd-style corefer-
ence/commonsense benchmark (Sakaguchi et al., 2021). We follow the harness defaults for prompt
formatting, decoding, and scoring, and do not perform any task-specific fine-tuning or data adapta-
tion.

D ADDITIONAL EXPERIMENTAL RESULTS

When should we start recalibration? In this setup, we train a 500M-parameter transformer on
16B tokens and remove its PEs during training. We vary the training step at which recalibration is
activated. We consider four recipes:

* Dropping PEs from step O (NoPE transformer),
* Dropping PEs at step 8K,

* Dropping PEs at step 14K,
* Dropping PEs at step 16K (RoPE transformer, i.e., no dropping during training).

Table 7 reports the final validation perplexity for each setting.

We find that this ablation further strengthens our theoretical observation that DroPE should be inte-
grated later in training. Our analysis in Section 3 suggests that NoPE transformers struggle to train
efficiently, whereas retaining RoPE for most of training benefits optimization. Consistent with this,
we observe that dropping the positional encoding only at the very end of pretraining (DroPE @ 16K)
yields the best validation perplexity, while earlier dropping steadily degrades performance.

Finally, we emphasize that in this setup DroPE does not incur additional training cost: the total
number of optimization steps is unchanged, and once the positional encoding is removed, training
becomes slightly faster due to skipping the RoPE rotation operations in attention.

Average LongBench scores and tasks breakdowns.

Table 8: Average performance over all LongBench tasks for different RoPE scaling methods.

Method Avg. LongBench score
SMOLLM 2.59
SMOLLM + PI 2.48
SMOLLM + RoPE-NTK 12.21
SMOLLM + YaRN 13.07
SMOLLM-DROPE 13.81

Effect of QKNorm and loss spike. Here we clarify the role of QKNorm Henry et al. (2020) in our
architecture and verify that it is not a confounding factor for the effectiveness of DroPE. QKNorm
was introduced strictly as an optimization-stability mechanism to enable training with higher learn-
ing rates, following recent practices in large-scale model training such as OLMo2 (OLMo et al.,
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Table 9: MultiFieldQA performance across context length buckets for SMOLLM variants.

Model 04K (0-2x ctx) 4-8K (2-4x ctx) 8-16K (4-8x ctx)
SmolLM-DroPE 32.82 24.73 30.07
SmolLM-NTK 34.25 22.30 21.63
SmolLM-YaRN 33.96 2291 20.08

Table 10: MuSiQue performance across context length buckets for SMOLLM variants.

Model 04K (0-2x ctx) 4-8K (2-4x ctx) 8-16K (4-8x ctx) 16-32K (8-16x ctx)
SmolLM-DroPE 50.00 6.11 8.05 16.67
SmolLM-NTK 0.00 4.36 3.36 0.00
SmolLM-YaRN 0.00 19.68 3.13 7.14

2024) and Qwen3 (Yang et al., 2025a), where normalization is used primarily to stabilize gradients
and mitigate loss spikes rather than to increase modeling capacity.

To assess the interaction between QK Norm and DroPE, we conducted a controlled ablation study
on the SmolLM-360M model using six configurations: three learning rates (3 X 1075, 3 x 1074,
1073), each trained with and without QK Norm.

The results, summarized in Table 11, yield two main observations:

+ Lower learning rates (3 x 107>, 3 x 10~%). DroPE works effectively without QKNorm.
At the lowest learning rate (3 x 107°), the model without QK Norm achieves a slightly
better final loss (2.713 vs. 3.102). Together with the 3 x 10~ setting (2.530 vs.2.555),
this indicates that QK Norm does not consistently improve performance in low-volatility
regimes and is not the source of our gains.

* High learning rate (10~2). At the highest learning rate, the model without QKNorm
becomes unstable (loss spikes, gradient explosions), leading to poor convergence (final
loss 6.334). In contrast, adding QKNorm stabilizes training and allows us to leverage the
higher learning rate to achieve the best overall performance (final loss 2.496).

Figure 12 shows the corresponding training curves with and without QK Norm, highlighting the
presence of loss spikes at higher learning rates, in line with observations reported in ?. These results
empirically demonstrate that the primary role of QK Norm is to act as a stabilizer that enables the
use of a more aggressive, compute-efficient learning rate. Importantly, DroPE can still be applied
without QK Norm by using a moderate learning rate (e.g., (3 x 10~%), which is our default setting
for all experiments except the longer SmolLM-360M recalibration phases.

Table 11: Ablation study on SmolLM-360M recalibration with and without QK Norm across differ-
ent learning rates.

Learning Rate  With QK Norm Without QK Norm Status

10—3 (High) 2.496 6.334 Unstable without Norm
3 x 10~* (Mid) 2.555 2.530 Stable / Comparable
3 x 1075 (Low) 3.102 2.713 Stable / Comparable

E LARGE LANGUAGE MODEL (LLM) USAGE

We used large language models to assist with refining the wording in some sections of this paper.
Their role was limited to improving clarity of technical explanations, grammar, style, and overall
readability. All research ideas, methodology, experiments, analysis, and conclusions are entirely our
own; the models were employed solely as writing aids.
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train/loss

— 20B tokens, r=3e-5, w/o QK Norm = 20B tokens, [r=3e-4, w/ QK Norm = 20B tokens, r=3e-5, w/ QK Norm
— 20B tokens, lr=1e-3, w/o QK Norm == 20B tokens, [r=3e-4, w/o QK Norm =— 20B tokens, r=1e-3, w/ QK Norm
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Figure 12: QKNorm allows for recalibration at a higher learning rate.
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