
Published as a conference paper at ICLR 2023

GAIN: ON THE GENERALIZATION OF INSTRUCTIONAL
ACTION UNDERSTANDING

Junlong Li1, Guangyi Chen2,3, Yansong Tang1, Jinan Bao4,
Kun Zhang2,3, Jie Zhou1, Jiwen Lu1,∗
1Tsinghua University, 2MBZUAI, 3Carnegie Mellon University, 4 University of Alberta

ABSTRACT

Despite the great success achieved in instructional action understanding by deep
learning and mountainous data, deploying trained models to the unseen environ-
ment still remains a great challenge, since it requires strong generalizability of
models from in-distribution training data to out-of-distribution (OOD) data. In
this paper, we introduce a benchmark, named GAIN, to analyze the Generaliz-
Ability of INstructional action understanding models. In GAIN, we reassemble
steps of existing instructional video training datasets to construct the OOD tasks
and then collect the corresponding videos. We evaluate the generalizability of
models trained on in-distribution datasets with the performance on OOD videos
and observe a significant performance drop. We further propose a simple yet effec-
tive approach, which cuts off the excessive contextual dependency of action steps
by performing causal inference, to provide a potential direction for enhancing the
OOD generalizability. In the experiments, we show that this simple approach can
improve several baselines on both instructional action segmentation and detec-
tion tasks. We expect the introduction of the GAIN dataset will promote future
in-depth research on the generalization of instructional video understanding. The
project page is https://jun-long-li.github.io/GAIN.

1 INTRODUCTION

Instructional videos play an essential role for learners to acquire different tasks. The explosion of
instructional video data on the Internet paves the way for learners to acquire knowledge and for
computer vision community training models, for example, human can train an action segmentation
model to understand the video by the dense step prediction of each frame, or an action detection
model to localize each step. While a number of datasets for instructional action understanding (IAU)
have been proposed over the past years(Alayrac et al., 2016; Das et al., 2013b; Malmaud et al., 2015;
Sener et al., 2015) and growing efforts have been devoted to learning IAU models(Zhukov et al.,
2019; Huang et al., 2017), the limited generalizability of models remains to be a major obstacle
to the deployment in real-world environments. One may ask a question “Suppose the model has
learned how to inflate bicycle tires, does it know how to inflate car tires?” In fact, due to potential
environmental bias between the training dataset and application scenes, the well-trained model might
not be well deployed in an OOD environment (Ren et al., 2019), especially when instructional videos
of interest to users are not involved in the finite training dataset.

To encourage models to learn transferable knowledge, it is desirable to benchmark their general-
izability. Though this OOD generalization problem (Barbu et al., 2019; Hendrycks et al., 2021;
Hendrycks & Dietterich, 2019) attracts much attention in the field of image recognition, such as Ob-
jectNet (Barbu et al., 2019) and ImageNet-R (Hendrycks et al., 2020), it has barely been explored
for the IAU task. A related problem is video domain generalization (Yao et al., 2021) (VDG) for
conventional action recognition which focuses on domain generalization when changing the scene
or background of the action. However, different from conventional action, the key obstacle to the
generalization of instructional action is the distribution shift of action steps under different task cate-
gories, which is caused by the collection bias of the datasets. In Fig. 3, we show that the steps under
different task categories have different distributions.
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Roast Chicken: {prepare seasonings, remove intestines, brush sauce, bake}

Make Jelly:  {prepare seasonings, stir, put into molds, take out, cut into pieces}

Make Chocolate: {…, put into molds, …, take out, …}

Make Lamb Kebab: {prepare seasonings, …, brush sauce}

Clean Fish: {…, remove intestines, …}

Make Pizza : {…, stir, …, cut into pieces, …, bake, …}

Training Set GAIN

Figure 1: Two examples of constructing new OOD instructional tasks by reassembling the steps of
in-distribution videos in training datasets. For example, the OOD task “Make Jelly” consists of five
steps: {prepare seasonings, stir, put into molds, take out, cut into pieces}, where the “prepare
seasonings” step is in the task “Make Lamb Kebab”, the “put into molds” and “take out” steps come
from “Make Chocolate”, and the “stir” and “cut into pieces” steps are in the task “Make Pizza”. The
steps in GAIN are consistent with those in the training set, with non-overlapping task categories.
GAIN encourages models to transfer the knowledge learned from training data for OOD data.

Given the motivation that action steps are the key research objects of IAU and have distribution shift
when task categories change, we propose a new evaluation strategy to benchmark the generalizability
by re-constructing test task categories using the steps of training tasks and evaluating the models with
these new task categories. In the reconstruction, we require that training and testing task categories
are different but step categories are consistent. As shown at the bottom of Fig. 1, we try to find a
new testing task “Make Jelly” with existing step categories including the “prepare seasonings” step
in the task “Make Lamb Kebab”, the “ put into molds” and “take out” steps in “Make Chocolate”,
and the “ stir” and “ cut into pieces” steps in “Make Pizza”. This construction is non-trivial since
existing IAU datasets cannot be directly used. First, for most IAU datasets (such as COIN (Tang
et al., 2019)), the steps in different videos are not shared, therefore, we cannot construct testing
data by splitting itself. Second, though CrossTask (Zhukov et al., 2019) also collects cross-task
videos with partial steps shared, these shared parts are only a minority in the dataset (only 14%
steps are shared, i.e. 73 are shared of a total of 517 steps) and most videos have steps that are not
shared with others. Besides, because the related tasks are not fine-grained annotated, they cannot be
used for evaluation. Furthermore, it is built to investigate whether sharing constituent components
improves the performance of weakly supervised learning. It motivates us to collect and annotate a
real-world IAU dataset, GAIN. It consists of 1,231 videos of 116 OOD tasks with 230 categories of
steps, covering a wide range of daily activities. All videos in our GAIN dataset are employed for
evaluation. These videos can be split into two groups: GAIN-C and GAIN-B, as counterparts of the
COIN (Tang et al., 2019) and Breakfast (Kuehne et al., 2014) datasets, respectively.

Furthermore, we propose a simple yet effective approach to enhance the generalizability of IAU
models by cutting off excessive contextual dependency by performing causal inference. It is inspired
by the observation that model generalizability is inevitably influenced by short-cutting with a biased
context. Compared with previous methods learn the temporal dependency among video steps by the
temporal networks, such as TCN (Lea et al., 2017) applying a hierarchy of temporal convolutions, we
propose to reduce the over-dependency between steps to mitigate the negative effect from temporal
context bias. For example, if the task “Inflate Bicycle Tires” is always observed together with the
“bicycle pumps” during the training process, this knowledge will be difficult to transfer to the OOD
task “Inflate Car Tires” with other inflaters. In our approach, we apply the Back-Door Criterion to
infer causal effect, and present a Monte Carlo based method to approximate the distribution after
“intervention”. The method is evaluated with various baseline methods on both action segmentation
and detection tasks, and is shown to produce consistent improvements.

Contributions. (1) We propose a new evaluation strategy to benchmark the generalizability of
IAU models by evaluating the models on the OOD tasks. (2) We build a real-world OOD instruc-
tional video dataset, GAIN, where the OOD tasks are constructed by reassembling the steps of
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training datasets. (3) We propose a simple yet effective approach, cutting off excessive contextual
dependency by causal inference, which provides a potential direction to enhance generalizability.

2 THE GAIN DATASET

In this section, we introduce our GAIN dataset, a video-based dataset covering a large range of daily
tasks reassembled via a specific framework, which collects the tasks whose categories are different
from training tasks to benchmark the generalizability of IAU models. For convenience, we call the
tasks whose categories are same with the tasks in the training dataset as in-distribution tasks, and
the ones with different categories as OOD tasks. Note that, when we mention “in-distribution” and
“OOD”, the variables are steps but not tasks. It means the steps are “in-distribution”/ “OOD” under
same/different tasks. To our best knowledge, GAIN is the first dataset to evaluate the generalizability
of IAU models on the OOD steps. Fig. 2 shows the pipeline to construct the GAIN dataset. Below,
we describe the details of our dataset, including how to benchmark the generalizability, how to
collect the data and construct the dataset, and the basic dataset statistics.

2.1 PROBLEM DEFINITION

The generalizability is of critical importance to the models for the deployment in a real-world en-
vironment, especially for IAU systems, e.g., we expect the model can know how to “Inflate Car
Tires” after learning how to “Inflate Bicycle Tires”. For this goal, we propose to benchmark the
generalizability of IAU models by building an OOD evaluation dataset, in which task categories is
constructed by reassembling the steps of the training set. With this construction setting, the step
categories are consistent and step distribution is changed.

The training dataset XT = {XT
i }

nT
i=1 contains nT instructional videos XT , where each video is

composed as a set of steps XT
i = ST

i . This step set can be formulated as ST
i = {sTi,j}

ns
j=1, where

ns is the number of steps in a video. In the conventional experimental setting, both training and
evaluation data are in-distribution, which is formulated as XT i.i.d∼ XSource and XE i.i.d∼ XSource,
where XSource denotes the data distribution and XE denotes the videos in the evaluation set. To
benchmark the generalizability of models, we collect the videos of unseen tasks with seen steps,
where videos in the evaluation set are OOD tasks that can be formulated as follows:

XE
OOD

i.i.d∼ XTarget, XT i.i.d∼ XSource

s.t. ΩT
S = ΩE

S ,
(1)

where ΩT
S and ΩE

S respectively denote the set of all steps in the training and evaluation set, and
XE

OOD denotes the collected OOD evaluation dataset. As shown in Fig. 1, we show some collected
videos of our GAIN dataset, where the collected videos follow different step distributions but share
the same step space. Finally, we evaluate the models trained on XT with the OOD evaluation dataset
XE

OOD to benchmark the OOD generalizability.

Table 1: Comparisons of different evaluation strate-
gies. IV: instructional video; SL: using source label
during training; TD: using target data during training;
SC: steps are consistent.

Methods IV SL TD OOD SC

Supervised (Tang et al., 2019) ✓ ✓ ✗ ✗ ✓

Unsupervised (Miech et al., 2019) ✓ ✗ ✗ ✗ ✓
UDA (Busto et al., 2018) ✓ ✓ ✓ ✓ ✗

Zero Shot (Sener & Yao, 2019) ✓ ✓ ✓ ✓ ✗
VDG (Yao et al., 2021) ✗ ✓ ✗ ✓ ✗

Ours ✓ ✓ ✗ ✓ ✓

Here we distinguish our defined OOD gen-
eralizability evaluation from other evalua-
tion strategies. We summarize the com-
parisons with different evaluation methods
in Table 1. First, compared to conven-
tional supervised and unsupervised meth-
ods, we focus on the OOD evaluation to
benchmark the generalizability of models.
Second, UDA (Busto et al., 2018; Zhang
et al., 2019) aims to transfer the knowledge
from source domain to some known target
domain. It needs the domain index (e.g. the
target data) for the training process to min-
imize the domain gap between the source
and known target. Compared with UDA, our OOD generalization further considers how to solve the
problem without any domain indices. Though zero-shot recognition (ZSR) (Sener & Yao, 2019;
Wang et al., 2019) also focuses on the generalizability of models, it is too difficult to conduct
zero-shot analysis directly for IAU models since ZSR requires the models to understand unseen
action steps. This setting can be used for task-level actions (e.g. classification) given extra descrip-
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1. A B C
2. C D F A
3. B E G H
4. H J B
5. A C D E

……

✗
✓
✗
✗
✓ how to change car tire

change car tire

……

GAINTraining Set Separated Steps Filter Candidates Search Videos Collect Videos

Task Selection Data Collection

Figure 2: The pipeline to construct GAIN, which includes Task Selection (left) and Data Collection
(right). Given an instructional video training set, we first separate the steps of these tasks and
generate a large number of task candidates. Secondly, we filter out the unqualified ones according
to three principles. Then, we search for YouTube videos related to the selected tasks and download
the videos, which embrace high relevance with queries, explicit instructions, and rich diversity.

tions (Wang et al., 2019), but not for complex action understanding tasks such as action segmenta-
tion or action detection. Recently, many methods in the field of image classification have attempted
to evaluate the generalizability of models by collecting or generating the OOD data, e.g. Object-
Net (Barbu et al., 2019) and ImageNet-R (Hendrycks et al., 2021). However, how to evaluate the
generalizability of models for more complex IAU task has barely been visited. The most related one
is VDG (Yao et al., 2021), which evaluates the domain generalization ability of action recognition
models when changing the scene or background. Unlike VDG, our setting focuses on the distri-
bution shift of action steps when task categories are changed in the target domain, which is more
common in the field of IAU.

2.2 TASK SELECTION

To construct an evaluation dataset consisting of diverse and high-quality daily tasks, we choose the
largest fine-grained annotated dataset, COIN (Tang et al., 2019), and the widely-used instructional
video dataset, Breakfast (Kuehne et al., 2014), as the training sets.

How should we select the new tasks to benchmark the generalizability? We argue that the tasks in
our GAIN dataset require three basic principles as follows:

• Task Non-overlapping: The steps in our GAIN dataset are out-of-distribution, which requires
the tasks in GAIN to be non-overlapping with those in the original training set. The model perfor-
mance on these non-overlapping tasks can intuitively indicate the generalizability.

• Step Consistent: Despite the step distributions are different under non-overlapping tasks, we
require that the categories of steps in the testing videos are consistent with the training dataset. On
the one hand, with totally different steps, IAU will be even more difficult, which deflects our goal
to benchmark the generalizability. On the other hand, the steps in the training set are common in
daily life, which is of critical importance for IAU.

• Category Diverse: The third principle, category diverse, encourages the annotators to discover
more diverse data. In other word, we argue that the larger number of task categories is the better.
For example, a dataset (with 3 tasks) contains 2 videos of repairing a car, 2 videos of repairing a
roof and a video of repairing a television is more diverse than a dataset (with only 1 task) with 5
videos of repairing a car. More diverse data indicates more reliable benchmarking.

With the principles above, as shown in Fig. 2, we first generate a large number of task candidates
(i.e. step combinations) and then filter out the unqualified ones. Specifically, we apply the steps in
the training dataset as the anchor steps and generate 10 step combinations with the caption clues,
where each step combination contains 2∼5 steps. The captions in instructional videos often mention
steps that are not in the current task but closely related to other steps in the video, which could help
to generate step combinations. In total, we generate more than 8,000 task candidates.

Here we provide details to show how we filter the candidates. Given a candidate, we first check
whether it is logical. For example, if the candidate is “lifting jack, replace the tire, remove the jack”,
it makes sense because it could form a task “Change Car Tire”; it is not acceptable if the candidate
is “lifting jack, replace the tire, add the seasoning”, which may never happen sensibly in daily life.
Then according to Task Non-overlapping, we drop the logical candidates if they make up tasks that
already exist in training sets. Since all candidates are composed of steps directly from training sets,
they inherently satisfy the principle Step Consistent.

In the first round of annotation, we ask 11 annotators to go through these candidates and annotate
whether the candidate is reasonable and satisfies the above principles. We filter out the candidates
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annotated as unqualified by more than half annotators and finally select 147 candidates. In the
second round, annotators are asked to name the new OOD task, refine current step combinations,
and collect the videos from the Internet. By filtering out the rare actions, we finally collect 1,231
videos of 116 tasks. In the last round, the annotators label the fine-grained temporal boundaries of
each steps in videos.

2.3 DATA COLLECTION

COIN Train

COIN Test

GAIN-CFr
eq

ue
nc

y 
R

at
e

Step

Figure 3: The step distributions of the training
dataset, original in-distribution test dataset, and
our OOD test dataset on COIN. Under the same
task categories, the step distribution is similar
to the original training and test datasets. With
different task categories in GAIN-C, the step
distribution changes a lot, which supports our
assumption that steps are in-distribution/OOD
with same/different task categories.

Given the selected tasks, we search for YouTube
videos related to the task names. We use a query
with exactly the task name or the task name fol-
lowing a “how to” prefix to locate instructional
videos, e.g. for the task “Change Car Tire” we use
“change car tire” or “how to change car tire”. To
improve the quality and diversity, we adopt several
criteria to select videos including: high relevance
with queries, explicit instructions, and rich diver-
sity. We prefer videos more relevant to the queries
and containing explicit instructions with pictures,
since visual models are not able to only learn from
narrations. Besides, videos with explicit steps to
complete tasks are also favorable, although there
might be no vocal instructions. Furthermore, ex-
plicit steps in a video do not need to exactly match
those in its task – in other words, permuting and
being a proper subset of the task are acceptable.
Moreover, if similar steps are witnessed in differ-
ent videos of a task, like “add salt” and “add sugar”, we regard them as the same step. With regard
to the undefined steps, they are considered as the background and not further annotated. On the one
hand, during the data collection stage, if a video contains a long stretch of undefined but important
steps, this video will be filtered out according to the principle of Step Consistent. On the other
hand, videos with undefined meaningless steps are acceptable and these steps will be considered as
the background. After collecting the videos, we utilize the annotation tool provided in (Tang et al.,
2019) to label the corresponding step categories and segments.

2.4 STATISTICS

The final version of the GAIN dataset consists of 1,231 instructional videos related to 116 unseen
tasks. Our GAIN dataset is a pure evaluation dataset to benchmark the generalizability of IAU
models. Each task in GAIN contains 2∼24 videos with an average of 10 videos. We annotate 6,382
action segments in GAIN with an average of 5 steps in each video. The average length of videos is
2 minutes and 30 seconds, and the average length of steps is 12 seconds. Totally, the GAIN dataset
contains OOD videos of 51.2 hours for generalizability evaluation.

GAIN can be divided into two splits as counterparts of COIN (Tang et al., 2019) and Break-
fast (Kuehne et al., 2014) datasets, and we name them GAIN-C and GAIN-B, respectively. COIN
is a large-scale benchmark with 9,030 training videos and 2,797 testing videos of 180 tasks. As its
counterpart, GAIN-C contains 1,000 videos of 100 unseen tasks with a length of 41.6 hours in total,
where 5,238 segments are annotated. Fig. 3 shows the step distributions on COIN Train, COIN Test,
and our GAIN-C, where horizontal axis denotes the different steps and the vertical axis denotes
the frequency rates of these steps. We can observe the step distributions in original COIN Train
and Test sets are similar, but different from our GAIN-C. It demonstrates our assuming that under
different task categories, the step distributions are different. Breakfast is composed of more than
1.9k cooking-related videos of 10 breakfast routines such as “Make Coffee” and “Cook Pancakes”.
Accordingly, the GAIN-B split includes 231 videos of 16 OOD tasks with an average length of 2
minutes and 30 seconds. These tasks consist of 20 fine-grained action categories. We provide more
statistical data and analysis in the Appendix.

3 METHOD

In this section, we first construct a causal graph for the IAU problem. Then, we introduce our method
which applies causal inference to mitigate the negative effect of confounding context bias.
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3.1 CAUSAL GRAPH CONSTRUCTION

The widely researched action understanding tasks include action segmentation and detection, which
both focus on the steps. Without loss of generality, we formulate the task as:

P (Y |S) = fθ(S), (2)

where S denotes a step in the video X , Y is the prediction and fθ represents the model. Then,
we formulate the action understanding framework in light of a causal graph G = {V, E}, where
the nodes V include the step S, model prediction Y , and context steps Z. Note that X = S ∪ Z
and S ∩ Z = ∅ denote video X can be divided by query step S and context steps Z. The links E
indicate the dependence (computational but not strict causal direction (Liu et al., 2021)) between
two variables. For example, S → Y in the causal graph indicates variable S is the cause of variable
Y . We show the casual structure of the IAU problem in Fig. 4(a) and explain it as follows:

• Z → Y ← S indicates that the model prediction depends on both the step S and the context steps
Z. For example, when recognizing the current step S, temporal models (e.g. LSTM (Hochreiter
& Schmidhuber, 1997) and C3D (Tran et al., 2015)) always use the temporal context clues for
current prediction, which leads to Z → Y .

• S ← Z → Y denotes that the video context steps Z simultaneously affects the steps and model
prediction. Z → Y has been explained above and S ← Z is intuitive due to the temporal
dependency of video. Thus we call the context bias Z is a confounder (Pearl, 2009), which
misleads the model to focus on the spurious correlation, reducing the generalizability of the model.
The casual graph describes the information flow during the inference. When S is being estimated,
other context steps are Z, and since S is affected by Z during the inference, Z points to S.

Then we show that the model prediction is misled by the spurious correlations of context bias when
we only consider the likelihood P (Y |S). As shown in Fig. 4(a), we re-write P (Y |S) with the Bayes
rule as:

P (Y |S) = ΣzP (Y |S,Z = z)P (Z = z|S), (3)

which denotes that the likelihood P (Y |S) are influenced by P (Z = z|S). Now we use an exam-
ple to show that P (Z = z|S) is biased. In the video “Inflate bicycle tires” , current content S is
“installing the nozzle” and the context Z is “using bicycle pump”. The content S and the context Z
are always observed together in the training process and thus P (Z = using bicycle pump|S =
installing the nozzle) is higher. It leads the model to predict higher probability P (Y |S =
installing the nozzle) when observing the Z = using bicycle pump and vice verse. However,
when we apply the model to analyze the OOD video “Inflate car tires”, where Z “using bicycle
pump” is absent, the model may be confused and consequently give wrong prediction. Addition-
ally, although there is actually bidirectional effect between S and Z, we find that Bayes’ theorem
and Eq.3 remains unchanged. In Fig. 4(a), we apply S ← Z to highlight the bias caused by the
con-fonder S ← Z → Y , which is demonstrated by the Fig. 3.

Motivated by the causal inference method (Pearl, 2009; Glymour et al., 2016), we propose to conduct
intervention to alleviate the negative effect of context bias. In causal inference, the intervention is
represented as do(·). Once intervened, a variable will have no in-coming links anymore and the
previous in-coming links in the causal graph are cut off. As shown in Fig. 4(a), when we intervene
S with the Back-Door Criterion in (Pearl, 2009), i.e. do(S), the link between S and Z is cut off so
as the dependency. We formulate the model prediction process under the intervention:

P (Y |do(S)) = ΣzP (Y |S,Z = z)P (Z = z), (4)

where Z = z is independent from S. Thus, after intervention, when the model predicts from do(S)
to the label Y , it fairly takes every z into consideration. Please see more detailed introduction and
derive about Back-Door Criterion in Section 3.3 of (Glymour et al., 2016).

However, the intervention is a great challenge, since the prediction under this intervention is subject
to the prior P (Z), which is difficult to compute numerically. Thus, we simulate conducting the
intervention. We replace the numeric process with a sampling process and approximate the prior
P (z) by the Monte Carlo method. As shown in Fig. 4(b), we regard each step as an individual
instance and put all the steps in a lottery box, i.e. a step pool. Statistically, all the steps in the
training set form the population Z = {z1, ..., zn} with n categories, and then we can sample from
this population. During the sampling process, the frequency of z is not affected by X anymore and is
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Figure 4: (a) The causal inference illustration for instructional action understanding. (Top) presents
the original causal graph of IAU and the likelihood P (Y |S). (Bottom) shows the causal graph and
the causation P (Y |do(S)) after intervention. (b) Approximation with Monte Carlo method. We
first dissemble the videos, where s1 only occurs with z1&z2, and sample from the step pool. The
prior P (Z) is approximated with the relative frequency and sampled steps constitute the“intervened”
videos, where s1 could be observed with z3 or z4.

only related to the statistics of the training set. We approximate the prior with the relative frequency:

P (Z = z′) =
Σz∈ΩI(z = z′)

∥Ω∥
, (5)

where Ω denotes the sampling population, ∥Ω∥ is the sample size, and I is an indicator function. We
use the sampled steps to assemble “intervened” videos to learn causations of X on Y , instead of the
spurious correlations due to context bias Z. Fig. 4(b) illustrates an example of this process, in which
s1 only occurs with z1&z2 in the original videos and consequently models tend to learn spurious
correlations of them. After dissembling and reassembling, in the “intervened” videos, s1 could be
observed with others, like z3&z4, and the occurrence of z is not dependent on s1. Technically, our
causal “intervention” can be regarded as a new kind of data argumentation, where we dissemble the
steps and reassemble them as new video data.

4 EXPERIMENTS

In this section, we provide performance comparisons between the in-distribution dataset and out-of-
distribution GAIN dataset, and assess the effectiveness of our causal approach on both action seg-
mentation and action detection tasks. We conduct experiments on three datasets, where COIN (Tang
et al., 2019) and Breakfast (Kuehne et al., 2014) are used for both training and testing, and our
GAIN dataset is only used for evaluation. As mentioned in Section 2.4, COIN and Breakfast are
widely used for IAU, so GAIN is split into two groups as counterparts of them, named GAIN-C
and GAIN-B respectively. Please refer to Section 2.4 for more descriptions of these datasets. The
implementation details, results, and analysis are described below. More experimental results and
visualization examples can be found in Appendix.

4.1 IMPLEMENTATION DETAILS

We conduct experiments with the following baseline methods: (1) LSTM(Hochreiter & Schmidhu-
ber, 1997) is one of the earliest and most popular deep models dealing with temporal modeling. (2)
ED-TCN(Lea et al., 2017) applies a hierarchic encoder-decoder framework with temporal convolu-
tions, pooling, and upsampling to learn temporal patterns. We use 5 convolution layers for both the
encoder and decoder, whose convolutional filters’ sizes are 25. (3) TResNet(He et al., 2016) adds
a residual stream in the encoder-decoder framework. We follow the network structure depicted in
(Lei & Todorovic, 2018) and adopt the same experimental setting as ED-TCN’s. (4) MS-TCN++(Li
et al., 2020) proposes a multi-stage architecture, which first generates initial predictions and refines
them several times. Our implementation is built upon the publicly provided codebase.
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Table 2: Evaluation on COIN/GAIN-C with baselines and finer results across domains. · / · denotes
performances on COIN/GAIN-C. C means we apply causal-based method.
Domain LSTM C-LSTM ED-TCN C-ED-TCN TResNet C-TResNet MS-TCN++ C-MS-TCN++

Nursing 64.3/59.8 65.6/61.6 61.0/60.7 64.1/61.1 62.6/59.5 64.5/60.0 65.6/62.1 68.2/62.1
Vehicle 61.9/60.7 62.6/62.8 59.2/63.7 59.9/67.2 60.6/64.2 59.3/66.1 62.9/63.8 63.0/66.9
Leisure 58.0/60.4 59.3/62.9 55.1/60.4 56.9/61.8 54.9/60.0 57.0/60.1 61.8/63.3 61.2/62.2
Gadgets 67.4/60.3 68.6/63.9 64.9/63.2 66.4/66.5 64.2/63.9 65.6/64.2 68.3/61.4 68.2/64.7
Electrical 64.5/44.6 65.9/48.8 63.7/47.5 62.7/47.8 63.9/44.6 63.2/49.0 66.2/44.4 65.4/45.3
Furniture 61.5/57.0 63.5/59.1 58.8/59.3 59.7/58.3 60.4/60.2 60.9/60.4 63.8/60.0 63.6/61.8
Science 61.4/41.5 61.9/45.8 56.5/37.7 57.8/42.9 58.0/42.1 58.4/41.7 61.6/38.8 63.1/47.7
Pets 61.0/52.0 64.9/54.2 61.9/48.7 63.5/52.7 61.5/51.2 61.6/48.6 63.7/52.2 64.6/52.0
Drink 65.1/50.6 66.8/53.5 61.9/50.3 62.5/54.4 61.8/48.8 62.1/53.5 67.1/46.1 66.5/54.2
Sport 69.8/63.5 73.4/63.8 68.1/63.6 69.0/67.1 66.8/65.3 66.9/50.3 72.0/49.5 70.9/51.6
Dish 70.3/47.3 71.8/51.3 64.5/48.8 66.9/50.9 65.7/47.5 67.8/66.1 71.8/59.4 70.3/66.7
Housework 62.2/61.4 62.7/59.6 60.6/61.6 59.9/61.0 59.4/59.0 60.8/61.1 61.5/59.8 64.2/61.9

Overall 63.9/52.3 65.4/55.1 61.2/52.7 62.2/55.3 61.6/52.4 62.2/54.6 65.5/51.8 65.6/56.0

For COIN/GAIN-C, we use the temporal video resolution at 10 fps, and extract S3D(Miech et al.,
2020) features with a pretrained model on HowTo100M (Miech et al., 2019) as the model input.
And for Breakfast/GAIN-B, we use I3D (Carreira & Zisserman, 2017) features (pretrained on Ki-
netics (Carreira & Zisserman, 2017)) sampled at 15 fps as the model input. As for the original
evaluation set, we follow the default setting and present results on split 1. For all experiments, we
employ a 1× 1 convolution layer to project the features into an embedding space, whose dimension
is 64. Then, we apply different baseline methods to model the spatio-temporal clues. All settings
are the same with both the baseline methods and our methods.

4.2 ACTION SEGMENTATION

Setting: Action segmentation aims at assigning each video frame with a step label. This task is
a key step to understand complex actions in instructional videos. We adopt frame-wise accuracy,
which is the number of correctly predicted frames divided by the number of total video frames.
For Breakfast/GAIN-B, we also adopt edit distance and F1 score (Lea et al., 2017) at overlapping
thresholds 10% to further measure the quality of the model prediction.

Table 3: Results on Breakfast/GAIN-B for action segmentation.
Method ED-TCN C-ED-TCN TResNet C-TResNet MS-TCN++ C-MS-TCN++ LSTM C-LSTM
Acc. 42.4/21.3 44.5/35.4 49.1/18.0 49.2/30.8 67.6/16.8 66.4/32.1 47.8/25.5 45.7/37.9
F1@10 37.8/3.2 42.7/5.3 41.6/3.7 43.0/5.5 57.1/3.1 54.7/3.7 4.0/0.3 4.8/0.5
Edit 39.0/4.7 44.3/5.9 44.1/6.7 46.4/8.8 54.6/4.9 56.4/6.4 3.5/1.1 6.2/1.8

Results: The frame accuracy
on COIN/GAIN-C is shown
in Table 2 (the Overall row).
We observe an obvious per-
formance drop of approxi-
mately 10.0 on average, although the steps of the two datasets are shared. Besides, Table 3 shows the
results on Breakfast and GAIN-B. The performance gap is more obtrusive since the frame accuracy
decreases by approximately 60% on average. It indicates that the current methods lack generaliz-
ability on the out-of-distribution tasks. We observe that causal-based methods achieve consistent
improvements in the OOD scenario. Besides, we find that the performances of LSTM are poor with
the F1 score and edit score, while other baseline methods work well. By qualitatively checking the
predictions, we find that LSTM only can tell actions from the background, but fails to classify the
action categories correctly. It may be because the LSTM model is overly dependent on temporal
relations and weakens the representational capacity.

Quantitative Analysis: We compare our methods with the baseline methods to demonstrate the
effectiveness. Table 2 (the Overall row) and Table 3 summarize the performance comparisons of
our methods with all four baseline methods including LSTM(Hochreiter & Schmidhuber, 1997),
ED-TCN(Lea et al., 2017), TResNet(He et al., 2016) and MS-TCN++(Li et al., 2020). For all four
baseline methods, our causal-based methods achieve significant and consistent improvements on
GAIN and obtains comparable results on the original evaluation sets with the frame accuracy metric.
For example, after blocking the causal link between S and Z, Causal MS-TCN++ relatively outper-
forms the baseline over +8.1% on GAIN-C. Moreover, on GAIN-B the causal inference methods
relatively outperform the baselines over +69.3% on average.

Domain Analysis: Following the COIN dataset, we provide more in-depth analysis with experi-
mental results across different domains in Table 2 (Domains are described and showed in the Ap-
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pendix). An obvious performance drop from COIN to GAIN-C occurs on domains ‘Electrical’ and
‘Science’. The reason is that steps in these domains often follow a fixed process, which introduces
strong contextual dependency to models and results in poor performance on the OOD tasks. The
causal inference approach alleviates these negative effects, for example, Causal LSTM relatively
outperforms the baseline with a large margin of +9.4% and +10.4% on domain ‘Electrical’ and
‘Science’, respectively. On domains like ‘Housework’, models obtain comparable results on COIN
and GAIN-C, which is because the video collection of GAIN-C is independent of the collection for
COIN. So it is possible that the videos we find are easier to be segmented than those in COIN. The
“Overall” results show that OOD test set is more challenging.

Ground truth

MS-TCN++

Causal MS-TCN++

Ground truth

MS-TCN++

Causal MS-TCN++

(a) Wash cat

(b) Scalded shrimp 

Figure 5: Visualization examples of action
segmentation results on GAIN-C.

Qualitative Analysis: We qualitatively analyze how
our method contributes to the improvement of perfor-
mance. Fig. 5 demonstrates the visualization of two
prediction examples on GAIN-C with MS-TCN++ and
the corresponding causal method, where different col-
ors means different step categories. Obviously, Causal
MS-TCN++ achieves higher frame accuracy on both
two examples. At the top, the original MS-TCN++
predicts 6 kinds of steps for the video “Wash cat”,
while Causal MS-TCN predicts the same causations
of steps as the ground truth. This demonstrates that
our model does not predict the spurious correlations
caused by the context bias but focuses on the step
itself. At the bottom, we show an example of the
video “Scalded shrimp”, the causal one outperforms
the baseline method with more smooth predictions.

4.3 ACTION DETECTION

Setting: The goal of action detection is to detect a series of steps and output the temporal boundaries.
It is also an important yet challenging task for IAU. We follow the evaluation protocol of (Lea et al.,
2017; Singh et al., 2016) by reporting the widely-used segment-wise metric, mean Average Precision
with midpoint hit criterion (mAP@mid). Specifically, the criterion of mAP@mid for a true positive
is whether or not the temporal midpoint of the output interval is within the corresponding ground-
truth action segments.

Table 4: Evaluation on training sets and
GAIN for action detection. ‘· / ·’ denotes
the performances of ‘Training set / GAIN’.

Methods mAP@mid
COIN Breakfast

LSTM 32.8 / 6.0 57.7 / 8.5
Causal LSTM 35.2 / 8.0 58.6 / 13.2

Results: Table 4 presents the experimental results on
COIN, Breakfast, and their counterparts. In this task,
we choose LSTM as the baseline. From the training
set to GAIN, we observe a huge performance drop by
more than 80%, which is related to the weak OOD
generalizability of the baseline method. We also com-
pare the causal methods with the baselines. Without
any performance cost on the original evaluation set,
the causal methods relatively outperform baselines over +33%/+55% on GAIN-C/GAIN-B.

5 CONCLUSION

In this paper, we have introduced a dataset, named GAIN, to benchmark the generalizability of
IAU models. Our GAIN dataset contains 1,231 videos of 116 OOD tasks, which are collected by
reassembling the in-distribution steps of the training set. Based on GAIN, we have proposed to eval-
uate the generalizability of models with the performance on the OOD tasks. We have also proposed
a causal inference approach to cut off the excessive contextual dependency for enhancing general-
izability. We evaluate the generalizability of some widely used methods on GAIN and demonstrate
that causal inference is a potential direction to improve generalization. We will release this dataset
to promote the real-world deployment of IAU models.

Limitation: By benchmarking the generalizability on GAIN, we offer a testbed and expect work
to develop models that can work in dynamic environments. However, the OOD data needs to be
found, which is labor-intensive. Thus, the GAIN dataset cannot be omniscient or cover every aspect.
Besides, while causal inference shows its potential to improve generalizability, designing algorithms
for generalization is still an open question. It is worth devoting efforts and we leave it as future work.
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Appendix

A RELATED WORK

Instructional Action Understanding: With the explosion of video data on the Internet, learners can
acquire knowledge from instructional videos to accomplish different tasks. Many instructional video
datasets have been proposed for different goals, such as action detection datasets (Caba Heilbron
et al., 2015; Idrees et al., 2017; Gu et al., 2018), video summarization datasets (De Avila et al.,
2011; Gygli et al., 2014; Panda et al., 2017; Song et al., 2015), and video caption datasets (Xu et al.,
2016; Yu et al., 2018; Miech et al., 2019; Krishna et al., 2017). To analyze instructional videos,
diverse research fields are presented in recent years including action segmentation (Richard et al.,
2018a;b; Miech et al., 2020; 2019; Sun et al., 2019), procedure segmentation (Zhou et al., 2018b),
step localization (Alayrac et al., 2018; Zhukov et al., 2019), action anticipating (Sener & Yao, 2019;
Farha et al., 2018), dense video caption (Das et al., 2013a), video grounding (Huang et al., 2017;
2018; Zhou et al., 2018a), and skill determination (Doughty et al., 2018; 2019). Despite the great
progress on the in-distribution environment, it is a major challenge to deploy the trained models in
the real-world environment.

Out-of-Distribution Generalization: How to generalize the trained model into OOD environments
is a key challenge in machine learning (Geirhos et al., 2020). A kind of widely-used methods are
zero-shot recognition (ZSR) (Xu et al., 2017; Brattoli et al., 2020; Wang et al., 2019) (cross dataset
evaluation), where the categories of samples in the testing set are apparently different from the train-
ing set. For instructional video, it is difficult to directly recognize unseen step categories. Another
evaluation method is Unsupervised Domain Adaptation (UDA) (Busto et al., 2018; Zhang et al.,
2019), which trains the model with the data and annotations in the source domain and target domain
index (e.g. unannotated target data). Compared with UDA, OOD generalization further considers
the setting without target domain information. VDG (Yao et al., 2021) is an OOD generation prob-
lem which evaluates the models by the videos with changing the scene or background. However,
this setting is more suitable for conventional actions. On the contrast, the key domain changing in
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the instructional video is not the scene but the distribution shift of action steps in changing tasks.
The detailed comparisons are summarized in Table 1.

Causal Inference: Causal inference (Pearl, 2009; 2019) plays an important role in machine learn-
ing, which investigates causal effects of different variables. Recently, causal inference has been suc-
cessfully applied to diverse fields including computer vision (Lopez-Paz et al., 2017; Wang et al.,
2020), natural language processing (Park et al., 2019), and reinforcement learning (Nair et al., 2019;
Forney et al., 2017), due to its ability for removing confounding bias (Tang et al., 2020; Wang et al.,
2020), building explainable machine (Wang & Vasconcelos, 2020; Goyal et al., 2019), promoting
fairness (Kusner et al., 2017; Chiappa, 2019), and recovering missing data (Mohan & Pearl, 2018).
In this paper, we apply causal inference to mitigate the negative effect brought by confounding
context bias to enhance the generalizability of IAU models.

B PREREQUISITE: CAUSAL MODEL

In this section, we provide some prerequisites of causal model that may help to better understand
our causal approach. More details could be found in (Glymour et al., 2016).

Our task for video understanding is to predict the label of step based on the observation as P (Y |S).
However, the context steps Z also affect the prediction. With the Bayes rule, we can re-write P (Y |S)
as:

P (Y |S) = ΣzP (Y |S,Z = z)P (Z = z|S), (6)

which denotes that the likelihood P (Y |S) are influenced by P (Z = z|S). However, P (Z = z|S)
is changed in the OOD setting. Now we use an example to show that P (Z = z|S) introduces the
observation bias. In the video “Inflate bicycle tires” , current content S is “installing the nozzle” and
the context Z is “using bicycle pump”. The content S and the context Z are always observed together
in the training process and thus P (Z = using bicycle pump|S = installing the nozzle) is higher.
It leads the model to predict higher probability P (Y |S = installing the nozzle) when observing
the Z = using bicycle pump and vice verse. However, when we apply the model to analyze the
OOD video “Inflate car tires”, where Z “using bicycle pump” is absent, the model may be confused
and consequently give wrong prediction. Therefore, we aim at mitigating the influence from Z on
S. Before that, we first introduce some definitions in the causal inference to help understand, and
the proofs can be found in (Pearl, 2009; Glymour et al., 2016).

Definition 1 (Intervention) An intervention represents an external force that fixes a variable to a
constant value (akin to random assignment if an experiment), and is denoted do(S = s)1, meaning
that S is experimentally fixed to the value s.

Definition 2 (Confound) Consider a pair of variables S and Y . Mathematically, S and Y are
confounded if

P (Y |S) ̸= P (Y |do(S)). (7)

Definition 3 (Confounder) Z is a confounder (or S and Y are confounded by Z), if Z is associated
with Y via paths in the causal graph that are not going through S.

For example, (a) in the causal model S ← Z → Y , Z is a confounder because (1) both S and Y are
associated with it and (2) it is not on a causal path going through S and Y (3) nor a descendant of
them; (b) in the causal model S → Z → Y , Z is not a confounder but a mediator (Z modifies the
effect of S on Y ).

Definition 4 (The Backdoor Criterion) Given an ordered pair of variables (S, Y ) in a causal
graph, a set of variables Z satisfies the backdoor criterion relative to (S, Y ) if (1) no node in Z
is a descendant of S; (2) Z blocks every path between S and Y that contains an arrow into S. If
variables Z satisfies the backdoor criterion for (S, Y ), then we can adjust the causal effect of S on
Y with

P (Y = y|do(S = s)) = ΣzP (Y = y|S = s, Z = z)P (Z = z). (8)

1do-operator erases all the arrows that come into S to prevent any information about S from flowing in the
non-causal direction.
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In other word, with this criterion we condition on Z such that we (1) block all spurious paths between
S and Y ; (2) don’t disturb any directed paths from S to Y ; (3) create no new spurious paths.

With these definitions, we can show that how the backdoor adjustment can help for our OOD task.
When we intervene S with the Back-Door Criterion, i.e. do(S), the link between S and Z is cut off
so as the dependency. We formulate the model prediction process under the intervention:

P (Y |do(S)) = ΣzP (Y |S,Z = z)P (Z = z), (9)

where Z = z is independent from S. The only difference between Eq 6 and Eq 9 is that we change
P (Z|S) to P (Z), which shows that Z is no longer affected by S. After intervention, when the model
predicts from do(S) to the label Y , it fairly takes every z into consideration. Thus, the backdoor
adjustment can mitigate the negative effect of the biased confounder Z.

Hang up curtain: { drill, install shelves, hang up } Install wood flooring: { cut raw boards, fit on boards, knock in nails }

Hang up clock: { drill, knock in nails, hang up }

Training:

Evaluation:

Figure 6: An example of how to generate OOD tasks in GAIN. Given two in-distribution videos of
the training sets, we can generate a new OOD task by reassembling the steps of original videos. Best
viewed in color.

C MORE DETAILS OF GAIN

C.1 A DETAILED EXAMPLE

To show how to construct the OOD task in GAIN, in Fig. 6, we display a detailed example about
“Hang Up Clock” which can be reassembled by the steps in the training tasks “Hang Up Curtain”
and “Install Wood flooring”. Specifically, the “Hang up curtain” task consists of three steps in-
cluding {drill, install shelves, hang up}, and the “Install wood flooring” task is composed of
{cut raw boards, fit on boards, knock in nails}. Our collected OOD task “Hang up clock” con-
tains the “drill” and “hang up” steps in the ‘’Hang up curtain” task and the “knock in nails” step in
another.

C.2 TASKS & STEPS

In order to present more details of our GAIN dataset, we show all the selected tasks with their cor-
responding steps in Table 7, 8, 9 and Table 10. We display these two tables in the end of Appendix
because of the typesetting. The GAIN dataset consists of 1,231 instructional videos related to 116
unseen tasks. Each task in GAIN contains 2∼24 videos with an average of 10 videos. We annotate
6382 action segments in GAIN with an average of 5 steps in each video.

C.3 SAMPLE DISTRIBUTIONS

Fig. 7 and Fig. 8 illustrate the sample distribution of GAIN-C and GAIN-B. Statistically, GAIN-C
contains 1,000 videos of 100 unseen tasks with a length of 41.6 hours in total, where 5238 segments
are annotated. The GAIN-B split includes 231 videos of 16 OOD tasks with an average length of 2
minutes and 30 seconds. These tasks consist of 20 fine-grained action categories.
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Figure 7: The sample distributions of GAIN-C.
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Figure 8: The sample distributions of GAIN-B.

C.4 DURATION STATISTICS

Fig. 9 illustrates the duration statistics in both video-level and step-level of our GAIN dataset, where
the average length of videos is 2 minutes and 30 seconds, and the average length of steps is 12 sec-
onds. Totally, the GAIN dataset contains OOD videos of 51.2 hours for generalizability evaluation.

C.5 VIEWS ANALYSIS

In Fig. 10, we display the number of views on YouTube across 100 tasks in GAIN-C, which can
demonstrate that with the basic principles mentioned in section 3.2, the unseen tasks meet the need
of website viewers statistically. We grab the number of views from YouTube by utilizing the Python
module youtubesearchpython. We form a query with “how to” preceding the task name (e.g. how
to paint the wall) to search for YouTube instructional videos related to the tasks. Then for each task,
we only extract the first 20 results and sum up the numbers of views to represent the popularity of
this task.

With approximately 767.9M views, “Make popsicle” becomes the most-viewed task and the last one
“Dissolve effervescent tablet” still obtains 391.8K views. The number of views per task is 44.5M
on average and the average number of views for the counted videos is 2.2M. The statistical results
above prove that the selected tasks in our GAIN dataset are all common daily tasks and satisfy the
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Figure 9: The duration statistics in the video-level (left) and step-level (right) of GAIN.

Figure 10: The views distributions of tasks in GAIN-C on YouTube.

demand of website viewers. The learning enthusiasm for diverse tasks reveals the practical value of
the generalizability of IAU models.

C.6 DOMAIN ANALYSIS

Fig. 11 shows the domain distribution (defined in COIN) of this split. GAIN-C covers 12 semantic
domains, which demonstrates the rich diversity of our GAIN dataset.
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Nursing and Care
Vehicle
Leisure and Performance
Gadgets
Electrical Appliance
Furniture and Decoration
Science and Craft
Pets and Fruit
Drink and Snack
Dish
Sport
Housework

Figure 11: The domain distribution of GAIN-C.

Table 5: Parameter analysis on the learning rate on COIN/GAIN-C.

Learning Rate Methods Frame Accuracy
COIN GAIN-C

5e-4 MS-TCN++ 62.1 49.0
Causal MS-TCN++ 64.0 52.3

1e-3 MS-TCN++ 64.7 54.3
Causal MS-TCN++ 65.5 56.2

2e-3 MS-TCN++ 65.5 51.8
Causal MS-TCN++ 65.6 56.0

Table 6: Parameter analysis on different relative sizes of reassembled videos on Breakfast/GAIN-B
with frame accuracy.

Method EDTCN Causal ED-TCN
Step # - 1.x 0.5x 1.5x 1.x 1.x
Video # - 1.x 1.x 1.x 0.5x 1.5x
Accuracy 42.4/21.3 44.5/35.4 44.5/31.1 44.5/30.7 43.9/29.1 42.1/37.6

D MORE EXPERIMENTAL ANALYSIS

D.1 PARAMETER ANALYSIS

We conduct experimental analysis on both COIN/GAIN-C to investigate the effect of hyper-
parameter learning rate with MS-TCN++(Li et al., 2020). As shown in Table5, with a learning
rate of 5e−4 the model performs unfavorable results on both two datasets, while an increased learn-
ing rate, i.e. 1e − 3 or 2e − 3, can notably improve its performance on COIN(+2.3% and +2.5%)
as well as the performance on the out-of-distribution tasks (+7.5% and +7.1%).

We also conduct experiments of different relative sizes of reassembled videos on Breakfast/GAIN-B
and the results (frame accuracy) are shown in Table 6. For the number of steps, 1.0×, 0.5×, and
1.5× of Causal ED-TCN denote that we use 1 times, 0.5 times, and 1.5 times step numbers as that of
the original ED-TCN. So as the number of videos. Our methods with different setting consistently
outperform the baseline on both in-distribution and OOD scenario. Besides, we find that with the
same number of augmented steps and videos the model achieves better overall performance, so we
adapt this setting for all experiments.

D.2 VISUALIZATION RESULTS

In section 5.2, we have visualized the ground-truth annotations and the action segmentation results.
Due to the limitation of space, we only visualized the results produced by MS-TCN++ method
and its causal version. Now in Fig. 12, we illustrate the visualization for different methods includ-
ing LSTM, ED-TCN, TResNet and MS-TCN++, to demonstrate the effectiveness of our approach.
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Ground truth

TResNet

Causal TResNet

MS-TCN++

Causal MS-TCN++

Scalded shrimp: { prepare and boil water, pour into the water,  
pour out, remove the shrimp shell }

LSTM

Causal LSTM

ED-TCN

Causal ED-TCN

Figure 12: Visualization of action segmentation results. The video is associated with the task
“Scalded shrimp”. Best viewed in color.

Ground truth

MS-TCN++

Causal MS-TCN++

Make Mixed Juice

Figure 13: Visualization of a failure case. The video is associated with the task “Make Mixed Juice”.
Best viewed in color.

We show results of the baseline methods and our corresponding causal ones on the task “Scalded
shrimp” in GAIN-C. The consistent improvements for different baselines on out-of-distribution tasks
indicate that our causal intervention promotes the generalizability of models.

Additionally, we show a failure case of our approaches in Fig. 13. We analyze the underlying
insights from the cases that the causal-based method has lower performance than the baseline, such
as the video ”Make Mixed Juice” in the GAIN-C dataset. Take a closer look, we find that there
are some strong step dependencies, such as ”juice the fruit” and ”pour the juice”. In this situation,
context bias has positive effects on the evaluation. Thus, we got the following insights, despite
the better performance on average, our method encourages step independency, which has negative
effects on the examples where strong step dependencies occur for both training and testing data. It is
reasonable since these steps are in-distribution samples where the context bias has a positive effect,
e.g., ”juice the fruit” and ”pour the juice” are successive steps in both COIN and GAIN-C, so the
prediction with the concurrence of them is better.
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Table 7: Tasks and the corresponding steps in GAIN-C.
Tasks Steps Tasks Steps
ApplyGlue apply glue to the wall and wallpaper, paste

and level the wallpaper
MakeMixedJuice cut ingredients, juice the oranges, pour the

orange juice into the cup
ApplyHardWaxOil apply the cleaning agent with towel evenly,

wipe off the cleaning agent
MakeNoodles add some water to the tea, mix the raw ma-

terials, knead the dough, cut the flesh
ApplyLotion pour some glue to the face, wipe the glue to

a layer
MakePaperCrane fold or bent paper, paint on the paper

ApplyLubrication
OnChain apply the lubricant on the lock, wipe off the

redundant lubricant, check the old chain
MakePapercut draw an outline, cut along the edges, fold

or bent paper
ApplyLubrication
OnDoor apply the lubricant on the lock, wipe off the

redundant lubricant
MakePizzaDough mix the raw materials, add some water to

the tea, rub and drag the materials, cut the
flesh

AssembleBookshelf assemble the frame, install horizontal
boards, install vertical boards

MakePlasterModel mix the raw materials, soak them in water,
wait for the candle until concretion, remove
the gill, add raw materials, add some water
to the tea

AssembleDesk install stand of the seat, install legs on the
bed

MakePopsicle pour the ingredients into the bowl, put the
candle wick into a vessel, put the melted
soap block into the vessel, take out after
freezing, mix the raw materials

ChangeBattery open the back cover, replace the battery, in-
stall the back cover and waterproof ring

MakeRobberSeal draw an outline, carve along the outline, re-
move the peel

ChangeDoorbell screw off the screws used to fix the switch,
reset the switch and screw on the screws
used to fix the switch

MakeSoyMilk soak and wash the rice, put yogurt, honey
and other ingredients into the juicer, add
some water to the tea, mix raw materials,
pour the tea into the vessel, juice the or-
anges

ChangeFilter take out the old filter, remove the cap of the
new filter, install the new filter, rinse the
dish

MakeWatermelonHat clean up the interior of thepumpkin, carve
along the outline, draw an out line

ChangeFluorescentTube take out the old bulb, install the new bulb,
remove the light shell/housing/support, in-
stall the light shell/housing/support

MakeWatermelonJuice cut oranges, juice the oranges, pour the or-
ange juice into the cup

ChangeMemoryCard
OnGameConsole use the needle to open the SIM card slot,

put the SIM card into the SIM card slot,
press the SIM card slot back

MeatWithScrambledEgg pour the egg into the bowl, stir the egg, pre-
pare meat, cut the flesh, mix the raw mate-
rials, put in the oil to fry

ChangeTheRefillOf
GelPen remove cap, put lead into the pen, buckle

the cap
OpenTheBeer open the bottle carefully

ChangeViolinString cut off and remove the old string, fix the
new string on the lower part of the guitar,
fix the new string on the head of the guitar,
adjust the tightness of the new string

PackBookCover measure the size of the packing paper, cut
the packing paper, fold or bent paper

CleanCattery remove the toy and paper bed from the
hamster cage, clean toys and hamster
cages, move the toy and paper bed into the
hamster cage

PackGoods remove cap, put in the battery, close cover

CleanWindow apply the cleaning agent with towel evenly,
wipe off the cleaning agent

PaintTheWall dip the glue, apply glue to the wall and
wallpaper

CookDumpling knead the dough, flatten the dough, add in-
gredients into cone, knead together, mix
raw materials, soak them in water, load the
dish

PasteCouplet apply glue to the wall and wallpaper, paste
and level the wallpaper

CookHerbalMedcine prepare and boil water, pour the noodles
into the water and stir, filtrate with a filter,
pour into a glass

PastePoster apply glue to the wall and wallpaper, paste
and level the wallpaper

CookPotatoShred peel, cut into strips and pieces, put in the
oil to fry

PeelOrange remove the peel, cut the flesh

CutCarambola cut off the edge, cut the flesh PerformVanishing
CoinTrick show the glass to the audience, block out

the glass, show the vanished glass
CutGinger remove the peel, slice the pulp PlayBowling pre-swing, push curling
CutPapaya peel, cut in half, dig out the seeds with

spoon, slice the pulp
PlayClawMachine insert money into the vending machine,

press the corresponding button, take out the
goods

CutWatermelon cut off the edge, peel, cut in half, slice the
pulp

PlayMusicWith
CDPlayer take out the laptop CD drive, press the SIM

card slot back, close the fuel tank cap
DissolveEffervescent
Tablet add some ingredients to the tea, add some

water to the vessel
PlaySnowBoard ski down from the hill, ski up from the hill,

rise to the sky
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Table 8: Tasks and the corresponding steps in GAIN-C.
Tasks Steps Tasks Steps
DyeHair apply the shampoo or hair conditioner,

scratch the hair carefully, wash the body
wash away, make the hair dry

PourACupOfWine open the bottle carefully, pour in after mix
it

EggFriedRice take out some rice, soak and wash the rice,
pour the egg into the bowl, stir the egg, mix
raw materials, put in the oil to fry

PumpUpCarTire screw off the valve cap and open the valve,
install the air nozzle, remove the air nozzle,
tighten the valve and screw on the valve cap

FriedDumpling knead the dough, flatten the dough, cut the
flesh, add ingredients into cone, knead to-
gether, put in the oil to fry, mix the raw ma-
terials, add some water to the tea

PumpUpTheBall install the air nozzle, pump up to the tire,
remove the air nozzle

FryChicken prepare seasonings and side dishes, prepare
meat, cut the flesh, fry or gril

RefuelMotorbike open the fuel tank cap, insert oil gun in the
car, pullthe oil gun out, close the fuel tank
cap

FryMeatShred prepare meat, cut the flesh, put in the oil to
fry, load the dish

RemovePhoneScreen unscrew the screws used to fix the screen,
pull out the screen connector and remove
the screen

GetEarsPierced draw lines to mark the hole, find the posi-
tion of the hole, drill with an electric drill

RemoveTheShellOf
Scallop cut oranges, take out the shell, rinse the pot,

remove the gill, open up the cover

HangAClock drill in the wall, knock in the nails, hang up
curtains

ReplaceScreenProtector
OnPad wipe the screen, paste protector on the

screen
HangClothesOut wrap the hair by hands, hang the ironed

clothes
ReverseParking drive the car forward, drive the car back-

ward, adjust front and back position
HaveAPicnic clean up the ground, lay the cushion evenly,

load the dish
RoastChicken prepare seasonings and side dishes, remove

the intestines and blood vessels, brush
sauce or sprinkle seasoning, bake pizza

HighJump begin to run up, begin to jump up, fall to
the ground

RoastedChickenWings soak them in water, add raw materials, mix
the raw materials, bake pizza

InstallPaintingOnWall drill in the wall, knock in the nails, paste
and level the wallpaper

RoastSweetPotato clean the pumpkin, fry or roast or braise,
cut the bread, peel

InstallPointers let the flat side of the new needle towards
the jack and insert the new needle, screw
on the screw

ScaldedShrimp prepare and boil water, pour the noodles
into the water and stir, remove the shrimp
shell, pour the cooked noodles

IntravenousInjection tie the tourniquet, disinfect, pull out the
needle and press with cotton

ShotPut pre-swing, throw the hammer out

MakeBananaMilk peel, cut into strips and pieces, add milk,
shake and juice, pour the orange juice into
the cup, put strawberries and other fruits
into the juicer

UnloadSpareTire unscrew the screw, remove the tire

MakeBaozi add ingredients into cone, knead together UseBalance put the sample to be measured on the bal-
ance, put the weight until the balance is bal-
anced

MakeBread knead the dough, run the toaster and adjust,
take out the slice of bread

UseDryer put the clothes neatly on a ironing table, use
a hair dryer to blow hot wall, flip the clothes
repeatly

MakeCake pour the egg into the bowl, add raw mate-
rials, mix raw materials, put materials into
mold, run the toaster and adjust, take out
chocolate

UseNasalSpray wipe nose, fill a nostril with saline and do
the same to the other nostril, shake and stir,
remove cap

MakeCoconutJuice dig out the seeds with spoon, put the ingre-
dients into the can, pour the orange juice
into the cup, put strawberries and other
fruits into the juicer, put yogurt, honey and
other ingredients into the juicer, shake and
juice

UseTeakettle pour the tea into the vessel, heat the teapot
and wash the cup, close up the cover

MakeGarlicBread mix the raw materials, cut the bread, put the
filler on the bread slice, put a slice of bread
in, run the toaster and adjust, take out the
slice of bread

UseWashingMachine open the fuel tank cap, add some cleaner to
clean and wet the lenses and take out the
lenses, close up the cover

MakeHoneyLemon cut ingredients, add some water to the tea,
put the ingredients into the can, mix and
pickle

Vaccinate fill the injection head, disinfect the inject-
ing place, inject to the muscular, pull out
the needle and press

MakeInstantCoffee add tea powder, brew tea and stir, add some
ingredients in the coffee, mix the raw ma-
terials

WashCar add detergent and make bubble, clean the
surface, wipe off the cleaning agent

MakeJelly pour the ingredients into the bowl, stir the
mixture, take out chocolate, cut into strips
and pieces, put materials into mold

WashCat use the body wash, wash the body wash
away

Table 9: Tasks and the corresponding steps in GAIN-C.
Tasks Steps Tasks Steps
MakeKimchi cut into strips and pieces, mix and pickle,

clean up and soak, put the ingredients into
the can, mix raw materials, add some water
to the tea, shake and juice

WashClothes add detergent and make bubble, clean toys
and hamster cages, wrap the hair by hands

MakeMashedPotatoes peel, cut potato into strips, soak them in
water, add raw materials, mix raw materi-
als, prepare and boil water

WashFace wet and wash hands, apply cleansing milk
to the face, wipe up the face

MakeMilkShake add milk, shake and juice, pour the orange
juice into the cup

WashThePot add detergent and make bubble, flush and
wash the interior, scrub the toilet interior

MakeMilkTea put yogurt, honey and other ingredients into
the juicer, mix the raw materials, pour in
after mix it, add ice cubes

WaterBoilMeat prepare and boil water, soak them in water,
load the dish
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Table 10: Tasks and the corresponding steps in GAIN-B.
Tasks Steps
CookPotatoShred peel fruit, cut orange, pour oil
CutCarambola cut orange
CutGinger peel fruit, cut fruit
CutPapaya peel fruit, cut fruit
FryMeatShred cut orange, pour oil, take plate
MakeBananaMilk peel fruit, cut orange, pour milk, squeeze orange, pour juice, put fruit to bowl
MakeCoconutJuice put fruit to bowl, pour juice, squeeze orange
MakeInstantCoffee add teabag, stir coffee
MakeJelly pour flour, stir dough, cut bun, put fruit to bowl
MakeMilkShake pour milk, squeeze orange, pour juice
MakeMilkTea pour milk, stir tea, pour water, put fruit to bowl
MakeMixedJuice cut orange, squeeze orange, pour juice
MakeSoyMilk stir fruit, pour milk, pour water, stir tea, squeeze orange
MakeWatermelonJuice cut orange, squeeze orange, pour juice
MeatWithScrambledEgg pour egg into pan, stir fry egg, cut orange, stir fruit, pour oil
PeelOrange peel fruit, cut orange
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