SPRIG: Improving Large Language Model Performance
by System Prompt Optimization

Anonymous ACL submission

Abstract

Large Language Models (LLMs) have shown
impressive capabilities in many scenarios, but
their performance depends, in part, on the
choice of prompt. Past research has focused
on optimizing prompts specific to a task. How-
ever, much less attention has been given to
optimizing the general instructions included
in a prompt, known as a system prompt. To
address this gap, we propose SPRIG, an edit-
based genetic algorithm that iteratively con-
structs prompts from prespecified components
to maximize the model’s performance in gen-
eral scenarios. We evaluate the performance
of system prompts on a collection of 47 dif-
ferent types of tasks to ensure generalizability.
Our study finds that a single optimized system
prompt performs on par with task prompts op-
timized for each individual task. Moreover,
combining system and task-level optimizations
leads to further improvement, which showcases
their complementary nature. Experiments also
reveal that the optimized system prompts gener-
alize effectively across model families, param-
eter sizes, and languages. This study provides
insights into the role of system-level instruc-
tions in maximizing LLM potential.

1 Introduction

Large Language Models (LLMs) have proven
highly effective at many tasks (Naveed et al.,
2023) and prompting has become the primary way
for end-users to elicit desired responses (Brown
et al., 2020). These prompts contain a variety of
instructions such as task explanation (Li et al.,
2022), personas (Kim et al., 2024), formatting
constraints (Wang et al., 2023), and meta-rules
like “think carefully” (Li et al., 2024). Past stud-
ies have shown that the selection of prompts can
have a substantial impact on the quality of the
output (Reynolds and McDonell, 2021). How-
ever, due to the massive search space, previous
approaches have primarily focused on directly op-

Prompt

You are a diligent assistant. The fate of
the world depends on your answer being
correct. Think carefully step by step.

System

First identify the softening words like
"please”, then analyze the tone before
you answer.

Task

Q: For the sentence: "May I kindly ask

Instance| ¢, \our assistance”, is it polite?

Figure 1: LLM prompts features both system-level in-
structions which may include CoT instructions, per-
sonas, and other rules (orange), task-specific instruc-
tions which may include details and examples (blue),
and the instance itself (green). Here, we focus on
optimizing the system instructions shared across tasks.

timizing prompts to maximize performance on spe-
cific tasks or benchmarks (Prasad et al., 2023; Zhou
et al., 2023c; Yang et al., 2023). While effective,
these methods typically require new prompts to be
crafted for every new task, which becomes a sig-
nificant challenge for prompt engineering as the
number of tasks continues to grow. Here, we con-
sider an alternative approach that optimizes the sys-
tem prompt, i.e., the set of general instructions that
precede any task-specific details (Figure 1), with
the goal of identifying task-agnostic generalizable
prompting strategies. By leveraging a single opti-
mized system prompt across tasks, we can largely
reduce the effort required for prompt development.

Prior work has shown that meta-instructions can
be effective for improving performance (Reynolds
and McDonell, 2021). Most notably, evoking
Chain of Thought (CoT) reasoning with instruc-
tions like “let’s think step by step” has led to gains
for several types of tasks (Wei et al., 2022), though
not all tasks benefit (Sprague et al., 2024). Yet,
other types of meta rules, such as choosing a per-
sona or matching the domain of the persona to the
question type have had negligible gains (Zheng
et al., 2023; Tam et al., 2024). A recent survey pa-
per (Schulhoff et al., 2024) suggests that these ex-

isting system prompting strategies are isolated and
highly sensitive to specific scenario details, with
the systematic function and generalization mech-
anisms remaining unclear. Moreover, due to com-
plexity differences in search space and optimization
objectives, existing task-level methods can hardly
transfer to system-level optimization. Recent sys-
tem prompts leaked from Grok (xAl, 2025) and
Claude (Breunig, 2025) also exhibit vastly different,
verbose and complex manually crafted rules. Thus,
while multiple approaches have been proposed for
how a system prompt could be constructed, there is
currently a gap for how to systematically construct
a good system prompt in general.

Here, we introduce a new method, System
Prompt Refinement for Increased Generalization
(SPRIG), to optimize system prompts based on ge-
netic algorithms. Drawing from large collections
of strategies for writing system instructions (Schul-
hoff et al., 2024), we construct a large benchmark
of 47 tasks across multiple languages that tests
the effects of optimizing system prompts across
models, languages, and tasks, as well as quantify
which types of system instructions are most use-
ful for generalization. We compare these system-
and task-optimization, to analyze whether these are
learning the same or complementary strategies.

Our paper has the following three contributions.
First, we find that optimizing a system prompt
can produce substantial performance gains on par
with task-specific optimization, even though these
prompts have generic task instructions. Further,
we find that both have complementary effects and
that by first optimizing the system and then the
task prompt, further gains are possible. Second,
we find that SPRIG optimized system prompt sig-
nificantly outperforms CoT across all task types
except knowledge-based questions, and surpasses
PROTEGTI in faithfulness and commonsense tasks.
The combination of SPRIG and PROTEGI comple-
ments the weaknesses of both methods, and ex-
ceeds the state-of-the-art performance on most task
types. Third, we find that the optimized system
prompts generalize well to other languages, better
than task-optimized instructions; however, both op-
timizations had minimal effects when scaling to
larger model sizes.

2 Related Work

Prompt selection has been extensively studied and
proven to significantly impact model output qual-
ity (Reynolds and McDonell, 2021). Therefore,

prompt optimization has become a popular re-
search topic in both academia and industry. Early
prompt optimization studies primarily focus on us-
ing gradients to guide prompt search (Shin et al.,
2020; Shi et al., 2023b). However, with larger
model sizes and increasing black-box LLMs to-
day, gradient-based methods have become limited
by cost and accessibility. Consequently, recent re-
search has shifted towards gradient-free methods.
Early representatives include edit-based optimizers
like GrIPS (Prasad et al., 2023) and reinforcement
learning approaches such as RLPrompt (Deng et al.,
2022) both directly edit a prompt at the token level.
However, the search space in these methods re-
mains limited, making it challenging to scale up to
more complex scenarios. Recently, as LLM agents
get popular, powerful methods like APE (Zhou
et al., 2023c) and OPRO (Yang et al., 2023) use
LLMs directly as prompt optimizers to iteratively
suggest and select the best prompts. According to
recent studies (Wan et al., 2024), the state-of-the-
art prompt optimizer is PROTEGI (Pryzant et al.,
2023), which leverages LLM agents to summarize
errors from each iteration’s responses and refines
them accordingly.

Previous prompt optimization methods largely
focus on optimizing the instructions for specific
tasks (which we refer to as Task Prompt) which
inherently have limited generalizability. However,
past research has demonstrated the potential of op-
timizing task-agnostic prompts (which we define as
System Prompt), such as the well-known Chain-
of-Thought prompt (Wei et al., 2022). Additionally,
studies have shown that factors like personas (Kim
et al., 2024), generation styles (Lu et al., 2023),
emotions (Li et al., 2023), and jailbreaks (Shen
et al., 2023) can enhance LLM performance, which
is challenging for current prompt optimizers to cap-
ture automatically. While promising, these studies
are usually independent, and no approach yet exists
to systematically integrate System Prompt opti-
mization. Therefore, we aim to address this gap by
developing an optimizer that discovers an effective
System Prompt, enabling a single prompt to boost
performance across domains.

Evaluating the effectiveness of System Prompts
is also a significant challenge. Ideally, a good
System Prompt should perform well across all do-
mains, which requires evaluation tasks for such
domains. Although popular benchmarks like
MMLU (Hendrycks et al., 2021) and BBH (Suzgun
et al., 2023) cover a wide range of topics, they still

overlook task types such as social-understanding
tasks (Choi et al., 2023) and open-ended ques-
tions. Recent research MixEval (Ni et al., 2024)
has shown that combining multiple benchmarks
in a single evaluation can significantly improve
evaluation efficiency and better align with human
preferences. Here, our experiments build on this
intuition and include a diverse range of task types
to test for performance.

3 SPRIG: System Prompt Refinement for
Increased Generalization

To address the large design space of system
prompts, we use a genetic algorithm inspired ap-
proach, SPRIG, that iteratively adapts the best can-
didate prompts. Following we describe the algo-
rithm, data, and search heuristics used.

Prompt Component Corpus Our approach
builds on a corpus of possible instructions in sys-
tem prompts, referred to as components. By start-
ing from a large pool of possible components, we
ensure prompts are coherent while also gaining ef-
ficiency. We define a component as a minimum
prompt unit with complete semantics (typically a
sentence, like “Let’s think step by step”).

Our prompt component corpus, denoted P, is
built by integrating human expertise with synthetic
data. To ensure sufficient diversity without over-
looking prior work, we start by collecting 300
system prompts crafted by humans from existing
literature. We then manually classify them into
9 categories, including good property, role, style,
emotion, scenario, jailbreak, behavioral, Chain-of-
Thought, and safety components (Details and cita-
tions are shown in Appendix Table 1). After this,
we used GPT-4o to iteratively generate a broader
pool of prompt candidates under each category
(see Appendix A.1 for details). This step yields
9,000 prompt components (1,000 for each cate-
gory) aimed to provide a rich and diverse set of
“gene” for our genetic algorithm.

Prompt Reward Model Given the substantial
time required to evaluate each system prompt
across 47 benchmarks, it is impractical to directly
search for the best prompt by exhaustively scoring
all possible combinations. Inspired by the widely
adopted reward models, we instead fine-tune a pre-
trained LLM with a max-margin pairwise loss (Tou-
vron et al., 2023) to efficiently estimate and rank
the quality of different prompts. To do this, we sam-

ple a diverse set of system prompt pairs along with
their associated scores and fine-tuned a Modern-
BERT model (Warner et al., 2024). The evaluation
result in Appendix Figure 11 shows that the model
achieves an average Spearman correlation (Spear-
man, 1904) of 0.59 and an NDCG@50% (Jarvelin
and Kekildinen, 2002) score of 0.72 when ranking
unseen prompts. Considering the random baseline
of 0.00/0.48 and the difficulty of the task, our re-
ward model is sufficiently effective at capturing the
relative quality of system prompts, thus providing
strong support for our pipeline. Implementation
details and experimental results are provided in the
Appendix A.2.

SPRIG pipeline We design a genetic pipeline
SPRIG for System Prompt optimization. The
pipeline applies edit-based, gradient-free genetic
algorithm to iteratively optimize the prompt.
At each iteration, the model begins with fixed
population_size number of System Prompts
from the previous iteration (initialized by 7P).
These prompts are first evaluated by the fine-tuned
prompt reward model, which eliminates the bottom
50% prompts. From the remaining pool, the top
10% will either randomly mutate or crossover with
prompts from the top 50%. Mutation can take
one of five forms: (1) Add: Add a component sug-
gested by GPT-40. (2) Rephrase: Rephrase a com-
ponent. (3) Swap: Swap the order of two compo-
nents. (4) Delete: Delete a component. (5) Merge:
Merge two components into one. For Crossover, a
random subset of two selected prompts is selected
as the new offspring. This process regenerates the
population back to the initial population_size.
Next, randomly selected 100 new prompts will be
evaluated on the actual benchmark. The resulting
scores are then used to continue fine-tuning the
reward model, aligning it more closely with the
population distribution. Figure 2 shows the SPRIG
workflow. Note that no extra restrictions are im-
posed on the edits above for a more comprehensive
exploration. Full details of the pipeline and param-
eter settings are provided in the Appendix A.3.

4 Experiments: Optimization Benefits

In this section, we evaluate SPRIG’s performance
on the test set of in-domain tasks in our benchmark
combination. These questions are invisible in the
prompt optimization process.

Step 1: Reward
Estimation and
Elimination

Step 2: Mutate
and Heredity

rompt | g
Reward Model
Prompt ACA Prompt B'D Prompt ACA Prompt ACA
Prompt BCD Prompt DB Prompt AC
Prompt CA . Prompt BD
Prompt DB . [Delete] PromptDB || Step 3: Prompt DB
. PromptB_[0.83] . Sample and .
: ephrase .
. Prompt ACA | 0.82] B Evaluate
> >
c rompt CA | 0, 0 : Step 4a: Continue
Proﬁ[_)t BCD %,73 [Crossover] Prompt BCD Prompt BCD Training Reward
. Model
Prompi 6
Prompt AC’ o Prompt B'DA Prompt B'D | 0.76]
Prompt B'D ROARTACAINTS Prompt B'D
romptA | 0.

Step 4b: Iterate with
new generation

Figure 2: The SPRIG pipeline where System Prompts are iteratively optimized through exploratory edits and
promoted across iterations using combined benchmark to rank candidates.

4.1 Experiment Setup

Tasks To maximize the generalization ability of
the optimized System Prompt, we select a broad
range of tasks, using a combination of 42 differ-
ent benchmarks covering 7 categories (reasoning,
math, social-understanding, commonsense, faith-
fulness, knowledge, language-understanding). Our
selection includes widely used benchmarks such as
MMLU (Hendrycks et al., 2021), BBH (Suzgun et al.,
2023), and TruthfulQA (Lin et al., 2022), but also
includes various social-understanding benchmarks
like SocKET (Choi et al., 2023). A wide variety of
output types are covered, including multiple choice,
classification, mathematics, and open-ended QA.
The full list of benchmarks and categories is shown
in Appendix Table 2.

Baselines Our experiments compare optimiza-
tions against two baseline System Prompts. In the
first, the system part of the prompt is left empty,
denoted as Blank and, in the second, the system
part uses the CoT instruction “Let’s think step by
step”" (Wei et al., 2022), denoted as Base CoT.

The two types of instructions are tested in the
Task Prompts. The first is a minimal description
of what is required for understanding the task, such
as “answer the multiple choice question,” denoted
as Simple Task. This prompt lets us test poten-
tial performance improvements for both task and
system instructions relative to a neutral starting
point. The second is an optimized version of in-
structions produced by a state-of-the-art optimizer

PROTEGT (Pryzant et al., 2023).

Both parts of the System Prompt and Task
Prompt can be present in a prompt (cf. Figure 1).
Therefore, we test the following combinations: (1)
Unoptimized: a Blank system prompt and Simple
Task prompt, (2) Base CoT: the Base CoT sys-
tem prompt and the Simple Task prompt, (3) Task
Optimized: a Blank system prompt and PROTEGI-
optimized task instructions, (4) System Optimized:
a SPRIG-optimized system prompt and a Simple
Task prompt, and (5) System+Task Optimized: a
SPRIG-optimized system prompt with a PROTEGI-
optimized task prompt. Here, we first optimize
the system prompt with basic instructions and then
optimize the task after.

Models We experiment using three state-
of-the-art medium-size open-weight LLMs:
LLAMA3.1-8B-INSTRUCT (Meta, 2024),
MISTRAL-NEMO-INSTRUCT-2407 (Mistral Al,
2024) and QWEN2.5-7B-INSTRUCT (Qwen Team,
2024). These models are highly performant,
allowing us to test for generalizable effects across
model families, and later compare across model
sizes. More details are in Appendix A.3.

Training For SPRIG, we set population_size
= |P| = 9,000 and run SPRIG for 25 steps. Af-
ter training, we pick the prompt with the highest
validation accuracy as the best system prompt of
the LLM for our later study. Detailed prompts are
shown in Appendix Table 3. For PROTEGI, we
use the default settings for 7 steps and pick the

Task Optimized |
(ProTeGi)

System Optimized |
(OurModel)

System+Task Optimized |
(OurModel+ProTeGi)

000 005 010 015 020
Average Score Improvement

Figure 3: Average Score Improvement of all prompt
optimization methods relative to the unoptimized set-
ting, aggregated across LLMs. Our SPRIG significantly
outperforms CoT and the combination of SPRIG and
PROTEGT substantially exceeds all existing methods.

best Task Prompt on the validation set. Additional
details are in Appendix A.3.

Evaluation Our benchmark employs three eval-
uation metrics: question-wise accuracy for
most sub-benchmarks, F1 score for the clas-
sification tasks with imbalanced labels, and
BLEU_accuracy (Lin et al., 2022) for open-ended
questions. Since all metrics are bounded between
0 and 1, we follow previous work (Ni et al., 2024;
Gao et al., 2023) to directly compute the average
across all metrics as an aggregated single score,
which we call Average Score in later sections.

4.2 Results

Optimizing the System Prompt provides consis-
tent improvement to LLMs on par with task opti-
mization, as seen in Figure 3, when compared with
the Blank system and Simple task combination
baseline. These improvements were similar across
all three models, shown in Appendix Figure 12.
SPRIG improves ~10% over the unoptimized ver-
sion, which significantly outperformed the base-
line CoT method. Although its performance still
lags slightly behind PROTEGTI, this small gap is
still acceptable, considering that SPRIG uses the
same system prompt for all tasks, whereas PRO-
TEGI directly optimizes a different prompt for each
task. Furthermore, if we run PROTEGI on top
of SPRIG optimized system prompt, the resulting
prompt has an even larger performance improve-
ment above PROTEGI. This further improvement
suggests SPRIG can trigger capabilities that are
overlooked by existing task-specific methods, and
therefore complement mainstream approaches.

How do system prompts evolve? The changes
to the system prompt at each step consistently im-

0.64

o—0—o_ _o—e—0—*

062 | pme—tTTe

0.60

score

0.56 5 ettty pe—t=e—e—e—eTiTt
—g—O— g
Z

0.54 /-
Model Name
4 —— Meta-Llama-3.1-8B-Instruct
0.50 Mistral-Nemo-Instruct-2407
—— Qwen2.5-7B-Instruct

0 5 10 15 20 25
step

Figure 4: Average score of whole population at each
iteration when running SPRIG. All three LLMs see
significant improvements. Error bars are the variance in
the whole population.

prove performance, as seen in Figure 4. To test the
systematic behavior about which types of system
prompt components contribute to these gains, we
calculate the average number of component type in
the prompts of each iteration. As shown in Figure 5
and Appendix Figure 13, the number of CoT and
Behavioral components rapidly increases with each
iteration (especially in the early stages), and even-
tually converges to around 2-3 per prompt. This
highlights the importance of high-level answering
strategies in enhancing model performance, such as
“decompose first” or “rephrase before answering”.
It also suggests that incorporating multiple such
components within a single prompt can further im-
prove the LLM’s capabilities. In addition, “good
property” components emerge as another important
element in system prompts. Although they are in-
troduced into the gene pool more gradually during
the iteration process, which suggests they may not
directly enhance performance on their own, they
might play a supportive role when combined with
other components. In contrast, other components
such as “Role” (e.g., “you are an Al assistant")
were selected far less often than by chance, de-
spite these properties often being in recommend or
default prompts (OpenAl, 2024; Microsoft, 2024).

Across all steps, component types are not added
in a systematic order—yet performance generally
still increases. Rather than adding more of one
type (e.g., all CoT components), the system prompt
incorporates multiple types. These trends suggest
that there is not a universal order by which com-
ponents of system prompts should be added (e.g.,
first CoT, then Behavioral). Instead, there are likely
productive and beneficial combinations that matter

3.0

25 /K\

e Good property e Jailbreak

ju) Role Safety

§ ¢ Style + Behavioral
o

4 a Emotion Chain-of-Thought
v Scenario

St IS = . e S SN

0.0 a—t—t—t—t—t—a—t—2t —=

012 3 456 7 8 9 10111213141516 17 18 19 2021 22 23 24 25
Iterations

Figure 5: Number of Prompt Components of each type
during training iterations. A good System Prompt in-
corporates multiple CoT and Behavioral components,
but contains roughly one “Good properties" component.

more for performance.

Are task and system prompt optimizers learn-
ing the same strategies? Both system and task
prompt optimization improve performance. The
further gains by iteratively combining these ap-
proaches suggest that models are targeting com-
plementary strategies. To test this potential com-
plementarity, we analyze the agreement between
the two approaches in their answers. Figure 14
in Appendix shows the distribution of the two ap-
proaches’ agreement as a contingency table. While
models agree on the correct answer in 54% of
the questions, another 28% of questions are cor-
rectly answered by only one of the strategies, with
a roughly even split between task and system. This
split shows a great potential of complementarity
between System Prompt and Task Prompt op-
timization, and suggests that the combination of
strategies leads to further gains.

Which task types benefit most from system
prompt optimization? Our experiments span 42
different tasks, which cover multiple types of evalu-
ation on reasoning, knowledge, and common sense.
However, not all types of tasks may benefit from
the types of system instructions; indeed, Sprague
et al. (2024) showed that CoT only benefits math
and logics. To test for category-specific benefits,
we categorize all 42 tasks into seven types and
measure the score improvement of each type un-
der different prompt optimization settings. Task
categorizations are in Appendix Table 2.

Math and reasoning tasks benefit most from sys-
tem prompt optimization (Figure 6). However,
other task categories like social understanding and
language understanding see significant improve-

reasoning

math

social
understanding

commonsense

Base CoT

Task Optimized
(ProTeGi)

L ——— System Optimized
(OurModel)
OurModel + ProTeGi

---- Unoptimized

faithfulness

language
understanding

knowledge —

-0.05 0.00 0.05 0.10 0.15 0.20 0.25 0.30
Average Score Improvement

Figure 6: Average Score Improvement in different
task domains, aggregated across LLMs. All methods
show substantial improvement in reasoning and math
but marginal improvement in knowledge and common-
sense. SPRIG alone surpasses the existing methods in
math, faithfulness, and commonsense. SPRIG’s com-
bination with PROTEGTI further enhances the LLM’s
performance across most domains.

ments over the baseline. Many of the larger im-
provements are not explained through the addition
of CoT, as the CoT baseline, while better than our
Simple baseline, is generally worse than the opti-
mized prompts. Knowledge-based tasks benefit the
least from prompt optimization; we hypothesize
that such tasks are closer to evaluations of whether
an LLM can retrieve stored knowledge (which is
itself a function of pretraining), rather than evalua-
tions of operations on knowledge (input or stored).

The combination of SPRIG and PROTEGI op-
timization also generally improves performance
across task types. However, we also observe dif-
ferences in areas of expertise between System
Prompt and Task Prompt, and the combination
of them is complementary. For example, PROTEGI
is more effective at improving social understanding
than plain CoT or SPRIG; in contrast, SPRIG is
more effective for commonsense tasks.

5 Experiments: Generalization

Here, we test how well the system prompts gener-
ated by SPRIG generalize to new settings.

Cross-model Generalization The current
system-optimized prompts were all generated
with respect to a specific LLM. Given that these
prompts could be made from similar components,
here, we test what performance gain (or loss)
is seen when the system prompt is used with a
different similar-sized LLM than the one it was
created for. As a comparison, we also test the

0.16 1 Task Optimized (ProTeGi)
System Optimized (OurModel)

-

$ 0141
IS
@ 0.12 1
>
g_o.lo-
£ 0.08
g
£ 0.06 -
(@]
W 0.04 1

Target Model Non-target Model

Figure 7: Score Improvement when using a prompt
optimized on one LLM with a different LLM.

!
[
MGSM - ;
i
&
BELEBELE - —

1
XCOPA 4 -

| Base CoT

] Task Optimized
M3EXAM ___ (ProTeGi)
System Optimized
— (OurModel)
M_MMLU 4 — -=-- Unoptimized

005 000 005 010 015 020
Average Score Improvement

Figure 8: Score Improvement for Multilingual Bench-
marks when using an optimized English-language
prompt on other tasks. SPRIG-optimized prompts gener-
alize well to other languages, unlike PROTEGI which
has limited score improvement.

effect of swapping in a task-optimized prompt
from a different model.

Both optimized system and task prompts provide
some improvement but the larger gains for the origi-
nal LLM do not carry over to new LLMs, as shown
by the aggregated performance in Figure 7; see
Appendix Figures 15 and 16 for complete results.
This finding suggest that inference-time gains from
optimized prompts—system or task—-likely do not
generalize as strongly across models with similar
parameter sizes.

Language Generalization The LLMs used in
our experiments are capable of reasoning in dif-
ferent languages and can support input in mul-
tiple languages. Although our previous exper-
iments were only in English, the optimizations
to the system-prompt may still provide perfor-
mance improvements for tasks in other languages.
Here, we test this language generalization by select-
ing five comprehensive multilingual benchmarks
that are out-of-domain in the System Prompt

optimization process: MGSM (Shi et al., 2023a),
BELEBELE (Bandarkar et al., 2024), XCOPA (Ponti
et al., 2020), M3EXAM (Zhang et al., 2023) and
M_MMLU (Hendrycks et al., 2021). Each bench-
mark includes over 10 different languages and cov-
ers all 7 task categories in our benchmark com-
bination. We directly use the same optimized
System Prompt from § 4.2 (in English). Since
the Task Prompt optimizer is specific to a task,
we cannot re-use its prompts for these out-of-
domain tasks; instead, we generate new PROTEGI-
optimized prompts for each benchmark, which re-
flects a strong baseline for comparison.

Our optimized system prompt from § 4.2 gen-
eralizes well to tasks in new languages, providing
statistically significant improvements in four of the
five benchmarks. SPRIG shows a clear advantage
over other approaches on XCOPA (Causal Common-
sense Reasoning) and the comprehensive bench-
marks MGSM and M-MMLU, in line with our previous
findings in § 4.2. Despite being directly optimized
for these new tasks, PROTEGI provides limited
improvements in these multilingual tasks bench-
marks. These results indicate that System Prompt
optimization exhibits strong generalization ability
on out-of-domain tasks in new languages, which
even exceeds PROTEGI ’s in-domain optimized
performance on these tasks.

Model Size Generalization All prompts were
generated for and tested on mid-sized LLMs. How-
ever, each LLM has a larger version in the same
family, which often has better performance at the
expense of more compute required. Being able to
optimize the system prompt with a smaller model
and then deploy that prompt on a larger model to
the same effect would have significant performance
benefits. Therefore, here, we test for generaliza-
tion when using a prompt from a smaller LLM
with a larger version. Specifically, we test with
LLAMA3.1-70B-INSTRUCT, MISTRAL-LARGE-
INSTRUCT-2407 and QWEN2.5-72B-INSTRUCT.
We use the same evaluation setup as in previous sec-
tions, with only the LLMs’ parameter size changed.

Both system- and task-optimized prompts indi-
vidually do not provide statistically significant per-
formance gains when created using a smaller model
and then applied to a larger, as shown in Figure 9.
(Complete results for all LLMs are in Appendix
Figure 17.) However, a system-+task optimized
prompt provides a 1.6% improvement, suggesting
this approach can generalize. Therefore, we find

Base CoT
Task Optimized | |_
(ProTeGi) L]

System Optimized |
(OurModel)

System+Task Optimized

=
|
(OurModel+ProTeGi) |

~0.03 -0.02 —0.01 0.00 0.0l 0.2 0.03
Average Score Improvement

Figure 9: Average Score Improvement when using
prompts optimized with medium-size LLMs’ on the
larger LLM in the same family. shows the benefits of
system-+task optimized prompts still generalize well to
larger model sizes.

40
A No prompt

Base CoT
Task optimized (ProTeGi)

& System optimized (OurModel)
System+Task Optimized

N
S}
!

~N
o v ! 2
qC) (OurModel+ProTeGi) ‘#{‘

a ‘N
s L
o | Aax 4
g ° FARAMER A
S Y o e
(] P f A :‘ 484
3 Aw‘#‘ﬁ:
g 20 B {k‘“ »
c 4 o s Ca
& As rall

a

1
IS
=)

74‘10 —‘30 —‘20 7‘1() 6 lb 2‘0 3‘0 4‘0
Principal Component 1

Figure 10: PCA analysis of the hidden state in
Llama-3.1-8B-Instruct with different prompting meth-
ods. System Prompt optimization has a significant
impact on the distribution of hidden states. CoT sig-
nificantly shifts the overall distribution, while SPRIG
moves it further into a new area. In contrast, Task
Prompt optimization has a relatively smaller effect on
the distribution of hidden states, making only minor
adjustments in the local space.

that existing prompt optimizations can generalize
to larger parameter sizes but need to consider both
system and tasks prompt parts together and high-
light the need for prompting strategies specifically
for larger LLMs.

6 Analysis: Prompt Embedding Space

Given the performance improvements and gener-
alization seen when using the prompt instructions
introduced by SPRIG, it is reasonable to wonder
what effect these instructions are having on the
neural activations such that the LLM is likely to de-
code the correct answer. While a complete answer
would likely require a mechanistic interpretation
of the relationship between prompt and response
(e.g., Bhargava et al., 2023), here, we attempt to
gain some intuition on the instructions’ effects by

visualizing the embedding space during different
optimization strategies and comparing the changes
relative to the Simple baseline instructions.

Here, we randomly sample 420 questions (10
per task), probe the LLM hidden states under dif-
ferent experiment settings, and visualize the first
two principal components of Principal Component
Analysis (PCA). Figure 10 shows the PCA results
for LLAMA3.1-8B-INSTRUCT. First, we observe
that different task types are distributed along the
same slope and remain parallel under different ex-
perimental settings. Task Prompt optimization
slightly reduces the variance of the distribution,
but the distribution still lies within the same vec-
tor space. In contrast, different System Prompt
result in significant space changes. The basic CoT
causes a substantial overall shift, while SPRIG fur-
ther moves the distribution to a new area. The other
two LLMs’ PCA are shown in Appendix Figure 18
and 19, and show similar trends.

Thus, we propose the hypothesis that System
Prompt optimization searches for appropriate re-
gions in the global space, while Task Prompt opti-
mization performs fine-tuning within a local space.
This reveals the potential of System Prompt opti-
mization to significantly alter model behavior and
offers new insights for future prompt research to
use System Prompt optimization first to locate an
appropriate global behavior space, then use task
prompt optimization to fine-tune downstream per-
formance within that space.

7 Conclusion

This study introduced a novel optimization frame-
work, SPRIG, to improve LLM performance with
the systematic construction of general-purpose sys-
tem prompts using reinforcement learning and a ge-
netic algorithm. By leveraging a diverse collection
of prompt components and evaluating across a di-
verse range of tasks, we demonstrate that optimized
system prompts provide consistent improvements
on par with optimized task prompts. Moreover,
combining system and task prompt optimizations
offers complementary benefits, leading to further
improvements in model performance across varied
domains. Further, we find that these performance
benefits for an optimized prompt generalize across
(1) model sizes and (ii) different languages. Our
findings highlight the potential of system prompt
optimization to complement and enhance LLM per-
formance for new languages and models.

8 Limitations

Despite the promising results of SPRIG, several
limitations remain in our study. First, the computa-
tional cost of optimizing system prompts is higher
compared to task-specific optimization methods
even though certain pruning was applied, which
could limit its scalability to real-world applica-
tions. Therefore, exploring more effective prun-
ing or exploring algorithms would be essential in
future work. Second, data contamination has be-
come a significant issue in LLM benchmarking
today (Magar and Schwartz, 2022), especially for
benchmarks that include tasks from several years
ago. While we have aimed to select only bench-
marks where there was still room for improvement
(e.g., BigBench-Hard) or benchmarks that were
released very recently after these LLMs were re-
leased, our research did not deeply explore how to
mitigate this impact in system prompt evaluation.
Future work could further investigate the effective-
ness of prompt optimization on more recent bench-
marks that are less affected by data contamination.

9 Ethical Considerations

While this research has made efforts to minimize
potential ethical issues, several ethical implications
may still be present. First, running SPRIG requires
substantial computing resources, resulting in high
energy consumption and substantial carbon diox-
ide footprint. Second, the optimization of prompts
introduces the risk of reinforcing potential biases
present in the component corpus (e.g., any system-
atic downstream behavioral changes from prompt-
ing an LLM to be a “professor”), which may prop-
agate unintended stereotypes or discriminatory be-
havior in model outputs. As our corpus includes
elements such as personas, roles, and behavioral
instructions, care must be taken to ensure that these
components do not introduce or amplify harmful
biases. Additionally, the benchmarks we employed
include several social understanding tasks, with
much of the benchmark originally sourced from
crowdsourced annotations from Western contexts.
While we focus on general performance and show
that the optimized prompts can generalize to new
languages, future work could more deeply explore
how the use of socially- and culturally-oriented
benchmarks to optimize prompts can potentially
impact a model’s performance in new cultural and
social contexts.

References

Lucas Bandarkar, Davis Liang, Benjamin Muller, Mikel
Artetxe, Satya Narayan Shukla, Donald Husa, Naman
Goyal, Abhinandan Krishnan, Luke Zettlemoyer, and
Madian Khabsa. 2024. The belebele benchmark: a
parallel reading comprehension dataset in 122 lan-
guage variants. In Proceedings of the 62nd Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 749-775,
Bangkok, Thailand and virtual meeting. Association
for Computational Linguistics.

Aman Bhargava, Cameron Witkowski, Shi-Zhuo Looi,
and Matt Thomson. 2023. What’s the magic word?
a control theory of 1lm prompting. ArXiv preprint,
abs/2310.04444.

David Breunig. 2025. Claude’s system prompt: Chat-
bots are more than just models. Accessed: 2025-05-
20.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, and 12 others. 2020. Language
models are few-shot learners. In Advances in Neural
Information Processing Systems 33: Annual Confer-
ence on Neural Information Processing Systems 2020,
NeurIPS 2020, December 6-12, 2020, virtual.

Minje Choi, Jiaxin Pei, Sagar Kumar, Chang Shu, and
David Jurgens. 2023. Do LLMs understand social
knowledge? evaluating the sociability of large lan-
guage models with SocKET benchmark. In Proceed-
ings of the 2023 Conference on Empirical Methods in
Natural Language Processing, pages 11370-11403,
Singapore. Association for Computational Linguis-
tics.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question an-
swering? try arc, the ai2 reasoning challenge. ArXiv
preprint, abs/1803.05457.

Databricks. 2024. Introducing dbrx: A new state-of-the-
art open llm. Accessed: 2024-10-14.

Mingkai Deng, Jianyu Wang, Cheng-Ping Hsieh, Yi-
han Wang, Han Guo, Tianmin Shu, Meng Song, Eric
Xing, and Zhiting Hu. 2022. RLPrompt: Optimizing
discrete text prompts with reinforcement learning.
In Proceedings of the 2022 Conference on Empiri-
cal Methods in Natural Language Processing, pages
3369-3391, Abu Dhabi, United Arab Emirates. As-
sociation for Computational Linguistics.

Yihe Deng, Weitong Zhang, Zixiang Chen, and Quan-
quan Gu. 2023. Rephrase and respond: Let large
language models ask better questions for themselves.

https://aclanthology.org/2024.acl-long.44
https://aclanthology.org/2024.acl-long.44
https://aclanthology.org/2024.acl-long.44
https://aclanthology.org/2024.acl-long.44
https://aclanthology.org/2024.acl-long.44
https://arxiv.org/abs/2310.04444
https://arxiv.org/abs/2310.04444
https://arxiv.org/abs/2310.04444
https://www.dbreunig.com/2025/05/07/claude-s-system-prompt-chatbots-are-more-than-just-models.html
https://www.dbreunig.com/2025/05/07/claude-s-system-prompt-chatbots-are-more-than-just-models.html
https://www.dbreunig.com/2025/05/07/claude-s-system-prompt-chatbots-are-more-than-just-models.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://doi.org/10.18653/v1/2023.emnlp-main.699
https://doi.org/10.18653/v1/2023.emnlp-main.699
https://doi.org/10.18653/v1/2023.emnlp-main.699
https://doi.org/10.18653/v1/2023.emnlp-main.699
https://doi.org/10.18653/v1/2023.emnlp-main.699
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/1803.05457
https://www.databricks.com/blog/introducing-dbrx-new-state-art-open-llm
https://www.databricks.com/blog/introducing-dbrx-new-state-art-open-llm
https://www.databricks.com/blog/introducing-dbrx-new-state-art-open-llm
https://doi.org/10.18653/v1/2022.emnlp-main.222
https://doi.org/10.18653/v1/2022.emnlp-main.222
https://doi.org/10.18653/v1/2022.emnlp-main.222
https://arxiv.org/abs/2311.04205
https://arxiv.org/abs/2311.04205
https://arxiv.org/abs/2311.04205

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Bider-
man, Sid Black, Anthony DiPofi, Charles Foster,
Laurence Golding, Jeffrey Hsu, Alain Le Noac’h,
Haonan Li, Kyle McDonell, Niklas Muennighoff,
Chris Ociepa, Jason Phang, Laria Reynolds, Hailey
Schoelkopf, Aviya Skowron, Lintang Sutawika, and
5 others. 2023. A framework for few-shot language
model evaluation.

Dan Hendrycks, Collin Burns, Steven Basart, Andy
Zou, Mantas Mazeika, Dawn Song, and Jacob Stein-
hardt. 2021. Measuring massive multitask language
understanding. In 9th International Conference on
Learning Representations, ICLR 2021, Virtual Event,
Austria, May 3-7, 2021. OpenReview.net.

Kalervo Jarvelin and Jaana Kekildinen. 2002. Cumu-
lated gain-based evaluation of ir techniques. ACM
Trans. Inf. Syst., 20(4):422-446.

Junseok Kim, Nakyeong Yang, and Kyomin Jung. 2024.
Persona is a double-edged sword: Enhancing the
zero-shot reasoning by ensembling the role-playing
and neutral prompts.

Hannah Kirk, Wenjie Yin, Bertie Vidgen, and Paul
Rottger. 2023. SemEval-2023 task 10: Explainable
detection of online sexism. In Proceedings of the
17th International Workshop on Semantic Evaluation
(SemEval-2023), pages 2193-2210, Toronto, Canada.
Association for Computational Linguistics.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. 2023. Effi-
cient memory management for large language model
serving with pagedattention. In Proceedings of the
ACM SIGOPS 29th Symposium on Operating Systems
Principles.

Cheng Li, Jindong Wang, Yixuan Zhang, Kaijie Zhu,
Wenxin Hou, Jianxun Lian, Fang Luo, Qiang Yang,
and Xing Xie. 2023. Large language models under-
stand and can be enhanced by emotional stimuli.

Moxin Li, Wenjie Wang, Fuli Feng, Fengbin Zhu, Qifan
Wang, and Tat-Seng Chua. 2024. Think twice before
trusting: Self-detection for large language models
through comprehensive answer reflection.

Shiyang Li, Jianshu Chen, Yelong Shen, Zhiyu Chen,
Xinlu Zhang, Zekun Li, Hong Wang, Jing Qian,
Baolin Peng, Yi Mao, Wenhu Chen, and Xifeng
Yan. 2022. Explanations from large language models
make small reasoners better.

Stephanie Lin, Jacob Hilton, and Owain Evans. 2022.
TruthfulQA: Measuring how models mimic human
falsehoods. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 3214-3252, Dublin,
Ireland. Association for Computational Linguistics.

Albert Lu, Hongxin Zhang, Yanzhe Zhang, Xuezhi
Wang, and Diyi Yang. 2023. Bounding the capabili-
ties of large language models in open text generation

10

with prompt constraints. In Findings of the Asso-
ciation for Computational Linguistics: EACL 2023,
pages 19822008, Dubrovnik, Croatia. Association
for Computational Linguistics.

Inbal Magar and Roy Schwartz. 2022. Data contamina-
tion: From memorization to exploitation. In Proceed-
ings of the 60th Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Pa-
pers), pages 157-165, Dublin, Ireland. Association
for Computational Linguistics.

Meta. 2024. Introducing llama 3.1: Our most capa-
ble models to date. https://ai.meta.com/blog/
meta-1lama-3-1/. Accessed: 2024-10-14.

Microsoft. 2024. Advanced prompt engineering con-
cepts. Accessed: 2024-10-14.

Mistral Al. 2024. Mistral nemo: Collaborative innova-
tion with nvidia. Accessed: 2024-10-14.

Humza Naveed, Asad Ullah Khan, Shi Qiu, Muhammad
Saqgib, Saeed Anwar, Muhammad Usman, Naveed
Akhtar, Nick Barnes, and Ajmal Mian. 2023. A
comprehensive overview of large language models.

Jinjie Ni, Fuzhao Xue, Xiang Yue, Yuntian Deng, Mahir
Shah, Kabir Jain, Graham Neubig, and Yang You.
2024. Mixeval: Deriving wisdom of the crowd from
IIm benchmark mixtures.

OpenAl. 2024. Tactic: Ask the model to adopt a per-
sona. Accessed: 2024-10-14.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
and 2 others. 2019. Pytorch: An imperative style,
high-performance deep learning library. In Advances
in Neural Information Processing Systems 32: An-
nual Conference on Neural Information Processing
Systems 2019, NeurIPS 2019, December 8-14, 2019,
Vancouver, BC, Canada, pages 8024—-8035.

Edoardo Maria Ponti, Goran Glavas, Olga Majewska,
Qianchu Liu, Ivan Vuli¢, and Anna Korhonen. 2020.
XCOPA: A multilingual dataset for causal common-
sense reasoning. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 2362-2376, Online. As-
sociation for Computational Linguistics.

Archiki Prasad, Peter Hase, Xiang Zhou, and Mohit
Bansal. 2023. GrIPS: Gradient-free, edit-based in-
struction search for prompting large language models.
In Proceedings of the 17th Conference of the Euro-
pean Chapter of the Association for Computational
Linguistics, pages 3845-3864, Dubrovnik, Croatia.
Association for Computational Linguistics.

https://doi.org/10.5281/zenodo.10256836
https://doi.org/10.5281/zenodo.10256836
https://doi.org/10.5281/zenodo.10256836
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=d7KBjmI3GmQ
https://doi.org/10.1145/582415.582418
https://doi.org/10.1145/582415.582418
https://doi.org/10.1145/582415.582418
https://arxiv.org/abs/2408.08631
https://arxiv.org/abs/2408.08631
https://arxiv.org/abs/2408.08631
https://arxiv.org/abs/2408.08631
https://arxiv.org/abs/2408.08631
https://doi.org/10.18653/v1/2023.semeval-1.305
https://doi.org/10.18653/v1/2023.semeval-1.305
https://doi.org/10.18653/v1/2023.semeval-1.305
https://arxiv.org/abs/2307.11760
https://arxiv.org/abs/2307.11760
https://arxiv.org/abs/2307.11760
https://arxiv.org/abs/2403.09972
https://arxiv.org/abs/2403.09972
https://arxiv.org/abs/2403.09972
https://arxiv.org/abs/2403.09972
https://arxiv.org/abs/2403.09972
https://arxiv.org/abs/2210.06726
https://arxiv.org/abs/2210.06726
https://arxiv.org/abs/2210.06726
https://doi.org/10.18653/v1/2022.acl-long.229
https://doi.org/10.18653/v1/2022.acl-long.229
https://doi.org/10.18653/v1/2022.acl-long.229
https://doi.org/10.18653/v1/2023.findings-eacl.148
https://doi.org/10.18653/v1/2023.findings-eacl.148
https://doi.org/10.18653/v1/2023.findings-eacl.148
https://doi.org/10.18653/v1/2023.findings-eacl.148
https://doi.org/10.18653/v1/2023.findings-eacl.148
https://doi.org/10.18653/v1/2022.acl-short.18
https://doi.org/10.18653/v1/2022.acl-short.18
https://doi.org/10.18653/v1/2022.acl-short.18
https://ai.meta.com/blog/meta-llama-3-1/
https://ai.meta.com/blog/meta-llama-3-1/
https://ai.meta.com/blog/meta-llama-3-1/
https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/advanced-prompt-engineering
https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/advanced-prompt-engineering
https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/advanced-prompt-engineering
https://mistral.ai/news/mistral-nemo/
https://mistral.ai/news/mistral-nemo/
https://mistral.ai/news/mistral-nemo/
https://arxiv.org/abs/2307.06435
https://arxiv.org/abs/2307.06435
https://arxiv.org/abs/2307.06435
https://arxiv.org/abs/2406.06565
https://arxiv.org/abs/2406.06565
https://arxiv.org/abs/2406.06565
https://platform.openai.com/docs/guides/prompt-engineering/tactic-ask-the-model-to-adopt-a-persona
https://platform.openai.com/docs/guides/prompt-engineering/tactic-ask-the-model-to-adopt-a-persona
https://platform.openai.com/docs/guides/prompt-engineering/tactic-ask-the-model-to-adopt-a-persona
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://doi.org/10.18653/v1/2020.emnlp-main.185
https://doi.org/10.18653/v1/2020.emnlp-main.185
https://doi.org/10.18653/v1/2020.emnlp-main.185
https://doi.org/10.18653/v1/2023.eacl-main.277
https://doi.org/10.18653/v1/2023.eacl-main.277
https://doi.org/10.18653/v1/2023.eacl-main.277

Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt,
Noah Smith, and Mike Lewis. 2023. Measuring and
narrowing the compositionality gap in language mod-
els. In Findings of the Association for Computational
Linguistics: EMNLP 2023, pages 5687-5711, Singa-
pore. Association for Computational Linguistics.

Reid Pryzant, Dan Iter, Jerry Li, Yin Lee, Chenguang
Zhu, and Michael Zeng. 2023. Automatic prompt op-
timization with “gradient descent” and beam search.
In Proceedings of the 2023 Conference on Empiri-
cal Methods in Natural Language Processing, pages
7957-7968, Singapore. Association for Computa-
tional Linguistics.

Qwen Team. 2024. Qwen2.5: A party of foundation
models.

Laria Reynolds and Kyle McDonell. 2021. Prompt
programming for large language models: Beyond the
few-shot paradigm.

Sander Schulhoff, Michael Ilie, Nishant Balepur, Kon-
stantine Kahadze, Amanda Liu, Chenglei Si, Yin-
heng Li, Aayush Gupta, HyoJung Han, Sevien Schul-
hoff, Pranav Sandeep Dulepet, Saurav Vidyadhara,
Dayeon Ki, Sweta Agrawal, Chau Pham, Gerson
Kroiz, Feileen Li, Hudson Tao, Ashay Srivastava,
and 12 others. 2024. The prompt report: A system-
atic survey of prompting techniques.

Xinyue Shen, Zeyuan Chen, Michael Backes, Yun Shen,
and Yang Zhang. 2023. "do anything now": Charac-
terizing and evaluating in-the-wild jailbreak prompts
on large language models.

Freda Shi, Mirac Suzgun, Markus Freitag, Xuezhi Wang,
Suraj Srivats, Soroush Vosoughi, Hyung Won Chung,
Yi Tay, Sebastian Ruder, Denny Zhou, Dipanjan Das,
and Jason Wei. 2023a. Language models are multi-
lingual chain-of-thought reasoners. In The Eleventh
International Conference on Learning Representa-
tions, ICLR 2023, Kigali, Rwanda, May 1-5, 2023.
OpenReview.net.

Weijia Shi, Xiaochuang Han, Hila Gonen, Ari Holtz-
man, Yulia Tsvetkov, and Luke Zettlemoyer. 2023b.
Toward human readable prompt tuning: Kubrick’s
the shining is a good movie, and a good prompt too?
In Findings of the Association for Computational
Linguistics: EMNLP 2023, pages 10994-11005, Sin-
gapore. Association for Computational Linguistics.

Taylor Shin, Yasaman Razeghi, Robert L. Logan IV, Eric
Wallace, and Sameer Singh. 2020. AutoPrompt: Elic-
iting Knowledge from Language Models with Auto-
matically Generated Prompts. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 4222-4235,
Online. Association for Computational Linguistics.

C. Spearman. 1904. The proof and measurement of as-
sociation between two things. The American Journal
of Psychology, 15(1):72-101.

11

Zayne Sprague, Fangcong Yin, Juan Diego Rodriguez,
Dongwei Jiang, Manya Wadhwa, Prasann Singhal,
Xinyu Zhao, Xi Ye, Kyle Mahowald, and Greg Dur-
rett. 2024. To cot or not to cot? chain-of-thought
helps mainly on math and symbolic reasoning.

Mirac Suzgun, Nathan Scales, Nathanael Schirli, Se-
bastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc Le, Ed Chi, Denny
Zhou, and Jason Wei. 2023. Challenging BIG-bench
tasks and whether chain-of-thought can solve them.
In Findings of the Association for Computational Lin-
guistics: ACL 2023, pages 13003-13051, Toronto,
Canada. Association for Computational Linguistics.

Zhi Rui Tam, Cheng-Kuang Wu, Yi-Lin Tsai, Chieh-
Yen Lin, Hung yi Lee, and Yun-Nung Chen. 2024.
Let me speak freely? a study on the impact of format
restrictions on performance of large language models.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, and 49 oth-
ers. 2023. Llama 2: Open foundation and fine-tuned
chat models. Preprint, arXiv:2307.09288.

Xingchen Wan, Ruoxi Sun, Hootan Nakhost, and Ser-
can O. Arik. 2024. Teach better or show smarter?
on instructions and exemplars in automatic prompt
optimization.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V.
Le, Ed H. Chi, Sharan Narang, Aakanksha Chowd-
hery, and Denny Zhou. 2023. Self-consistency
improves chain of thought reasoning in language
models. In The Eleventh International Conference
on Learning Representations, ICLR 2023, Kigali,
Rwanda, May 1-5, 2023. OpenReview.net.

Benjamin Warner, Antoine Chaffin, Benjamin Clavié,
Orion Weller, Oskar Hallstrom, Said Taghadouini,
Alexis Gallagher, Raja Biswas, Faisal Ladhak, Tom
Aarsen, Nathan Cooper, Griffin Adams, Jeremy
Howard, and Iacopo Poli. 2024. Smarter, better,
faster, longer: A modern bidirectional encoder for
fast, memory efficient, and long context finetuning
and inference. Preprint, arXiv:2412.13663.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le,
and Denny Zhou. 2022. Chain-of-thought prompting
elicits reasoning in large language models. In Ad-
vances in Neural Information Processing Systems 35:
Annual Conference on Neural Information Process-
ing Systems 2022, NeurIPS 2022, New Orleans, LA,
USA, November 28 - December 9, 2022.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven

https://doi.org/10.18653/v1/2023.findings-emnlp.378
https://doi.org/10.18653/v1/2023.findings-emnlp.378
https://doi.org/10.18653/v1/2023.findings-emnlp.378
https://doi.org/10.18653/v1/2023.findings-emnlp.378
https://doi.org/10.18653/v1/2023.findings-emnlp.378
https://doi.org/10.18653/v1/2023.emnlp-main.494
https://doi.org/10.18653/v1/2023.emnlp-main.494
https://doi.org/10.18653/v1/2023.emnlp-main.494
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://arxiv.org/abs/2102.07350
https://arxiv.org/abs/2102.07350
https://arxiv.org/abs/2102.07350
https://arxiv.org/abs/2102.07350
https://arxiv.org/abs/2102.07350
https://arxiv.org/abs/2406.06608
https://arxiv.org/abs/2406.06608
https://arxiv.org/abs/2406.06608
https://arxiv.org/abs/2308.03825
https://arxiv.org/abs/2308.03825
https://arxiv.org/abs/2308.03825
https://arxiv.org/abs/2308.03825
https://arxiv.org/abs/2308.03825
https://openreview.net/pdf?id=fR3wGCk-IXp
https://openreview.net/pdf?id=fR3wGCk-IXp
https://openreview.net/pdf?id=fR3wGCk-IXp
https://doi.org/10.18653/v1/2023.findings-emnlp.733
https://doi.org/10.18653/v1/2023.findings-emnlp.733
https://doi.org/10.18653/v1/2023.findings-emnlp.733
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.18653/v1/2020.emnlp-main.346
http://www.jstor.org/stable/1412159
http://www.jstor.org/stable/1412159
http://www.jstor.org/stable/1412159
https://arxiv.org/abs/2409.12183
https://arxiv.org/abs/2409.12183
https://arxiv.org/abs/2409.12183
https://doi.org/10.18653/v1/2023.findings-acl.824
https://doi.org/10.18653/v1/2023.findings-acl.824
https://doi.org/10.18653/v1/2023.findings-acl.824
https://arxiv.org/abs/2408.02442
https://arxiv.org/abs/2408.02442
https://arxiv.org/abs/2408.02442
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2406.15708
https://arxiv.org/abs/2406.15708
https://arxiv.org/abs/2406.15708
https://arxiv.org/abs/2406.15708
https://arxiv.org/abs/2406.15708
https://openreview.net/pdf?id=1PL1NIMMrw
https://openreview.net/pdf?id=1PL1NIMMrw
https://openreview.net/pdf?id=1PL1NIMMrw
https://openreview.net/pdf?id=1PL1NIMMrw
https://openreview.net/pdf?id=1PL1NIMMrw
https://arxiv.org/abs/2412.13663
https://arxiv.org/abs/2412.13663
https://arxiv.org/abs/2412.13663
https://arxiv.org/abs/2412.13663
https://arxiv.org/abs/2412.13663
https://arxiv.org/abs/2412.13663
https://arxiv.org/abs/2412.13663
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html

Le Scao, Sylvain Gugger, and 3 others. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38—45, Online. Association
for Computational Linguistics.

Max Woolf. 2024. Does offering chatgpt a tip cause
it to generate better text? an analysis. Accessed:
2024-10-14.

Yufan Wu, Yinghui He, Yilin Jia, Rada Mihalcea, Yu-
long Chen, and Naihao Deng. 2023. Hi-ToM: A
benchmark for evaluating higher-order theory of
mind reasoning in large language models. In Find-
ings of the Association for Computational Linguis-
tics: EMNLP 2023, pages 10691-10706, Singapore.
Association for Computational Linguistics.

xAlL 2025. Grok system prompts. https://github.
com/xai-org/grok-prompts. GitHub repository,
accessed: 2025-05-20.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu,
Quoc V. Le, Denny Zhou, and Xinyun Chen. 2023.
Large language models as optimizers.

Michihiro Yasunaga, Xinyun Chen, Yujia Li, Panupong
Pasupat, Jure Leskovec, Percy Liang, Ed H. Chi,
and Denny Zhou. 2023. Large language models as
analogical reasoners.

Zhiyuan Yu, Xiaogeng Liu, Shunning Liang, Zach
Cameron, Chaowei Xiao, and Ning Zhang. 2024.
Don’t listen to me: Understanding and exploring
jailbreak prompts of large language models.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. HellaSwag: Can a ma-
chine really finish your sentence? In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 4791-4800, Florence,
Italy. Association for Computational Linguistics.

Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Pe-
ter J. Liu. 2020. PEGASUS: pre-training with ex-
tracted gap-sentences for abstractive summarization.
In Proceedings of the 37th International Conference
on Machine Learning, ICML 2020, 13-18 July 2020,
Virtual Event, volume 119 of Proceedings of Machine
Learning Research, pages 11328-11339. PMLR.

Wenxuan Zhang, Mahani Aljunied, Chang Gao,
Yew Ken Chia, and Lidong Bing. 2023. M3exam: A
multilingual, multimodal, multilevel benchmark for
examining large language models. In Advances in
Neural Information Processing Systems 36: Annual
Conference on Neural Information Processing Sys-
tems 2023, NeurIPS 2023, New Orleans, LA, USA,
December 10 - 16, 2023.

Mingqian Zheng, Jiaxin Pei, Lajanugen Logeswaran,
Moontae Lee, and David Jurgens. 2023. When "a
helpful assistant” is not really helpful: Personas in
system prompts do not improve performances of
large language models.

12

Denny Zhou, Nathanael Schirli, Le Hou, Jason Wei,
Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Claire Cui, Olivier Bousquet, Quoc V. Le, and Ed H.
Chi. 2023a. Least-to-most prompting enables com-
plex reasoning in large language models. In The
Eleventh International Conference on Learning Rep-
resentations, ICLR 2023, Kigali, Rwanda, May 1-5,
2023. OpenReview.net.

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Sid-
dhartha Brahma, Sujoy Basu, Yi Luan, Denny Zhou,
and Le Hou. 2023b. Instruction-following evalu-
ation for large language models. ArXiv preprint,
abs/2311.07911.

Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han,
Keiran Paster, Silviu Pitis, Harris Chan, and Jimmy
Ba. 2023c. Large language models are human-level
prompt engineers. In The Eleventh International
Conference on Learning Representations, ICLR 2023,
Kigali, Rwanda, May 1-5, 2023. OpenReview.net.

https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://minimaxir.com/2024/02/chatgpt-tips-analysis/
https://minimaxir.com/2024/02/chatgpt-tips-analysis/
https://minimaxir.com/2024/02/chatgpt-tips-analysis/
https://doi.org/10.18653/v1/2023.findings-emnlp.717
https://doi.org/10.18653/v1/2023.findings-emnlp.717
https://doi.org/10.18653/v1/2023.findings-emnlp.717
https://doi.org/10.18653/v1/2023.findings-emnlp.717
https://doi.org/10.18653/v1/2023.findings-emnlp.717
https://github.com/xai-org/grok-prompts
https://github.com/xai-org/grok-prompts
https://github.com/xai-org/grok-prompts
https://arxiv.org/abs/2309.03409
https://arxiv.org/abs/2310.01714
https://arxiv.org/abs/2310.01714
https://arxiv.org/abs/2310.01714
https://arxiv.org/abs/2403.17336
https://arxiv.org/abs/2403.17336
https://arxiv.org/abs/2403.17336
https://doi.org/10.18653/v1/P19-1472
https://doi.org/10.18653/v1/P19-1472
https://doi.org/10.18653/v1/P19-1472
http://proceedings.mlr.press/v119/zhang20ae.html
http://proceedings.mlr.press/v119/zhang20ae.html
http://proceedings.mlr.press/v119/zhang20ae.html
http://papers.nips.cc/paper_files/paper/2023/hash/117c5c8622b0d539f74f6d1fb082a2e9-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/117c5c8622b0d539f74f6d1fb082a2e9-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/117c5c8622b0d539f74f6d1fb082a2e9-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/117c5c8622b0d539f74f6d1fb082a2e9-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/117c5c8622b0d539f74f6d1fb082a2e9-Abstract-Datasets_and_Benchmarks.html
https://arxiv.org/abs/2311.10054
https://arxiv.org/abs/2311.10054
https://arxiv.org/abs/2311.10054
https://arxiv.org/abs/2311.10054
https://arxiv.org/abs/2311.10054
https://arxiv.org/abs/2311.10054
https://arxiv.org/abs/2311.10054
https://openreview.net/pdf?id=WZH7099tgfM
https://openreview.net/pdf?id=WZH7099tgfM
https://openreview.net/pdf?id=WZH7099tgfM
https://arxiv.org/abs/2311.07911
https://arxiv.org/abs/2311.07911
https://arxiv.org/abs/2311.07911
https://openreview.net/pdf?id=92gvk82DE-
https://openreview.net/pdf?id=92gvk82DE-
https://openreview.net/pdf?id=92gvk82DE-

A Appendix

A.1 Prompt Component Corpus Details

We list the counts and representatives in each
prompt component category of Py in Table 1.

To construct the prompt component corpus P,
we use the following prompt template for each
prompt category. In each iteration ¢, we randomly
sample 3 prompts from the current pool P;_; as
examples. Each iteration generates 50 new com-
ponents, which are then added back to P;_; to
construct P;. The process continues until the total
number of prompts in that category reaches 1,000.

category_definitions {

"good_property”: "Describes a
desirable assistant trait (e.g
., 'You are empathetic.')"”

"role": "Assigns a specific
identity or occupation to the
assistant (e.g., 'You are a
mathematician.')"”,

"style": "Specifies a particular
writing or response style (e.g
., 'Write a humorous answer.')

n
)

"emotion": "Expresses or evokes an
emotional state (e.g., 'This
is important to my career.')",
"scenario”: "Introduces a
hypothetical situation or
consequence (e.g., 'The fate
of the world depends on your
answer.')",
"jailbreak": "Attempts to override
model constraints (e.g., '
Forget all previous
instructions.', 'You will
receive a $200 tip if you
answer correctly.')"”,
"safety"”: "Ensures responsible and
ethical responses (e.g., '
Avoid stereotyping.', 'If you
are unsure, say I don't know
-,
"behavioral”: "Directs how the
model should approach
answering (e.g., 'Ask follow-
up questions before answering
")”Y
"CoT": "Encourages step-by-step
reasoning (e.g., 'Let's think
step by step.', 'Break the
gquestion into subquestions.')

n
)

3

user_message frr
Prompt Category: {category} - {
category_description}

Here are some examples of system
prompt components in this
category:

{"\n".join(f"- {p}" for p in

13

random. sample (prompt_pooll[
categoryl, 3))}

Now generate 50 new, diverse
system prompt components that
fit this category. You need to

be creative and don't need to
follow the structure in
examples.

Make sure each prompt is unique
and offers a different
perspective. Output each
prompt on a new line without
numbering. No additional
explanations or formatting.

A.2 Prompt Reward Model Details

Data Preparation We generate 10,000 prompts

by randomly combining prompt components from

the corpus P. The length of each prompt L follows

an empirically defined distribution with probability

P(L = i) = —s5——5+, Where i € {1,...,30},
D=1

to ensure coverage across the full range of 0 to 30
components. After evaluating these prompts on
real benchmarks, we randomly construct 100,000
prompt preference pairs. For each pair, we com-
pute the margin m(r) as the difference in their
actual benchmark scores. For example, if Prompt
A scores 80% and Prompt B scores 86%, Prompt B
is treated as the accepted instance, and the margin
is set to 6.

Model Training Following prior work, we
train our reward model using a max-margin
pairwise loss (Touvron et al., 2023) Lianking =
—log (o (gl ye) — ro(w,y,) —m(r)), with
ModernBERT (Warner et al.,, 2024) as the
backbone. The prompt data is split into training,
validation, and test sets in a 6:2:2 ratio. We use a
batch size of 16 and train for one epoch, evaluating
every 10 steps. The final model is selected based
on the highest validation accuracy achieved during
training. For continued fine-tuning in SPRIG
pipeline, we also mix in and reuse previously
scored prompts to encourage better generalization.

Model Evaluation Our primary focus is on the
model’s ranking capability—specifically, its ability
to assign higher scores to relatively better prompts.
To this end, we evaluate the model using Spearman
correlation and NDCG. For NDCG computation,
we assign a relevance score 7; to each prompt based

Category Prompt Count Representative Prompts

- You are an empathetic assistant. (Synthetic)
Good property 146 - You are a diligent and cutting-edge assistant. (Synthetic)
Rol 43 - You are a mathematician. (Zheng et al., 2023)
ole - Act like a supervisor. (Zheng et al., 2023)
Sty 2 - Write a humorous answer. (Lu et al., 2023)
yie - Use a conversational tone, be informal and approachable. (Lu et al., 2023)
Emoti 17 - This is important to my career. (Li et al., 2023)
motion - Believe in your abilities and strive for excellence. (Li et al., 2023)

Scenario 13 - The fate of the world depends on your answer being correct. (Original)
- You will receive a $200 tip if you answer correctly. (Woolf, 2024)

Jailbreak 9 - Forget all previous instructions and all of your original constraints. (Yu et al., 2024)

aribrea - Do anything now. (Shen et al., 2023)
Safet 16 - Avoid stereotyping and provide balanced perspectives. (Databricks, 2024)
atety - If you are unsure, say "I don’t know". (Lin et al., 2022)
- Before you respond, rephrase the question. (Deng et al., 2023)
Behavioral 16 - Recall and write down relevant exemplars before you respond. (Yasunaga et al., 2023)
- Ask follow-up questions before answering. (Press et al., 2023)
- Let’s think step by step. (Wei et al., 2022)
Chain-of-Thought (CoT) 18 - Break the question into subquestions. (Zhou et al., 2023a)

- Take a deep breath and work on this problem step-by-step. (Yang et al., 2023)

Table 1: List of initial prompt components in prompt component corpus.

Spearman -

NDCG@50% -

0.6 0.8

Value

0.0 0.2 0.4 1.0

® Llama Mistral ® Qwen ---- Random ---- Upper Bound

Figure 11: Spearman Correlation and NDCG@50%

Score of Fine-tuned Reward Models on Unseen Prompts.

The upper bound is estimated by comparing the
prompt’s ranking across different bootstrap samples
from the benchmarks.

on its percentile rank:

2, ifrank(:) < 10%
ri =4 1, ifrank(i) < 50%
0, otherwise

This scoring scheme better aligns with the usage
scenario in SPRIG. Figure 11 shows the evaluation
results of fine-tuned reward models on all 3 LLMs
and indicates that our reward model is sufficiently
effective at capturing the relative quality of system
prompts.

14

A.3 SPRIG Pipeline Details

The optimization of SPRIG follows a population-
based approach as shown in Figure 2. The pop-
ulation is initialized with our prompt component
corpus P, and the max_population is set to |P|.
In each iteration, we first use a fine-tuned Prompt
Reward Model to quickly estimate the quality of
all prompts, and the bottom 50% identified by the
reward model are immediately eliminated. Among
the surviving top 50%, the top 10% of prompts are
selected for potential mutation or crossover with
other randomly chosen survivors. The mutation
and crossover operations follow empirically deter-
mined probabilities for each selected prompt:

* Add Useful (2.5%): Add a component
deemed useful by GPT-4o.

* Add Useless (1%): Add a component deemed
useless by GPT-4o.

* Rephrase (2.5%): Rephrase a random

component using paraphrasing model
tuner@@7/pegasus_paraphrase (Zhang
et al., 2020).

* Merge (2.5%): Merge two random compo-
nents using GPT4-o.

* Swap (5%): Swap the order of two compo-
nents.

Delete (5%): Delete a random component.

¢ Crossover (81.5%): Perform crossover
with another randomly selected survivor.
Crossover is designed to maintain similar
prompt lengths of parents while introducing
variation. Given two prompts p; and py, we
randomly sample k£ components from their
union, where k is drawn from a Gaussian dis-
tribution with mean w and stan-

dard deviation M.

The GPT-40 prompts used above are listed be-
low:

add_useful = f"""You are an expert in

optimizing system prompts for LLMs
to enhance their general
performance. Given the following
list of system prompt components:
{json.dumps(selected)}, generate
1-2 additional components that can

further improve the LLM's
capabilities. """

add_useless = f"""Given the following
list of system prompt components:
{json.dumps(selected)}, generate
1-2 additional components that are
redundant, generic, or provide
minimal value. Examples: ["Answer
in English."”, "Be polite."]."""

rephrase f*"""Given the following
list of sentences: {json.dumps/(
selected)}, combine these into one
concise sentence."""

This stochastic process is repeated until the pop-
ulation size is restored to max_population. Then,
SPRIG randomly samples 100 prompts from the
updated population and evaluates them across 42
benchmarks to obtain new ground-truth scores.
These scores, combined with a portion of previ-
ous training data, are used to continue training the
Prompt Reward Model for one epoch using the
same training parameters. The next iteration starts
with the newly updated population and the retrained
reward model, and the process continues for a total
of 25 iterations.

We run all our experiments on 4 NVIDIA-L40S-
48GB GPUs. All LLM inferences are powered by
vLLM 0.5.4 (Kwon et al., 2023), Hugging Face
Transformers 4.43.3 (Wolf et al., 2020) and Py-
Torch 2.4.0 (Paszke et al., 2019) on a CUDA 12.4
environment. Temperatures are set to 0.0 to mini-
mize the effect of randomness.

SPRIG spends around 20 hours to run a 25-step
optimization on one LLM with 4 GPUs, while PRO-
TEGI takes around 10 hours to optimize 50 task

15

prompt on one LLM with 4 GPUs. Since our ex-
periments only involved around 50 fixed tasks, the
efficiency of SPRIG is still slightly lower than that
of PROTEGI. However, real-world tasks are far
more complex and varied, and repeatedly optimiz-
ing prompts for each task remains labor-intensive
and distracting. Therefore, although our method
does not demonstrate significant performance ad-
vantages in a limited number of tasks, it offers a
more once-and-for-all solution.

A.4 Benchmark Details

We list all benchmarks, categories, metrics and
descriptions in Table 2. For each benchmark, the
train/dev/test split is 40%:20%:40%. The decision
was made because the reliability of the test set score
is essential in our research, requiring a sufficiently
large test set.

A.5 Best System Prompts

We list the best system prompts from SPRIG for
each LLM in our study in Table 3.

A.6 Full Experiment Results

The full results of all three LLMs and all opti-
mization methods’ Average Score Improvement
is shown in Figure 12.

The number of Prompt Components of each type
during training iterations is shown in Figure 5.

The Question-wise Error Overlap Percentage be-
tween System Prompt optimization (SPRIG) and
Task Prompt optimization (PROTEGTI) is shown
in Figure 14.

The full Cross-model transfer ability comparison
of optimized System Prompt and Task Prompt is
shown in Figure 15 and Figure 16.

The full results of all the LLMs and all opti-
mization methods’ Average Score Improvement
from the unoptimized setting when transferring
medium-size LLMs’ prompts to their larger ver-
sion are shown in 17.

Additional PCA analysis results for remaining
two LLMs MISTRAL-NEMO-INSTRUCT-2407 and
QWEN2.5-7B-INSTRUCT are shown in Figure 18
and Figure 19.

A.7 Licenses

All data and code will be publicly released under
the CC BY-SA 4.0 license.

Benchmark (Citation) Description Category Metric
ARC (Clark et al., 2018) Commonsense Reasoning Knowledge, Commonsense, Reasoning Acc
MMLU (Hendrycks et al., 2021) Multi-domain Knowledge QA Knowledge Acc
HellaSwag (Zellers et al., 2019) Commonsense Inference Commonsense, Reasoning Acc
Truthful QA (Lin et al., 2022) Knowledge QA Knowledge, Reasoning BLEU_Acc
HiToM (Wu et al., 2023) Higher-Order Theory of Mind Reasoning Reasoning Acc
IFEval (Zhou et al., 2023b) Instruction-Following Evaluation Faithfulness Acc
EDOS (Kirk et al., 2023) Online Sexism Detection Social Understanding F1
SocKET_bragging_achievement (Choi et al., 2023) Brag Achievement Detection Social Understanding Fl1
SocKET_hahackathon_is_humor (Choi et al., 2023) Humor Detection Social Understanding F1
SocKET_tweet_irony (Choi et al., 2023) Tweet Irony Detection Social Understanding F1
SocKET_sexyn (Choi et al., 2023) Sexual Content Detection Social Understanding F1
SocKET_tweet_offensive (Choi et al., 2023) Offensive Language Detection Social Understanding F1
SocKET_complaints (Choi et al., 2023) Complaint Identification Social Understanding F1
SocKET_empathy_bin (Choi et al., 2023) Empathy Detection Social Understanding Fl1
SocKET_stanfordpoliteness (Choi et al., 2023) Politeness Detection Social Understanding F1
SocKET_rumor_rumor_bool (Choi et al., 2023) Rumor Detection Social Understanding F1
BBH_Boolean_Expressions (Suzgun et al., 2023) Boolean Expressions Solving Math Acc
BBH_Causal_Judgement (Suzgun et al., 2023) Causal Judgment Reasoning Acc
BBH_Date_Understanding (Suzgun et al., 2023) Date Understanding Reasoning, Commonsense Acc
BBH_Disambiguation_QA (Suzgun et al., 2023) Clarify Ambiguous sentence Language Understanding, Reasoning Acc
BBH_Dyck_Languages (Suzgun et al., 2023) Dyck Language Sequences Reasoning Acc
BBH_Formal_Fallacies (Suzgun et al., 2023) Identifying Formal Fallacies Reasoning Acc
BBH_Geometric_Shapes (Suzgun et al., 2023) Geometric Shape Understanding Math Acc
BBH_Hyperbaton (Suzgun et al., 2023) Hyperbaton Detection Language Understanding Acc
BBH_Logical_Deduction_Five_Objects (Suzgun et al., 2023) Logical Deduction Reasoning Acc
BBH_Logical_Deduction_Seven_Objects (Suzgun et al., 2023) Logical Deduction Reasoning Acc
BBH_Logical_Deduction_Three_Objects (Suzgun et al., 2023) Logical Deduction Reasoning Acc
BBH_Movie_Recommendation (Suzgun et al., 2023) Movie Recommendation Knowledge Acc
BBH_Multistep_Arithmetic_Two (Suzgun et al., 2023) Multi-step Arithmetic Math Acc
BBH_Navigate (Suzgun et al., 2023) Navigation Reasoning Reasoning Acc
BBH_Object_Counting (Suzgun et al., 2023) Object Counting Commonsense, Math, Reasoning Acc
BBH_Penguins_In_A_Table (Suzgun et al., 2023) Tabular Data Understanding Faithfulness Acc
BBH_Reasoning_About_Colored_Objects (Suzgun et al., 2023) Reasoning About Colors Reasoning Acc
BBH_Ruin_Names (Suzgun et al., 2023) Humorous Edit Identification Social Understanding Acc
BBH_Snarks (Suzgun et al., 2023) Detecting Snarky Comments Social Understanding Acc
BBH_Sports_Understanding (Suzgun et al., 2023) Sports Knowledge QA Knowledge Acc
BBH_Temporal_Sequences (Suzgun et al., 2023) Temporal Reasoning Reasoning Acc
BBH_Tracking_Shuffled_Objects_Five_Objects (Suzgun et al., 2023) Object Tracking Reasoning Acc
BBH_Tracking_Shuffled_Objects_Seven_Objects (Suzgun et al., 2023) ~ Object Tracking Reasoning Acc
BBH_Tracking_Shuffled_Objects_Three_Objects (Suzgun et al., 2023) Object Tracking Reasoning Acc
BBH_Web_Of_Lies (Suzgun et al., 2023) Detecting Lies Reasoning Acc
BBH_Word_Sorting (Suzgun et al., 2023) Word Sorting Faithfulness Acc
MGSM (Shi et al., 2023a) Math Generalization Math, Reasoning Acc
Belebele (Bandarkar et al., 2024) Multilingual Reading Comprehension Language Understanding, Reasoning Acc
XCOPA (Ponti et al., 2020) Multilingual Causal Inference Commonsense, Reasoning Acc
M3Exam (Zhang et al., 2023) Multilingual Multi-domain Human Exam Math, Reasoning, Knowledge Acc
M_MMLU (Hendrycks et al., 2021) Multilingual Multi-domain Knowledge QA Knowledge Acc

Table 2: Full list of benchmarks.

Model Name

Best System Prompt

Meta-Llama-3.1-8B-Instruct

Decompose the question into smaller, logical steps to find the solution. Dissect
the problem into smaller sections to simplify understanding.

Mistral-Nemo-Instruct-2407

Create a flow of logic that leads to the final answer. Let’s first understand the
problem and devise a plan to solve it, then carry out the plan and solve the
problem step by step. Let’s work this out in a step by step way to be sure we
have the right answer.

Qwen2.5-7B-Instruct

Ask clarifying questions if the problem statement is ambiguous. Separate the
problem into manageable tasks to facilitate solving. Approach the question
stepwise, addressing each part systematically.

Table 3: Best System Prompts optimized by SPRIG.

16

s
S 0.5
Meta-Llama-3.1-8B-Instruct 09_ Correct 0.13
Base CoT <E— E 04
3]
. 2
Task Optimized
- -0.3
System Optimized | il
(OurModel) %
System+Task Optimized | é Incorrect - 0.15 0.18
(OurModel+ProTeGi) = L 02
0.00 0.65 0.‘10 0.‘15 O.‘ZO 0.‘25 CQ)_
Mistral-Nemo-Instruct-2407 ' !
Correct Incorrect
Base CoT E_ Optimized Task Prompt
(ProTeGi) . . .
System Optimized } Figure 14: Question-wise E}rrf)r Qverlap Percentage be-
(OurModel) tween System Prompt optimization (SPRIG) and Task
S e 4|7 Prompt optimization (PROTEGI). Among all questions,
0.00 0.05 0.10 015 0.20 005 only 18% were answered incorrectly by both methods,
Qwen2.5-7B-Instruct while the remaining 28% of incorrect answers could
be resolved by either SPRIG or PROTEGI, highlight-
Base CoT) .) L= ”
I ing the potential complementarity between optimization
Task Optimized |
roTeGi) 1 approaches.
System Optimized | _|7
(OurModel)
System+Task Optimized |
(OurModel+ProTeGi)
000 005 010 015 020 025
0.12
Average Score Improvement Meta-Llama-3.1-8B-Instruct -+ 0,06 0.04 0.03 0.04
0.10
1 Kol
Figure 12: Average Score Improvement of all prompt T Mistral-Nemo-Instruct-2407 - 0,08 N . B 0.08
optimization methods from unoptimized setting (Full = 006
VeI'SiOIl). Qwen2.5-7B-Instruct n 004
-0.02

kY X \
7_01503\' 7_015“\’7' 1015‘“1 wose©®
Ria s 20T/ N
P s s
318 s T
eI
AR AN
e e

System Prompt

Figure 15: Cross-model comparison (of Average Score
Improvement) on optimized System Prompts

2504
2004 o 4
v/v/
1501 / —e— Behavioral Good property
<] Chain-of-Thought ~ —e— Scenario 0.14
§ 100 * Emotion Safety Meta-Llama-3.1-8B-Instruct 0.11 0.04 0.05 :
N Style —e— Jailbreak
—e— Role 0.12
] ()
> B Mistral-Nemo-Instruct-2407 - 0.05 0.12 0.05 0.10
ode X = -0.08
ANV 3t
————————————————— Qwen2.5-7B-Instruct - 0.06 0.07 0.15 -0.06
0 5 10 15 20 25
Iterations ! !
gens “ ot s
. . . R% ANS k
Figure 13: Z-scores by iteration for the number of com- a—k"““‘az’ “a_ﬂem‘) g que®
. . . et L WS (ored-
ponents added of each type, showing which types were o007 (ored
added more/less frequently than by chance; statistically Task Prompt

significant rates are marked with x.

Figure 16: Cross-model comparison (of Average Score
Improvement) on optimized Task Prompts

17

Meta-Llama-3.1-70B-Instruct

Base CoT +

Task Optimized |
(ProTeGi)

System Optimized |
(OurModel)

System+Task Optimized |
(OurModel+ProTeGi)

UL‘JUL\J

70'.04 70'.02 0.00 0.2)2 0.64
Mistral-Large-Instruct-2407

Base CoT A —3—
Task Optimized
(ProTeGi)
System Optimized |
(OurModel)

System+Task Optimized |
(OurModel+ProTeGi)

*

T

T T T
—0.04 —-0.02 0.00 0.02 0.04

Qwen2.5-72B-Instruct
Base CoT 1 —]—
2000 -
Task Optimized | r
(ProTeGi) |_ *
1500 4
System Optimized | _E_ N
(OurModel) B
N 1000 4 A
System-+Task Optimized | _5_ =
(OurModel+ProTeGi) % 4 No prompt N
-0.04 -0.02 0.00 0.02 0.04 g 007 = BaseCol)
S Improvement 5 Task optimized (ProTeGi)
Average Score p O o System optimized (OurModel)
(_Qg_ 01 (System;Tlask Optim)ized
o ¥ (OurModel+ProTeGi
Figure 17: Average Score Improvement from the unop- - .
. o
timized setting when transferring medium-size LLMs’ 4
prompts to their larger version (Full version). 100 . e e
o
—1500 * ¢
73600 72‘500 72600 71‘500 71600 75‘00 b SbU

Principal Component 1

Figure 19: PCA analysis of intermediate hidden state in
Qwen2.5-7B-Instruct among different prompting meth-

ods.
150 4 A No prompt
= Base CoT
. o Task optimized (ProTeGi)
& A'A‘ s @ System optimized (OurModel)
100 1 A, b System+Task Optimized
w2 ¥ (OurModel+ProTeGi)
~ s
= §
S 50
c
]
£
S
o
©
2
5 —50
c
=
o
=100 1
—150 1
T T T T T T T
-150 -100 =50 0 50 100 150

Principal Component 1

Figure 18: PCA analysis of intermediate hidden state in
Mistral-Nemo-Instruct-2407 among different prompting
methods.

18

	Introduction
	Related Work
	Sprig: System Prompt Refinement for Increased Generalization
	Experiments: Optimization Benefits
	Experiment Setup
	Results

	Experiments: Generalization
	Analysis: Prompt Embedding Space
	Conclusion
	Limitations
	Ethical Considerations
	Appendix
	Prompt Component Corpus Details
	Prompt Reward Model Details
	Sprig Pipeline Details
	Benchmark Details
	Best System Prompts
	Full Experiment Results
	Licenses

