
SPRIG: Improving Large Language Model Performance
by System Prompt Optimization

Anonymous ACL submission

Abstract001

Large Language Models (LLMs) have shown002
impressive capabilities in many scenarios, but003
their performance depends, in part, on the004
choice of prompt. Past research has focused005
on optimizing prompts specific to a task. How-006
ever, much less attention has been given to007
optimizing the general instructions included008
in a prompt, known as a system prompt. To009
address this gap, we propose SPRIG, an edit-010
based genetic algorithm that iteratively con-011
structs prompts from prespecified components012
to maximize the model’s performance in gen-013
eral scenarios. We evaluate the performance014
of system prompts on a collection of 47 dif-015
ferent types of tasks to ensure generalizability.016
Our study finds that a single optimized system017
prompt performs on par with task prompts op-018
timized for each individual task. Moreover,019
combining system and task-level optimizations020
leads to further improvement, which showcases021
their complementary nature. Experiments also022
reveal that the optimized system prompts gener-023
alize effectively across model families, param-024
eter sizes, and languages. This study provides025
insights into the role of system-level instruc-026
tions in maximizing LLM potential.027

1 Introduction028

Large Language Models (LLMs) have proven029

highly effective at many tasks (Naveed et al.,030

2023) and prompting has become the primary way031

for end-users to elicit desired responses (Brown032

et al., 2020). These prompts contain a variety of033

instructions such as task explanation (Li et al.,034

2022), personas (Kim et al., 2024), formatting035

constraints (Wang et al., 2023), and meta-rules036

like “think carefully” (Li et al., 2024). Past stud-037

ies have shown that the selection of prompts can038

have a substantial impact on the quality of the039

output (Reynolds and McDonell, 2021). How-040

ever, due to the massive search space, previous041

approaches have primarily focused on directly op-042

You are a diligent assistant. The fate of
the world depends on your answer being
correct. Think carefully step by step.

System

Prompt

Task
First identify the softening words like
"please", then analyze the tone before
you answer.

Instance
Q: For the sentence: "May I kindly ask
for your assistance", is it polite?

Figure 1: LLM prompts features both system-level in-
structions which may include CoT instructions, per-
sonas, and other rules (orange), task-specific instruc-
tions which may include details and examples (blue),
and the instance itself (green). Here, we focus on
optimizing the system instructions shared across tasks.

timizing prompts to maximize performance on spe- 043

cific tasks or benchmarks (Prasad et al., 2023; Zhou 044

et al., 2023c; Yang et al., 2023). While effective, 045

these methods typically require new prompts to be 046

crafted for every new task, which becomes a sig- 047

nificant challenge for prompt engineering as the 048

number of tasks continues to grow. Here, we con- 049

sider an alternative approach that optimizes the sys- 050

tem prompt, i.e., the set of general instructions that 051

precede any task-specific details (Figure 1), with 052

the goal of identifying task-agnostic generalizable 053

prompting strategies. By leveraging a single opti- 054

mized system prompt across tasks, we can largely 055

reduce the effort required for prompt development. 056

Prior work has shown that meta-instructions can 057

be effective for improving performance (Reynolds 058

and McDonell, 2021). Most notably, evoking 059

Chain of Thought (CoT) reasoning with instruc- 060

tions like “let’s think step by step” has led to gains 061

for several types of tasks (Wei et al., 2022), though 062

not all tasks benefit (Sprague et al., 2024). Yet, 063

other types of meta rules, such as choosing a per- 064

sona or matching the domain of the persona to the 065

question type have had negligible gains (Zheng 066

et al., 2023; Tam et al., 2024). A recent survey pa- 067

per (Schulhoff et al., 2024) suggests that these ex- 068

1

isting system prompting strategies are isolated and069

highly sensitive to specific scenario details, with070

the systematic function and generalization mech-071

anisms remaining unclear. Moreover, due to com-072

plexity differences in search space and optimization073

objectives, existing task-level methods can hardly074

transfer to system-level optimization. Recent sys-075

tem prompts leaked from Grok (xAI, 2025) and076

Claude (Breunig, 2025) also exhibit vastly different,077

verbose and complex manually crafted rules. Thus,078

while multiple approaches have been proposed for079

how a system prompt could be constructed, there is080

currently a gap for how to systematically construct081

a good system prompt in general.082

Here, we introduce a new method, System083

Prompt Refinement for Increased Generalization084

(SPRIG), to optimize system prompts based on ge-085

netic algorithms. Drawing from large collections086

of strategies for writing system instructions (Schul-087

hoff et al., 2024), we construct a large benchmark088

of 47 tasks across multiple languages that tests089

the effects of optimizing system prompts across090

models, languages, and tasks, as well as quantify091

which types of system instructions are most use-092

ful for generalization. We compare these system-093

and task-optimization, to analyze whether these are094

learning the same or complementary strategies.095

Our paper has the following three contributions.096

First, we find that optimizing a system prompt097

can produce substantial performance gains on par098

with task-specific optimization, even though these099

prompts have generic task instructions. Further,100

we find that both have complementary effects and101

that by first optimizing the system and then the102

task prompt, further gains are possible. Second,103

we find that SPRIG optimized system prompt sig-104

nificantly outperforms CoT across all task types105

except knowledge-based questions, and surpasses106

PROTEGI in faithfulness and commonsense tasks.107

The combination of SPRIG and PROTEGI comple-108

ments the weaknesses of both methods, and ex-109

ceeds the state-of-the-art performance on most task110

types. Third, we find that the optimized system111

prompts generalize well to other languages, better112

than task-optimized instructions; however, both op-113

timizations had minimal effects when scaling to114

larger model sizes.115

2 Related Work116

Prompt selection has been extensively studied and117

proven to significantly impact model output qual-118

ity (Reynolds and McDonell, 2021). Therefore,119

prompt optimization has become a popular re- 120

search topic in both academia and industry. Early 121

prompt optimization studies primarily focus on us- 122

ing gradients to guide prompt search (Shin et al., 123

2020; Shi et al., 2023b). However, with larger 124

model sizes and increasing black-box LLMs to- 125

day, gradient-based methods have become limited 126

by cost and accessibility. Consequently, recent re- 127

search has shifted towards gradient-free methods. 128

Early representatives include edit-based optimizers 129

like GrIPS (Prasad et al., 2023) and reinforcement 130

learning approaches such as RLPrompt (Deng et al., 131

2022) both directly edit a prompt at the token level. 132

However, the search space in these methods re- 133

mains limited, making it challenging to scale up to 134

more complex scenarios. Recently, as LLM agents 135

get popular, powerful methods like APE (Zhou 136

et al., 2023c) and OPRO (Yang et al., 2023) use 137

LLMs directly as prompt optimizers to iteratively 138

suggest and select the best prompts. According to 139

recent studies (Wan et al., 2024), the state-of-the- 140

art prompt optimizer is PROTEGI (Pryzant et al., 141

2023), which leverages LLM agents to summarize 142

errors from each iteration’s responses and refines 143

them accordingly. 144

Previous prompt optimization methods largely 145

focus on optimizing the instructions for specific 146

tasks (which we refer to as Task Prompt) which 147

inherently have limited generalizability. However, 148

past research has demonstrated the potential of op- 149

timizing task-agnostic prompts (which we define as 150

System Prompt), such as the well-known Chain- 151

of-Thought prompt (Wei et al., 2022). Additionally, 152

studies have shown that factors like personas (Kim 153

et al., 2024), generation styles (Lu et al., 2023), 154

emotions (Li et al., 2023), and jailbreaks (Shen 155

et al., 2023) can enhance LLM performance, which 156

is challenging for current prompt optimizers to cap- 157

ture automatically. While promising, these studies 158

are usually independent, and no approach yet exists 159

to systematically integrate System Prompt opti- 160

mization. Therefore, we aim to address this gap by 161

developing an optimizer that discovers an effective 162

System Prompt, enabling a single prompt to boost 163

performance across domains. 164

Evaluating the effectiveness of System Prompts 165

is also a significant challenge. Ideally, a good 166

System Prompt should perform well across all do- 167

mains, which requires evaluation tasks for such 168

domains. Although popular benchmarks like 169

MMLU (Hendrycks et al., 2021) and BBH (Suzgun 170

et al., 2023) cover a wide range of topics, they still 171

2

overlook task types such as social-understanding172

tasks (Choi et al., 2023) and open-ended ques-173

tions. Recent research MixEval (Ni et al., 2024)174

has shown that combining multiple benchmarks175

in a single evaluation can significantly improve176

evaluation efficiency and better align with human177

preferences. Here, our experiments build on this178

intuition and include a diverse range of task types179

to test for performance.180

3 SPRIG: System Prompt Refinement for181

Increased Generalization182

To address the large design space of system183

prompts, we use a genetic algorithm inspired ap-184

proach, SPRIG, that iteratively adapts the best can-185

didate prompts. Following we describe the algo-186

rithm, data, and search heuristics used.187

Prompt Component Corpus Our approach188

builds on a corpus of possible instructions in sys-189

tem prompts, referred to as components. By start-190

ing from a large pool of possible components, we191

ensure prompts are coherent while also gaining ef-192

ficiency. We define a component as a minimum193

prompt unit with complete semantics (typically a194

sentence, like “Let’s think step by step”).195

Our prompt component corpus, denoted P , is196

built by integrating human expertise with synthetic197

data. To ensure sufficient diversity without over-198

looking prior work, we start by collecting 300199

system prompts crafted by humans from existing200

literature. We then manually classify them into201

9 categories, including good property, role, style,202

emotion, scenario, jailbreak, behavioral, Chain-of-203

Thought, and safety components (Details and cita-204

tions are shown in Appendix Table 1). After this,205

we used GPT-4o to iteratively generate a broader206

pool of prompt candidates under each category207

(see Appendix A.1 for details). This step yields208

9,000 prompt components (1,000 for each cate-209

gory) aimed to provide a rich and diverse set of210

“gene” for our genetic algorithm.211

Prompt Reward Model Given the substantial212

time required to evaluate each system prompt213

across 47 benchmarks, it is impractical to directly214

search for the best prompt by exhaustively scoring215

all possible combinations. Inspired by the widely216

adopted reward models, we instead fine-tune a pre-217

trained LLM with a max-margin pairwise loss (Tou-218

vron et al., 2023) to efficiently estimate and rank219

the quality of different prompts. To do this, we sam-220

ple a diverse set of system prompt pairs along with 221

their associated scores and fine-tuned a Modern- 222

BERT model (Warner et al., 2024). The evaluation 223

result in Appendix Figure 11 shows that the model 224

achieves an average Spearman correlation (Spear- 225

man, 1904) of 0.59 and an NDCG@50% (Järvelin 226

and Kekäläinen, 2002) score of 0.72 when ranking 227

unseen prompts. Considering the random baseline 228

of 0.00/0.48 and the difficulty of the task, our re- 229

ward model is sufficiently effective at capturing the 230

relative quality of system prompts, thus providing 231

strong support for our pipeline. Implementation 232

details and experimental results are provided in the 233

Appendix A.2. 234

SPRIG pipeline We design a genetic pipeline 235

SPRIG for System Prompt optimization. The 236

pipeline applies edit-based, gradient-free genetic 237

algorithm to iteratively optimize the prompt. 238

At each iteration, the model begins with fixed 239

population_size number of System Prompts 240

from the previous iteration (initialized by P). 241

These prompts are first evaluated by the fine-tuned 242

prompt reward model, which eliminates the bottom 243

50% prompts. From the remaining pool, the top 244

10% will either randomly mutate or crossover with 245

prompts from the top 50%. Mutation can take 246

one of five forms: (1) Add: Add a component sug- 247

gested by GPT-4o. (2) Rephrase: Rephrase a com- 248

ponent. (3) Swap: Swap the order of two compo- 249

nents. (4) Delete: Delete a component. (5) Merge: 250

Merge two components into one. For Crossover, a 251

random subset of two selected prompts is selected 252

as the new offspring. This process regenerates the 253

population back to the initial population_size. 254

Next, randomly selected 100 new prompts will be 255

evaluated on the actual benchmark. The resulting 256

scores are then used to continue fine-tuning the 257

reward model, aligning it more closely with the 258

population distribution. Figure 2 shows the SPRIG 259

workflow. Note that no extra restrictions are im- 260

posed on the edits above for a more comprehensive 261

exploration. Full details of the pipeline and param- 262

eter settings are provided in the Appendix A.3. 263

4 Experiments: Optimization Benefits 264

In this section, we evaluate SPRIG’s performance 265

on the test set of in-domain tasks in our benchmark 266

combination. These questions are invisible in the 267

prompt optimization process. 268

3

0.86Prompt B’D

0.84Prompt DB

0.82Prompt ACA

····
0.83Prompt B

0.79Prompt CA

0.78Prompt BCD

0.73Prompt A

······ 0.78Prompt AC’

Step 1: Reward
Estimation and
Elimination

Add

Swap

Delete

Rephrase

Crossover

Prompt ACA

Prompt BCD

Prompt CA

Prompt DB

Prompt A

Prompt B

Prompt AC’

Prompt B’D

········

Prompt
Reward Model

Prompt ACA

Prompt AC

Prompt BD

Prompt DB

Prompt BCD

Prompt B

Prompt B’DA

Prompt B’D

········

Step 2: Mutate
and Heredity

0.86Prompt ACA

0.79Prompt DB

0.78Prompt BCD

0.76Prompt B’D

········

Step 3:
Sample and
Evaluate

Step 4a: Continue
Training Reward
Model

Step 4b: Iterate with
new generation

Merge

Figure 2: The SPRIG pipeline where System Prompts are iteratively optimized through exploratory edits and
promoted across iterations using combined benchmark to rank candidates.

4.1 Experiment Setup269

Tasks To maximize the generalization ability of270

the optimized System Prompt, we select a broad271

range of tasks, using a combination of 42 differ-272

ent benchmarks covering 7 categories (reasoning,273

math, social-understanding, commonsense, faith-274

fulness, knowledge, language-understanding). Our275

selection includes widely used benchmarks such as276

MMLU (Hendrycks et al., 2021), BBH (Suzgun et al.,277

2023), and TruthfulQA (Lin et al., 2022), but also278

includes various social-understanding benchmarks279

like SocKET (Choi et al., 2023). A wide variety of280

output types are covered, including multiple choice,281

classification, mathematics, and open-ended QA.282

The full list of benchmarks and categories is shown283

in Appendix Table 2.284

Baselines Our experiments compare optimiza-285

tions against two baseline System Prompts. In the286

first, the system part of the prompt is left empty,287

denoted as Blank and, in the second, the system288

part uses the CoT instruction “Let’s think step by289

step" (Wei et al., 2022), denoted as Base CoT.290

The two types of instructions are tested in the291

Task Prompts. The first is a minimal description292

of what is required for understanding the task, such293

as “answer the multiple choice question,” denoted294

as Simple Task. This prompt lets us test poten-295

tial performance improvements for both task and296

system instructions relative to a neutral starting297

point. The second is an optimized version of in-298

structions produced by a state-of-the-art optimizer299

PROTEGI (Pryzant et al., 2023). 300

Both parts of the System Prompt and Task 301

Prompt can be present in a prompt (cf. Figure 1). 302

Therefore, we test the following combinations: (1) 303

Unoptimized: a Blank system prompt and Simple 304

Task prompt, (2) Base CoT: the Base CoT sys- 305

tem prompt and the Simple Task prompt, (3) Task 306

Optimized: a Blank system prompt and PROTEGI- 307

optimized task instructions, (4) System Optimized: 308

a SPRIG-optimized system prompt and a Simple 309

Task prompt, and (5) System+Task Optimized: a 310

SPRIG-optimized system prompt with a PROTEGI- 311

optimized task prompt. Here, we first optimize 312

the system prompt with basic instructions and then 313

optimize the task after. 314

Models We experiment using three state- 315

of-the-art medium-size open-weight LLMs: 316

LLAMA3.1-8B-INSTRUCT (Meta, 2024), 317

MISTRAL-NEMO-INSTRUCT-2407 (Mistral AI, 318

2024) and QWEN2.5-7B-INSTRUCT (Qwen Team, 319

2024). These models are highly performant, 320

allowing us to test for generalizable effects across 321

model families, and later compare across model 322

sizes. More details are in Appendix A.3. 323

Training For SPRIG, we set population_size 324

= |P| = 9, 000 and run SPRIG for 25 steps. Af- 325

ter training, we pick the prompt with the highest 326

validation accuracy as the best system prompt of 327

the LLM for our later study. Detailed prompts are 328

shown in Appendix Table 3. For PROTEGI, we 329

use the default settings for 7 steps and pick the 330

4

0.00 0.05 0.10 0.15 0.20
Average Score Improvement

Base CoT

Task Optimized
(ProTeGi)

System Optimized
(OurModel)

System+Task Optimized
(OurModel+ProTeGi)

Figure 3: Average Score Improvement of all prompt
optimization methods relative to the unoptimized set-
ting, aggregated across LLMs. Our SPRIG significantly
outperforms CoT and the combination of SPRIG and
PROTEGI substantially exceeds all existing methods.

best Task Prompt on the validation set. Additional331

details are in Appendix A.3.332

Evaluation Our benchmark employs three eval-333

uation metrics: question-wise accuracy for334

most sub-benchmarks, F1 score for the clas-335

sification tasks with imbalanced labels, and336

BLEU_accuracy (Lin et al., 2022) for open-ended337

questions. Since all metrics are bounded between338

0 and 1, we follow previous work (Ni et al., 2024;339

Gao et al., 2023) to directly compute the average340

across all metrics as an aggregated single score,341

which we call Average Score in later sections.342

4.2 Results343

Optimizing the System Prompt provides consis-344

tent improvement to LLMs on par with task opti-345

mization, as seen in Figure 3, when compared with346

the Blank system and Simple task combination347

baseline. These improvements were similar across348

all three models, shown in Appendix Figure 12.349

SPRIG improves ∼10% over the unoptimized ver-350

sion, which significantly outperformed the base-351

line CoT method. Although its performance still352

lags slightly behind PROTEGI, this small gap is353

still acceptable, considering that SPRIG uses the354

same system prompt for all tasks, whereas PRO-355

TEGI directly optimizes a different prompt for each356

task. Furthermore, if we run PROTEGI on top357

of SPRIG optimized system prompt, the resulting358

prompt has an even larger performance improve-359

ment above PROTEGI. This further improvement360

suggests SPRIG can trigger capabilities that are361

overlooked by existing task-specific methods, and362

therefore complement mainstream approaches.363

How do system prompts evolve? The changes364

to the system prompt at each step consistently im-365

0 5 10 15 20 25
step

0.50

0.52

0.54

0.56

0.58

0.60

0.62

0.64

sc
or

e

Model Name
Meta-Llama-3.1-8B-Instruct
Mistral-Nemo-Instruct-2407
Qwen2.5-7B-Instruct

Figure 4: Average score of whole population at each
iteration when running SPRIG. All three LLMs see
significant improvements. Error bars are the variance in
the whole population.

prove performance, as seen in Figure 4. To test the 366

systematic behavior about which types of system 367

prompt components contribute to these gains, we 368

calculate the average number of component type in 369

the prompts of each iteration. As shown in Figure 5 370

and Appendix Figure 13, the number of CoT and 371

Behavioral components rapidly increases with each 372

iteration (especially in the early stages), and even- 373

tually converges to around 2-3 per prompt. This 374

highlights the importance of high-level answering 375

strategies in enhancing model performance, such as 376

“decompose first” or “rephrase before answering”. 377

It also suggests that incorporating multiple such 378

components within a single prompt can further im- 379

prove the LLM’s capabilities. In addition, “good 380

property” components emerge as another important 381

element in system prompts. Although they are in- 382

troduced into the gene pool more gradually during 383

the iteration process, which suggests they may not 384

directly enhance performance on their own, they 385

might play a supportive role when combined with 386

other components. In contrast, other components 387

such as “Role” (e.g., “you are an AI assistant") 388

were selected far less often than by chance, de- 389

spite these properties often being in recommend or 390

default prompts (OpenAI, 2024; Microsoft, 2024). 391

Across all steps, component types are not added 392

in a systematic order—yet performance generally 393

still increases. Rather than adding more of one 394

type (e.g., all CoT components), the system prompt 395

incorporates multiple types. These trends suggest 396

that there is not a universal order by which com- 397

ponents of system prompts should be added (e.g., 398

first CoT, then Behavioral). Instead, there are likely 399

productive and beneficial combinations that matter 400

5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Iterations

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Co

un
ts

Good property
Role
Style
Emotion
Scenario

Jailbreak
Safety
Behavioral
Chain-of-Thought

Figure 5: Number of Prompt Components of each type
during training iterations. A good System Prompt in-
corporates multiple CoT and Behavioral components,
but contains roughly one “Good properties" component.

more for performance.401

Are task and system prompt optimizers learn-402

ing the same strategies? Both system and task403

prompt optimization improve performance. The404

further gains by iteratively combining these ap-405

proaches suggest that models are targeting com-406

plementary strategies. To test this potential com-407

plementarity, we analyze the agreement between408

the two approaches in their answers. Figure 14409

in Appendix shows the distribution of the two ap-410

proaches’ agreement as a contingency table. While411

models agree on the correct answer in 54% of412

the questions, another 28% of questions are cor-413

rectly answered by only one of the strategies, with414

a roughly even split between task and system. This415

split shows a great potential of complementarity416

between System Prompt and Task Prompt op-417

timization, and suggests that the combination of418

strategies leads to further gains.419

Which task types benefit most from system420

prompt optimization? Our experiments span 42421

different tasks, which cover multiple types of evalu-422

ation on reasoning, knowledge, and common sense.423

However, not all types of tasks may benefit from424

the types of system instructions; indeed, Sprague425

et al. (2024) showed that CoT only benefits math426

and logics. To test for category-specific benefits,427

we categorize all 42 tasks into seven types and428

measure the score improvement of each type un-429

der different prompt optimization settings. Task430

categorizations are in Appendix Table 2.431

Math and reasoning tasks benefit most from sys-432

tem prompt optimization (Figure 6). However,433

other task categories like social understanding and434

language understanding see significant improve-435

0.05 0.00 0.05 0.10 0.15 0.20 0.25 0.30
Average Score Improvement

reasoning

math

social
understanding

commonsense

faithfulness

language
understanding

knowledge

Base CoT
Task Optimized
(ProTeGi)
System Optimized
(OurModel)
OurModel + ProTeGi
Unoptimized

Figure 6: Average Score Improvement in different
task domains, aggregated across LLMs. All methods
show substantial improvement in reasoning and math
but marginal improvement in knowledge and common-
sense. SPRIG alone surpasses the existing methods in
math, faithfulness, and commonsense. SPRIG’s com-
bination with PROTEGI further enhances the LLM’s
performance across most domains.

ments over the baseline. Many of the larger im- 436

provements are not explained through the addition 437

of CoT, as the CoT baseline, while better than our 438

Simple baseline, is generally worse than the opti- 439

mized prompts. Knowledge-based tasks benefit the 440

least from prompt optimization; we hypothesize 441

that such tasks are closer to evaluations of whether 442

an LLM can retrieve stored knowledge (which is 443

itself a function of pretraining), rather than evalua- 444

tions of operations on knowledge (input or stored). 445

The combination of SPRIG and PROTEGI op- 446

timization also generally improves performance 447

across task types. However, we also observe dif- 448

ferences in areas of expertise between System 449

Prompt and Task Prompt, and the combination 450

of them is complementary. For example, PROTEGI 451

is more effective at improving social understanding 452

than plain CoT or SPRIG; in contrast, SPRIG is 453

more effective for commonsense tasks. 454

5 Experiments: Generalization 455

Here, we test how well the system prompts gener- 456

ated by SPRIG generalize to new settings. 457

Cross-model Generalization The current 458

system-optimized prompts were all generated 459

with respect to a specific LLM. Given that these 460

prompts could be made from similar components, 461

here, we test what performance gain (or loss) 462

is seen when the system prompt is used with a 463

different similar-sized LLM than the one it was 464

created for. As a comparison, we also test the 465

6

Target Model Non-target Model

0.04
0.06
0.08
0.10
0.12
0.14
0.16

Sc
or

e
Im

pr
ov

em
en

t Task Optimized (ProTeGi)
System Optimized (OurModel)

Figure 7: Score Improvement when using a prompt
optimized on one LLM with a different LLM.

0.05 0.00 0.05 0.10 0.15 0.20
Average Score Improvement

MGSM

BELEBELE

XCOPA

M3EXAM

M_MMLU

Base CoT
Task Optimized
(ProTeGi)
System Optimized
(OurModel)
Unoptimized

Figure 8: Score Improvement for Multilingual Bench-
marks when using an optimized English-language
prompt on other tasks. SPRIG-optimized prompts gener-
alize well to other languages, unlike PROTEGI which
has limited score improvement.

effect of swapping in a task-optimized prompt466

from a different model.467

Both optimized system and task prompts provide468

some improvement but the larger gains for the origi-469

nal LLM do not carry over to new LLMs, as shown470

by the aggregated performance in Figure 7; see471

Appendix Figures 15 and 16 for complete results.472

This finding suggest that inference-time gains from473

optimized prompts—system or task—-likely do not474

generalize as strongly across models with similar475

parameter sizes.476

Language Generalization The LLMs used in477

our experiments are capable of reasoning in dif-478

ferent languages and can support input in mul-479

tiple languages. Although our previous exper-480

iments were only in English, the optimizations481

to the system-prompt may still provide perfor-482

mance improvements for tasks in other languages.483

Here, we test this language generalization by select-484

ing five comprehensive multilingual benchmarks485

that are out-of-domain in the System Prompt486

optimization process: MGSM (Shi et al., 2023a), 487

BELEBELE (Bandarkar et al., 2024), XCOPA (Ponti 488

et al., 2020), M3EXAM (Zhang et al., 2023) and 489

M_MMLU (Hendrycks et al., 2021). Each bench- 490

mark includes over 10 different languages and cov- 491

ers all 7 task categories in our benchmark com- 492

bination. We directly use the same optimized 493

System Prompt from § 4.2 (in English). Since 494

the Task Prompt optimizer is specific to a task, 495

we cannot re-use its prompts for these out-of- 496

domain tasks; instead, we generate new PROTEGI- 497

optimized prompts for each benchmark, which re- 498

flects a strong baseline for comparison. 499

Our optimized system prompt from § 4.2 gen- 500

eralizes well to tasks in new languages, providing 501

statistically significant improvements in four of the 502

five benchmarks. SPRIG shows a clear advantage 503

over other approaches on XCOPA (Causal Common- 504

sense Reasoning) and the comprehensive bench- 505

marks MGSM and M-MMLU, in line with our previous 506

findings in § 4.2. Despite being directly optimized 507

for these new tasks, PROTEGI provides limited 508

improvements in these multilingual tasks bench- 509

marks. These results indicate that System Prompt 510

optimization exhibits strong generalization ability 511

on out-of-domain tasks in new languages, which 512

even exceeds PROTEGI ’s in-domain optimized 513

performance on these tasks. 514

Model Size Generalization All prompts were 515

generated for and tested on mid-sized LLMs. How- 516

ever, each LLM has a larger version in the same 517

family, which often has better performance at the 518

expense of more compute required. Being able to 519

optimize the system prompt with a smaller model 520

and then deploy that prompt on a larger model to 521

the same effect would have significant performance 522

benefits. Therefore, here, we test for generaliza- 523

tion when using a prompt from a smaller LLM 524

with a larger version. Specifically, we test with 525

LLAMA3.1-70B-INSTRUCT, MISTRAL-LARGE- 526

INSTRUCT-2407 and QWEN2.5-72B-INSTRUCT. 527

We use the same evaluation setup as in previous sec- 528

tions, with only the LLMs’ parameter size changed. 529

Both system- and task-optimized prompts indi- 530

vidually do not provide statistically significant per- 531

formance gains when created using a smaller model 532

and then applied to a larger, as shown in Figure 9. 533

(Complete results for all LLMs are in Appendix 534

Figure 17.) However, a system+task optimized 535

prompt provides a 1.6% improvement, suggesting 536

this approach can generalize. Therefore, we find 537

7

0.03 0.02 0.01 0.00 0.01 0.02 0.03
Average Score Improvement

Base CoT

Task Optimized
(ProTeGi)

System Optimized
(OurModel)

System+Task Optimized
(OurModel+ProTeGi)

Figure 9: Average Score Improvement when using
prompts optimized with medium-size LLMs’ on the
larger LLM in the same family. shows the benefits of
system+task optimized prompts still generalize well to
larger model sizes.

40 30 20 10 0 10 20 30 40
Principal Component 1

40

20

0

20

40

Pr
in

cip
al

 C
om

po
ne

nt
 2

No prompt
Base CoT
Task optimized (ProTeGi)
System optimized (OurModel)
System+Task Optimized
(OurModel+ProTeGi)

Figure 10: PCA analysis of the hidden state in
Llama-3.1-8B-Instruct with different prompting meth-
ods. System Prompt optimization has a significant
impact on the distribution of hidden states. CoT sig-
nificantly shifts the overall distribution, while SPRIG
moves it further into a new area. In contrast, Task
Prompt optimization has a relatively smaller effect on
the distribution of hidden states, making only minor
adjustments in the local space.

that existing prompt optimizations can generalize538

to larger parameter sizes but need to consider both539

system and tasks prompt parts together and high-540

light the need for prompting strategies specifically541

for larger LLMs.542

6 Analysis: Prompt Embedding Space543

Given the performance improvements and gener-544

alization seen when using the prompt instructions545

introduced by SPRIG, it is reasonable to wonder546

what effect these instructions are having on the547

neural activations such that the LLM is likely to de-548

code the correct answer. While a complete answer549

would likely require a mechanistic interpretation550

of the relationship between prompt and response551

(e.g., Bhargava et al., 2023), here, we attempt to552

gain some intuition on the instructions’ effects by553

visualizing the embedding space during different 554

optimization strategies and comparing the changes 555

relative to the Simple baseline instructions. 556

Here, we randomly sample 420 questions (10 557

per task), probe the LLM hidden states under dif- 558

ferent experiment settings, and visualize the first 559

two principal components of Principal Component 560

Analysis (PCA). Figure 10 shows the PCA results 561

for LLAMA3.1-8B-INSTRUCT. First, we observe 562

that different task types are distributed along the 563

same slope and remain parallel under different ex- 564

perimental settings. Task Prompt optimization 565

slightly reduces the variance of the distribution, 566

but the distribution still lies within the same vec- 567

tor space. In contrast, different System Prompt 568

result in significant space changes. The basic CoT 569

causes a substantial overall shift, while SPRIG fur- 570

ther moves the distribution to a new area. The other 571

two LLMs’ PCA are shown in Appendix Figure 18 572

and 19, and show similar trends. 573

Thus, we propose the hypothesis that System 574

Prompt optimization searches for appropriate re- 575

gions in the global space, while Task Prompt opti- 576

mization performs fine-tuning within a local space. 577

This reveals the potential of System Prompt opti- 578

mization to significantly alter model behavior and 579

offers new insights for future prompt research to 580

use System Prompt optimization first to locate an 581

appropriate global behavior space, then use task 582

prompt optimization to fine-tune downstream per- 583

formance within that space. 584

7 Conclusion 585

This study introduced a novel optimization frame- 586

work, SPRIG, to improve LLM performance with 587

the systematic construction of general-purpose sys- 588

tem prompts using reinforcement learning and a ge- 589

netic algorithm. By leveraging a diverse collection 590

of prompt components and evaluating across a di- 591

verse range of tasks, we demonstrate that optimized 592

system prompts provide consistent improvements 593

on par with optimized task prompts. Moreover, 594

combining system and task prompt optimizations 595

offers complementary benefits, leading to further 596

improvements in model performance across varied 597

domains. Further, we find that these performance 598

benefits for an optimized prompt generalize across 599

(i) model sizes and (ii) different languages. Our 600

findings highlight the potential of system prompt 601

optimization to complement and enhance LLM per- 602

formance for new languages and models. 603

8

8 Limitations604

Despite the promising results of SPRIG, several605

limitations remain in our study. First, the computa-606

tional cost of optimizing system prompts is higher607

compared to task-specific optimization methods608

even though certain pruning was applied, which609

could limit its scalability to real-world applica-610

tions. Therefore, exploring more effective prun-611

ing or exploring algorithms would be essential in612

future work. Second, data contamination has be-613

come a significant issue in LLM benchmarking614

today (Magar and Schwartz, 2022), especially for615

benchmarks that include tasks from several years616

ago. While we have aimed to select only bench-617

marks where there was still room for improvement618

(e.g., BigBench-Hard) or benchmarks that were619

released very recently after these LLMs were re-620

leased, our research did not deeply explore how to621

mitigate this impact in system prompt evaluation.622

Future work could further investigate the effective-623

ness of prompt optimization on more recent bench-624

marks that are less affected by data contamination.625

9 Ethical Considerations626

While this research has made efforts to minimize627

potential ethical issues, several ethical implications628

may still be present. First, running SPRIG requires629

substantial computing resources, resulting in high630

energy consumption and substantial carbon diox-631

ide footprint. Second, the optimization of prompts632

introduces the risk of reinforcing potential biases633

present in the component corpus (e.g., any system-634

atic downstream behavioral changes from prompt-635

ing an LLM to be a “professor”), which may prop-636

agate unintended stereotypes or discriminatory be-637

havior in model outputs. As our corpus includes638

elements such as personas, roles, and behavioral639

instructions, care must be taken to ensure that these640

components do not introduce or amplify harmful641

biases. Additionally, the benchmarks we employed642

include several social understanding tasks, with643

much of the benchmark originally sourced from644

crowdsourced annotations from Western contexts.645

While we focus on general performance and show646

that the optimized prompts can generalize to new647

languages, future work could more deeply explore648

how the use of socially- and culturally-oriented649

benchmarks to optimize prompts can potentially650

impact a model’s performance in new cultural and651

social contexts.652

References 653

Lucas Bandarkar, Davis Liang, Benjamin Muller, Mikel 654
Artetxe, Satya Narayan Shukla, Donald Husa, Naman 655
Goyal, Abhinandan Krishnan, Luke Zettlemoyer, and 656
Madian Khabsa. 2024. The belebele benchmark: a 657
parallel reading comprehension dataset in 122 lan- 658
guage variants. In Proceedings of the 62nd Annual 659
Meeting of the Association for Computational Lin- 660
guistics (Volume 1: Long Papers), pages 749–775, 661
Bangkok, Thailand and virtual meeting. Association 662
for Computational Linguistics. 663

Aman Bhargava, Cameron Witkowski, Shi-Zhuo Looi, 664
and Matt Thomson. 2023. What’s the magic word? 665
a control theory of llm prompting. ArXiv preprint, 666
abs/2310.04444. 667

David Breunig. 2025. Claude’s system prompt: Chat- 668
bots are more than just models. Accessed: 2025-05- 669
20. 670

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie 671
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind 672
Neelakantan, Pranav Shyam, Girish Sastry, Amanda 673
Askell, Sandhini Agarwal, Ariel Herbert-Voss, 674
Gretchen Krueger, Tom Henighan, Rewon Child, 675
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, 676
Clemens Winter, and 12 others. 2020. Language 677
models are few-shot learners. In Advances in Neural 678
Information Processing Systems 33: Annual Confer- 679
ence on Neural Information Processing Systems 2020, 680
NeurIPS 2020, December 6-12, 2020, virtual. 681

Minje Choi, Jiaxin Pei, Sagar Kumar, Chang Shu, and 682
David Jurgens. 2023. Do LLMs understand social 683
knowledge? evaluating the sociability of large lan- 684
guage models with SocKET benchmark. In Proceed- 685
ings of the 2023 Conference on Empirical Methods in 686
Natural Language Processing, pages 11370–11403, 687
Singapore. Association for Computational Linguis- 688
tics. 689

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, 690
Ashish Sabharwal, Carissa Schoenick, and Oyvind 691
Tafjord. 2018. Think you have solved question an- 692
swering? try arc, the ai2 reasoning challenge. ArXiv 693
preprint, abs/1803.05457. 694

Databricks. 2024. Introducing dbrx: A new state-of-the- 695
art open llm. Accessed: 2024-10-14. 696

Mingkai Deng, Jianyu Wang, Cheng-Ping Hsieh, Yi- 697
han Wang, Han Guo, Tianmin Shu, Meng Song, Eric 698
Xing, and Zhiting Hu. 2022. RLPrompt: Optimizing 699
discrete text prompts with reinforcement learning. 700
In Proceedings of the 2022 Conference on Empiri- 701
cal Methods in Natural Language Processing, pages 702
3369–3391, Abu Dhabi, United Arab Emirates. As- 703
sociation for Computational Linguistics. 704

Yihe Deng, Weitong Zhang, Zixiang Chen, and Quan- 705
quan Gu. 2023. Rephrase and respond: Let large 706
language models ask better questions for themselves. 707

9

https://aclanthology.org/2024.acl-long.44
https://aclanthology.org/2024.acl-long.44
https://aclanthology.org/2024.acl-long.44
https://aclanthology.org/2024.acl-long.44
https://aclanthology.org/2024.acl-long.44
https://arxiv.org/abs/2310.04444
https://arxiv.org/abs/2310.04444
https://arxiv.org/abs/2310.04444
https://www.dbreunig.com/2025/05/07/claude-s-system-prompt-chatbots-are-more-than-just-models.html
https://www.dbreunig.com/2025/05/07/claude-s-system-prompt-chatbots-are-more-than-just-models.html
https://www.dbreunig.com/2025/05/07/claude-s-system-prompt-chatbots-are-more-than-just-models.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://doi.org/10.18653/v1/2023.emnlp-main.699
https://doi.org/10.18653/v1/2023.emnlp-main.699
https://doi.org/10.18653/v1/2023.emnlp-main.699
https://doi.org/10.18653/v1/2023.emnlp-main.699
https://doi.org/10.18653/v1/2023.emnlp-main.699
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/1803.05457
https://www.databricks.com/blog/introducing-dbrx-new-state-art-open-llm
https://www.databricks.com/blog/introducing-dbrx-new-state-art-open-llm
https://www.databricks.com/blog/introducing-dbrx-new-state-art-open-llm
https://doi.org/10.18653/v1/2022.emnlp-main.222
https://doi.org/10.18653/v1/2022.emnlp-main.222
https://doi.org/10.18653/v1/2022.emnlp-main.222
https://arxiv.org/abs/2311.04205
https://arxiv.org/abs/2311.04205
https://arxiv.org/abs/2311.04205

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Bider-708
man, Sid Black, Anthony DiPofi, Charles Foster,709
Laurence Golding, Jeffrey Hsu, Alain Le Noac’h,710
Haonan Li, Kyle McDonell, Niklas Muennighoff,711
Chris Ociepa, Jason Phang, Laria Reynolds, Hailey712
Schoelkopf, Aviya Skowron, Lintang Sutawika, and713
5 others. 2023. A framework for few-shot language714
model evaluation.715

Dan Hendrycks, Collin Burns, Steven Basart, Andy716
Zou, Mantas Mazeika, Dawn Song, and Jacob Stein-717
hardt. 2021. Measuring massive multitask language718
understanding. In 9th International Conference on719
Learning Representations, ICLR 2021, Virtual Event,720
Austria, May 3-7, 2021. OpenReview.net.721

Kalervo Järvelin and Jaana Kekäläinen. 2002. Cumu-722
lated gain-based evaluation of ir techniques. ACM723
Trans. Inf. Syst., 20(4):422–446.724

Junseok Kim, Nakyeong Yang, and Kyomin Jung. 2024.725
Persona is a double-edged sword: Enhancing the726
zero-shot reasoning by ensembling the role-playing727
and neutral prompts.728

Hannah Kirk, Wenjie Yin, Bertie Vidgen, and Paul729
Röttger. 2023. SemEval-2023 task 10: Explainable730
detection of online sexism. In Proceedings of the731
17th International Workshop on Semantic Evaluation732
(SemEval-2023), pages 2193–2210, Toronto, Canada.733
Association for Computational Linguistics.734

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying735
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.736
Gonzalez, Hao Zhang, and Ion Stoica. 2023. Effi-737
cient memory management for large language model738
serving with pagedattention. In Proceedings of the739
ACM SIGOPS 29th Symposium on Operating Systems740
Principles.741

Cheng Li, Jindong Wang, Yixuan Zhang, Kaijie Zhu,742
Wenxin Hou, Jianxun Lian, Fang Luo, Qiang Yang,743
and Xing Xie. 2023. Large language models under-744
stand and can be enhanced by emotional stimuli.745

Moxin Li, Wenjie Wang, Fuli Feng, Fengbin Zhu, Qifan746
Wang, and Tat-Seng Chua. 2024. Think twice before747
trusting: Self-detection for large language models748
through comprehensive answer reflection.749

Shiyang Li, Jianshu Chen, Yelong Shen, Zhiyu Chen,750
Xinlu Zhang, Zekun Li, Hong Wang, Jing Qian,751
Baolin Peng, Yi Mao, Wenhu Chen, and Xifeng752
Yan. 2022. Explanations from large language models753
make small reasoners better.754

Stephanie Lin, Jacob Hilton, and Owain Evans. 2022.755
TruthfulQA: Measuring how models mimic human756
falsehoods. In Proceedings of the 60th Annual Meet-757
ing of the Association for Computational Linguistics758
(Volume 1: Long Papers), pages 3214–3252, Dublin,759
Ireland. Association for Computational Linguistics.760

Albert Lu, Hongxin Zhang, Yanzhe Zhang, Xuezhi761
Wang, and Diyi Yang. 2023. Bounding the capabili-762
ties of large language models in open text generation763

with prompt constraints. In Findings of the Asso- 764
ciation for Computational Linguistics: EACL 2023, 765
pages 1982–2008, Dubrovnik, Croatia. Association 766
for Computational Linguistics. 767

Inbal Magar and Roy Schwartz. 2022. Data contamina- 768
tion: From memorization to exploitation. In Proceed- 769
ings of the 60th Annual Meeting of the Association 770
for Computational Linguistics (Volume 2: Short Pa- 771
pers), pages 157–165, Dublin, Ireland. Association 772
for Computational Linguistics. 773

Meta. 2024. Introducing llama 3.1: Our most capa- 774
ble models to date. https://ai.meta.com/blog/ 775
meta-llama-3-1/. Accessed: 2024-10-14. 776

Microsoft. 2024. Advanced prompt engineering con- 777
cepts. Accessed: 2024-10-14. 778

Mistral AI. 2024. Mistral nemo: Collaborative innova- 779
tion with nvidia. Accessed: 2024-10-14. 780

Humza Naveed, Asad Ullah Khan, Shi Qiu, Muhammad 781
Saqib, Saeed Anwar, Muhammad Usman, Naveed 782
Akhtar, Nick Barnes, and Ajmal Mian. 2023. A 783
comprehensive overview of large language models. 784

Jinjie Ni, Fuzhao Xue, Xiang Yue, Yuntian Deng, Mahir 785
Shah, Kabir Jain, Graham Neubig, and Yang You. 786
2024. Mixeval: Deriving wisdom of the crowd from 787
llm benchmark mixtures. 788

OpenAI. 2024. Tactic: Ask the model to adopt a per- 789
sona. Accessed: 2024-10-14. 790

Adam Paszke, Sam Gross, Francisco Massa, Adam 791
Lerer, James Bradbury, Gregory Chanan, Trevor 792
Killeen, Zeming Lin, Natalia Gimelshein, Luca 793
Antiga, Alban Desmaison, Andreas Köpf, Edward 794
Yang, Zachary DeVito, Martin Raison, Alykhan Te- 795
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, 796
and 2 others. 2019. Pytorch: An imperative style, 797
high-performance deep learning library. In Advances 798
in Neural Information Processing Systems 32: An- 799
nual Conference on Neural Information Processing 800
Systems 2019, NeurIPS 2019, December 8-14, 2019, 801
Vancouver, BC, Canada, pages 8024–8035. 802

Edoardo Maria Ponti, Goran Glavaš, Olga Majewska, 803
Qianchu Liu, Ivan Vulić, and Anna Korhonen. 2020. 804
XCOPA: A multilingual dataset for causal common- 805
sense reasoning. In Proceedings of the 2020 Con- 806
ference on Empirical Methods in Natural Language 807
Processing (EMNLP), pages 2362–2376, Online. As- 808
sociation for Computational Linguistics. 809

Archiki Prasad, Peter Hase, Xiang Zhou, and Mohit 810
Bansal. 2023. GrIPS: Gradient-free, edit-based in- 811
struction search for prompting large language models. 812
In Proceedings of the 17th Conference of the Euro- 813
pean Chapter of the Association for Computational 814
Linguistics, pages 3845–3864, Dubrovnik, Croatia. 815
Association for Computational Linguistics. 816

10

https://doi.org/10.5281/zenodo.10256836
https://doi.org/10.5281/zenodo.10256836
https://doi.org/10.5281/zenodo.10256836
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=d7KBjmI3GmQ
https://doi.org/10.1145/582415.582418
https://doi.org/10.1145/582415.582418
https://doi.org/10.1145/582415.582418
https://arxiv.org/abs/2408.08631
https://arxiv.org/abs/2408.08631
https://arxiv.org/abs/2408.08631
https://arxiv.org/abs/2408.08631
https://arxiv.org/abs/2408.08631
https://doi.org/10.18653/v1/2023.semeval-1.305
https://doi.org/10.18653/v1/2023.semeval-1.305
https://doi.org/10.18653/v1/2023.semeval-1.305
https://arxiv.org/abs/2307.11760
https://arxiv.org/abs/2307.11760
https://arxiv.org/abs/2307.11760
https://arxiv.org/abs/2403.09972
https://arxiv.org/abs/2403.09972
https://arxiv.org/abs/2403.09972
https://arxiv.org/abs/2403.09972
https://arxiv.org/abs/2403.09972
https://arxiv.org/abs/2210.06726
https://arxiv.org/abs/2210.06726
https://arxiv.org/abs/2210.06726
https://doi.org/10.18653/v1/2022.acl-long.229
https://doi.org/10.18653/v1/2022.acl-long.229
https://doi.org/10.18653/v1/2022.acl-long.229
https://doi.org/10.18653/v1/2023.findings-eacl.148
https://doi.org/10.18653/v1/2023.findings-eacl.148
https://doi.org/10.18653/v1/2023.findings-eacl.148
https://doi.org/10.18653/v1/2023.findings-eacl.148
https://doi.org/10.18653/v1/2023.findings-eacl.148
https://doi.org/10.18653/v1/2022.acl-short.18
https://doi.org/10.18653/v1/2022.acl-short.18
https://doi.org/10.18653/v1/2022.acl-short.18
https://ai.meta.com/blog/meta-llama-3-1/
https://ai.meta.com/blog/meta-llama-3-1/
https://ai.meta.com/blog/meta-llama-3-1/
https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/advanced-prompt-engineering
https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/advanced-prompt-engineering
https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/advanced-prompt-engineering
https://mistral.ai/news/mistral-nemo/
https://mistral.ai/news/mistral-nemo/
https://mistral.ai/news/mistral-nemo/
https://arxiv.org/abs/2307.06435
https://arxiv.org/abs/2307.06435
https://arxiv.org/abs/2307.06435
https://arxiv.org/abs/2406.06565
https://arxiv.org/abs/2406.06565
https://arxiv.org/abs/2406.06565
https://platform.openai.com/docs/guides/prompt-engineering/tactic-ask-the-model-to-adopt-a-persona
https://platform.openai.com/docs/guides/prompt-engineering/tactic-ask-the-model-to-adopt-a-persona
https://platform.openai.com/docs/guides/prompt-engineering/tactic-ask-the-model-to-adopt-a-persona
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://doi.org/10.18653/v1/2020.emnlp-main.185
https://doi.org/10.18653/v1/2020.emnlp-main.185
https://doi.org/10.18653/v1/2020.emnlp-main.185
https://doi.org/10.18653/v1/2023.eacl-main.277
https://doi.org/10.18653/v1/2023.eacl-main.277
https://doi.org/10.18653/v1/2023.eacl-main.277

Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt,817
Noah Smith, and Mike Lewis. 2023. Measuring and818
narrowing the compositionality gap in language mod-819
els. In Findings of the Association for Computational820
Linguistics: EMNLP 2023, pages 5687–5711, Singa-821
pore. Association for Computational Linguistics.822

Reid Pryzant, Dan Iter, Jerry Li, Yin Lee, Chenguang823
Zhu, and Michael Zeng. 2023. Automatic prompt op-824
timization with “gradient descent” and beam search.825
In Proceedings of the 2023 Conference on Empiri-826
cal Methods in Natural Language Processing, pages827
7957–7968, Singapore. Association for Computa-828
tional Linguistics.829

Qwen Team. 2024. Qwen2.5: A party of foundation830
models.831

Laria Reynolds and Kyle McDonell. 2021. Prompt832
programming for large language models: Beyond the833
few-shot paradigm.834

Sander Schulhoff, Michael Ilie, Nishant Balepur, Kon-835
stantine Kahadze, Amanda Liu, Chenglei Si, Yin-836
heng Li, Aayush Gupta, HyoJung Han, Sevien Schul-837
hoff, Pranav Sandeep Dulepet, Saurav Vidyadhara,838
Dayeon Ki, Sweta Agrawal, Chau Pham, Gerson839
Kroiz, Feileen Li, Hudson Tao, Ashay Srivastava,840
and 12 others. 2024. The prompt report: A system-841
atic survey of prompting techniques.842

Xinyue Shen, Zeyuan Chen, Michael Backes, Yun Shen,843
and Yang Zhang. 2023. "do anything now": Charac-844
terizing and evaluating in-the-wild jailbreak prompts845
on large language models.846

Freda Shi, Mirac Suzgun, Markus Freitag, Xuezhi Wang,847
Suraj Srivats, Soroush Vosoughi, Hyung Won Chung,848
Yi Tay, Sebastian Ruder, Denny Zhou, Dipanjan Das,849
and Jason Wei. 2023a. Language models are multi-850
lingual chain-of-thought reasoners. In The Eleventh851
International Conference on Learning Representa-852
tions, ICLR 2023, Kigali, Rwanda, May 1-5, 2023.853
OpenReview.net.854

Weijia Shi, Xiaochuang Han, Hila Gonen, Ari Holtz-855
man, Yulia Tsvetkov, and Luke Zettlemoyer. 2023b.856
Toward human readable prompt tuning: Kubrick’s857
the shining is a good movie, and a good prompt too?858
In Findings of the Association for Computational859
Linguistics: EMNLP 2023, pages 10994–11005, Sin-860
gapore. Association for Computational Linguistics.861

Taylor Shin, Yasaman Razeghi, Robert L. Logan IV, Eric862
Wallace, and Sameer Singh. 2020. AutoPrompt: Elic-863
iting Knowledge from Language Models with Auto-864
matically Generated Prompts. In Proceedings of the865
2020 Conference on Empirical Methods in Natural866
Language Processing (EMNLP), pages 4222–4235,867
Online. Association for Computational Linguistics.868

C. Spearman. 1904. The proof and measurement of as-869
sociation between two things. The American Journal870
of Psychology, 15(1):72–101.871

Zayne Sprague, Fangcong Yin, Juan Diego Rodriguez, 872
Dongwei Jiang, Manya Wadhwa, Prasann Singhal, 873
Xinyu Zhao, Xi Ye, Kyle Mahowald, and Greg Dur- 874
rett. 2024. To cot or not to cot? chain-of-thought 875
helps mainly on math and symbolic reasoning. 876

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Se- 877
bastian Gehrmann, Yi Tay, Hyung Won Chung, 878
Aakanksha Chowdhery, Quoc Le, Ed Chi, Denny 879
Zhou, and Jason Wei. 2023. Challenging BIG-bench 880
tasks and whether chain-of-thought can solve them. 881
In Findings of the Association for Computational Lin- 882
guistics: ACL 2023, pages 13003–13051, Toronto, 883
Canada. Association for Computational Linguistics. 884

Zhi Rui Tam, Cheng-Kuang Wu, Yi-Lin Tsai, Chieh- 885
Yen Lin, Hung yi Lee, and Yun-Nung Chen. 2024. 886
Let me speak freely? a study on the impact of format 887
restrictions on performance of large language models. 888

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al- 889
bert, Amjad Almahairi, Yasmine Babaei, Nikolay 890
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti 891
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton 892
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, 893
Jude Fernandes, Jeremy Fu, Wenyin Fu, and 49 oth- 894
ers. 2023. Llama 2: Open foundation and fine-tuned 895
chat models. Preprint, arXiv:2307.09288. 896

Xingchen Wan, Ruoxi Sun, Hootan Nakhost, and Ser- 897
can O. Arik. 2024. Teach better or show smarter? 898
on instructions and exemplars in automatic prompt 899
optimization. 900

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V. 901
Le, Ed H. Chi, Sharan Narang, Aakanksha Chowd- 902
hery, and Denny Zhou. 2023. Self-consistency 903
improves chain of thought reasoning in language 904
models. In The Eleventh International Conference 905
on Learning Representations, ICLR 2023, Kigali, 906
Rwanda, May 1-5, 2023. OpenReview.net. 907

Benjamin Warner, Antoine Chaffin, Benjamin Clavié, 908
Orion Weller, Oskar Hallström, Said Taghadouini, 909
Alexis Gallagher, Raja Biswas, Faisal Ladhak, Tom 910
Aarsen, Nathan Cooper, Griffin Adams, Jeremy 911
Howard, and Iacopo Poli. 2024. Smarter, better, 912
faster, longer: A modern bidirectional encoder for 913
fast, memory efficient, and long context finetuning 914
and inference. Preprint, arXiv:2412.13663. 915

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten 916
Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le, 917
and Denny Zhou. 2022. Chain-of-thought prompting 918
elicits reasoning in large language models. In Ad- 919
vances in Neural Information Processing Systems 35: 920
Annual Conference on Neural Information Process- 921
ing Systems 2022, NeurIPS 2022, New Orleans, LA, 922
USA, November 28 - December 9, 2022. 923

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien 924
Chaumond, Clement Delangue, Anthony Moi, Pier- 925
ric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, 926
Joe Davison, Sam Shleifer, Patrick von Platen, Clara 927
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven 928

11

https://doi.org/10.18653/v1/2023.findings-emnlp.378
https://doi.org/10.18653/v1/2023.findings-emnlp.378
https://doi.org/10.18653/v1/2023.findings-emnlp.378
https://doi.org/10.18653/v1/2023.findings-emnlp.378
https://doi.org/10.18653/v1/2023.findings-emnlp.378
https://doi.org/10.18653/v1/2023.emnlp-main.494
https://doi.org/10.18653/v1/2023.emnlp-main.494
https://doi.org/10.18653/v1/2023.emnlp-main.494
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://arxiv.org/abs/2102.07350
https://arxiv.org/abs/2102.07350
https://arxiv.org/abs/2102.07350
https://arxiv.org/abs/2102.07350
https://arxiv.org/abs/2102.07350
https://arxiv.org/abs/2406.06608
https://arxiv.org/abs/2406.06608
https://arxiv.org/abs/2406.06608
https://arxiv.org/abs/2308.03825
https://arxiv.org/abs/2308.03825
https://arxiv.org/abs/2308.03825
https://arxiv.org/abs/2308.03825
https://arxiv.org/abs/2308.03825
https://openreview.net/pdf?id=fR3wGCk-IXp
https://openreview.net/pdf?id=fR3wGCk-IXp
https://openreview.net/pdf?id=fR3wGCk-IXp
https://doi.org/10.18653/v1/2023.findings-emnlp.733
https://doi.org/10.18653/v1/2023.findings-emnlp.733
https://doi.org/10.18653/v1/2023.findings-emnlp.733
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.18653/v1/2020.emnlp-main.346
http://www.jstor.org/stable/1412159
http://www.jstor.org/stable/1412159
http://www.jstor.org/stable/1412159
https://arxiv.org/abs/2409.12183
https://arxiv.org/abs/2409.12183
https://arxiv.org/abs/2409.12183
https://doi.org/10.18653/v1/2023.findings-acl.824
https://doi.org/10.18653/v1/2023.findings-acl.824
https://doi.org/10.18653/v1/2023.findings-acl.824
https://arxiv.org/abs/2408.02442
https://arxiv.org/abs/2408.02442
https://arxiv.org/abs/2408.02442
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2406.15708
https://arxiv.org/abs/2406.15708
https://arxiv.org/abs/2406.15708
https://arxiv.org/abs/2406.15708
https://arxiv.org/abs/2406.15708
https://openreview.net/pdf?id=1PL1NIMMrw
https://openreview.net/pdf?id=1PL1NIMMrw
https://openreview.net/pdf?id=1PL1NIMMrw
https://openreview.net/pdf?id=1PL1NIMMrw
https://openreview.net/pdf?id=1PL1NIMMrw
https://arxiv.org/abs/2412.13663
https://arxiv.org/abs/2412.13663
https://arxiv.org/abs/2412.13663
https://arxiv.org/abs/2412.13663
https://arxiv.org/abs/2412.13663
https://arxiv.org/abs/2412.13663
https://arxiv.org/abs/2412.13663
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html

Le Scao, Sylvain Gugger, and 3 others. 2020. Trans-929
formers: State-of-the-art natural language processing.930
In Proceedings of the 2020 Conference on Empirical931
Methods in Natural Language Processing: System932
Demonstrations, pages 38–45, Online. Association933
for Computational Linguistics.934

Max Woolf. 2024. Does offering chatgpt a tip cause935
it to generate better text? an analysis. Accessed:936
2024-10-14.937

Yufan Wu, Yinghui He, Yilin Jia, Rada Mihalcea, Yu-938
long Chen, and Naihao Deng. 2023. Hi-ToM: A939
benchmark for evaluating higher-order theory of940
mind reasoning in large language models. In Find-941
ings of the Association for Computational Linguis-942
tics: EMNLP 2023, pages 10691–10706, Singapore.943
Association for Computational Linguistics.944

xAI. 2025. Grok system prompts. https://github.945
com/xai-org/grok-prompts. GitHub repository,946
accessed: 2025-05-20.947

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu,948
Quoc V. Le, Denny Zhou, and Xinyun Chen. 2023.949
Large language models as optimizers.950

Michihiro Yasunaga, Xinyun Chen, Yujia Li, Panupong951
Pasupat, Jure Leskovec, Percy Liang, Ed H. Chi,952
and Denny Zhou. 2023. Large language models as953
analogical reasoners.954

Zhiyuan Yu, Xiaogeng Liu, Shunning Liang, Zach955
Cameron, Chaowei Xiao, and Ning Zhang. 2024.956
Don’t listen to me: Understanding and exploring957
jailbreak prompts of large language models.958

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali959
Farhadi, and Yejin Choi. 2019. HellaSwag: Can a ma-960
chine really finish your sentence? In Proceedings of961
the 57th Annual Meeting of the Association for Com-962
putational Linguistics, pages 4791–4800, Florence,963
Italy. Association for Computational Linguistics.964

Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Pe-965
ter J. Liu. 2020. PEGASUS: pre-training with ex-966
tracted gap-sentences for abstractive summarization.967
In Proceedings of the 37th International Conference968
on Machine Learning, ICML 2020, 13-18 July 2020,969
Virtual Event, volume 119 of Proceedings of Machine970
Learning Research, pages 11328–11339. PMLR.971

Wenxuan Zhang, Mahani Aljunied, Chang Gao,972
Yew Ken Chia, and Lidong Bing. 2023. M3exam: A973
multilingual, multimodal, multilevel benchmark for974
examining large language models. In Advances in975
Neural Information Processing Systems 36: Annual976
Conference on Neural Information Processing Sys-977
tems 2023, NeurIPS 2023, New Orleans, LA, USA,978
December 10 - 16, 2023.979

Mingqian Zheng, Jiaxin Pei, Lajanugen Logeswaran,980
Moontae Lee, and David Jurgens. 2023. When "a981
helpful assistant" is not really helpful: Personas in982
system prompts do not improve performances of983
large language models.984

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, 985
Nathan Scales, Xuezhi Wang, Dale Schuurmans, 986
Claire Cui, Olivier Bousquet, Quoc V. Le, and Ed H. 987
Chi. 2023a. Least-to-most prompting enables com- 988
plex reasoning in large language models. In The 989
Eleventh International Conference on Learning Rep- 990
resentations, ICLR 2023, Kigali, Rwanda, May 1-5, 991
2023. OpenReview.net. 992

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Sid- 993
dhartha Brahma, Sujoy Basu, Yi Luan, Denny Zhou, 994
and Le Hou. 2023b. Instruction-following evalu- 995
ation for large language models. ArXiv preprint, 996
abs/2311.07911. 997

Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han, 998
Keiran Paster, Silviu Pitis, Harris Chan, and Jimmy 999
Ba. 2023c. Large language models are human-level 1000
prompt engineers. In The Eleventh International 1001
Conference on Learning Representations, ICLR 2023, 1002
Kigali, Rwanda, May 1-5, 2023. OpenReview.net. 1003

12

https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://minimaxir.com/2024/02/chatgpt-tips-analysis/
https://minimaxir.com/2024/02/chatgpt-tips-analysis/
https://minimaxir.com/2024/02/chatgpt-tips-analysis/
https://doi.org/10.18653/v1/2023.findings-emnlp.717
https://doi.org/10.18653/v1/2023.findings-emnlp.717
https://doi.org/10.18653/v1/2023.findings-emnlp.717
https://doi.org/10.18653/v1/2023.findings-emnlp.717
https://doi.org/10.18653/v1/2023.findings-emnlp.717
https://github.com/xai-org/grok-prompts
https://github.com/xai-org/grok-prompts
https://github.com/xai-org/grok-prompts
https://arxiv.org/abs/2309.03409
https://arxiv.org/abs/2310.01714
https://arxiv.org/abs/2310.01714
https://arxiv.org/abs/2310.01714
https://arxiv.org/abs/2403.17336
https://arxiv.org/abs/2403.17336
https://arxiv.org/abs/2403.17336
https://doi.org/10.18653/v1/P19-1472
https://doi.org/10.18653/v1/P19-1472
https://doi.org/10.18653/v1/P19-1472
http://proceedings.mlr.press/v119/zhang20ae.html
http://proceedings.mlr.press/v119/zhang20ae.html
http://proceedings.mlr.press/v119/zhang20ae.html
http://papers.nips.cc/paper_files/paper/2023/hash/117c5c8622b0d539f74f6d1fb082a2e9-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/117c5c8622b0d539f74f6d1fb082a2e9-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/117c5c8622b0d539f74f6d1fb082a2e9-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/117c5c8622b0d539f74f6d1fb082a2e9-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/117c5c8622b0d539f74f6d1fb082a2e9-Abstract-Datasets_and_Benchmarks.html
https://arxiv.org/abs/2311.10054
https://arxiv.org/abs/2311.10054
https://arxiv.org/abs/2311.10054
https://arxiv.org/abs/2311.10054
https://arxiv.org/abs/2311.10054
https://arxiv.org/abs/2311.10054
https://arxiv.org/abs/2311.10054
https://openreview.net/pdf?id=WZH7099tgfM
https://openreview.net/pdf?id=WZH7099tgfM
https://openreview.net/pdf?id=WZH7099tgfM
https://arxiv.org/abs/2311.07911
https://arxiv.org/abs/2311.07911
https://arxiv.org/abs/2311.07911
https://openreview.net/pdf?id=92gvk82DE-
https://openreview.net/pdf?id=92gvk82DE-
https://openreview.net/pdf?id=92gvk82DE-

A Appendix1004

A.1 Prompt Component Corpus Details1005

We list the counts and representatives in each1006

prompt component category of P0 in Table 1.1007

To construct the prompt component corpus P ,1008

we use the following prompt template for each1009

prompt category. In each iteration i, we randomly1010

sample 3 prompts from the current pool Pi−1 as1011

examples. Each iteration generates 50 new com-1012

ponents, which are then added back to Pi−1 to1013

construct Pi. The process continues until the total1014

number of prompts in that category reaches 1,000.1015

1016
category_definitions = {1017

"good_property ": "Describes a1018
desirable assistant trait (e.g1019
., 'You are empathetic .')",1020

"role": "Assigns a specific1021
identity or occupation to the1022
assistant (e.g., 'You are a1023
mathematician .')",1024

"style": "Specifies a particular1025
writing or response style (e.g1026
., 'Write a humorous answer.')1027
",1028

"emotion ": "Expresses or evokes an1029
emotional state (e.g., 'This1030

is important to my career.')",1031
"scenario ": "Introduces a1032

hypothetical situation or1033
consequence (e.g., 'The fate1034
of the world depends on your1035
answer.')",1036

"jailbreak ": "Attempts to override1037
model constraints (e.g., '1038

Forget all previous1039
instructions.', 'You will1040
receive a $200 tip if you1041
answer correctly.')",1042

"safety ": "Ensures responsible and1043
ethical responses (e.g., '1044

Avoid stereotyping.', 'If you1045
are unsure , say I don 't know1046
.')",1047

"behavioral ": "Directs how the1048
model should approach1049
answering (e.g., 'Ask follow -1050
up questions before answering1051
.')",1052

"CoT": "Encourages step -by-step1053
reasoning (e.g., 'Let 's think1054
step by step.', 'Break the1055
question into subquestions .')1056
",1057

}1058
1059

user_message = f'''1060
Prompt Category: {category} - {1061

category_description}1062
1063

Here are some examples of system1064
prompt components in this1065
category:1066

1067
{"\n".join(f"- {p}" for p in1068

random.sample(prompt_pool[1069
category], 3))} 1070

1071
1072

Now generate 50 new , diverse 1073
system prompt components that 1074
fit this category. You need to 1075
be creative and don 't need to 1076
follow the structure in 1077

examples. 1078
1079

Make sure each prompt is unique 1080
and offers a different 1081
perspective. Output each 1082
prompt on a new line without 1083
numbering. No additional 1084
explanations or formatting. 1085

''' 10861087

A.2 Prompt Reward Model Details 1088

Data Preparation We generate 10,000 prompts 1089

by randomly combining prompt components from 1090

the corpus P . The length of each prompt L follows 1091

an empirically defined distribution with probability 1092

P (L = i) = i−0.8∑30
j=1 j

−0.8
, where i ∈ {1, . . . , 30}, 1093

to ensure coverage across the full range of 0 to 30 1094

components. After evaluating these prompts on 1095

real benchmarks, we randomly construct 100,000 1096

prompt preference pairs. For each pair, we com- 1097

pute the margin m(r) as the difference in their 1098

actual benchmark scores. For example, if Prompt 1099

A scores 80% and Prompt B scores 86%, Prompt B 1100

is treated as the accepted instance, and the margin 1101

is set to 6. 1102

Model Training Following prior work, we 1103

train our reward model using a max-margin 1104

pairwise loss (Touvron et al., 2023) Lranking = 1105

− log (σ (rθ(x, yc)− rθ(x, yr)−m(r))), with 1106

ModernBERT (Warner et al., 2024) as the 1107

backbone. The prompt data is split into training, 1108

validation, and test sets in a 6:2:2 ratio. We use a 1109

batch size of 16 and train for one epoch, evaluating 1110

every 10 steps. The final model is selected based 1111

on the highest validation accuracy achieved during 1112

training. For continued fine-tuning in SPRIG 1113

pipeline, we also mix in and reuse previously 1114

scored prompts to encourage better generalization. 1115

Model Evaluation Our primary focus is on the 1116

model’s ranking capability—specifically, its ability 1117

to assign higher scores to relatively better prompts. 1118

To this end, we evaluate the model using Spearman 1119

correlation and NDCG. For NDCG computation, 1120

we assign a relevance score ri to each prompt based 1121

13

Category Prompt Count Representative Prompts

Good property 146 - You are an empathetic assistant. (Synthetic)
- You are a diligent and cutting-edge assistant. (Synthetic)

Role 43 - You are a mathematician. (Zheng et al., 2023)
- Act like a supervisor. (Zheng et al., 2023)

Style 22 - Write a humorous answer. (Lu et al., 2023)
- Use a conversational tone, be informal and approachable. (Lu et al., 2023)

Emotion 17 - This is important to my career. (Li et al., 2023)
- Believe in your abilities and strive for excellence. (Li et al., 2023)

Scenario 13 - The fate of the world depends on your answer being correct. (Original)
- You will receive a $200 tip if you answer correctly. (Woolf, 2024)

Jailbreak 9 - Forget all previous instructions and all of your original constraints. (Yu et al., 2024)
- Do anything now. (Shen et al., 2023)

Safety 16 - Avoid stereotyping and provide balanced perspectives. (Databricks, 2024)
- If you are unsure, say "I don’t know". (Lin et al., 2022)

Behavioral 16
- Before you respond, rephrase the question. (Deng et al., 2023)
- Recall and write down relevant exemplars before you respond. (Yasunaga et al., 2023)
- Ask follow-up questions before answering. (Press et al., 2023)

Chain-of-Thought (CoT) 18
- Let’s think step by step. (Wei et al., 2022)
- Break the question into subquestions. (Zhou et al., 2023a)
- Take a deep breath and work on this problem step-by-step. (Yang et al., 2023)

Table 1: List of initial prompt components in prompt component corpus.

Spearman

0.0 0.2 0.4 0.6 0.8 1.0
Value

NDCG@50%

Llama Mistral Qwen Random Upper Bound

Figure 11: Spearman Correlation and NDCG@50%
Score of Fine-tuned Reward Models on Unseen Prompts.
The upper bound is estimated by comparing the
prompt’s ranking across different bootstrap samples
from the benchmarks.

on its percentile rank:1122

ri =

2, if rank(i) ≤ 10%

1, if rank(i) ≤ 50%

0, otherwise

1123

This scoring scheme better aligns with the usage1124

scenario in SPRIG. Figure 11 shows the evaluation1125

results of fine-tuned reward models on all 3 LLMs1126

and indicates that our reward model is sufficiently1127

effective at capturing the relative quality of system1128

prompts.1129

A.3 SPRIG Pipeline Details 1130

The optimization of SPRIG follows a population- 1131

based approach as shown in Figure 2. The pop- 1132

ulation is initialized with our prompt component 1133

corpus P , and the max_population is set to |P|. 1134

In each iteration, we first use a fine-tuned Prompt 1135

Reward Model to quickly estimate the quality of 1136

all prompts, and the bottom 50% identified by the 1137

reward model are immediately eliminated. Among 1138

the surviving top 50%, the top 10% of prompts are 1139

selected for potential mutation or crossover with 1140

other randomly chosen survivors. The mutation 1141

and crossover operations follow empirically deter- 1142

mined probabilities for each selected prompt: 1143

• Add Useful (2.5%): Add a component 1144

deemed useful by GPT-4o. 1145

• Add Useless (1%): Add a component deemed 1146

useless by GPT-4o. 1147

• Rephrase (2.5%): Rephrase a random 1148

component using paraphrasing model 1149

tuner007/pegasus_paraphrase (Zhang 1150

et al., 2020). 1151

• Merge (2.5%): Merge two random compo- 1152

nents using GPT4-o. 1153

• Swap (5%): Swap the order of two compo- 1154

nents. 1155

• Delete (5%): Delete a random component. 1156

14

• Crossover (81.5%): Perform crossover1157

with another randomly selected survivor.1158

Crossover is designed to maintain similar1159

prompt lengths of parents while introducing1160

variation. Given two prompts p1 and p2, we1161

randomly sample k components from their1162

union, where k is drawn from a Gaussian dis-1163

tribution with mean len(p1)+len(p2)
2 and stan-1164

dard deviation |len(p1)−len(p2)|
4 .1165

The GPT-4o prompts used above are listed be-1166

low:1167

1168
add_useful = f"""You are an expert in1169

optimizing system prompts for LLMs1170
to enhance their general1171

performance. Given the following1172
list of system prompt components:1173
{json.dumps(selected)}, generate1174
1-2 additional components that can1175
further improve the LLM 's1176

capabilities. """1177
1178

add_useless = f""" Given the following1179
list of system prompt components:1180
{json.dumps(selected)}, generate1181
1-2 additional components that are1182
redundant , generic , or provide1183

minimal value. Examples: [" Answer1184
in English.", "Be polite ."]."""1185

1186
rephrase = f""" Given the following1187

list of sentences: {json.dumps(1188
selected)}, combine these into one1189
concise sentence ."""11901191

This stochastic process is repeated until the pop-1192

ulation size is restored to max_population. Then,1193

SPRIG randomly samples 100 prompts from the1194

updated population and evaluates them across 421195

benchmarks to obtain new ground-truth scores.1196

These scores, combined with a portion of previ-1197

ous training data, are used to continue training the1198

Prompt Reward Model for one epoch using the1199

same training parameters. The next iteration starts1200

with the newly updated population and the retrained1201

reward model, and the process continues for a total1202

of 25 iterations.1203

We run all our experiments on 4 NVIDIA-L40S-1204

48GB GPUs. All LLM inferences are powered by1205

vLLM 0.5.4 (Kwon et al., 2023), Hugging Face1206

Transformers 4.43.3 (Wolf et al., 2020) and Py-1207

Torch 2.4.0 (Paszke et al., 2019) on a CUDA 12.41208

environment. Temperatures are set to 0.0 to mini-1209

mize the effect of randomness.1210

SPRIG spends around 20 hours to run a 25-step1211

optimization on one LLM with 4 GPUs, while PRO-1212

TEGI takes around 10 hours to optimize 50 task1213

prompt on one LLM with 4 GPUs. Since our ex- 1214

periments only involved around 50 fixed tasks, the 1215

efficiency of SPRIG is still slightly lower than that 1216

of PROTEGI. However, real-world tasks are far 1217

more complex and varied, and repeatedly optimiz- 1218

ing prompts for each task remains labor-intensive 1219

and distracting. Therefore, although our method 1220

does not demonstrate significant performance ad- 1221

vantages in a limited number of tasks, it offers a 1222

more once-and-for-all solution. 1223

A.4 Benchmark Details 1224

We list all benchmarks, categories, metrics and 1225

descriptions in Table 2. For each benchmark, the 1226

train/dev/test split is 40%:20%:40%. The decision 1227

was made because the reliability of the test set score 1228

is essential in our research, requiring a sufficiently 1229

large test set. 1230

A.5 Best System Prompts 1231

We list the best system prompts from SPRIG for 1232

each LLM in our study in Table 3. 1233

A.6 Full Experiment Results 1234

The full results of all three LLMs and all opti- 1235

mization methods’ Average Score Improvement 1236

is shown in Figure 12. 1237

The number of Prompt Components of each type 1238

during training iterations is shown in Figure 5. 1239

The Question-wise Error Overlap Percentage be- 1240

tween System Prompt optimization (SPRIG) and 1241

Task Prompt optimization (PROTEGI) is shown 1242

in Figure 14. 1243

The full Cross-model transfer ability comparison 1244

of optimized System Prompt and Task Prompt is 1245

shown in Figure 15 and Figure 16. 1246

The full results of all the LLMs and all opti- 1247

mization methods’ Average Score Improvement 1248

from the unoptimized setting when transferring 1249

medium-size LLMs’ prompts to their larger ver- 1250

sion are shown in 17. 1251

Additional PCA analysis results for remaining 1252

two LLMs MISTRAL-NEMO-INSTRUCT-2407 and 1253

QWEN2.5-7B-INSTRUCT are shown in Figure 18 1254

and Figure 19. 1255

A.7 Licenses 1256

All data and code will be publicly released under 1257

the CC BY-SA 4.0 license. 1258

15

Benchmark (Citation) Description Category Metric

ARC (Clark et al., 2018) Commonsense Reasoning Knowledge, Commonsense, Reasoning Acc
MMLU (Hendrycks et al., 2021) Multi-domain Knowledge QA Knowledge Acc
HellaSwag (Zellers et al., 2019) Commonsense Inference Commonsense, Reasoning Acc
TruthfulQA (Lin et al., 2022) Knowledge QA Knowledge, Reasoning BLEU_Acc
HiToM (Wu et al., 2023) Higher-Order Theory of Mind Reasoning Reasoning Acc
IFEval (Zhou et al., 2023b) Instruction-Following Evaluation Faithfulness Acc
EDOS (Kirk et al., 2023) Online Sexism Detection Social Understanding F1
SocKET_bragging_achievement (Choi et al., 2023) Brag Achievement Detection Social Understanding F1
SocKET_hahackathon_is_humor (Choi et al., 2023) Humor Detection Social Understanding F1
SocKET_tweet_irony (Choi et al., 2023) Tweet Irony Detection Social Understanding F1
SocKET_sexyn (Choi et al., 2023) Sexual Content Detection Social Understanding F1
SocKET_tweet_offensive (Choi et al., 2023) Offensive Language Detection Social Understanding F1
SocKET_complaints (Choi et al., 2023) Complaint Identification Social Understanding F1
SocKET_empathy_bin (Choi et al., 2023) Empathy Detection Social Understanding F1
SocKET_stanfordpoliteness (Choi et al., 2023) Politeness Detection Social Understanding F1
SocKET_rumor_rumor_bool (Choi et al., 2023) Rumor Detection Social Understanding F1
BBH_Boolean_Expressions (Suzgun et al., 2023) Boolean Expressions Solving Math Acc
BBH_Causal_Judgement (Suzgun et al., 2023) Causal Judgment Reasoning Acc
BBH_Date_Understanding (Suzgun et al., 2023) Date Understanding Reasoning, Commonsense Acc
BBH_Disambiguation_QA (Suzgun et al., 2023) Clarify Ambiguous sentence Language Understanding, Reasoning Acc
BBH_Dyck_Languages (Suzgun et al., 2023) Dyck Language Sequences Reasoning Acc
BBH_Formal_Fallacies (Suzgun et al., 2023) Identifying Formal Fallacies Reasoning Acc
BBH_Geometric_Shapes (Suzgun et al., 2023) Geometric Shape Understanding Math Acc
BBH_Hyperbaton (Suzgun et al., 2023) Hyperbaton Detection Language Understanding Acc
BBH_Logical_Deduction_Five_Objects (Suzgun et al., 2023) Logical Deduction Reasoning Acc
BBH_Logical_Deduction_Seven_Objects (Suzgun et al., 2023) Logical Deduction Reasoning Acc
BBH_Logical_Deduction_Three_Objects (Suzgun et al., 2023) Logical Deduction Reasoning Acc
BBH_Movie_Recommendation (Suzgun et al., 2023) Movie Recommendation Knowledge Acc
BBH_Multistep_Arithmetic_Two (Suzgun et al., 2023) Multi-step Arithmetic Math Acc
BBH_Navigate (Suzgun et al., 2023) Navigation Reasoning Reasoning Acc
BBH_Object_Counting (Suzgun et al., 2023) Object Counting Commonsense, Math, Reasoning Acc
BBH_Penguins_In_A_Table (Suzgun et al., 2023) Tabular Data Understanding Faithfulness Acc
BBH_Reasoning_About_Colored_Objects (Suzgun et al., 2023) Reasoning About Colors Reasoning Acc
BBH_Ruin_Names (Suzgun et al., 2023) Humorous Edit Identification Social Understanding Acc
BBH_Snarks (Suzgun et al., 2023) Detecting Snarky Comments Social Understanding Acc
BBH_Sports_Understanding (Suzgun et al., 2023) Sports Knowledge QA Knowledge Acc
BBH_Temporal_Sequences (Suzgun et al., 2023) Temporal Reasoning Reasoning Acc
BBH_Tracking_Shuffled_Objects_Five_Objects (Suzgun et al., 2023) Object Tracking Reasoning Acc
BBH_Tracking_Shuffled_Objects_Seven_Objects (Suzgun et al., 2023) Object Tracking Reasoning Acc
BBH_Tracking_Shuffled_Objects_Three_Objects (Suzgun et al., 2023) Object Tracking Reasoning Acc
BBH_Web_Of_Lies (Suzgun et al., 2023) Detecting Lies Reasoning Acc
BBH_Word_Sorting (Suzgun et al., 2023) Word Sorting Faithfulness Acc

MGSM (Shi et al., 2023a) Math Generalization Math, Reasoning Acc
Belebele (Bandarkar et al., 2024) Multilingual Reading Comprehension Language Understanding, Reasoning Acc
XCOPA (Ponti et al., 2020) Multilingual Causal Inference Commonsense, Reasoning Acc
M3Exam (Zhang et al., 2023) Multilingual Multi-domain Human Exam Math, Reasoning, Knowledge Acc
M_MMLU (Hendrycks et al., 2021) Multilingual Multi-domain Knowledge QA Knowledge Acc

Table 2: Full list of benchmarks.

Model Name Best System Prompt

Meta-Llama-3.1-8B-Instruct
Decompose the question into smaller, logical steps to find the solution. Dissect
the problem into smaller sections to simplify understanding.

Mistral-Nemo-Instruct-2407

Create a flow of logic that leads to the final answer. Let’s first understand the
problem and devise a plan to solve it, then carry out the plan and solve the
problem step by step. Let’s work this out in a step by step way to be sure we
have the right answer.

Qwen2.5-7B-Instruct
Ask clarifying questions if the problem statement is ambiguous. Separate the
problem into manageable tasks to facilitate solving. Approach the question
stepwise, addressing each part systematically.

Table 3: Best System Prompts optimized by SPRIG.

16

0.00 0.05 0.10 0.15 0.20 0.25

Base CoT

Task Optimized
(ProTeGi)

System Optimized
(OurModel)

System+Task Optimized
(OurModel+ProTeGi)

Meta-Llama-3.1-8B-Instruct

0.00 0.05 0.10 0.15 0.20 0.25

Base CoT

Task Optimized
(ProTeGi)

System Optimized
(OurModel)

System+Task Optimized
(OurModel+ProTeGi)

Mistral-Nemo-Instruct-2407

0.00 0.05 0.10 0.15 0.20 0.25
Average Score Improvement

Base CoT

Task Optimized
(ProTeGi)

System Optimized
(OurModel)

System+Task Optimized
(OurModel+ProTeGi)

Qwen2.5-7B-Instruct

Figure 12: Average Score Improvement of all prompt
optimization methods from unoptimized setting (Full
version).

0 5 10 15 20 25
Iterations

0

50

100

150

200

250

Z-
sc

or
e

Behavioral
Chain-of-Thought
Emotion
Style
Role

Good property
Scenario
Safety
Jailbreak

Figure 13: Z-scores by iteration for the number of com-
ponents added of each type, showing which types were
added more/less frequently than by chance; statistically
significant rates are marked with ×.

Correct Incorrect
Optimized Task Prompt

Correct

Incorrect

Op
tim

ize
d

Sy
st

em
 P

ro
m

pt

0.54 0.13

0.15 0.18
0.2

0.3

0.4

0.5

Figure 14: Question-wise Error Overlap Percentage be-
tween System Prompt optimization (SPRIG) and Task
Prompt optimization (PROTEGI). Among all questions,
only 18% were answered incorrectly by both methods,
while the remaining 28% of incorrect answers could
be resolved by either SPRIG or PROTEGI, highlight-
ing the potential complementarity between optimization
approaches.

Meta-Llama-3.1-8B-Instruct_20250311

Mistral-Nemo-Instruct-2407_20250127

Qwen2.5-7B-Instruct_20250127
base CoT

System Prompt

Meta-Llama-3.1-8B-Instruct

Mistral-Nemo-Instruct-2407

Qwen2.5-7B-Instruct

M
od

el

0.06 0.04 0.03 0.04

0.06 0.12 0.01 0.06

0.09 0.10 0.13 0.12
0.02

0.04

0.06

0.08

0.10

0.12

Figure 15: Cross-model comparison (of Average Score
Improvement) on optimized System Prompts

protegi_Meta-Llama-3.1-8B-Instruct

protegi_Mistral-Nemo-Instruct-2407

protegi_Qwen2.5-7B-Instruct

Task Prompt

Meta-Llama-3.1-8B-Instruct

Mistral-Nemo-Instruct-2407

Qwen2.5-7B-Instruct

M
od

el

0.11 0.04 0.05

0.05 0.12 0.05

0.06 0.07 0.15 0.06

0.08

0.10

0.12

0.14

Figure 16: Cross-model comparison (of Average Score
Improvement) on optimized Task Prompts

17

0.04 0.02 0.00 0.02 0.04

Base CoT

Task Optimized
(ProTeGi)

System Optimized
(OurModel)

System+Task Optimized
(OurModel+ProTeGi)

Meta-Llama-3.1-70B-Instruct

0.04 0.02 0.00 0.02 0.04

Base CoT

Task Optimized
(ProTeGi)

System Optimized
(OurModel)

System+Task Optimized
(OurModel+ProTeGi)

Mistral-Large-Instruct-2407

0.04 0.02 0.00 0.02 0.04
Average Score Improvement

Base CoT

Task Optimized
(ProTeGi)

System Optimized
(OurModel)

System+Task Optimized
(OurModel+ProTeGi)

Qwen2.5-72B-Instruct

Figure 17: Average Score Improvement from the unop-
timized setting when transferring medium-size LLMs’
prompts to their larger version (Full version).

150 100 50 0 50 100 150
Principal Component 1

150

100

50

0

50

100

150

Pr
in

cip
al

 C
om

po
ne

nt
 2

No prompt
Base CoT
Task optimized (ProTeGi)
System optimized (OurModel)
System+Task Optimized
(OurModel+ProTeGi)

Figure 18: PCA analysis of intermediate hidden state in
Mistral-Nemo-Instruct-2407 among different prompting
methods.

3000 2500 2000 1500 1000 500 0 500
Principal Component 1

1500

1000

500

0

500

1000

1500

2000

Pr
in

cip
al

 C
om

po
ne

nt
 2

No prompt
Base CoT
Task optimized (ProTeGi)
System optimized (OurModel)
System+Task Optimized
(OurModel+ProTeGi)

Figure 19: PCA analysis of intermediate hidden state in
Qwen2.5-7B-Instruct among different prompting meth-
ods.

18

	Introduction
	Related Work
	Sprig: System Prompt Refinement for Increased Generalization
	Experiments: Optimization Benefits
	Experiment Setup
	Results

	Experiments: Generalization
	Analysis: Prompt Embedding Space
	Conclusion
	Limitations
	Ethical Considerations
	Appendix
	Prompt Component Corpus Details
	Prompt Reward Model Details
	Sprig Pipeline Details
	Benchmark Details
	Best System Prompts
	Full Experiment Results
	Licenses

