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Abstract
Audio scene understanding, parsing sound into a
hierarchy of meaningful parts, is an open problem
in representation learning. Sound is a particularly
challenging domain due to its high dimension-
ality, sequential dependencies and hierarchical
structure. Differentiable Digital Signal Process-
ing (DDSP) greatly simplifies the forward prob-
lem of generating audio by introducing differen-
tiable synthesizer and effects modules that com-
bine strong signal priors with end-to-end learn-
ing. Here, we focus on the inverse problem, in-
ferring synthesis parameters to approximate an
audio scene. We demonstrate that DDSP modules
can enable a new approach to self-supervision,
generating synthetic audio with differentiable syn-
thesizers and training feature extractor networks
to infer the synthesis parameters. By building a
hierarchy from sinusoidal to harmonic represen-
tations, we show that it possible to use such an
inverse modeling approach to disentangle pitch
from timbre, an important task in audio scene
understanding.

1. Introduction
While audio scene analysis is typically associated with
source separation (Brown & Cooke, 1994), it also encom-
passes many sound analysis tasks including pitch detec-
tion (Kim et al., 2018; Gfeller et al., 2020), phoneme recog-
nition (Koutras et al., 1999), automatic speech recogni-
tion (Coy & Barker, 2007), sound localization (Lyon, 1983),
and polyphonic instrument transcription (Hawthorne et al.,
2018). Since many sources exhibit harmonic resonance,
such as voices and vibrating objects (Smith, 2010), disen-
tangling pitch and timbre is an important step in parsing an
audio scene (Moerel et al., 2012; Theunissen & Elie, 2014).

Inverse graphics, where the parameters of a rendering engine
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Figure 1. Diagram of inverse audio synthesis. A feature extrac-
tion pipeline (F θsin, F θharm) hierarchically decomposes audio into
low-level sinusoidal components (frequency, amplitude), which
are combined to extract harmonic components (f0, amplitude,
harmonic distribution). These are the only modules that have learn-
able parameters θ. An additional filtered noise component is not
shown. These parameters are fed to differentiable audio synthesiz-
ers (Ssin, Sharm) and then to reconstruction losses. An additional
consistency loss is enforced on the predicted and resynthesized
sinusoidal components. See Section 3 for details.

are inferred from an image, is an appealing approach to
parsing visual scenes. Unlike black-box classifiers, the
approach is object-oriented, interpretable by design, and can
generate high-quality images with modern renderers (Wu
et al., 2017a; Yao et al., 2018). In audio, these inverse
approaches have been limited to the domain of individual
sounds from unrealistic commercial synthesizers due to the
lack of a realistic, interpretable and differentiable audio
rendering engine (Huang et al., 2014; Hoffman & Cook,
2006; Esling et al., 2019).

Most realistic generative models of audio require large au-
toregressive models that are slow, non-differentiable and
cannot generate samples mid-training. (Dieleman et al.,
2018; Dhariwal et al., 2020; Hawthorne et al., 2019; En-
gel et al., 2017; Wang et al., 2017). Differentiable Digital
Signal Processing (DDSP) (Engel et al., 2020) overcomes
these challenges by combining neural networks with dif-
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ferentiable synthesizers to efficiently render realistic audio
during training.

Finally, self-supervised techniques typically rely on intrinsic
properties of data, such as causality (Oord et al., 2018)
or identity-invariance to augmentation (Zhai et al., 2019),
to automatically generate supervised labels from datasets.
Since our DDSP audio renderer is fully interpretable, we
can explore a different form of self-supervision where a
fairly generic random process generates both synthetic audio
and supervised labels for training. We combine this self-
supervision with unsupervised reconstruction losses to adapt
to new datasets.

The key contributions of this paper include:

• DDSP-inv: An inverse model of sound using DDSP, ca-
pable of factorizing pitch and timbre, with comparable
pitch detection to SOTA supervised and self-supervised
discriminative methods.

• Self-supervised training procedure to train feature ex-
tractor networks to infer synthesis parameters from
differentiably-rendered synthetic audio.

• Sinusoidal Synthesizer: A new DDSP module capable
of generating a wide range of audio including inhar-
monic and polyphonic signals.

• Sinusoidal Consistency Loss: A loss function to eval-
uate the similarity of two arbitrarily-ordered sets of
sinusoids and also perform heuristic pitch extraction.

Audio samples are provided in the online supplement
at https://goo.gl/magenta/ddsp-inv and code
will be available after publication at https://github.
com/magenta/ddsp.

2. Related Work
Differentiable Rendering: Differentiable rendering is a
valuable component of inverse graphics models (Loubet
et al., 2019; Li et al., 2018b). A natural scene can be “deren-
dered” into a structured object-wise representation via a
differentiable shape renderer (Yao et al., 2018) or an explicit
scene description that can be recomposed with a graphics en-
gine (Wu et al., 2017b). This literature motivates this work,
in which we use DDSP as a differentiable audio renderer.

Sinusoidal Modeling Synthesis: The techniques devel-
oped by Serra & Smith (1990) model sound as a combi-
nation of additive sinusoids and a subtractive filtered noise
source. Despite being parametric and using heuristics to
infer synthesis parameters, it is a highly expressive model
of sound with diverse applications and is even used as a
general purpose audio codec in MPEG-4 (Tellman et al.,
1995; Klapuri et al., 2000; Purnhagen & Meine, 2000). In

this work, we train neural networks to do this task with
end-to-end learning.

Pitch Detection: Estimating the fundamental frequency
(f0) of a monophonic audio signal, or pitch detection,
is a key task to audio scene understanding. We com-
pare against several state-of-the-art baselines in this work.
SWIPE (Camacho & Harris, 2008) performs spectrum tem-
plate matching between the signal and a sawtooth wave-
form. CREPE (Kim et al., 2018) is a deep convolutional
model classifying pitch labels directly from the waveform.
SPICE (Gfeller et al., 2020) removes the need for labels by
employing self-supervision to predict the frequency shifts
applied to training data. While these discriminative methods
are trained specifically to detect pitch, DDSP-inv learns to
detect f0 as a side-effect of disentangling timbre and pitch
in a signal.

3. Model Architecture
A diagram and description of our model hierarchy is shown
in Figure 1 (DDSP-inv, for inverse modeling with DDSP).
We describe each component below.

3.1. Differentiable Audio Synthesizers

Inspired by the work of Serra & Smith (1990), we model
sound as a flexible combination of time-dependent sinu-
soidal oscillators and filtered noise. From the sinusoids we
can infer a corresponding harmonic oscillator with a funda-
mental frequency. Except for the new sinusoidal synthesizer
module, all other modules are identical to the DDSP library
introduced in Engel et al. (2020). While other available
DDSP modules cover aspects such as room reverberation,
we do not consider them here since they are not significant
factors in the benchmark datasets.

Sinusoidal Synthesizer (Ssin): We start by creating a new
DDSP module that consists of a bank ofK sinusoids with in-
dividually varying amplitudesAk and frequencies fk. These
are flexibly specified by the output of a neural network F θsin
with parameters θ over n discrete time steps:

x(n) =

K−1∑
k=0

Ak(n) sin(φk(n)), (1)

where φk(n) is its instantaneous phase obtained by cumula-
tive summation of the instantaneous frequency fk(n):

φk(n) = 2π

n∑
m=0

fk(m), (2)

The sinusoidal encoder F θsin outputs amplitudes Ak and
frequencies fk every 32ms, which are upsampled to audio
rate (16kHz) using overlapping Hann windows and linear
interpolation respectively.

https://goo.gl/magenta/ddsp-inv
https://github.com/magenta/ddsp
https://github.com/magenta/ddsp
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Figure 2. Hierarchical decomposition of a sample from the URMP dataset. Left: spectrogram of audio and sinusoidal traces from the
sinusoidal encoder F θsin. Center: harmonic components including fundamental frequency, amplitude, and distribution of the harmonics
from the harmonic encoder F θharm. Right: sinusoids decoded from harmonic components with the harmonic synthesizer Sharm and
spectrogram of the final reconstructed audio using the sinusoidal synthesizer Ssin.

We highlight a key difference of this module with a Short
Time Fourier Transform (STFT). Frequencies of each sinu-
soidal component are freely predicted by the network each
frame, instead of being locked to a fixed linear spacing de-
termined by the FFT window size. This avoids distortion in
periodic signals due to phase mismatch between adjacent
frames, and spectral leakage between neighboring frequency
bins (Engel et al., 2020).

Harmonic Synthesizer (Sharm): For a harmonic oscilla-
tor, the harmonic encoder F θharm, predicts a single funda-
mental frequency f0, amplitude A, and harmonic distribu-
tion ck, from the incoming sinusoids. On generation, all the
output frequencies are constrained to be harmonic (integer)
multiples of a fundamental frequency (pitch),

fk(n) = kf0(n) (3)

Individual amplitudes are deterministically retrieved by mul-
tiplying the total amplitude, A(n), with the normalized dis-
tribution over harmonic amplitudes, ck(n):

Ak(n) = A(n)ck(n). (4)

where
∑K−1
k=0 ck(n) = 1 and ck(n) ≥ 0.

Filtered Noise (Snoise): As introduced in (Engel et al.,
2020), we can model the non-periodic audio components
with a linear time-varying filtered noise source. Noise is
generated from a uniform distribution. We linearly tile fre-
quency space with 65 bands whose amplitude is modulated
each frame by the outputs of the sinusoidal encoder. To ease
optimization, we reuse the same filtered noise distribution
for both the sinusoidal reconstructions and the harmonic
reconstructions.

Nonlinearities: For all amplitudes and harmonic distribu-
tion components, we constrain network outputs to be posi-
tive with a exponentiated sigmoid nonlinearity, 2σ(x)log 10+
10−7, that scales the output to be between 1e-7 and 2. We
constrain sinusoidal frequency predictions between 20Hz
and 8000Hz, and harmonic fundamental frequency predic-
tions between 20Hz and 1200Hz. We logarithmically tile 64
bins across this range, then pass network outputs for each
frequency component through a softmax nonlinearity across
these bins, and take a frequency-bin-weighted sum over the
resulting distribution.

3.2. Feature Extractors

Sinusoidal Encoder (F θsin): The network converts audio
x(n) to sinusoidal amplitudes Ak, sinusoidal frequencies
fk, and filtered noise magnitudes. Audio is first transformed
to a logmel spectrogram (FFT size=2048, hop size=512, mel
bins=229), and then passed through a standard implemen-
tation of a ResNet-38 with layer normalization, bottleneck
layers, and ReLU nonlinearities (He et al., 2016a;b; Ba et al.,
2016). Through four stages, the number of filters increases
from 64 to 1024, with the frequency dimension downsam-
pling by a factor of two after each stage. A final linear
layer feeds the module specific nonlinearities described in
Section 3.1.

Harmonic Encoder (F θharm): This network converts the
sinusoidal synthesizer components from F θsin (amplitudes
Ak(n) and frequencies fk(n) for each sinusoid) into the
harmonic synthesizer components of fundamental frequency
f0(n), amplitude A(n), and harmonic distribution ck(n).
Sinusoidal amplitudes and frequencies are first converted
to a log scale and fed into a simple network of two fully-
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connected layers (256 dims), a single gated-recurrent unit
layer (512 dims), and two more fully-connected layers (256
dims). Layer normalization and leaky ReLU nonlinearities
are used throughout. A final linear layer feeds the module
specific nonlinearities described in Section 3.1.

3.3. Loss Functions

We train our network with combination of an audio recon-
struction loss, a sinusoidal consistency loss, and a self-
supervision loss. We only add the self-supervision loss
for synthetic data:

L = Lrecon + αsinLsin + Lss (5)

where αsin is a weight of 0.1 to empirically match the order
of magnitude of the other losses.

Reconstruction Loss: Since each level of the hierarchical
autoencoder can synthesize audio, we can tie the learned
representations back to the ground truth audio at each
stage with an audio reconstruction loss. Direct wave-
form comparisons focus too much on absolute phase dif-
ferences that are less perceptually relevant (Engel et al.,
2019). We instead compare spectrograms and utilize the
fact that sinusoidal synthesis maintains phase coherence by
design. We balance temporal and frequency resolution by
imposing a spectrogram loss at several different FFT sizes
(i ∈ {64, 128, 256, 512, 1024, 2048}) (Wang et al., 2020;
Engel et al., 2020):

Lrecon =
∑
i

||si − ŝi||1 + || log si − log ŝi||1. (6)

where si is the magnitude spectrogram of the target au-
dio at a given FFT size, and ŝi is the spectrogram of the
reconstructed audio. The total reconstruction loss is a
sum of the sinusoidal and harmonic reconstruction losses
(Lrecon = Lsinrecon + Lharmrecon).

Sinusoidal Consistency Loss: To compare the sets of sinu-
soids on encoding (F θsin) and decoding (Sharm), we need
a permutation invariant loss that can even compare sets of
different sizes. We took inspiration from the pitch detection
literature; implementing a differentiable version of the Two-
Way Mismatch (TWM) algorithm (Maher & Beauchamp,
1994).

The TWM algorithm estimates the distance of two sets of si-
nusoid frequencies (fa, f b) by the frequency distance from
one set to it’s closest neighbor in the other set. To prevent
the local minima of one set from densely tiling frequency
space, the distance is calculated in both directions. This
is also called the Chamfer Distance in image recognition
literature (Barrow et al., 1977).

Dtwm =
∑
k

min
j

(|fak − f bj |) +
∑
j

min
k

(|fak − f bj |) (7)

We approximate this procedure as differentiable loss be-
tween two arbitrary sets of sinusoids (Aak, fak , Abj , f

b
j ),

with K and J sinusoids respectively, by creating a Gaus-
sian kernel density estimate (KDE) of P (fak |Ab, f b) and
P (f bj |Aa, f b):

p(fak |Ab, f b) =
∑
j

Abj

σ
√
2π

exp
−(fak − f bj )2

2σ2
(8)

where Aj are the frame-wise normalized amplitudes, and
fj are the component frequencies in units of semitones
(logarithmically spaced). The standard deviation of the KDE
gaussians, σ, is a hyperparameter we set to 0.1 semitones.

We then get the loss as a weighted average of the two-way
negative log-likelihood:

Lsin = −
∑
k

Aak log p(f
a
k |Ab, f b)

−
∑
j

Abj log p(f
b
j |Aa, fa)

+ ||Aa −Ab||1

(9)

where we use a third term to keep amplitudes bounded by
matching their their average value A in each frame. An
example pair of distributions is shown in Figure 3.

A
m
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Figure 3. Sinusoidal Consistency Loss. Similarity between two
sets of sinusoids by a two-way Gaussian kernel density estimate.
Stems represent amplitudes of the sinusoids and curves represent
the conditional probability distributions of the sinusoids in one
plot given the sinusoids in the other plot. TWM loss is minimized
when the stems are at the peaks of the Gaussians in both plots.

TWM Heuristic: We can also use the sinusoidal consis-
tency loss like the TWM algorithm, as a baseline heuristic
for pitch extraction from sinusoids. In this modification,
in each time frame we consider all the sinusoids, fk, to
be potential candidates as the fundamental frequency, f0,
and build a series of harmonics off of each candidate. We
then calculate Lsin for each series of harmonics against the
original set of sinusoids and take the candidate with the
minimum loss.

Self Supervised Loss on Synthetic Data: To learn the cor-
rect scene decompositions, we found self-supervision with
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synthetic data to be an essential addition to reconstruction
losses on real data. A bad minimum exists, where fairly
good reconstructons are possible by predicting an extremely
low fundamental frequency and selectively activating only a
few harmonics. This is equivalent to the network learning
an STFT representation of the audio, where it chooses the
tight linear spacing between frequency bins.

Self-supervised training overcomes this by imposing an im-
plicit prior on the synthesizer parameters. Similar to domain
randomization (Tobin et al., 2017), we find diversity of the
synthetic data is more important than realism. In our case,
we generate notes with variable length, fundamental fre-
quency (f0), amplitude (A), harmonic distribution (c) and
noise magnitudes (N ). We also add random pitch modula-
tion and noise to all parameters to increase data diversity.
Examples are shown in the Supplement Figure 4 alongside
further details. The self-supervised loss is given between
the true parameters, and those estimated from the synthetic
audio (denoted by a hat):

Lss = ||f0 − f̂0||1
+ αA||A− Â||1
+ αc||c− ĉ||1
+ αN ||N − N̂ ||1
+ αsinLsin(Ak, fk, Âk, f̂k)

(10)

where αA, αc, αN , and αsin are loss weights set to 10, 100,
100, and 0.1 to empirically match the order of magnitude of
the other losses.

4. Experiments
4.1. Datasets

We use the following common pitch detection benchmarks
in our experiments. We resample all audio to 16kHz, create
4 second long training examples, and randomly partition a
80-20 train-test split.

MIR-1K: Hsu & Jang (2009) contains 1,000 clips of people
singing Chinese pop songs. Accompaniment music was
recorded on the left channel and singing on the right. For our
experiments, we used only the singing audio. The dataset
includes manual annotations for pitch contours.

MDB-stem-synth: Salamon et al. (2017) contains solo
recordings of a variety of instruments that were analyzed
with pitch tracking techniques and then resynthesized to
ensure fully accurate pitch annotations.

URMP: Li et al. (2018a) contains recordings of pieces
played by small orchestral ensembles. Each instrument
for a given piece was recorded in isolation and then later
mixed together with the other instruments for the final track.
We used only the isolated recordings.

Raw Pitch Accuracy MIR-1K MDB-stem URMP

Supervised
SWIPE 86.6 90.7 -
CREPE 90.1 92.7 92.2

Self-Supervised
SPICE 90.6 89.1 -
DDSP-inv (this work) 91.8 88.5 91.0

Table 1. Raw pitch detection accuracy. Across a range of instru-
mental and vocal datasets, DDSP-inv is competitive with SOTA
supervised and self-supervised discriminative methods, while also
parsing the audio into an interpretable hierarchy of features.

4.2. Training Procedure

We find training is more stable by providing a curriculum
of first pretraining on synthetic data (∼1M steps) and then
fine-tuning training on batches of mixed synthetic and real
data (∼100k steps). We use the ADAM optimizer with a
batch size of 64 and learning rate of 3e-4, and exponential
learning rate decay 0.98 every 10,000 steps (Kingma & Ba,
2015). We also find it helpful to stop direct gradient flow
from the harmonic encoder back to the sinusoidal encoder.
Note that the two levels are still implicitly connected during
training via the sinusoidal consistency loss.

4.3. Metrics

We evaluate all models with the standard metrics of
Raw Pitch Accuracy (RPA) and Raw Chroma Accuracy
(RCA). (Poliner et al., 2007). RPA measures the percentage
of voiced frames in which the estimated pitch is within half
a semitone of the ground truth pitch. Voiced regions are
taken to be frames where the ground truth pitch frequency is
greater than 0. RCA is similar to RPA but does not penalize
octave errors. The frame is accurate if the predicted pitch is
within half a semitone of any power of 2 of the ground truth.
Both metrics are computed using the mir eval python
library (Raffel et al., 2014).

4.4. Results

Table 1 shows a comparison of SOTA pitch detection meth-
ods, both supervised and self-supervised. DDSP-inv out-
performs even the supervised models on the singing data of
MIR-1K and is comparable to other self-supervised meth-
ods on the other datasets. Note that while the other models
specifically trained to detect pitch, DDSP-inv implicitly
learns to detect pitch in a hierarchy of interpretable features.

Table 2 shows the contributions of the harmonic model and
real data to model performance. Using the predicted pitch
of the harmonic model significantly improves accuracy over
the baseline of the Two-way Mismatch (TWM) heuristic on
predicted sinusoids. It also dramatically reduces the amount
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RPA (RCA) MIR-1K MDB-stem URMP

Synthetic Data
TWM 65.0 (78.6) 45.6 (75.4) 50.1 (78.8)
DDSP-inv 77.3 (78.7) 86.9 (87.1) 65.3 (69.0)

Synthetic & Real
TWM 67.2 (86.8) 60.5 (80.5) 77.0 (89.7)
DDSP-inv 91.8 (92.0) 88.5 (89.6) 91.0 (91.8)

Table 2. Comparison of pitch detection using f0 from the harmonic
encoder (F θharm, DDSP-inv) versus f0 from the sinusoidal encoder
(F θsin) with TWM heuristic. The harmonic model improves ac-
curacy and reduces octave errors, as shown by the reduced gap
between RPA and RCA. Real data improves performance, but
synthetic data alone is suprisingly effective for some datasets.

of octave errors, as shown by the reduced gap between
RPA and RCA. While adding real data makes performance
competitive with SOTA, the model achieves fairly good
accuracy with synthetic data alone, especially on the MDB-
stem-synth dataset.

5. Conclusion and Future Work
We have presented an interpretable hierarchical model
of audio that disentangles timbre and pitch through self-
supervised inversion of audio synthesis. We believe this
forms a promising foundation for learning higher levels of
structure, such as discrete tokens, and extensions to more
complicated audio scenes, including polyphonic audio with
multiple sources.
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Supplement
5.1. Synthetic Data

Figure 4. Example spectrograms of synthetic data. Notes are first given random lengths and fundamental frequency, with a possibility of
being silent. Notes are then given a random amplitude, harmonic distribution, noise distribution at their start and end, and interpolated
between. Additional vibrato and parameter noise is then added. Parameters were tuned until the authors subjectively felt that it produced
a cool diversity of sounds, even if not particularly realistic. Exact details can be found in the code at https://github.com/
magenta/ddsp.

Algorithm 1 Generate Synthetic Example

t <- random note length
With probability p:

Return silence for length t
Else:

A_start, A_end <- random harmonic amplitudes
A <- interpolate(A_start, A_end, t) + noise

c_start, c_end <- random harmonic distributions
c <- interpolate(c_start, c_end, t) + noise

f_0 <- random frequency + random vibrato + noise

n_start, n_end <- random noise distributions
n <- interpolate(n_start, n_end, t) + noise

Return A, c, f_0, n

5.2. Connection of TWM to Jefferys Divergence

It’s interesting to note that the sinusoidal consistency loss corresponds to a Jefferys Divergence (Jeffreys, 1946) between two
Gaussian KDE distributions (p, q):

DJ =
1

2
DKL(p ‖ q) +

1

2
DKL(q ‖ p)

=− 1

2

[
E

fa
k∼p(f

a
k |Aa)

log p(fak |Ab, f b) + E
fb
j∼p(fb

j |Ab)
log p(f bj |Aa, fa)

] (11)

which is equivalent to Equation 9 (except a factor of 1/2) in the limit that frequencies fk are sampled proportionally to their
normalized amplitudes Ak.

https://github.com/magenta/ddsp
https://github.com/magenta/ddsp

